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a b s t r a c t

Valuing guaranteed minimum withdrawal benefit (GMWB) has attracted significant attention from both
the academic field and real world financial markets. However, some popular provisions of GMWB
contracts, like the deferred life annuity structure, rollup interest rate guarantees, and surrender options
are hard to be evaluated analytically and are rarely addressed in the academic literature. This paper
proposes a flexible tree model that can accurately evaluate the values and the fair insurance fees of
GMWBs. The flexibility of our tree allows us to faithfully implement the aforementioned provisions
without introducing significant numerical pricing errors. Themortality risk can also be easily incorporated
into our pricing model. Our numerical results verify the robustness of our tree and demonstrate how the
aforementioned provisions and themortality risk significantly influence the values and the fair insurance
fees of GMWBs.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The variable annuity (VA)1 is a popular insurance product sold
in the U.S. retirementmarket.When people purchase a VA product,
they either pay a lump sum ormake periodic payments into a fund
that is invested in an investment portfolio, such as a mutual fund.
The account value of the fund accumulates in accordance with
the performance of the investment portfolio. Policyholders can
choose the investment portfolio and thus bear the investment risk.
In recent years, granting the investment guarantee has become
a popular design with VA products. With this design, the insurer
guarantees a specified return on the policy’s account value through
various types of investment guarantees, such as guaranteed
minimumdeath benefits (GMDBs), guaranteedminimummaturity
benefits (GMMBs), guaranteedminimum income benefits (GMIBs),
and guaranteed minimumwithdrawal benefits (GMWBs). To refer
to this broad class of guarantees, we employ the term GMXBs
and note that, regardless of the type, the guarantee features of
GMXBs provide downside risk protection to policyholders. These
VA products have enjoyed great market success in the United
States and Asia. Condron (2008) suggests that the guarantee
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1 Also known as unit-linked products in the United Kingdom.
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features account for the growing popularity of VA, as manifested
in more than $1.35 trillion currently invested, a 50% increase over
the previous five years. The products are also gaining popularity in
international markets (Ledlie et al., 2008).

Granting GMXBs means that VA products contain embedded
financial options. The various guarantees can be viewed as various
types of exotic options, and the pricing of these exotic options
has become a critical research focus. Brennan and Schwartz (1976,
1979) first priced unit-linked contracts with an asset guarantee
(i.e., GMMB). The payoff of a GMMB is similar to that of an ordinary
European option, so they derived closed-form pricing formulas by
taking advantage of classic Black–Scholes assumptions. Milevsky
and Posner (2001) regarded GMDB benefits as a Titanic option
and presented closed-form solutions with a simplified exponential
mortality model. Analytic solutions for valuing GMIBs appear
in Boyle and Hardy (2003) and Ballotta and Haberman (2003,
2006). Among these investment guarantees, the GMWB guarantee
has, however, attracted particularly significant attention and sales
in recent years. A GMWB contract allows the policyholder to
withdraw funds periodically for a contractually specified amount
for a specified guaranteed withdrawal period, regardless of the
performance of the underlying investment portfolio. When the
contract expires, the holder can either redeem the remaining
investment or convert it into a life annuity. Recent research thus
addresses the pricing of GMWB contracts, starting with Milevsky
and Salisbury (2006), who first introduce the concept of a Quanto
Asian put for valuing GMWBs. Chen et al. (2008) then consider the
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jump effect and employ a jump diffusion process to value GMWBs.
Finally, Dai et al. (2008) instead provide a rigorous derivation
of the singular stochastic control model for pricing variable
annuities with GMWBs using the Hamilton–Jacobi–Bellman (HJB)
equation. Bauer et al. (2008) also consider a universal pricing
framework in which they can price various GMXBs consistently
using simulation techniques.

Because the insurance policy entitles policyholders to terminate
their contracts before the maturity date and receive a certain
cash refund (called the surrender value), taking the surrender
feature into account has become a mainstream tactic for valuing
the equity-linked policies. Shen andXu (2005) study fair valuations
of equity-linked policies with interest rate guarantees in the
presence of surrender options. Costabile et al. (2008) consider fair
periodical premiums for equity-linked policies with a surrender
option under a binomial model, and then tackle the problem of
computing fair periodical premiums for an equity-linked policy
with a maturity guarantee and an embedded surrender option.
Regarding the recently developed GMWB contract, since its payoff
is more complex than that of other guarantee types, it turns out
that valuing a GMWB contract is much more difficult, especially if
surrender is allowed. Milevsky and Salisbury (2006) assume that
an optimal withdrawal policy seeks to maximize the annuity value
by lapsing the product at an optimal time. Our paper extends their
work by analyzing how the policyholders optimize their surrender
decisions in an effort to strike a balance among losses of the time
value due to delayed withdrawal, losses due to mortality risk,
and early redemption penalties. Much of the literature has been
concernedwith the optimalwithdrawal behavior as opposed to the
surrender options. Our tree can be extended to model the optimal
withdrawal without difficulty.

Most studies oversimplify the various provisions of the GMWB
contract in order to make their pricing models tractable. However,
these oversimplifications might result in significant pricing
deviations as illustrated in the numerical experiments in Section 4.
For example, most GMWBs are associated with deferred variable
annuities, and guaranteed withdrawals normally take place after
deferred periods. Different guaranteedwithdrawal amountsmight
be designed for a deferred life annuity, such as a rollup interest
rate guarantee. To the best of our knowledge, the existing literature
assumes that the guaranteedwithdrawal starts immediately, at the
inception of the policy, even though this discrepancy could result
in significantly different pricing results. Therefore, we investigate
the effect of deferred periods and various guarantee designs on
the fair charge numerically. Besides, the mortality improvements
in recent years can affect the value of GMWBs. We also consider
mortality improvements when valuing the GMWB contracts by
incorporating mortality improvement factors into our tree model.
In addition, we also analyze whether the presence of mortality
risk, rollup interest rate guarantees, the volatility of the underlying
investment, and the redemption penalty influence the value of
surrender options.

Evaluating the fair charge for granting the GMWB is the key goal
for the GMWB evaluation problem. This insurance fee is subtracted
from the account value in return for the investment guarantee and
provisions provided by the insurance company. Note that the value
to hold a GMWB contract, abbreviated as the ‘‘value of the GMWB’’
for simplicity, decreases with the increment of the insurance fee.
The fair charge is the fee that makes the value of the GMWB
equal to the policyholder’s initial investment. Complex provisions
of GMWB contracts and the mortality risk prevent the fair charge
from being analytically solved. On the other hand, evaluating the
values of complex GMWB contracts with numerical methods could
generate oscillating pricing results, which would result in no or
multiple solutions for the fair charge.

The major contribution of this paper is that it develops an
accurate numerical tree method to calculate the value of the
GMWB and the fair charge. The flexible nature of the tree can
help us to incorporate the mortality models into the tree, to
combine the evolution of different account value processes during
the deferred and the withdrawal periods, and to deal with optimal
surrender and withdrawal decisions. In addition, to faithfully
model various provisions of GMWB contracts without incurring
significant numerical pricing errors, our tree also borrows the
trinomial structures proposed by the stair tree (Dai, 2009) and
the bino-trinomial tree (BTT; Dai and Lyuu, 2010). The stair tree
uses trinomial structures to faithfully model the downward jump
of stock prices due to discrete dividend payouts; this idea can
be used to model the downward jump in the account value of
GMWB contracts due to discrete withdrawal and the fair charge.
It can also help us to adjust the tree structure in order to price
GMWB more stably. To alleviate the price oscillation problem due
to the nonlinearity errors (Figlewski and Gao, 1999), the BTT uses
the trinomial structure to adjust the tree structure to coincide
with ‘‘critical locations’’—the locations where the function of the
financial derivative value is highly nonlinear. This paper also uses
the trinomial structure to make the tree coincide with certain
critical locations caused by the periodical withdrawal guarantees
listed in the GMWB contracts. Thus our tree can stably price the
value of GMWBs without numerical errors and can thus find the
fair charge stably.

The structure of this paper is as follows. In Section 2, we
describe the GMWB contract and some important provisions, for
instance, the deferred life annuity structure and the rollup interest
rate guarantee design. The process of the GMWB account value
and the payoff of the policyholder are then modeled according to
the provisions. The required knowledge of the tree model is also
reviewed in the same section. In Section 3, we construct a new tree
model and implement the backward inductionmethod to dealwith
the valuation of complicated provisions (e.g., the deferred annuity
structure, rollup interest rate guarantees, and surrender options)
and mortality risk in GMWB contracts. The structure of our tree
is sophisticatedly designed to suppress numerical pricing errors in
order to generate the stable value of GMWBs and the fair charge.
The numerical results in Section 4 analyze how the presence of
different provisions influences the fair charge and GMWB values.
Section 5 concludes the paper.

2. The structure of the GMWB contract and tree models

2.1. Account dynamics of the GMWB contract with a deferred variable
annuity

We assume a single-premium deferred variable annuity
associated with the GMWB. The policyholder deposits an initial
premium ω0 in an account that is invested in a selected fund
portfolio and is guaranteed the right to withdraw a specified
amount from that account at each withdrawal date during the
guaranteed withdrawal period. LetWt denote the account value at
time t for the GMWB contract, and initial account value W0 = ω0.
The account value changes according to the return on the invested
fund portfolio and diminishes by the periodical withdrawals and
payments of the insurance fee. Let the time intervals [0, T1]
and [T1, T2] denote the deferred period and withdrawal period,
respectively, whereas T2 is thematurity date. The policyholders are
only allowed to make guaranteed withdrawals periodically during
the withdrawal period. During the deferred period, the account
value changes only in relation to the return on the underlying asset
and the insurance fee. Thus the stochastic differential equation
(SDE) of Wt during the deferred period is

dWt = (r − α)Wtdt + σWtdBt , 0 < t ≤ T1, (1)
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where r denotes the risk-free interest rate, α is the continuous
charge proportional to the account value, σ denotes the volatility
of the account value, and Bt denotes a Brownian motion. Note
that our tree can also model a discrete charge just as we model
the discrete guaranteed withdrawal (introduced later). Here we
follow the continuous charge setting proposed by Milevsky and
Salisbury (2006) so we can compare our pricing results with those
of Milevsky and Salisbury in our numerical experiments.

After the deferred period, the policyholder is allowed to with-
draw periodically up to time T2. To reflect the discrete withdrawal
of the account value, the SDE of Wt during the withdrawal period
is defined as follows:

dWt = (r − α)Wtdt + σWtdBt , T1 ≤ t ≤ T2 (2)

W+

τ = W−

τ − G, where τ denotes a withdrawal date. (3)

Eq. (2) claims that the account value still follows a log-normal dif-
fusionprocess between twoadjacentwithdrawal dates. Eq. (3) sug-
gests that the account value falls by the guaranteed withdrawal
amountG due to the discretewithdrawal at awithdrawal date τ . In
this paper, we use the superscripts ‘‘+’’ and ‘‘−’’ to distinguish the
account value immediately after or before a certain time. For ex-
ample, W−

τ and W+
τ denote the account value immediately before

and after the withdrawal date τ , respectively.
According to the SDE in Eqs. (2) and (3), we can express the

account dynamics for the GMWB contracts during the deferred
period and during the withdrawal period as

Wt = W0e(r−α−0.5σ 2)t+σBt , 0 ≤ t ≤ T1
Wt = Wτ e(r−α−0.5σ 2)(t−τ)+σ(Bt−Bτ ), T1 ≤ τ ≤ t ≤ T2,
given no withdrawal dates belong to [τ , t].

(4)

These expressions of the account dynamics in Eq. (4) represent a
general setting for VAproducts embeddedwithGMWBs,which can
also apply to the GMWB contract with an immediate life annuity if
we set T1 = 0.

2.2. Settings of the guaranteed withdrawal amount

In a typical guarantee for an immediate variable annuity
contract, the total guaranteed withdrawal amount is commonly
set to equal the initial investment, and the fixed guaranteed
withdrawal amount is taken as a fixed percentage of the initial
investment, that is, G =

ω0
mT2

(e.g., Milevsky and Salisbury, 2006;
Dai et al., 2008; Chen et al., 2008), where m denotes the number
of withdrawals per year. For a deferred variable annuity contract,
the total guaranteed withdrawal amount (W+

T1
), which is also

the account value at the beginning of the withdrawal period, is
determined as the maximum of a contract-specified value C(T1)
and the account value at the end of the deferred period W−

T1
.

Here C(T1) can be interpreted as the lower bound of the total
guaranteed withdrawal. Thus, the guaranteed withdrawal amount
at each withdrawal date G can be calculated as

G =
Max[C(T1),W−

T1
]

m(T2 − T1)
. (5)

Onepopular provision to determine the lower boundof the total
guaranteed withdrawal C(T1) is a rollup interest rate guarantee.
C(T1) is defined as the return on the initial investmentwith a rollup
interest rate guaranteed interest rate i, as follows:

C(T1) = ω0(1 + i)T1 . (6)

2.3. Surrender options and the optimal withdrawal provision

Milevsky and Salisbury (2006) study the GMWB contract that
allows a policyholder to surrender his or her policy to redeem
the policy value before the maturity date. A rational policyholder
may surrender the policy early if the continuous value is less
than the current policy value. The continuous value is determined
by the present value of future expected cash flows generated
from holding the GMWB contract. In practice, surrendering the
policy early may incur early redemption penalties, so the early
redemption value at time t is

G + (1 − k)(Wt − G),

where k denotes the proportional penalty charge. Policyholders
redeem the contract early if they find that the loss of the time value
due to postponing their withdrawal from the GMWB account and
loss due tomortality risk (as we discuss subsequently) exceeds the
early redemption penalty k(Wt −G). Our paper will study how the
value of the surrender option is influenced by other provisions, say,
the rollup interest rate guarantee.

Many studies have carefully examined the optimal withdrawal
behavior. That is, the policyholder is allowed to withdraw any
amount from the account to maximize his or her benefit. Similar
to the above, a withdrawal over the limit would also require the
payment of some penalty charge. A later section will sketch how
our tree model can be extended to solve this problem by using
more state variables to keep the information required to analyze
different withdrawal strategies as proposed in Hull and White
(1993).

2.4. The impact of mortality improvement

The GMWB contract might also be terminated early if the
policyholder dies before its maturity date. In this case, the
account value is immediately returned to the policyholder, and the
withdrawal guarantees annulled. In our numerical experiments,
the mortality improvement is assumed to follow the GAR-94
table (see Society of Actuaries Group, 1995). Note that alternative
mortality assumptions can be incorporated into our evaluation
model without difficulty.

2.5. Dynamics of tree models

A tree model is a popular numerical pricing method that can
describe the evolution of a stochastic process, for instance, the
account value process in this paper. To fit the complex provisions of
theGMWBcontract, we create a novel tree that combines elements
from the CRR tree (Cox et al., 1979), stair tree (Dai, 2009), and BTT
(Dai and Lyuu, 2010). The core ideas of these three tree models
are illustrated in Fig. 1. A tree divides a certain time interval
[0, T ] into n equally spaced time steps and specifies the account
value at each step. The length of each time step ∆t equals T/n.
The tree asymptotically converges with the account value process
by matching the first and second moments of the account value
process (Eqs. (1) and (2)) for each tree node (Duffie, 1996). Let
us take the black nodes and branches in Fig. 1 that represent the
structure of the CRR tree as an example. From an arbitrary node
with account value W , the account value may move upward to
Wu with probability p or downward to Wd with probability 1 − p,
where u = eσ

√
∆t , d = e−σ

√
∆t , and p =

e(r−α)∆t
−d

u−d , to match the
first two moments of the account value process.

Tomodel jumps in the account value due to discretewithdrawal
(see Eq. (3)) without incurring significant numerical pricing errors,
we incorporate the stair tree (Dai, 2009) and the BTT (Dai and
Lyuu, 2010), which are constructed based on the CRR tree. For
convenience, define the W -log price of W ′ as ln


W ′

W


, where W

and W ′ denote two arbitrary account values. The W0-log price
for each node at time steps 1 and 2 appears in parentheses. The
distance between two adjacent nodes at the same time step is
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Fig. 1. Illustration of core ideas of the CRR tree, the stair tree, and the BTT tree.
Note: the structure of the CRR tree is plotted in black. The initial account value isW0 .
Account values can move either upward or downward, with multiplicative factors
u and d and branching probabilities p and 1 − p, respectively. The W0-log price for
each node at time steps 1 and 2 are in parentheses. Downward arrows connected
to nodes A and E model the jumps of the account value. The trinomial structures
(emitted fromnodesA and E) connect to nodesB,C ,D, F , andG at time step3without
incurring an uncombined tree structure. Note that the outgoing branch from the
lowest node at time step 2 is ignored for simplicity. The account value and the
G-log price for each node at time step 3 are listed next to that node. We follow
the core idea of the BTT by laying out the nodes at time step 3 to ensure that node
H hits the critical location plotted by the thick gray line.

2σ
√

∆t due to the nature of the structure of the CRR tree. To
faithfullymodel the downward jump of the account value (marked
by the downward arrows in time step 2) without incurring either
numerical errors or an uncombined tree structure,2 Dai (2009)
inserts the trinomial structure (colored in gray in Fig. 1) to connect
the after-jump nodes, say, nodes A and E at time step 2, to the
nodes at time step 3. The nodes at time step 3 still follow the CRR
tree structure; that is, the distance between two adjacent nodes
at the same time step is 2σ

√
∆t . Dai (2009) uses this property

to prove that a valid trinomial structure can be constructed with
feasible branching probabilities (as we detail subsequently). In
addition, this property also ensures that the outgoing branches
from the nodes at time step 3 can simply follow the CRR binomial
structure without incurring an uncombined tree structure. Indeed,
this trinomial structure is used in this paper to adjust the tree
structure to meet certain provisions of the GMWBs.

Constructing a method that can evaluate the value of the
GMWBs accurately and stably is a critical requirement for
evaluating the fair charge. Tomake our tree generate stable pricing
results, we need to suppress nonlinearity errors (see Figlewski and
Gao, 1999) by borrowing the core idea of the BTT proposed in Dai

2 Dai (2009) shows that existing tree models (apart from his stair tree) did not
recombine after down jumps of the account value. The size of the tree grows
significantly, which makes the computational problem intractable.
and Lyuu (2010); that is, we adjust the tree to make a node, says
H in Fig. 1, to coincide with a critical location, such as the account
value level G (marked by the thick dashed line) at a withdrawal
date. Recall that the policyholder is permitted to withdraw G up
to the maturity date even if the account value drops to zero at a
withdrawal date. Thus, there should be a kink in the GMWB value
function located at a line with account value G. Our numerical
results suggest that coinciding with the kink does help our tree to
generate stable pricing results.

3. Valuation of the GMWBs with a novel tree model

In this section, we discuss how we construct our tree to model
the deferred period and other various provisions (e.g., rollup
interest rate guarantees). To make the pricing results stable and
accurate, our tree structure is designed to coincide with the
critical locations, which alleviates the nonlinearity error problem.
We also discuss how to incorporate the morality risk into our
tree model. Finally, we explain how the backward induction
procedure is designed to model the surrender option and the
optimal withdrawal provision.

3.1. Construction of a new tree model for valuing GMWB with a
deferred variable annuity

Assume that the GMWB contract begins at time 0 with account
valueW0. The deferred period spans from time 0 to time T1, and the
withdrawal period spans from time T1 to time T2. A GMWBwithout
a deferred period (as mentioned in most past studies) can be dealt
with by setting T1 = 0. We demonstrate the construction of our
new tree model in the deferred period and withdrawal period
separately. We focus on tree construction for the deferred period
first, and then discuss the tree construction for the withdrawal
period.

We illustrate a simple example of our tree model in Fig. 2, with
the tree structure for the deferred period plotted in detail. The tree
structure for the withdrawal period is marked by triangles emitted
from nodes E, F , H , A, and C , as detailed in Fig. 3. To evaluate a
GMWB without incurring significant pricing errors, we design our
tree to adjust its structure and ensure that a node (e.g., node F in
Fig. 2) coincides with the account value level C(T1) at time T1. This
critical location reflects the provision that ensures minimum total
guaranteed withdrawal amounts in Eq. (5). If the account value at
the end of the deferred period W−

T1
is greater than C (T1), as is the

case for node E, then the total guaranteed withdrawal amounts
and the account value at the beginning of the withdrawal period
W+

T1
is set to the account value at the end of the withdrawal period

W−

T1
. Therefore the guaranteed withdrawal amount G for the tree

emitted from node E is W (E)

m(T2−T1)
, where W (X) denotes the account

value for an arbitrary node X . Otherwise, the provision in Eq. (5)
would reset the account value and the total guaranteedwithdrawal
amounts as C (T1). Therefore, the guaranteed withdrawal amount
G would be C(T1)

m(T2−T1)
, as is the case for nodes F , H , A and C .

To generate stable pricing results, our tree should have a node
to coincide with the critical location—a kink in the GMWB value
function located at the account value level C (T1) (black dashed
line) at time T1. To achieve this, we insert a trinomial structure
following node S to adjust the position of the following truncated,
even-step CRR tree (spanning from time steps 1 to 3 in this
example) to hit C (T1) at time T1 (i.e., node F in Fig. 2). This
truncated CRR tree is designed to emanate from some crosses, say,
nodes I , J , and K , at time step 1. Note that among the crosses,
the W0-log price of one cross (node I in this example) should be
g


= ln


C(T1)
W0


to ensure that this even-step truncated CRR tree
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Fig. 2. A tree for pricing GMWBwith the deferred period part plotted in detail. Note: the initial account valueW0 is represented by node S at time 0. The outgoing trinomial
branches from node S are marked with thick gray lines, and the CRR binomial branches are marked using thin black lines. Pu, Pm , and Pd denote the outgoing branching
probabilities from node S, and∆t denotes the length of each time step. TheW0-log price for each cross at time step 1 is listed next to the cross. The black dashed line denotes
the value level C (T1). All the nodes located at time T1 with the account value lower than C (T1) are colored in gray. The total guaranteedwithdrawal amounts and the account
value for these gray nodes are reset to C (T1). Each triangle following the node at time step 3 denotes one tree structure for the withdrawal period (see Fig. 3). The initial
account value and guaranteed withdrawal for each tree structure represented by a triangle are denoted asW+

T1
and G, respectively, in that triangle.
coincides with node F .3 The W0-log price distance between two
adjacent crosses must be 2σ

√
∆t due to the nature of the CRR

tree mentioned in Section 2.2. This ‘‘2σ
√

∆t ’’ property is applied
to construct a valid trinomial structure (see Dai, 2009) depicted as
follows.We choose three nodes from three adjacent crosses (e.g., I ,
J , and K ) that will be connected by outgoing trinomial branches
emanating from the root node S. These trinomial branches should
possess two features. First, they should match the first and second
moments of the account value process in Eq. (4). Second, the
probabilities for the trinomial branches (i.e., Pu, Pm, and Pd) must
be valid (i.e., probabilities should not be negative or greater than
1). Dai (2009) provides a node selection procedure to guarantee
the above two features as follows. First, we calculate the W0-log
price for each cross at time step 1. TheW0-log price for a cross can
be interpreted as the return on the account value from node S to
that cross. Second, we find a unique cross whose return is nearest
to the expected return on the asset value,


r − α − 0.5σ 2


∆t

(see Eq. (4)). In our example, this node is J in Fig. 2. The outgoing
trinomial branches from node S connect to node J and its adjacent
nodes, I and K . The calculation of branching probabilities for this
trinomial structure is provided in the Appendix.

The tree structure for the withdrawal period illustrated in
Fig. 3 demonstrates two critical features of our tree models. First,
the jumps of the account value due to discrete withdrawals are
implemented faithfully, without uncombined tree structure and

3 Note that this does not imply that the outgoing trinomial branches from node
S must connect to node I . If the initial account value W0 is lower, the trinomial
structure may connect to the other three nodes, say, J , K , and L. However, the
resulting truncated CRR tree emanating from these three nodes still has a node F
to coincide with the critical location.
any drastic growth in tree size. Second, the critical locations
are hit by our tree to avoid unstable pricing results due to the
nonlinearity error problem. To address the first issue, recall that
the account value falls by a contractually specified amount G
at each withdrawal date, due to the discrete withdrawal by the
policyholder. To model the discrete jump of the account value,
we borrow the idea of the stair tree from Dai (2009) and insert a
downward jump (denoted by a downward arrow) and an ‘‘after-
payment’’ node (marked by a small circle) into each node at
the withdrawal date. The valid trinomial structure going from
each ‘‘after-payment’’ node to the nodes at the next time step
can be constructed by following the node selection procedure for
constructing the branch for node S, as mentioned previously. Our
tree is recombined; the tree structure emitted from a node such
as F ′ overlaps the tree structure emitted from another node, such
as H ′. By contrast, implementing the downward jumps with a
traditional tree structurewould result in an uncombined structure.
Dai (2009) suggests that the size and thus computational time of
an unrecombined tree increases drastically with the number of
downward jumps. Our tree efficiently prices a longGMWBcontract
(i.e., many withdrawal dates), because of its recombinative nature.

To reduce the nonlinearity errors, we adjust the tree structure
to make certain nodes, such as A′ and B′, coincide with the value
levelG (black dashed line) at eachwithdrawal date. The guaranteed
withdrawal G is paid to policyholders even if the account value
cannot meet the obligation G, as in nodes D′ and C ′. The account
values for those nodes whose account values do not exceed G
become0 after paying the guaranteedwithdrawal, andno outgoing
branches are required. Obviously, there is a kink in the GMWB
value function at account value level G for each withdrawal date.
The nonlinearity error can be suppressed by making some tree
nodes, such as A′ and B′, hit the critical locations.
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Fig. 3. Tree structure for the withdrawal period. Note: the root node with the initial account value W+

T1
is denoted by S ′ . The trinomial branches used to adjust the tree

structure are marked with thick gray lines, and the CRR binomial branches are marked using thin black lines. ∆t denotes the length of each time step. The black dashed line
denotes the value level G. TheW+

T1
-log price for each cross at time step 1 and each node at time step 3 is listed next to that cross (or node). Withdrawal dates are marked by

gray dashed vertical lines. The downward jumps of the account value at the withdrawal dates are marked by downward arrows. The small circles denote the account value
after paying the guaranteed withdrawal G. The account values for the gray nodes at time steps 2 and 4 are no greater than G and become 0 after paying G to policyholders.
Finally, pu , pm , and pd denote the outgoing branching probabilities from node H ′ , and p and 1 − p denote the upward and downward outgoing branching probabilities from
node J ′ .
The construction of the tree structure for thewithdrawal period
illustrated in Fig. 3 (or the triangle illustrated in Fig. 2) proceeds as
follows. Trinomial structures are inserted to make the tree hit the
critical locations. The tree structure, between time steps 1 and 2,
forms a truncated, odd-step CRR tree structure. To make this CRR
tree hit the critical locations (node A′), the W+

T1
-log price for each

cross (or node) at time step 1must have the form g+jσ
√

∆t , where
g is defined as ln


G/W+

T1


, and j is an odd integer. The outgoing

trinomial branches from node S ′ connect to three adjacent crosses.
The trinomial branch construction method is the same as the
method for constructing the outgoing trinomial branches for node
S in Fig. 2.

The tree structure between time steps 3 and 4 is again a
truncated, odd-step CRR tree. To make the tree hit the critical
locations (node B′),W+

T1
-log prices for the nodes at time step 3must

take the form g + jσ
√

∆t , where j is an odd integer. At time step
2, the policyholder withdraws G from the account, and the account
value jumps down. Take node E ′ as an example. The account value
W (E ′) decreases to W (E ′) − G (small circle below node E ′) after
the payment of G. A trinomial structure is constructed to connect
the small circle to the three following nodes at time step 3. The
procedure for constructing the trinomial branches is the same as
that for constructing the branches for node S ′. Note that there are
no outgoing branches from nodes A′ and C ′, because the account
values for these nodes fall to 0 after withdrawal.

3.2. Incorporating mortality rate in the tree model

To capture the effect of mortality improvements on pricing
GMWB contracts, we incorporate mortality factors into our tree
model. Let px0(t0) denote the one-year survival probability and
denote the mortality force for an x0-year-old person in calendar
year t0 who reaches age x0 + 1. Thus, the one-year survival
probability can be calculated as px0(t0) = exp(−µx0(t0)) under
a constant force of mortality assumption. We assume that the age-
specific mortality rates are constant within bands of age and time,
but may vary from one band to the next. Specifically, given any
integer age x0 and calendar year t0, the n-year survival probability,
px0(t0, n), that an x0-aged person in calendar year t0 reaches age
x0 + n is calculated as px0(t0, n) =

n−1
j=0 exp


−µx0+j(t0 + j)


.

The mortality risk can be incorporated into our tree model as
demonstrated in Fig. 4. Let ∆t denote the length of each time
step in the tree. The probability of a policyholder dying within
a time step is calculated as 1 − e−µx0 (t0)∆t . It is reasonable to
assume that the account value process and mortality events are
independent. The probability of the event whereby the account
valuemoves upward and the policyholder survives can be obtained
by directly multiplying the upward branch probability p by the
survival probability e−µx0 (t0)∆t . Similarly, the probability that the
account value will move downward, given that the policyholder is
alive, can be calculated as (1 − p) e−µx0 (t0)∆t .

To evaluate the impacts of mortality risk on pricing the GMWB
contract, we need to risk neutralize the mortality rates in our
tree model. Wang (2000) proposes a transformation for pricing
contingent claims even if they are not traded in the financial
markets. Because contracts contingent on mortality rates are
usually not traded in financial markets, Wang’s transformation
provides a way to value mortality-linked securities (Lin and Cox,
2005; Dowd et al., 2006; Kijima, 2006; Liao et al., 2007; Denuit
et al., 2007). Specifically, the Wang transform convert the real-
world mortality rates (without asterisks) into risk-neutral ones
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Fig. 4. Incorporatingmortality risk in the CRR binomial structure. Note: p and 1−p
denote the upward and downward branching probabilities, respectively, under the
CRR tree. The branching probabilities are listed on the branches.

(with asterisks) as follows. Let the distribution function of the
mortality rate under the real-world probability for a person of age x
who dies before age x+m is Fx(m).4 TheWang transform converts
Fx(m) into the risk-neutral world distribution function F∗

x (m) with
a distortion operator:

F∗

x (m) = g [Fx(m)] = Φ

Φ−1 (Fx(m)) − λ


, (7)

where Fx(m) = 1 −
n−1

j=0 µx0+j(t0 + j), g is a distortion function
with g(0) = 0, g(1) = 1, and g ′(0) = ∞. Furthermore, Φ denotes
the distribution function of the standard normal distribution, and
λ denotes the market price of risk. Denuit et al. (2007) suggest
that λ can be calibrated by letting the market price of the life
annuity equal the expected present value of all future annuity cash
flows paid to the annuitants under the risk-neutral probability.
According to Eq. (7), the risk-neutral force of the mortality rate for
a person aged x+m(µ∗

x0+m(t0+m)) can be solved recursively with
the following equation:

µ∗

x0+m(t0 + m) = − ln

1 − F∗

x (m)

−

m−1
j=0

µ∗

x0+j(t0 + j).

3.3. Backward induction procedure in the presence of a surrender
option

A sophisticated backward induction procedure on our tree, as
illustrated in Figs. 2–4, enables the faithful implementation of
the GMWB contract with surrender options, mortality risk, and
other commonprovisions. To demonstrate the backward induction
procedure, we define V (x) as the GMWB value at node x, VR(x) as
the value to exercise the surrender option at x, VC (x) as the value
to keep the policy (i.e., a continuous value) at x, and W (x) as the
account value at x.

We first evaluate the GMWB value for each node at maturity T2.
A GMWB holder is entitled to withdraw a contractually specified
amount G at specified withdrawal dates (including T2), even when
the account value does not meet G. In addition, at time T2, the

4 The actuarial notation for themortality rate for a person aged xwho died before
age x + m is mqx .
policyholder can receive the remaining funds (if any) from the
account. Thus, the GMWB value at maturity is equal to

G + max(WT2 − G, 0) = max(WT2 ,G).

For example, the GMWB values for nodes B′ and D′ are G,
and the value for node L′ is W (L′). If the policyholder does not
surrender the GMWB, he or she can gain from the future cash
flows generated by the policy. This value, or the continuous value,
can be evaluated by taking the expectation of the present value
of future cash flows. We take node J ′ in Fig. 3 as an example. Let
µ∗

J ′ denote the mortality force at node J ′. The probability that the

policyholder will die during one time step is 1 − e−µ∗

J′
∆t . Because

the account value immediately returns to the policyholder and the
withdrawal guarantees are annulled if the policyholder dies, the
holder receives either W (L′) if the account value goes up to reach
node L′ (with probability p) or W (B′) if the account value goes
down to node B′ with probability 1 − p. Thus, the GMWB value
at node J ′ when the policyholder dies during a time step is
1 − e−µ∗

J′
∆t

 
pW (L′) + (1 − p)W (B′)


e−r∆t . (8)

Similarly, the value contributed by the survival of a policyholder
during a time step is

e−µ∗

J′
∆t pV (L′) + (1 − p)V (B′)


e−r∆t . (9)

Thus, the GMWB value for continuing the policy at node J ′
(i.e., VC (J ′)) is the sum of Eqs. (8) and (9). In addition, the GMWB
value for continuing the policy at node S in Fig. 2 is calculated as

VC (S) =


1 − e−µ∗

S∆t


(PuW (I) + PmW (J) + PdW (K)) e−r∆t

+ e−µ∗
S∆t (PuV (I) + PmV (J) + PdV (K)) e−r∆t .

In our numerical analysis, we can also analyze the effect of ignoring
mortality risk on the fair charge by setting µ∗

= 0.
The policyholders may exercise the surrender option on the

withdrawal dates to redeem the account value with the cost of the
proportional penalty charge k. For example, the value of exercising
the surrender option at node H ′ is

VR(H ′) ≡ G + (1 − k)(W (H ′) − G).

Because the continuous value at node H ′ is the sum of the value
contributed by the death of a policyholder during a time step, plus
the value contributed by the survival of the policyholder and the
guaranteed withdrawal G, we have

VC (H ′) ≡


1 − e−µ∗∆t

 
puW (I ′) + pmW (J ′) + pdW (K ′)


e−r∆t

+ e−µ∗∆t puV (I ′) + pmV (J ′) + pdV (K ′)

e−r∆t

+ G.

The policyholder decides whether to surrender the policy to
maximize his or her benefits; that is, the GMWB value at node
H ′ is expressed as V (H ′) = max(VR(H ′), VC (H ′)). Obviously, the
policyholder optimizes his or her surrender strategy to strike a
balance among the loss of time value due to the postponement of
thewithdrawal, the loss ofmortality risk, and the early redemption
penalty k(W (H ′) − G). On the other hand, to evaluate the policy
without surrender options, we would simply set V (H ′) = VC (H ′).

If the account value on the withdrawal dates cannot meet the
guaranteed withdrawal, as in nodes A′, B′, C ′, and D′ in Fig. 3, the
account value is set to 0 after the withdrawal. Thus, the GMWB
contract degenerates into a life annuity that might be canceled
early due to the death of the policyholder; that is, the GMWB
value for these nodes equals the sum of the present value of the
cancelable annuity. Take node A′ for example. The probability that
the policyholder will not die before time step 4, with the condition
that the holder is alive at time step 2, is e−2µ∗

m∆t . The value of the
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GMWB at node A′ is e−2µ∗
m∆tGe−2r∆t

+ G, where the first term is
contributed by the cash flow paid at time step 4.

By applying the backward induction procedure from time T2
back to time T0, we can obtain the GMWB value at node S. The fair
charge can be computed by picking a proper rate of insurance fee
α to make the value of the GMWB equal to the initial investment.
Since our tree can price the value of the GMWB smoothly without
oscillations, our pricing results (for the GMWB value) would
decrease monotonically with the increment of insurance fee α.
Thus the solution for the fair charge is unique and can be easily
solved by the standard root-finding procedure, say, the bisection
method.

3.4. The optimal withdrawal provision

Our tree can be slightly modified to model the optimal
withdrawal provision. A brief sketch is given to describe the
required modifications. Other unchanged parts, for instance, the
incorporation of the mortality risk, are ignored for simplicity.
Since the policyholder is allowed to withdraw any amount
from the account, our tree must deal with a new variable—the
remaining guaranteed withdrawal amount—the amount that is
guaranteed but is not withdrawn by the policyholder. Thus for
each node X in the withdrawal period, more state variables,
e.g., V (X,W+

T1
), V (X, 0.9W+

T1
), V (X, 0.8W+

T1
) . . . , are required to

memorize the GMWB value at node X with the remaining
guaranteed withdrawal amount W+

T1
, 0.9W+

T1
, 0.8W+

T1
, and so on.5

The tree structure is also slightly modified as illustrated in Fig. 5.
For simplicity, we only draw the modification for part of the
withdrawal period tree starting from node F ′ in Fig. 3. The layout
of the nodes at time step 3 is the same as the layout in Fig. 3 to
ensure that the tree can still coincide with the critical locations.
To evaluate the GMWB value V (F ,Q ), the GMWB value at node F
with the remaining guaranteed withdrawal amount Q , we need to
evaluate the GMWB value under different withdrawal strategies
first. For example, the GMWB value given that the policyholder
withdraws 0.1W+

T1
can be evaluated as

V (f1) ≡


1 − e−µ∗∆t

 
p1uW (M ′) + p1mW (I ′) + p1dW (J ′)


e−r∆t

+ e−µ∗
∆t


p1uV (M ′,Q − 0.1W+

T1
) + p1mV (I ′,Q − 0.1W+

T1
)

+ p1dV (J ′,Q − 0.1W+

T1
)

e−r∆t

+ 0.1W+

T1
− kmax


0.1W+

T1
− G, 0


,

where the first line denotes the GMWB value given that the holder
dies during the time step, the second line denotes the GMWB value
given that the holder survives during the time step, the first term
in line three denotes the value withdrawn by the policyholder, and
the second term denotes the over-withdrawal penalty. Similarly,
the GMWB value given that the policyholder withdraws 0.2W+

T1
can be evaluated as

V (f2) ≡


1 − e−µ∗∆t

 
p2uW (I ′) + p2mW (J ′) + p2dW (K ′)


e−r∆t

+ e−µ∗
∆t


p2uV (I ′,Q − 0.2+

T1
) + p2mV (J ′,Q − 0.2W+

T1
)

+ p2dV (K ′,Q − 0.2W+

T1
)

e−r∆t

+ 0.2W+

T1
− kmax


0.2W+

T1
− G, 0


.

5 We can add more state variables at each node to evaluate the GMWB value
under different remaining guaranteed withdrawal amounts in more detail. Note
that this also increases the computational time.
Fig. 5. Part of tree structure for modeling the optimal withdrawal provision. Note:
this figure illustrates the modification for part of the tree emanating from node
F ′ in Fig. 3 to model the optimal withdrawal provision. The policyholder may
withdraw 0.1W+

T1
or 10.2W+

T1
from the, account and the account value drops to

node f1 or f2 , respectively. The outgoing trinomial structures for f1 (with branching
probabilities p1i , p

1
m , and p1d) and f2 (with branching probabilities p2i , p

2
m , and p2d)

connect to different nodes at thenext time step. Other possiblewithdrawal amounts
are ignored for simplicity. The W+

T1
-log price for each node at time step 3 is listed

next to that node.

We can add more nodes, say, f3, f4, and branches into Fig. 5
to model the GMWB value under different withdrawal strategies.
Since the policyholderwill optimize his or herwithdrawal strategy,
V (F ,Q ) can be evaluated as max(V (fi)).

While the properties of the optimal withdrawal provision have
been widely studied in much of the literature (see Chen et al.,
2008; Dai et al., 2008), not so much attention has been given to
the features of surrender options. Our numerical results will thus
focus on the surrender options and other provisions that were not
given much consideration in the past literature.

4. Numerical results

In this section, we first verify the accuracy and robustness of
our proposed tree model. We then perform sensitivity analyses on
the fair charges. The effects of various factors, such as surrender
options, mortality risk, rollup interest rate guarantee designs,
deferred annuities, discrete withdrawals, and early redemption
penalties on the fair charge of the GMWB contract are analyzed
numerically. In addition, our method can assess the joint effects
of these factors on fair charges. For simplicity, we assume that
a policyholder invests a single premium of 100 at time 0, the
withdrawals are taken annually (i.e., m = 1 in Eq. (5)), and the
risk-free rate is 3.25%, unless stated otherwise.

4.1. Accuracy of proposed tree model

To examine the accuracy of our new tree model, we use a
Monte Carlo simulation as a proxy benchmark. The values of
the GMWB generated by our new tree model and by the Monte
Carlo simulation (denoted by MC) with 10,000,000 trials6 without
mortality risk are listed in Table 1. For convenience, we use the pair
(T1, T2) to express the length of the deferred period T1 and the time
to maturity T2. For the accuracy check, we present the result for

6 The insurance fee α is set to 0 in this case.
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Table 1
Accuracy of proposed tree model for valuing GMWBs without mortality risk.

G = 4 G = 5 G = 10
(T1, T2) = (0, 25) (T1, T2) = (0, 20) (T1, T2) = (0, 10)
σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

TM(10) 106.255 113.271 120.232 106.732 113.723 120.655 107.368 113.638 119.874
TM(50) 106.243 113.224 120.133 106.723 113.677 120.562 107.363 113.625 119.841
TM(100) 106.243 113.222 120.127 106.723 113.676 120.557 107.362 113.623 119.840
TM(500) 106.243 113.220 120.125 106.723 113.675 120.555 107.361 113.622 119.837
TM(1000) 106.243 113.220 120.125 106.723 113.675 120.555 107.361 113.622 119.837
TM(5000) 106.243 113.220 120.124 106.723 113.675 120.555 107.361 113.622 119.837

MC 106.019 113.212 120.110 106.751 113.650 120.141 107.307 113.716 119.680
SE 0.296 0.733 1.812 0.239 0.545 1.223 0.132 0.245 0.431

Note: the numbers in parentheses in the first column denote the number of time steps in our tree model (TM). MC and SE denote the GMWB values estimated by the Monte
Carlo method and the standard errors, respectively. The guaranteed withdrawal amounts for different guaranteed periods are determined by G =

ω0
T2

, so we investigate the
guaranteed withdrawal amounts of G = 4, 5 and 10.
Table 2
Accuracy of proposed tree model for valuing GMWBs with mortality risk.

G = 4 G = 5 G = 10
(T1, T2) = (0, 25) (T1, T2) = (0, 20) (T1, T2) = (0, 10)
σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

TM 104.154 109.409 114.913 105.296 111.133 117.087 106.886 112.816 118.742
MC 103.938 108.630 114.952 105.580 110.749 117.036 106.828 112.536 118.303

Notes: TM and MC denote our tree model and the Monte Carlo simulation, respectively.
an immediate life annuity with different guaranteed withdrawal
periods of 10, 20, and 25 years. The value of the GMWB increases
with σ , because this value can be decomposed into an annuity
plus an option, and the value of the option increases with σ . In
addition, the GMWB value decreases with the increment of time to
maturity T2. This is because postponing withdrawal would result
in the loss of time value. The pricing results generated by our tree
model converge smoothly and quickly to the benchmark with the
increment of the number of time steps in our tree, because our
sophisticated tree structure design sharply reduces nonlinearity
error. Therefore, our new tree model provides a precise and
efficient method to evaluate GMWB contracts.

We consider themortality factor in Table 2,where the annuitant
is assumed to be a 65-year-old man. For illustrative purposes, we
assume that the realworldmortality rate follows the GAR-94 table,
and the effect of mortality improvement can be captured by the
mortality improvement factor.7 Alternativemortality assumptions
can also be incorporated into our tree model without difficulty.
Again, the pricing results generated by our tree model are close to
those generated by the Monte Carlo simulation. By comparing the
results in Tables 1 and 2, we find that incorporating the mortality
risk decreases the GMWB value. In addition, the impact of the
mortality risk increases with the increment of the time tomaturity
T2. For example, when the volatility is high (σ = 0.4), a long-term
GMWB contract (T2 = 25)will decrease the GMWB value by about
5 (≈120.110−114.952)while a short-termcontract (T2 = 10)will
reduce the GMWB value by about (1 ≈ 119.680 − 118.303).

4.2. Sensitivity analyses of the fair charge for GMWB contracts

Evaluating the fair charge (α) is important for an insurer to
issue GMWB contracts. We detail the sensitivity analyses for the
fair charge in this section; in Table 3, we investigate the pricing
results of fair charges for the continuous withdrawal assumption

7 With theGAR-94 table, themortality rate for a person aged x in year 1994+n can
be estimated as q1994+n

x ≡ q1994x (1 − AAx)
n , where AAx is the annual improvement

factor in the mortality rate for age x. Both q1994x and AAx are provided by Society of
Actuaries Group (1995).
Table 3
Impact of discrete/continuous withdrawals of fair charges for GMWB contracts.

Method G = 4 G = 5 G = 10
(T1, T2) = (0, 25) (T1, T2) = (0, 20) (T1, T2) = (0, 10)
σ = 0.2 σ = 0.3 σ = 0.2 σ = 0.3 σ = 0.2 σ = 0.3

TM 17 b.p. 50 b.p. 28 b.p. 75 b.p. 92 b.p. 214 b.p.
M&S 23 b.p. 60 b.p. 37 b.p. 90 b.p. 140 b.p. 271 b.p.

Note: M&S denotes the fair charges evaluated under the continuous withdrawal
assumption by the method proposed in Milevsky and Salisbury (2006). TM denotes
the fair charges evaluated under the annual withdrawal assumption by our tree.
We follow the numerical settings in Milevsky and Salisbury (2006) by setting the
risk-free rate as 5% in this table.

(which are evaluated by the method proposed in Milevsky and
Salisbury (2006)) and the annual discrete withdrawal assumption
(which are evaluated by our proposed tree model). In contrast to
the argument that ‘‘the value of a continuous withdrawal formu-
lation is close to the discrete withdrawal case if withdrawal inter-
vals are less than one year’’ as proposed by Chen et al. (2008), our
numerical results suggest that approximating the longer discrete
withdrawal intervals, say, one year in this example, using the con-
tinuous withdrawal assumption may significantly overestimate
the fair charge. For example, a guaranteed withdrawal amount
G = 4 produces a fair charge of approximately 17 basis points (b.p.)
for a lower volatility (σ = 0.2) investment and 50 b.p. for a higher
volatility investment (σ = 0.3) in the discrete withdrawal setting.
However, according to Milevsky and Salisbury (2006), the corre-
sponding fair charges in a continuouswithdrawal settingwould be
23 b.p. for lower and 60 b.p. for higher volatility investments. In ad-
dition, for a higher guaranteed withdrawal amount, the fair charge
growsmuchhigher, and the overestimation phenomenon becomes
more significant. This price discrepancy could explainwhy the cur-
rent guaranteed charges in real-world financial markets are lower
than the estimates produced by Milevsky and Salisbury (2006).8

We also analyze the fair charges for the GMWB contracts
under an immediate or a deferred life annuity in Tables 4 and 5,

8 Milevsky and Salisbury (2006) note that recent GMWB products introduced in
the market charged only 30–50 b.p., even though the underlying investment fund
contained high-volatility investment choices.
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Table 4
Fair charges for GMWB contracts for immediate life annuities.

G = 4 G = 5
(T1, T2) = (0, 25) (T1, T2) = (0, 20)
σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

No surrender option No mortality risk 46 b.p. 102 b.p. 157 b.p. 66 b.p. 142 b.p. 216 b.p.
With mortality risk 33 b.p. 78 b.p. 126 b.p. 54 b.p. 119 b.p. 185 b.p.

With surrender option No mortality risk 46 b.p. 158 b.p. 395 b.p. 66 b.p. 224 b.p. 523 b.p.
With mortality risk 33 b.p. 81 b.p. 208 b.p. 54 b.p. 143 b.p. 351 b.p.

Note: the risk-free rate is assumed to be 3.25%, and the proportional penalty charge k is 0.1.
Table 5
Fair charge for GMWB contracts for deferred life annuities.

(T1, T2) = (10, 25) (T1, T2) = (10, 20)
σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

No surrender option No mortality risk 80 b.p. 170 b.p. 261 b.p. 98 b.p. 206 b.p. 316 b.p.
With mortality risk 65 b.p 136 b.p 212 b.p 79 b.p. 166 b.p. 257 b.p.

With surrender option No mortality risk 85 b.p. 248 b.p. 438 b.p. 102 b.p. 274 b.p. 475 b.p.
With mortality risk 65 b.p. 150 b.p. 277 b.p. 79 b.p. 184 b.p. 326 b.p.

Note: the risk-free rate is assumed to be 3.25%, and the proportional penalty charge k is 0.1. i and m are set as 0 and 1 for the rollup interest rate guaranteed design defined
in Eq. (5), respectively. G =

Max[C(T1),W (T1)]

m(T2−T1)
.

respectively. In particular, we study the effects of incorporating
surrender options andmortality risk on calculating the fair charge.
Table 4 shows the fair charge under a discrete withdrawal
assumption for the immediate annuity case priced by our proposed
tree model, with a proportional penalty charge k of 0.1. The
surrender option grants the policyholder the right to redeem the
policy early at the cost of a higher fair charge. For example, the
fair charge increases from 157 b.p. to 395 b.p. if G = 4, σ = 0.4,
and the option premium is 238 b.p. (=395 − 157). In addition,
the increment of the fair charge due to the presence of a surrender
option tends to be higher if the guaranteed withdrawal amount or
volatility of the account value is higher. For example, the option
premium is 0 b.p. (=46−46)when G = 4 and σ = 0.2. Increasing
the volatility σ from 0.2 to 0.4 would increase the option premium
from 0 b.p. to 238 b.p. (=395 − 157). Increasing the guaranteed
withdrawal amount from 4 to 5 would further increase the option
premium from 238 b.p. to 307 b.p. (=523 − 216). Besides, taking
mortality risk into account instead reduces the fair charge, because
the possibility of death reduces the chances for policyholders to
receive the guaranteed withdrawal. This effect could explain why
ignoring themortality risk leads to overestimates of the fair charge.
Note that taking mortality risk into account also reduces the
chances of policyholders exercising the surrender option and thus
reduces the option premium. For example, the premium declines
from 238 b.p. to 82 b.p. (=208 − 126) when G = 4 and σ = 0.4.

The above numerical analyses rely on the immediate guaran-
teed withdrawal assumption: guaranteed withdrawals are made
at inception, and the total guaranteed withdrawal amount is set to
the initial investment. The extant literature is similarly based on
this assumption. We therefore investigate the impact of a deferred
guaranteed withdrawal, which is more popular than the immedi-
ate guaranteed withdrawal one, on the fair charge (Table 5). For
comparison purposes, we set the length of the deferred period to
10 years and consider two guaranteed withdrawal periods: 10 and
15 years. The numerical settings for Tables 4 and 5 are the same,
except for the length of the guaranteed withdrawal period and
the guaranteed withdrawal amount. The guaranteed withdrawal
amount is based on the rollup interest rate guaranteed design de-
fined in Eq. (5) with i = 0% and m = 1. By comparing Table 4
with Table 5, we find that replacing the immediate guaranteed
withdrawal assumption with the deferred guaranteed withdrawal
assumption significantly increases the values of fair charges. This
is because the rollup interest rate guaranteed design provides
downside protection for the policyholder’s investment during the
deferred period. The effects of mortality risk and the surrender op-
tion on the fair charge for a deferred life annuity are similar to those
for an immediate life annuity. Thus we can ignore these analyses
for simplicity.

We further investigate how the rollup interest rate guaranteed
design influences the fair charge. In Table 6, we illustrate that
the fair charge for the GMWB contracts increases with the rollup
guaranteed interest rate i. For example, if both mortality risk and
surrender options are absent, the fair charge increases from 209
b.p. to 386 b.p. (or 512 b.p. to 796 b.p.) when the rollup interest
rate i increases from3% to 5% for the low volatility σ = 0.2 (or high
volatility σ = 0.4) case. This is because a higher i provides a bigger
guarantee on the policyholder’s investment (see Eq. (6)). Note
that the rollup interest rate guarantee design is very popular in
variable life annuity markets, and the significant increment in the
fair charge due to rollup interest rate guarantee design cannot be
ignored. In addition, the impacts of the presence ofmortality risk or
the surrender option tend to be more significant as i increases. For
example, given the volatility σ = 0.2 and the absence of mortality
risk, the surrender option premium increases from98 b.p. (=307−

209) to 684 b.p. (=1070 − 386) when the rollup interest rate i
increases from 3% to 5%. Therefore, a valuation method capable
of simultaneously pricing the rollup interest rate guarantee and
other provisions is essential for analyzing and designing GMWB
contracts. Besides, the presence of mortality risk (the surrender
option) will decrease (increase) the fair charge, as we showed
previously.

It can be observed in Table 7 that a higher proportional penalty
charge k reduces the fair charge. This is because a higher k would
prevent the policyholder from surrendering the policy, which
decreases the value of the surrender option. The decrement of the
fair charge reflects the decrement of the value of the surrender
option. Besides, it can be observed that the decrement amounts of
the fair charge become more significant with the increment of the
volatility σ and the absence of the mortality risk.

5. Conclusion

In recent years, variable annuities have emerged as key
components of the retirement income system, largely because of
their tax-deferred features. To mitigate some of the investment
risk inherent in VAproducts, investment guarantees are commonly
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Table 6
Impacts of rollup interest rate guaranteed design on the fair charge for GMWB contracts with surrender option and mortality risk.

Condition i = 0% i = 3% i = 5%
σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

No surrender option No mortality risk 98 b.p. 206 b.p. 316 b.p. 209 b.p. 363 b.p. 512 b.p. 386 b.p. 594 b.p. 796 b.p.
With mortality risk 79 b.p. 166 b.p. 257 b.p. 183 b.p. 301 b.p. 416 b.p. 329 b.p. 465 b.p. 598 b.p.

With surrender option No mortality risk 102 b.p. 274 b.p. 475 b.p. 307 b.p. 630 b.p. 977 b.p. 1070 b.p. 1667 b.p. 2335 b.p.
With mortality risk 79 b.p. 184 b.p. 326 b.p. 220 b.p. 431 b.p. 651 b.p. 646 b.p. 906 b.p. 1193 b.p.

Note: the guaranteed withdrawal amount at each withdrawal date is determined by Eq. (5): G =
Max[W0(1+i)T1 ,W−

T1
]

m(T2−T1)
, where T1 = 10, T2 = 2,m = 1 (i.e., annual withdrawal).

The risk-free rate is assumed to be 3.25%, and the proportional penalty charge k is 0.1.
Table 7
Impacts of the proportional penalty charge on the fair charge for GMWB contracts with surrender option.

Condition k = 0% k = 60%
σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

No mortality risk 164 b.p. 359 b.p. 574 b.p. 98 b.p. 207 b.p. 316 b.p.

With mortality risk 125 b.p. 267 b.p. 423 b.p. 79 b.p. 166 b.p. 257 b.p.

Note: the risk free rate is 3.25% and (T1, T2) = (10, 20).
embedded in them. These various guarantees can be viewed
as different exotic options. Although some simple guarantees
can be accurately evaluated by the analytical pricing formulas
for exotic options, many complicated guarantees cannot be
approximately priced without approximations or simplifications.
These approximating formulas may significantly misprice the
value and fair charge of GMWB contracts. To solve this mispricing
problem, we propose a new tree model that faithfully implements
some popular policy designs of GMWB contracts. Specifically, we
extend the existing literature on GMWBs to deal with deferred
withdrawals, rollup interest guaranteed designs, themortality risk,
and the surrender option, as well as take into account discrete
withdrawal behavior in the valuation framework. To the best of our
knowledge, this article is the first to analyze the impacts of these
complex provisions on the valuation of GMWB contracts.

To model policy designs without incurring significant numeri-
cal pricing errors, we propose a new tree model that entails a so-
phisticated design. The flexibility of our new tree model enables
us to model the GMWB associated with various provisions and
mortality risk. The numerical analysis verifies the accuracy of our
new tree model, in comparison with a Monte Carlo simulation.
We show that the continuous withdrawal assumption to approx-
imate discrete withdrawals would significantly overestimate the
fair charge for GMWB contracts. Whereas existing research can
only deal with the immediate guaranteed withdrawal (i.e., start-
ing at policy inception), our method can deal with the more pop-
ular deferred guaranteed withdrawal and show that the latter
provisionwould result in amuchhigher fair charge than the former
one. Our analyses also show that ignoring the presence of a sur-
render option (mortality risk)would underestimate (overestimate)
the fair charge. The changes in the premium of surrender options
under different scenarios are also substantially analyzed. Finally,
our proposed tree model can deal with rollup interest rate guaran-
tee designs for GMWB contracts, which have been very popular in
variable annuity markets. Our numerical results suggest that fair
charges significantly increase with the increment of rollup guar-
anteed interest rates. Due to our substantial numerical analyses,
developing a robust pricingmethod that can deal with various pro-
visions of GMWB contracts and mortality risk is vital for risk man-
agement.

In light of our analysis, we suggest two areas for further
research. Due to the trend in mortality improvement, it is
necessary to consider themortality risk in valuing variable annuity
products. This research demonstrates the effect of mortality
improvement on valuing GMWB contracts by employing a simple
deterministic mortality model. The stochastic mortality model
has been regarded as being more capable of capturing mortality
risk. It is well worth extending our tree model to incorporate
various mortality models to examine the effect of mortality risk on
the valuation of GMWB contracts. Moreover, valuing the GMWB
contracts under the stochastic interest rate assumption is also
important especially for the long-duration insurance contract.
Constructing a three-dimensional tree with a stochastic interest
rate and account dynamic to deal with the valuation problem for
the GMWBs should be the focus of a further study.
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Appendix. Calculating branching probabilities

Define α, β , and γ as the W0-log price of the account value at
nodes I, J , and K in Fig. 2, respectively, minus the expected return
of the account value


r − α − 0.5σ 2


∆t , as follows:

β ≡ g − 2σ
√

∆t −

r − α − 0.5σ 2 ∆t.

α ≡ g −

r − α − 0.5σ 2 ∆t = β + 2σ

√
∆t.

γ ≡ g − 4σ
√

∆t −

r − α − 0.5σ 2 ∆t = β − 2σ

√
∆t.

To match the first and second moments of the asset value process
at node S, the branching probabilities Pu, Pm, and Pd, connected to
nodes I , J , and K , respectively, should satisfy the following three
equalities:

Pu · α + Pm · β + Pd · γ = 0
Pu · α2

+ Pm · β2
+ Pd · γ 2

= σ 2∆t
Pu + Pm + Pd = 1

,

where the first two equalities match the first two moments of the
logarithmic price process (see Eq. (4)), and the last equality ensures
that these three branching probabilities sum to 1. By applying
Cramer’s rule, we can solve these three branching probabilities:
Pu =

∆u
∆
, Pm =

∆m
∆

, and Pd =
∆d
∆
, where ∆ = (β −α)(γ −α)(γ −

β),∆u = (β ·γ +σ 2∆t)(γ −β),∆m = (α ·γ +σ 2∆t)(α−γ ), and
∆d = (α ·β +σ 2∆t)(β −α). The proof in Dai (2009) suggests that
his trinomial branches construction procedure used in this paper
leads to feasible branching probabilities.
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