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Abstract 
 

This research estimates portfolio VaR (Value-at-Risk) on G7 exchange rates using a 
GJR-GARCH-EVT (extreme value theory)-Copula based approach. We first extracts the 
filtered residuals from each return series via an asymmetric GJR-GARCH model, then 
constructs the semi-parametric empirical marginal cumulative distribution function (CDF) 
of each asset using a Gaussian kernel estimate for the interior and a generalized Pareto 
distribution (GPD) estimate for the upper and lower tails (our approach focuses on the 
entire distribution rather than the tail distribution only). A Student's t  copula is then fit to 
the data and used to induce correlation between the simulated residuals of each asset. In 
order to test the effectiveness of this model we backtest the estimated VaRs over a time 
window of 200 days. Empirical results demonstrate that our GJR-GARCH-EVT-Copula 
based approach outperforms traditional methods such as historical simulation or conditional 
Gaussian model. 
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1.  Intruduction 
In globalization and economic liberalization, the foreign exchange market has become the market with 
largest transaction volume and involving most capital. Dynamics of exchange rate processes are the 
most complex in financial markets. In addition to trading volume, another feature of concern is that the 
foreign exchange market involves characteristics of long memory. Due to a large number of 
international goods and currencies transactions, exchange rate fluctuations or risk have become very 
important topics for multinational companies, individuals, or even domestic countries. Time varying 
dynamics of exchange rate fluctuations are the main concerns of individual investments, firm 
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production and distribution, and even business strategy. G7 currency indices play an important role in 
global markets. Therefore, this study takes G7 currency indices as the research object. 

Value-at-Risk (VaR, Jorion, 2000) is a popular approach to quantifying market risk. It yields an 
estimate of the likely losses which could rise from price changes over a horizon at a given confidence 
level. VaR makes risk measure an intuitive criterion for asset management, and hence it very appeals to 
financial decision makers (Fischer, 2003; Miller, 2003; Rosengarten and Zangari, 2003). Inaccurate 
portfolio VaR estimates may lead firms to maintain insufficient risk capital reserves so that they have 
an inadequate capital cushion to absorb large financial shocks. For example, several major financial 
institutions crashed not long after the breakout of recent financial crises (e.g., East Asian financial 
crisis of 1997), and some of these failures have been associated with substantial portfolio VaR 
estimation errors. 

Currently, most of the current research on VaR estimation focuses on the univariate case 
making it undesirable for portfolio risk management. Moreover, most of the significant research 
contributions to the literature on portfolio VaR are limited to estimators of marginal VaR, component 
VaR, and incremental VaR instead of portfolio VaR itself (Hallerbach, 2002). This study employs new 
framework for portfolio VaR estimations, which integrates asymmetric GJR-GARCH models for time-
varying return distribution of individual assets, extreme value theory (EVT, Embrechts et al., 1997) for 
tail distributions, and copula functions (Nelsen, 1999) for the dependency structure on all assets of a 
portfolio. 

Traditional VaR models assume the return series follow i.i.d (independent and identically 
distributed) Gaussian distributions. However, the general financial time series are leptokurtic with 
heavy-tailed which make VaR being underestimated for i.i.d. Gaussian distribution. Recent researchers 
(Ho et al., 2000; McNeil and Frey, 2000; Gencay et al., 2003) tend to adopt the extreme value theory 
(EVT) to solve the problem. EVT not only gets rid of the underestimation usually encountered in the 
Gaussian assumption but also possesses enough flexibility to model various tail distributions. Besides, 
researchers usually adopted MLE to estimate the parameters of EVT, but under limited samples MLE 
causes estimation bias easily. 

On the time series characteristics, integrating EVT with time series model evolves into 
conditional version of EVT (CEVT, or dynamic EVT). Some literatures (McNeil and Frey, 2000; 
Nystrom and Skoglund, 2002) indicate that CEVT employing time series model filters the 
autocorrelations and heteroskedasticity in finance data. Consequently, the accuracy of VaR estimation 
is significantly enhanced. 

On the dependence structure, it is extremely complex to fit the multivariate joint probability 
density function in investment portfolios. Hence, traditional research assumes the return series obey a 
simple multivariate normal distribution, but it usually underestimate the portfolio VaR. Recently, the 
concept of copula functions (Nelsen, 1999) is injected into financial field, offering a more simple and 
flexible method to model the multivariate dependence (Embrechts et al., 2000; Embrechts et al., 2001). 

This study selects the G7 exchange rates to form a portfolio. We first transform the individual 
standardized residuals of GJR-GARCH (Glosten et al., 1993) models to uniform variates by the semi-
parametric empirical CDF (cumulative distribution function), and then fit the t  copula to the 
transformed data. Given the estimated parameters of a t  copula, we can simulate jointly dependent 
equity index returns by first simulating the corresponding dependent uniform variates. Then, by 
extrapolating into the generalized Pareto distribution tails and interpolating into the smoothed interior, 
transform the uniform variates to standardized residuals via the inversion of the semi-parametric 
marginal CDF of each index (our approach focuses on the entire distribution rather than the tail 
distribution only (Byström, 2004)). This produces simulated standardized residuals consistent with 
those obtained from the GJR-GARCH filtering process. Longitudinally, each of the simulated 
standardized residuals represents an i.i.d. univariate stochastic process when viewed in isolation, 
whereas each cross section shares the rank correlation induced by the copula. Then the portfolio VaR 
could be simulated and back tested. 
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The contribution of this study lies in the combination of the GJR-GARCH model to condition 
the individual time series, the generalized Pareto distribution function to model the tail distribution for 
each asset, and the usage of copula functions to model the joint distribution of the correlated returns for 
all assets in the portfolio. Finally, the back testing is employed to compare the validity and 
performance of the proposed method relative to other popular methods. 

The remainder of the paper is organized as follows. Section 2 introduces the extreme value 
theory. Section 3 describes the copula theory. Section 4 describes the data used in the study, and 
discusses the empirical findings. Finally, conclusions are given in Section 5. 
 
 
2.  Extreme Value Theories 
There are two principal kinds of model for extreme values (Embrechts et al., 1997). The block 
maximum models are the oldest group of models. They are models for the largest observations 
collected from large samples of identically distributed observations. The peaks-over-threshold (POT) 
models are modern methods for EVT. They directly model all large observations which exceed a high 
threshold. 

Within the POT class of models one may further distinguish two styles of analysis. One is the 
semi-parametric models built around the Hill estimator (Hill, 1975) and its relatives and the other is the 
fully parametric models based on the generalized Pareto distribution or GPD (Embrechts et al., 1997). 
This study applies to the latter style of analysis. 
 
2.1. Generalized Pareto Distribution (GPD) 

For the marginal return distributions, separate GP models are fit to both the lower and upper 
distribution tails. Under the parametrization of the GP tail model, the tail distribution is represented by 
the complement of the GP cumulative distribution function (CDF): 

  1/

,

1 1 0
( )

1 exp( ) 0

x
G x

x



 
  

 

    
   , 
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It means that for a large class of underlying distributions F, as the threshold u is progressively 
raised, the excess distribution uF will converge to a generalized Pareto distribution. The resultant 

parameter estimations are functions of the selected threshold u. The choice of the threshold value u is 
crucial in order to obtain a good estimation in MLE. In fact, if u is too high, we have only a few 
exceedances data and the variance of the estimators is high. If u is too low, the estimators are biased 
because the relation (2) does not hold. 

Setting x y u  and combining results of equations (1) and (2), our model can be written as 

,( ) (1 ( )) ( ) ( )F x F u G x u F u for x u     
. (3) 
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Using equation (3) to construct a tail estimator, the only additional element required is an 
estimate of ( )F u . The empirical estimator  uN N N  is a good choice, where uN is the number of 

exceedances beyond the high threshold u  of 1, 2 ,..., Nx x x . Putting the empirical estimator of ( )F u  and 

our estimated parameters ( ˆ ˆ,  ) of the GPD together, we arrive at the tail estimator: 
1

ˆ
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3.  Copula Theory 
An n-dimensional copula is a multivariate cumulative distribution function, C , with uniform 
distributed margins in [0,1] ( (0,1)U ) and the following properties: (Nelsen, 1999) 

   : 0,1 0,1
n

C 
; 

C  is grounded and n-increasing; 

C  has margins iC  which satisfy ( ) (1,...,1, ,1,...1)iC u u u  for all  0,1u . 

By Sklar theorem (Sklar, 1959), let F  be an n-dimensional CDF with continuous margins 

1,..., nF F . Then it has the following unique copula representation: 
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It is obvious, from the above definition, that if 1,..., nF F are univariate distribution 

functions, ( ), 1,...,i i iu F x i n  , are uniform random variables, and 1 1( ( ),..., ( ))n nC F x F x  is the unique 

multivariate CDF with margins 1,..., nF F . Eequation (5) is equivalent to the following representation 

(in variable iu ): 
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Sklar theorem implies that for multivariate distribution functions the univariate margins and the 
dependence structure can be separated. The dependence structure can be represented by an adequate 
copula function. 

Copula functions are a useful tool to construct and simulate multivariate distributions. We 
introduce some popular copula functions below: 

1. The bi-variant normal (or Gaussian) copula 
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where   is the standard multivariate normal CDF, 1  is the inverse of the standard univariate 

normal CDF, and   is the linear correlation between X and Y. 
2. The bi-variant t  copula 
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where ,vT   is the bivariate Student’s t-distribution with v  degrees of freedom, 1

vt
 is an inverse 

Student’s t-distribution function, and   is the correlation between X and Y for 2v  . 
3. The Clayton copula 
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4. The Gumbel copula 
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4.  Empirecal Research 
4.1. Data Collections 

This study use the data set comprising the major G7 exchange rate indices, including the following 
daily currency indices: Pound/dollar (GBP/USD) , Canadian Dollar/dollar (CAD/USD) , Mark/dollar 
(DEM/USD) , Franc/dollar (FRF/USD) , Lira/dollar (ITL/USD) , Yen/dollar (JPY/USD) , Ruble/dollar 
(RUB/USD). These data are extracted from Datastream provided by Morgan Stanley Capital 
International (MSCI). The whole data set covers the period from January 3, 2005 to December 31, 
2007, a total of 781 observations. These exchange rate indices are then transformed into daily returns. 
Figure 1 shows the G7 daily index returns. It’s obvious that they are highly correlated. 
 

Figure 1: Daily returns of G7 exchange rate 
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Figure 1: Daily returns of G7 exchange rate - continued 
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Modeling the tails of a distribution with a GPD requires the observations to be approximately 
independent and identically distributed (i.i.d.). However, most financial return series exhibit some 
degree of autocorrelation and, more importantly, heteroskedasticity. Figure 2 shows sample ACF 
(autocorrelation function) of returns and sample ACF of squared returns for the seven countries. The 
ACF of returns reveals some mild serial correlation. However, the sample ACF of the squared returns 
illustrates significant degree of persistence in variance, which implies that we need a GARCH model to 
condition the data for the subsequent tail estimation process. 

 
Figure 2: Filtered residuals and volatility of seven markets 
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Figure 2: Filtered residuals and volatility of seven markets - continued 
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Figure 2: Filtered residuals and volatility of seven markets - continued 
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4.2. Model Estimations 

To produce a series of i.i.d. observations, we fit a AR(1)-GJR-GARCH(1,1) model as follows to each 
index, 

0 1 1
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In the model, tR  is the index return, and t  the volatility. The GJR-GARCH model could 
incorporate asymmetric leverage effects for volatility clustering. Figure 3 are filtered model residuals 
from each index. Each lower graph of Figure 3 clearly illustrates the variation in volatility 
(heteroskedasticity) present in the filtered residuals. Subsequently, we standardize the residuals by the 
corresponding conditional standard deviation. These standardized residuals represent the underlying 
zero-mean, unit-variance, i.i.d. series upon which the EVT estimation of the sample CDF tails is based. 

Given the standardized, i.i.d. residuals from the previous step, we estimate the empirical CDF 
of each index with a Gaussian kernel in interior and EVT in each tail, because the interior of a CDF is 
usually smooth, and non-parametric kernel estimates are well suited, but kernel smooth tends to 
perform poorly when applied to the upper and lower tails. To better estimate the tails of the 
distribution, we apply EVT to those residuals that fall in each tail. 

 
Figure 3: ACF plots of seven markets 

 

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample ACF of Standardized Residuals on
GBP/USD

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample ACF of Squared Standardized Residuals

 



International Research Journal of Finance and Economics – Issue (74) 145 

Figure 3: ACF plots of seven markets - continued 
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Figure 3: ACF plots of seven markets - continued 
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4.3. VaR Calculations 

We then transform the individual standardized residuals of AR(1)-GJR-GARCH(1,1) models to 
uniform variates by the semi-parametric empirical CDF, and then fit the t copula to the transformed 
data. The estimated optimal degree of freedom ( v ) of the t copula is 7.772. This study also adopts t 
copulas with ν=10,15,20 for comparison. Subsequently, this study simulates jointly dependent currency 
index returns by reversing the above steps. We simulate 2000 independent random trials of dependent 
standardized index residuals over a one month horizon of 22 trading days. Then, using the simulated 
standardized residuals as the i.i.d. input noise process, reintroduce the autocorrelation and 
heteroskedasticity of GJR-GARCH model observed in the original index returns. Finally, given the 
simulated returns of each index, we form a 1/7 equally weighted index portfolio composed of the 
individual indices, and calculate the VaR at 99% confidence levels, over the one month risk horizon. 
The estimated 90 %, 95%, and 99% VaRs for t (7.772), t (10), t (15), t (20) and other models (historical 
simulation and GJR-GARCH +Gaussian distribution models) are listed in Table 1 for reference. 

Finally, we backtest the 99% VaR estimations over a time window of 200 days, and compare 
the results with traditional models. We count the number of VaR exceedances for each model that is 
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the number of times in which the effective loss is greater than the 99% VaR estimation. The principal 
results of this backtesting procedure are displayed in Table 2. As shown in Tables 1 and 2, the failure 
rates of our model with t(7.772)  is the nearest to 1%, 5%, 10%, respectively. Namely our model 
outperforms traditional VaR models. Empirical results clearly demonstrate that the CEVT-Copula 
based approach performs best. The historical simulation and GJR-GARCH-Gaussian overestimate the 
portfolio VaR. Figures 4. 5. 6 and 7 plot the profit and loss distributions of our CEVT-Copula models. 
Figures 8 plot the profit and loss distributions of the GJR-GARCH-Gaussian copula model and figure 9 
plot the profit and loss distributions of our historical simulation model. 
 
Table 1: VaRs of different models 
 

 
CEVT 

+t(7.772) 
copula 

CEVT +t(10) 
copula 

CEVT +t(15) 
copula 

CEVT +t(20) 
copula 

Historical 
simulation 

GARCH 
+Gaussian 

90% VaR 2.6448% 2.6408% 2.6220% 2.6475% 2.6011% 2.6329% 
95% VaR 3.5189% 3.4333% 3.4549% 3.4176% 3.2794% 3.5056% 
99% VaR 4.9892% 4.9796% 4.8469% 4.6833% 4.8276% 4.9581% 
Max Loss 7.0218% 7.3190% 6.5106% 6.7471% 8.9168% 8.2375% 
Max Gain 6.4193% 5.9001% 6.3755% 6.5223% 8.9168% 6.3911% 

 
Table 2: Failure rate for each model 
 

 
Optimal 

DoF=7.772 
DoF=10 DoF=15 DoF=20 

Historical 
Simulation 

GARCH 
+Gaussian 

Failure Rate α=0.1 0.08 0.065 0.065 0.06 0 0.06 
Failure Rate α=0.05 0.03 0.025 0.025 0.025 0 0.025 
Failure Rate α=0.01 0.005 0 0 0 0 0 

 
Figure 4: Portfolio profit and loss distribution (CEVT + t (7.772) copula) 
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Figure 5: Portfolio profit and loss distribution (CEVT + t (10) copula) 
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Figure 6: Portfolio profit and loss distribution (CEVT + t (15) copula) 
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Figure 7: Portfolio profit and loss distribution (CEVT + t (20) copula) 
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Figure 8: Portfolio profit and loss distribution (GJR-GARCH+Gaussian copula) 
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Figure 9: Portfolio profit and loss distribution (Historical Simulation) 
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5.  Conclusions 
The study incorporated a GJR-GARCH model with the copula-EVT to model the time-varying return 
distribution. This approach focuses on the entire distribution rather than the tail distribution only 
(Byström, 2004) and estimates portfolio VaR more accurately than traditional models. 

Our procedure starts with the GJR-GARCH model to estimate the conditional mean and 
volatility of the each asset. Then, in the second stage, the POT method of EVT is used to model the tail 
distribution of the residual. Finally, a seven-dimensional t  copula is fitted to the data and used to 
induce correlation between the simulated residuals of each asset. 

In sum, the highly effective framework of this study can also be applied to other portfolio VaR 
problems. Results of this study can be used to perform a good risk management on global investments. 
Future research may consider dynamic copula in the dependence structure. 
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