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Abstract This study develops a scale-invariant Schumpeterian growth model
with endogenous fertility and human capital accumulation. The model fea-
tures two engines of long-run economic growth: R&D-based innovation and
human capital accumulation. One novelty of this study is endogenous fertility,
which negatively affects the growth rate of human capital. Given this growth-
theoretic framework, we characterize the dynamics of the model and derive
comparative statics of the equilibrium growth rates with respect to structural
parameters. As for policy implications, we analyze how patent policy affects
economic growth through technological progress, human capital accumulation,
and endogenous fertility. In summary, we find that strengthening patent
protection has (a) a positive effect on technological progress, (b) a negative
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effect on human capital accumulation through a higher rate of fertility, and (c)
an ambiguous overall effect on economic growth.

Keywords Economic growth · Endogenous fertility · Patent policy

JEL Classification O31 · O34 · O40

1 Introduction

In this study, we develop a scale-invariant Schumpeterian growth model with
endogenous fertility and human capital accumulation. In the model, there
are two engines of long-run economic growth. The first growth engine is
R&D-based innovation, whereas the second growth engine is human capital
accumulation. One novelty of this study is that we consider endogenous
fertility, which negatively affects the growth rate of human capital per capita
through two channels. First, a higher rate of fertility has a crowding-out effect
on households’ time endowment, which in turn decreases the accumulation of
human capital. Second, a higher rate of fertility has a diluting effect on human
capital per member of households. Given the growth-theoretic framework,
we characterize the dynamics of the model and derive comparative statics
of the equilibrium growth rates with respect to structural parameters. As for
policy implications, we analyze how patent policy affects economic growth
through technological progress, human capital accumulation, and endogenous
fertility. In summary, we find that strengthening patent protection has (a) a
positive effect on technological progress, (b) a negative effect on human capital
accumulation through a higher rate of fertility, and (c) an ambiguous overall
effect on economic growth.

In the model, optimizing households choose the fertility rate by trading off
the marginal utility of higher fertility against its marginal costs arising from
(a) foregone wages, (b) the dilution of financial assets per capita, and (c)
the dilution of human capital per capita. We find that strengthening patent
protection that increases the market power of firms weakens the foregone-
wage effect and the human-capital-diluting effect but strengthens the asset-
diluting effect of fertility. On the one hand, weakening the foregone-wage
effect and the human-capital-diluting effect leads to a higher fertility rate. On
the other hand, strengthening the asset-diluting effect leads to a lower fertility
rate. We find that the effects of patent policy on the dilution of financial assets
and the dilution of human capital cancel each other. As a result, strengthening
patent protection unambiguously increases fertility through weakening the
foregone-wage effect, and this higher rate of fertility reduces human capital
accumulation, which in turn leads to a negative effect on economic growth. To-
gether with the positive effect of patent protection on R&D and technological
progress, the overall effect on economic growth is ambiguous. Furthermore, we
find that a stronger preference for fertility (i.e., a larger value of the fertility-
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preference parameter) tends to strengthen the negative effect of patent policy
on economic growth.

The intuition of the above results can be explained as follows. Strengthening
patent protection that increases the market power of firms raises the share of
income that goes to monopolistic profits giving rise to a conventional positive
effect on R&D and technological progress. However, it also reduces the share
of income that goes to other factor inputs including labor. As a result of lower
wages, the opportunity cost of nonmarket activities decreases; consequently,
households reallocate their time from labor supply to nonmarket activities
including child rearing. This is the weakening foregone-wage effect discussed
above. The higher rate of fertility in turn reduces the rate of human capital
accumulation by crowding out parents’ time and reducing the amount of
resources per child. Because economic growth is driven by both technological
progress and human capital accumulation, the overall effect of patent policy
on economic growth is ambiguous. Finally, we also calibrate the model to
aggregate data of the US economy to provide a quantitative analysis on the
relative strength of these opposing effects of patent policy.

Our study relates to the literature on R&D-based growth models. In this
literature, there has been a very important debate about the presence of
counterfactual scale effects in the first-generation models, such as Romer
(1990), Grossman and Helpman (1991), and Aghion and Howitt (1992).
In response to this critique, subsequent generations of R&D-based growth
models have been developed to remove the strong scale effect (i.e., a positive
relationship between population size and long-run growth).1 In these scale-
invariant models, the long-run growth rate is either solely or partly determined
by the population growth rate that is assumed to be exogenous. However, in a
more realistic framework, the fertility rate should be treated as an endogenous
variable chosen by optimizing households. In this study, we develop a scale-
invariant quality-ladder growth model with endogenous fertility and human
capital accumulation. In some recent vintages of R&D-based growth models,
the long-run growth rate is increasing in the population growth rate (i.e.,
a weak scale effect); however, even this weak scale effect is not supported
empirically.2 Therefore, we follow Strulik (2005) to model human capital
accumulation in order to generate a negative relationship between fertility and
economic growth.

Our study also relates to the literature on endogenous fertility and R&D-
driven growth for which Growiec (2006) provides an excellent review.3 Jones
(2001) develops a semi-endogenous growth model with endogenous fertility

1See Jones (1999) for an excellent review of these subsequent generations of R&D-based growth
models.
2See, for example, Strulik (2005) for a discussion.
3See also Barro and Becker (1989) for a seminal study on endogenous fertility in an overlapping-
generation model with exogenous growth.
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to analyze the emergence of rapid growth and demographic transitions.4 To
simplify their analysis, Jones (2001, 2003) and Growiec (2006) consider a
model in which the allocation of inputs to R&D is exogenously determined.
The present study differs from Jones (2001, 2003) and Growiec (2006) by
developing a quality-ladder model in which both fertility and the allocation of
factor inputs are endogenously determined through the market equilibrium.
Therefore, our model follows more closely the footsteps of Connolly and
Peretto (2003), who develop an R&D-based growth model with vertical and
horizontal innovations to analyze demographic shocks and industrial policies
that affect the costs of R&D and/or entry. However, our model differs from
Connolly and Peretto (2003) by featuring human capital accumulation as well
as creative destruction that gives rise to the importance of patent breadth that
protects an innovation against previous innovations. Therefore, the present
study complements their interesting analysis by analyzing another important
set of industrial policy: the effects of intellectual property rights on fertility,
human capital accumulation, and economic growth.

Finally, our study also relates to the literature on patent policy and eco-
nomic growth. The seminal study in the literature on optimal patent design is
Nordhaus (1969).5 While studies in this patent-design literature mostly analyze
patent policy in partial-equilibrium models, the present study follows more
closely a related macroeconomic literature by analyzing the effects of patent
policy in a quantitative dynamic general equilibrium model. The seminal
dynamic general equilibrium analysis on optimal patent length is Judd (1985),
who finds that optimal patent length can be infinite. Subsequent studies by
Iwaisako and Futagami (2003) and Futagami and Iwaisako (2007) show that
optimal patent length is usually finite in the Romer model due to an additional
distortionary effect on intermediate goods that is absent in Judd (1985).6 While
this branch of studies focuses on characterizing optimal patent length, another
branch of studies in the literature analyzes the effects of other patent-policy
levers on innovation and growth. See, for example, Li (2001) and Iwaisako
and Futagami (2011) on patent breadth; O’Donoghue and Zweimuller (2004)
on forward patent protection and patentability requirement; Cozzi (2001) and
Cozzi and Spinesi (2006) on intellectual appropriability; Kwan and Lai (2003),
Horii and Iwaisako (2007), Furukawa (2007, 2010), and Cysne and Turchick
(2012) on patent protection against imitation; Dinopoulos and Syropoulos
(2007) and Davis and Sener (2012) on rent protection activities; and Chu
(2009) and Chu et al. (2012) on blocking patents. Some of these studies find
that strengthening patent protection generates a negative effect on economic

4See also Jones (2003), who analyzes the effects of an exogenous increase in the R&D share of
labor chosen by the government. He finds that this policy change increases growth in the short run
but decreases growth in the long run through a lower rate of fertility due to a crowding-out effect
on labor supply. In contrast, our result of a negative effect of patent breadth on economic growth
is based on a higher rate of fertility through an opportunity-cost effect of lower foregone wages.
5See Scotchmer (2004) for a comprehensive review of this patent-design literature.
6See also Horowitz and Lai (1996).
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growth, and this finding is consistent with the detailed case studies analyzed
in Jaffe and Lerner (2004), Bessen and Meurer (2008), and Boldrin and
Levine (2008). The present study contributes to this literature by analyzing
a novel mechanism through endogenous fertility that patent policy reduces
human capital accumulation causing a negative effect on economic growth. To
our knowledge, this interaction between patent policy, endogenous fertility,
human capital accumulation, and economic growth has never been explored in
the literature.

The rest of this study is organized as follows. Section 2 describes the model.
Section 3 derives the equilibrium allocation and characterizes the dynamics of
the model. Section 4 analyzes the effects of patent policy on economic growth
and social welfare. Section 5 considers an extension of the model. The final
section concludes.

2 A quality-ladder model with endogenous fertility
and human capital accumulation

In this section, we develop a scale-invariant version of the Grossman and
Helpman (1991) quality-ladder model. The key changes in our model are as
follows: First, we consider endogenous fertility instead of exogenous fertility
following the setup in Razin and Ben-Zion (1975) and Yip and Zhang (1997).
Second, we allow for variable patent breadth as in Li (2001) and Iwaisako and
Futagami (2011) in order to analyze the effects of patent policy. Third, we
remove the strong scale effect through diluting R&D inputs by the scale of
the economy following Laincz and Peretto (2006). In the literature, there are
two seminal approaches to remove the strong scale effect. The first approach
is the semi-endogenous growth model in which long-run economic growth is
solely determined by the population growth rate.7 The second approach is the
second-generation model in which long-run economic growth is determined
by both the population growth rate and the R&D share of labor.8 In our
model, economic growth depends on both the population growth rate and
the share of human capital allocated to R&D resembling a second-generation
model.9 Finally, we introduce human capital accumulation as in Strulik (2005)
to generate a negative effect of fertility on economic growth. Given that
the quality-ladder model has been well studied, we will describe the familiar
features briefly to conserve space and discuss the new features in details.

7Early studies on the R&D-based semi-endogenous growth model include Jones (1995), Kortum
(1997), and Segerstrom (1998).
8Early studies on the second-generation R&D-based endogenous growth model include Young
(1998), Dinopoulos and Thompson (1998), and Peretto (1998).
9See Laincz and Peretto (2006) and Ha and Howitt (2007) for empirical evidence that supports the
second-generation R&D-based growth model.
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2.1 Households

There is a unit continuum of identical households. As is standard in the lit-
erature on endogenous fertility, households derive utility from fertility. Here,
we consider a continuous-time setup similar to Yip and Zhang (1997), which
in turn is based on the discrete-time setup in the seminal study by Razin and
Ben-Zion (1975). The intergenerational utility of households is the discounted
sum of per capita utility across time.10 Specifically, the utility function of a
household is given by

U =
∫ ∞

0
e−ρtu(ct, nt)dt, (1)

where u(ct, nt) = ln ct + α ln nt. ct is the per capita consumption of final goods
(numeraire), and nt is the number of births per person at time t. Given Nt as
the size of population, the total number of births is

.

Nt = nt Nt. In this simple
model with zero mortality, nt is also the population growth rate. α > 0 is a
fertility-preference parameter. ρ > 0 is the discount rate.

Each household maximizes Eq. 1 subject to the following asset-
accumulation equation.

.
at = (rt − nt)at + wtlt − ct. (2)

at is the amount of financial assets per capita, and rt is the rate of return on
assets. An increase in nt reduces the amount of assets per capita, and we refer
to this effect as the asset-diluting effect of fertility. wt is the wage rate, and
lt is human capital-embodied labor supply. Each person has one unit of time
to allocate between fertility, work, and education. The time spent on fertility
is given by nt/θ < 1, where θ > 0 is a parameter that is inversely related to
the time cost of fertility.11 At time t, the stock of human capital per capita is
ht. Each person combines her remaining time endowment 1 − nt/θ with her
human capital ht for work lt and education et subject to

ht(1 − nt/θ) = lt + et. (3)

Increasing nt reduces the amount of time available for work and education
capturing the foregone-wage effect of fertility. The law of motion for human
capital per capita is

.

ht = ξet − (nt + δ)ht, (4)

10See Growiec (2006) for an interesting discussion on alternative ways of modeling endogenous
fertility in the growth literature.
11We follow a common approach in the literature to assume that θ is independent of capital
accumulation or technological progress; see also Yip and Zhang (1997) and Connolly and Peretto
(2003). Otherwise, as technology or human capital accumulates, θ increases causing a lower time
cost of fertility, which in turn leads to a rising fertility rate instead of a constant fertility rate (i.e.,
ruling out a balanced growth path). However, we think it is reasonable that parental human capital
contributes to the health and education of children, and this positive effect is captured by the law
of motion for human capital per capita in Eq. 4.
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where ξ > ρ is a productivity parameter for human capital accumulation. ntht

captures the human-capital-diluting effect of fertility as in Strulik (2005). The
parameter δ ≥ 0 is the depreciation rate of human capital.

From standard dynamic optimization, the Euler equation is
.
ct

ct
= rt − nt − ρ, (5)

and the consumption-fertility optimality condition is

α

nt
= 1

ct

[
at +

(
1
θ

+ 1
ξ

)
wtht

]
. (6)

This condition equates the marginal utility of fertility given by α/nt to the
marginal utility of consumption (in response to a change in fertility) given by[
at + wtht (1/θ + 1/ξ)

]
/ct. The first term at/ct captures the asset-diluting effect

of fertility, and this effect is positively related to the value of assets per capita.
The second term θ−1wtht/ct captures the foregone-wage effect of fertility, and
the third term ξ−1wtht/ct captures the human-capital-diluting effect of fertility.
Both of these effects are positively related to the wage rate. From dynamic
optimization, we can also derive an equilibrium condition that equates the
returns on assets and human capital.

rt =
.
wt

wt
− δ + ξ(1 − nt/θ). (7)

We will show that this condition determines the equilibrium growth rate of
human capital.

2.2 Final goods

Final goods are produced by competitive firms that aggregate intermediate
goods using a standard Cobb–Douglas aggregator given by

Yt = exp
(∫ 1

0
ln Xt(i)di

)
. (8)

Xt(i) denotes intermediate goods i ∈ [0, 1]. From profit maximization, the
conditional demand function for Xt(i) is

Xt(i) = Yt/pt(i), (9)

where pt(i) is the price of Xt(i).

2.3 Intermediate goods

There is a unit continuum of industries producing differentiated intermediate
goods. Each industry is temporarily dominated by an industry leader until the
arrival of the next innovation, and the owner of the new innovation becomes
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the next industry leader.12 The production function for the leader in industry
i is

Xt(i) = zqt(i)Lx,t(i). (10)

The parameter z > 1 is the step size of productivity improvement, and qt(i) is
the number of productivity improvements that have occurred in industry i as
of time t. Lx,t(i) is the production labor in industry i . Given zqt(i), the marginal
cost of production for the industry leader in industry i is mct(i) = wt/zqt(i). It is
useful to note that we here adopt a cost-reducing view of vertical innovation
as in Peretto (1998).

Standard Bertrand price competition leads to a profit-maximizing price
given by

pt(i) = μ(z, b)mct(i), (11)

where μ = zb > 1 and b ∈ (0, 1) denote patent breadth. In the original Gross-
man and Helpman (1991) model, the patent holder is assumed to have
complete protection against imitation such that b = 1. Li (2001) considers a
more general policy environment with incomplete patent protection against
potential imitation such that b ∈ (0, 1). Here, we follow the formulation in Li
(2001), and this simple setup captures Gilbert and Shapiro’s (1990) seminal
insight on “breadth as the ability of the patentee to raise price.” From Eq. 9,
the amount of monopolistic profit is

πt(i) =
(

μ − 1
μ

)
pt(i)Xt(i) =

(
μ − 1

μ

)
Yt. (12)

Therefore, a larger patent breadth b increases the markup μ and the amount
of monopolistic profit improving the incentives for R&D. For the rest of this
study, we simply use μ to measure the strength of patent breadth. Finally,
production-labor income is

wt Lx,t(i) =
(

1
μ

)
pt(i)Xt(i) =

(
1
μ

)
Yt. (13)

Equations 12 and 13 show that strengthening patent protection increases the
share of profit income (i.e., πt/Yt) and decreases the share of wage income
(i.e., wt Lx,t/Yt). Through these effects, patent policy affects the equilibrium
rate of fertility.

2.4 R&D

Denote vt(i) as the share value of the monopolistic firm in industry i . Because
πt(i) = πt for i ∈ [0, 1] from Eq. 12, vt(i) = vt in a symmetric equilibrium that

12This is known as the Arrow replacement effect in the literature. See Cozzi (2007) for a discussion
on the Arrow effect.
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features an equal arrival rate of innovation across industries.13 In this case, the
familiar no-arbitrage condition for vt is

rtvt = πt + .
vt − λtvt. (14)

This condition equates the interest rate to the asset return per unit of asset.
The asset return is the sum of (a) monopolistic profit πt, (b) potential capital
gain

.
vt, and (c) expected capital loss λtvt from creative destruction for which λt

is the arrival rate of the next innovation.
There is a unit continuum of R&D firms indexed by j ∈ [0, 1]. They hire

R&D labor Lr,t( j) for innovation. The zero-expected-profit condition of firm
j is

vtλt( j) = wt Lr,t( j), (15)

where the firm-level arrival rate of innovation is

λt( j) = ϕt Lr,t( j). (16)

To remove the strong scale effect, we follow Laincz and Peretto (2006) to
specify that ϕt is decreasing in the scale of the economy. Specifically, we
assume that ϕt = ϕLφ−1

r,t /(ht Nt)
φ ,14 where ht Nt captures the scale of the econ-

omy and the parameter φ ∈ (0, 1) inversely measures the negative duplication
externality commonly discussed in the literature, see, for example, Jones
(1995) and Jones and Williams (2000). Given Lr,t = ∫ 1

0 Lr,t( j)dj, the aggregate
arrival rate λt of innovation features decreasing returns to scale in Lr,t.15

3 Decentralized equilibrium

The equilibrium is a time path of allocations {ct, nt, ht, lt, Nt, Yt, Xt(i),
Lx,t(i), Lr,t( j)} and a time path of prices {pt(i), wt, rt, vt}. Also, at each instance
of time, the following holds:

• Households maximize utility taking {rt, wt} as given;
• Competitive final-goods firms produce {Yt} to maximize profit taking

{pt(i)} as given;

13We follow the standard approach in the literature to focus on the symmetric equilibrium. See
Cozzi et al. (2007) for a theoretical justification for the symmetric equilibrium to be the unique
rational-expectation equilibrium in the quality-ladder growth model.
14In an earlier version of this study, see Chu and Cozzi (2011), we consider a semi-endogenous-
growth version of the model by specifying ϕt to be decreasing in aggregate technology. In that
model, we find that patent breadth has the same effects on fertility as in the current framework.
However, the current framework is more general because long-run growth depends also on the
R&D share of human capital whereas this R&D share only plays a role on short-run growth, but
not on long-run growth in the semi-endogenous growth model.
15We assume constant returns to scale at the firm level in order to be consistent with free entry
and zero expected profit.
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• Monopolistic intermediate-goods firms produce {Xt(i)} and choose
{Lx,t(i), pt(i)} to maximize profit taking {wt} as given;

• R&D firms choose {Lr,t( j)} to maximize expected profit taking {wt, vt} as
given;

• The market-clearing condition for human capital-embodied labor supply
holds such that lt Nt = Lx,t + Lr,t;

• The market-clearing condition for final goods holds such that Yt = ct Nt;
and

• The share value of monopolistic firms adds up to the total value of
household assets such that vt = at Nt.

The aggregate production function is given by

Yt = Zt Lx,t, (17)

where aggregate technology Zt is defined as

Zt = exp
(∫ 1

0
qt(i)di ln z

)
= exp

(∫ t

0
λτ dτ ln z

)
. (18)

The second equality of Eq. 18 applies the law of large numbers. Differentiating
the log of Eq. 18 with respect to t yields the growth rate of aggregate
technology given by

gz,t ≡
.

Z t

Zt
= λt ln z = (ϕ ln z)

(
Lr,t

ht Nt

)φ

. (19)

As for the dynamics of the model, Proposition 1 shows that the economy is
always on a unique and saddle-point stable balanced growth path.

Proposition 1 Given a constant level of patent breadth μ, the economy imme-
diately jumps to a unique and saddle-point stable balanced growth path along
which each variable grows at a constant (possibly zero) rate.

Proof See Appendix A (available online). ��

3.1 Balanced growth path

Given Proposition 1, we analyze the equilibrium allocation on the balanced
growth path in this section. On the balanced growth path, the arrival rate of
innovation is constant so that Lr,t and ht Nt must grow at the same rate. The
steady-state growth rate of technology is

gz = (ϕ ln z)sφ
r , (20)

where we define sr ≡ Lr,t/(ht Nt) and sx ≡ Lx,t/(ht Nt) as the shares of human
capital devoted to R&D and production, respectively.

Combining Eqs. 13 and 17 yields wt = Zt/μ, which implies
.

Z t

Zt
=

.
wt

wt
=

.
ct

ct
+ nt + ρ + δ − ξ(1 − nt/θ), (21)



Endogenous fertility and human capital in a Schumpeterian growth model 191

where the second equality of Eq. 21 is derived by substituting Eq. 5 into Eq. 7.
The steady-state growth rate of consumption per capita is

gc = gy − n = gz + gh, (22)

where gy is the steady-state growth rate of Yt. In other words, our model
features two engines of growth (i.e., technological progress gz and human
capital accumulation gh). Substituting Eq. 22 into Eq. 21 yields

gh = ξ(1 − n/θ) − n − ρ − δ. (23)

Therefore, the growth rate of human capital per capita is decreasing in n. The
first negative effect (i.e., −ξn/θ) arises from the crowding out of fertility on
time endowment. The second negative effect (i.e., −n) is the human-capital-
diluting effect of fertility. Finally, the growth rate of consumption ct is

gc = gz + gh = (ϕ ln z)sφ
r − (1 + ξ/θ)n + ξ − ρ − δ. (24)

Equation 24 shows that economic growth gc is increasing in sr and decreasing in
n. In other words, by introducing human-capital accumulation into the R&D-
based growth model, we are able to generate a negative relationship between
fertility and economic growth as in Strulik (2005). Furthermore, in our model,
endogenous fertility generates an additional negative effect on human capital
accumulation through the crowding out of time endowment that is absent in
the exogenous-fertility model in Strulik (2005).

Using Eqs. 13 and 15, we derive the first equation for solving the model as
follows:

vtλt

Lr,t
= wt = Yt

μLx,t
⇔ sr

sx
= (μ − 1)

λ

ρ + λ
, (25)

where λ = ϕsφ
r . The second equation for solving the model can be obtained

by combining the time-endowment constraint and the labor-market clearing
condition:

1 − n
θ

= lt

ht
+ et

ht
= sr + sx + et

ht
. (26)

From Eq. 4, the steady-state growth rate of ht is

gh ≡
.

ht

ht
= ξ

et

ht
− n − δ. (27)

Equating Eqs. 27 and 23 yields

et

ht
= 1 − n

θ
− ρ

ξ
, (28)

which describes a negative relationship between n and et/ht. Using Eq. 28, we
can simplify Eq. 26 to

ρ

ξ
= sr + sx. (29)
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Combining Eqs. 25 and 29 yields the following polynomial function that solves
the equilibrium s∗

r as an implicit function in structural parameters.

ϕμs∗
r + ρ(s∗

r )
1−φ = ϕ(μ − 1)ρ/ξ . (30)

Finally, to solve for the equilibrium fertility rate n∗, we make use of the
consumption-fertility optimality condition in Eq. 6:16

α

n∗ = at

ct
+ 1

θ

(
wtht

ct

)
+ 1

ξ

(
wtht

ct

)

=
(

μ − 1
μ

)
1

ρ + ϕ(s∗
r )

φ
+ 1

θ

(
1

μs∗
x

)
+ 1

ξ

(
1

μs∗
x

)
, (31)

where s∗
r and s∗

x are implicit functions in structural parameters from Eqs. 29
and 30.

3.2 Comparative statics

In this subsection, we analyze the comparative statics of the equilibrium
growth rates with respect to structural parameters. For simplicity, we present
the results for the limiting case of φ → 1 under which we obtain closed-
form solutions; however, the results for the general case of φ ∈ (0, 1) are
qualitatively the same.17 For patent breadth μ , the results for φ → 1 and
φ ∈ (0, 1) are drastically different,18 and we will present the analysis of patent
breadth for the general case of φ ∈ (0, 1) in the next section.

Taking the limit of φ → 1, Eq. 30 simplifies to

s∗
r (ϕ+

, ξ
−
, ρ

+
) = ρ

[(
μ − 1

μ

)
1
ξ

− 1
ϕμ

]
. (32)

Then, substituting Eq. 32 into Eq. 20 yields

g∗
z(ϕ+

, ξ
−
, ρ

+
, z

+
) = (ϕ ln z)s∗

r = (ρ ln z)

[(
μ − 1

μ

)
ϕ

ξ
− 1

μ

]
. (33)

An increase in R&D productivity ϕ raises s∗
r , which in turn increases g∗

z. An
increase in the productivity ξ of human capital accumulation reduces the share
of human capital allocated to production s∗

x and R&D s∗
r as shown in Eq 29; as a

result, g∗
z decreases. A larger step size z of innovation has a positive externality

effect on g∗
z. Finally, unlike the usual R&D-based growth model, a higher

discount rate ρ has a positive effect on s∗
r and g∗

z here. Intuitively, a larger ρ

reduces the incentives to invest in human capital, which in turn increases the
share of human capital allocated to production s∗

x and R&D s∗
r as shown in

Eq. 29.

16It is useful to recall that at = vt/Nt .
17See Appendix B (available online) for derivations.
18See footnote 20 for a discussion.
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Substituting Eqs. 32 and 29 into Eq. 31 yields

n∗(ϕ
−
, ξ

−
, ρ

+
, θ+, α+) = ραθ

θ + ξϕ/ (ξ + ϕ)
. (34)

An increase in R&D productivity ϕ raises wtht/ct and leads to a higher
opportunity cost of fertility; as a result, n∗ decreases. Similarly, an increase in
the productivity ξ of human capital accumulation reduces the share of human
capital allocated to production, which in turn increases wtht/ct and leads to
a higher opportunity cost of fertility. A higher discount rate ρ reduces the
incentives to invest in human capital, which in turn increases the time spent on
fertility. A larger θ implies a lower time cost of fertility and naturally increases
n∗. Finally, as households value fertility more (i.e., a larger α), they choose a
higher rate of fertility n∗.

Substituting Eq. 34 into Eq. 23 yields

g∗
h(ϕ+

, ξ
+
, ρ

−
, θ+, α−, δ−) = ξ − δ − ρ

[
1 + α(θ + ξ)

θ + ξϕ/ (ξ + ϕ)

]
. (35)

The negative effect of ϕ on n∗ translates into a positive effect on g∗
h because of

the inverse relationship between n∗ and g∗
h. As for ξ , it has a direct positive

effect on g∗
h as well as an indirect positive effect on g∗

h through a smaller
n∗.19 Similarly, a larger ρ has a direct negative effect on g∗

h as well as an
indirect negative effect on g∗

h through a larger n∗. As for θ , although it has an
indirect negative effect on g∗

h through a larger n∗, this indirect negative effect
is dominated by the direct positive effect of θ on g∗

h. A larger depreciation rate
δ of human capital has a negative effect on g∗

h. Finally, a larger α leads to a
higher rate of fertility n∗; as a result, the economy exhibits a lower growth rate
of human capital per capita. Therefore, a stronger preference for fertility has a
negative effect on economic growth.

4 Growth and welfare effects of patent breadth

In addition to the comparative statics with respect to other parameters ana-
lyzed in the previous section, we devote this section to explore the effects of a
policy variable, namely, patent breadth μ. Taking the total differentials of Eq.
30, we obtain

ds∗
r

dμ
= ϕs∗

x

ϕμ + (1 − φ)ρ(s∗
r )

−φ
> 0. (36)

Therefore, the R&D share s∗
r of human capital is increasing in μ, and this is the

standard positive effect of patent breadth on R&D through a larger share of
monopolistic profits. Equations 29 and 36 together imply that the production
share s∗

x of human capital is decreasing in μ.

19To see this, differentiating Eq. 23 with respect to ξ yields ∂gh/∂ξ = (1 − n/θ) − (1 +
ξ/θ)∂n/∂ξ > 0 . Recall that 1 − n/θ > 0 and ∂n/∂ξ < 0.
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Equation 31 determines the equilibrium n∗ as a function in μ . As for the
comparative statics of n∗ with respect to μ, we need to consider all the general
equilibrium effects of μ on n∗ . The first term on the right-hand side of Eq.
31 captures the asset-diluting effect of fertility. For a given s∗

r , a larger patent
breadth strengthens this effect by increasing at/ct (i.e., the ratio of asset value
to consumption) and leads to a lower rate of fertility. The second term on the
right-hand side of Eq. 31 captures the foregone-wage effect of fertility. For
a given s∗

x, a larger patent breadth weakens this effect by decreasing wtht/ct

(i.e., the ratio of wage income to consumption) and leads to a higher rate of
fertility. The third term on the right-hand side of Eq. 31 captures the human-
capital-diluting effect of fertility. For a given s∗

x, a larger patent breadth also
weakens this effect by decreasing wtht/ct and leads to a higher rate of fertility.

Although there are two positive effects and one negative effect on fertility,
we nonetheless derive an unambiguously positive effect because the human-
capital-diluting effect and the asset-diluting effect cancel each other. To see
this result, we first differentiate α/n∗ with respect to μ and then substitute
Eqs. 25 and 36 into the resulting expression to obtain

∂α/n∗

∂μ
= 1

μ

(
1

ρ + ϕ(s∗
r )

φ

)(
1
μ

− φϕ

ϕμ + (1 − φ)ρ(s∗
r )

−φ

)

− 1
μs∗

x

(
1
θ

+ 1
ξ

) (
1
μ

− ϕ

ϕμ + (1 − φ)ρ(s∗
r )

−φ

)
. (37)

It can be shown that

∂α/n∗

∂μ
< 0 ⇔ s∗

x

ρ + ϕ(s∗
r )

φ
<

ρ

ϕμ(s∗
r )

φ + ρ

(
1
θ

+ 1
ξ

)
. (38)

Applying Eqs. 25 and 30, this inequality further simplifies to 1/θ > 0. There-
fore, unless the foregone-wage effect is absent (i.e., θ → ∞), n∗ is increasing
in μ for φ ∈ (0, 1).20 Differentiating Eq. 24 with respect to μ yields

∂g∗
c

∂μ
= ∂g∗

z

∂μ︸︷︷︸
>0

+ ∂g∗
h

∂μ︸︷︷︸
<0

= (ϕ ln z)
∂(s∗

r )
φ

∂μ︸ ︷︷ ︸
>0

− (1 + ξ/θ)
∂n∗

∂μ︸︷︷︸
>0

. (39)

Also, Eqs. 31 and 37 imply that the value of ∂n∗/∂μ is increasing in α, whereas
Eq. 30 implies that ∂(s∗

r )
φ/∂μ is independent of α. We summarize our main

results in Proposition 2.

Proposition 2 An increase in the strength of patent protection μ increases the
equilibrium fertility rate n∗ and decreases the growth rate g∗

h of human capital.
However, it also increases the R&D share s∗

r of human capital and the growth
rate g∗

z of technology. Therefore, the overall ef fect of μ on the growth rate g∗
c of

20In the special case of φ = 1, it can be shown that patent breadth μ has no effect on the fertility
rate n∗ leaving only the positive effect on s∗

r .
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consumption is ambiguous. If the fertility-preference parameter α is suf f iciently
large, then the negative ef fect of μ on g∗

c through g∗
h dominates the positive ef fect

through g∗
z.

Proof Proven in the text. ��

The positive effect of patent breadth on R&D and the growth rate of
technology is consistent with previous studies such as Li (2001) and Iwaisako
and Futagami (2011). The novel finding here is the negative effect of patent
breadth on the accumulation of human capital. This result is complementary to
the negative effect of patent breadth on the accumulation of physical capital in
Iwaisako and Futagami (2011). The main difference is that our result is driven
by an endogenous fertility rate n∗, whereas Iwaisako and Futagami (2011)
consider neither human capital nor fertility in their analysis.21

4.1 Welfare analysis

In this section, we analyze the welfare effects of strengthening patent protec-
tion. First, we derive the welfare of households in the market equilibrium.
Then, we also derive the first-best optimal allocation. On the balanced growth
path, Eq. 1 simplifies to the following welfare expression that applies to both
the market equilibrium and the first-best allocation:

U = 1
ρ

(
ln c0 + gc

ρ
+ α ln n

)
, (40)

where c0 is initial consumption per capita. Using ct = Yt/Nt and Eq. 17, we
express c0 as

c0 = Z0h0sx, (41)

where Z0 and h0 are the initial exogenous levels of technology and per capita
human capital, respectively. The steady-state growth rate of consumption is
gc = gz + gh, where gz is given by Eq. 20 and gh is given by Eq. 27. The resource
constraint in Eq. 3 can be reexpressed as

1 = n
θ

+ sr + sx + e0

h0
, (42)

where we will normalize h0 = 1 and simply use e ≡ e0/h0 for convenience.
Substituting the above conditions into Eq. 40 and dropping the exogenous
terms yield

U = 1
ρ

(
ln sx + ϕ ln z

ρ
sφ

r + ξe − n
ρ

+ α ln n
)

. (43)

21In an extension of their model with human capital, Futagami and Iwaisako (2007) find that
increasing patent length has a negative effect on the wage rate and human capital accumulation
via an alternative mechanism other than endogenous fertility.
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Under the market equilibrium denoted by a superscript *, differentiating
Eq. 43 with respect to patent breadth μ yields

ρ
∂U∗

∂μ
= ∂ ln s∗

x

∂μ︸ ︷︷ ︸
−

+ ϕ ln z
ρ

∂(s∗
r )

φ

∂μ︸ ︷︷ ︸
+

+ ξ

ρ

∂e∗

∂μ︸︷︷︸
−

− 1
ρ

∂n∗

∂μ︸︷︷︸
+

+ α
∂ ln n∗

∂μ︸ ︷︷ ︸
+

. (44)

Strengthening patent protection has the following effects on welfare. First, it
decreases the production share s∗

x of human capital, which has a negative effect
on welfare by reducing the initial level of consumption. Second, it increases
the R&D share s∗

r of human capital, which has a positive effect on welfare
by increasing the growth rate of technology. Third, it decreases human-capital
investment e∗ as implied by Eq. 28 giving rise to a negative effect on welfare
through a lower growth rate of human capital. Finally, it increases the fertility
rate n∗, which has a direct positive effect on welfare as well as a negative
welfare effect through a lower growth rate of human capital. Whether the
overall effect of μ on U∗ is positive or negative is an empirical question that
we will explore in the subsequent quantitative analysis.

As for the first-best allocation denoted by superscript **, we maximize Eq.
43 subject to Eq. 42 and obtain

s∗∗
x = ρ

ξ
, (45)

(s∗∗
r )1−φ = φϕ ln z

ξ
, (46)

n∗∗ = αρ

1 + ξ/θ
, (47)

e∗∗ = 1 −
(

s∗∗
x + s∗∗

r + n∗∗

θ

)
. (48)

The comparative statics with respect to the parameters are quite intuitive.
Comparing Eqs. 45 and 29, we find that s∗∗

x > s∗
x because s∗

r > 0; in other words,
the decentralized market allocates an insuf f icient share of human capital to
production. Comparing Eqs. 46 and 30, we find that if φ ln z ≥ μ − 1, then
s∗∗

r > s∗
r because (s∗

r )
1−φ < ϕ(μ − 1)/ξ from Eq. 30. In other words, R&D

underinvestment occurs if either φ or z is suf f iciently large. Intuitively, a larger
φ implies a smaller degree of the negative duplication externality and a larger
z implies a larger degree of the positive externality from z to technological
progress g∗

z as shown in Eq. 20. Given R&D underinvestment, patent breadth
μ may help to mitigate this market failure.

As for the comparison between n∗∗ and n∗, we first note that from Eq. 31,
limμ→1 n∗ = αρ/(1 + ξ/θ) because limμ→1 s∗

r = 0 from Eq. 30 and limμ→1 s∗
x =

ρ/ξ from Eq. 29. Therefore, as μ approaches one, n∗ approaches n∗∗. Given
that n∗ is increasing in μ from Proposition 2, we have n∗∗ < n∗ for μ > 1; in
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other words, households choose a suboptimally high rate of fertility under the
decentralized equilibrium. Finally, as μ approaches one, we have (a) n∗∗ = n∗,
(b) s∗∗

x = s∗
x, (c) s∗∗

r > s∗
r = 0, and (d) e∗∗ < e∗. As μ increases above one, e∗

decreases towards e∗∗, whereas s∗
r increases towards s∗∗

r ; however, s∗
x and n∗

deviate from their optimal values. As μ becomes sufficiently large, e∗ may
fall below e∗∗, and s∗

r may rise above s∗∗
r . In the quantitative analysis, we will

compute the welfare changes from increasing patent breadth μ.

4.2 Quantitative analysis

In this section, we calibrate the model to examine quantitatively the effects
of patent breadth on technological progress, fertility, human capital accumu-
lation, economic growth, and social welfare. In the previous section, we show
that strengthening patent protection has both positive and negative effects on
economic growth. In this section, we calibrate the model to examine which
effect is likely to dominate.

There are nine structural parameters {ρ, δ, φ, α, θ, ϕ, μ, z, ξ} that are rele-
vant for this numerical exercise. First, we set the discount rate ρ to a standard
value of 0.04. As for the depreciation rate of human capital, Stokey and Rebelo
(1995) consider a range between 3 and 8 % to be reasonable for the US
economy, so we set δ to an intermediate value of 0.055. As for the returns
to scale in the R&D process, Kortum (1992) estimates a parameter similar to
φ and finds that its value is 0.2; therefore, we set φ to 0.2.22 We consider a range
of values for the fertility-preference parameter α ∈ {1, 2, 4, 8}. Finally, we use
the following five empirical moments to pin down the values of the remaining
five parameters. We consider a long-run population growth rate of 1 % for
the US economy, and the equilibrium condition for n∗ is given by Eq. 31. As
for the arrival rate of innovation, we use the estimate in Laitner and Stolyarov
(2011) to set λ∗ = ϕ(s∗

r )
φ to 0.17. We set the equilibrium R&D share of GDP to

0.03 for the US economy, and this share is given by S∗
r ≡ wLr/Y in the model:

S∗
r =

(
μ − 1

μ

)
λ∗

ρ + λ∗ . (49)

We set the growth rate g∗
z = λ∗ ln z of total factor productivity to 1 % and

the growth rate g∗
c = g∗

z + g∗
h of consumption per capita to 2 %. In other

words, we consider a useful benchmark in which technological progress and
human capital accumulation contribute equally to economic growth. Given a
chosen value for each of {ρ, δ, φ, α}, these five empirical moments determine

22Jones and Williams (2000) consider a lower bound for φ to be about 0.5 based on empirical
estimates for the social rate of return to R&D. In this study, we intentionally choose a small value
for φ in order for TFP growth gz not to be overly responsive to the R&D share of GDP. In our
calibration, the elasticity of TFP growth with respect to the R&D share of GDP is about 0.2. If we
set φ to a higher value of 0.5, the elasticity increases to about 0.5. However, while R&D share of
GDP in the USA has been steadily rising, TFP growth shows no significant upward trend.
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Table 1 Calibration α θ ϕ μ z ξ

1.0 0.048 0.443 1.038 1.061 0.145
2.0 0.026 0.465 1.038 1.061 0.185
4.0 0.018 0.500 1.038 1.061 0.266
8.0 0.014 0.550 1.038 1.061 0.427

the values of {θ, ϕ, μ, z, ξ}, respectively. The calibrated parameter values are
reported in Table 1.

Given these calibrated parameter values, we consider a counterfactual
policy experiment by increasing patent breadth such that μ increases from
1.038 to 1.061 (i.e., patent breadth b = ln μ/ ln z increases from 0.64 to 1.00).
The numerical results are reported in Table 2. We see that S∗

r (i.e., the R&D
share of GDP) increases by over one half. On the one hand, strengthening
patent protection has a positive effect on technological progress. For all values
of α, the arrival rate of innovation increases from 0.170 to 0.186 whereas the
growth rate of technology increases from 1 to 1.095 %. On the other hand,
strengthening patent protection raises the fertility rate from 1 % to roughly
1.003 % and decreases the growth rate of human capital. The magnitude of the
decrease in g∗

h depends on α and is increasing in its parameter value. For a small
value of α, the positive effect of μ on technological progress dominates the
negative effect on human capital accumulation giving rise to a positive overall
effect on economic growth g∗

c . For a sufficiently large value of α, the negative
effect of μ on g∗

h becomes quantitatively significant and may completely offset
or even dominate the positive effect on g∗

z giving rise to a slightly negative
overall effect on g∗

c . As for social welfare, we find that it increases and the
welfare gain U (expressed in terms of equivalent variation in consumption
flow) is slightly over 0.5 % of the consumption per year. If we decompose the
welfare effects according to Eq. 40, the welfare gain mostly comes from (a) a
higher consumption growth rate g∗

c when α is small and (b) a higher fertility
rate n∗ when α is large; in all cases, the welfare gain is partially offset by a
reduction in initial consumption c0.

From this quantitative analysis, we conclude that whether the positive or
negative effect of patent policy on economic growth dominates depends on the
empirical value of the fertility-preference parameter α. Here, we consider the
calibrated values of n/θ (i.e., the fraction of time spent on fertility) to narrow
down the empirical range of α. Using the calibrated values of θ in Table 1, one

Table 2 Policy experiment (μ = 1.061)

α S∗
r λ∗ g∗

z (%) n∗ (%) g∗
h (%) g∗

c (%) U (%)

1.0 0.047 0.186 1.095 1.002 0.991 2.085 0.569
2.0 0.047 0.186 1.095 1.003 0.978 2.073 0.567
4.0 0.047 0.186 1.095 1.003 0.954 2.048 0.561
8.0 0.047 0.186 1.095 1.003 0.904 1.999 0.551
μ = 1.038 0.030 0.170 1.000 1.000 1.000 2.000 n/a
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can show that α ∈ {1, 2, 4, 8} corresponds to the following calibrated values
of n/θ ∈ {0.21, 0.38, 0.57, 0.73}. According to the American Time Use Survey
from 2005 to 2009, an average person in households with youngest child under
6 years old spends less than 3 h per day for child caring as a primary activity.23

Assuming an average of 16 h of nonsleeping time per day, the fraction of time
spent on child caring in the US data is close to the lower bound of the calibrated
values of n/θ implying that the empirical value of α should be reasonably small
in the USA. Therefore, for the US economy, the positive effect of patent policy
on technological progress is likely to dominate the negative effect on human
capital accumulation. However, if the strength of fertility preference increases,
the negative effect of patent policy on human capital accumulation would
become quantitatively significant and offset the positive effect on technological
progress.

5 Quality–quantity trade-off

In this section, we consider an extension of the model by incorporating human
capital per capita into the utility function of households in order to capture a
more explicit quality–quantity trade-off of fertility.24 In particular, we explore
the robustness of the positive effect of patent breadth on fertility under this
extended model. The modified utility function is

U =
∫ ∞

0
e−ρt (ln ct + α ln nt + β ln ht) dt, (50)

which nests our baseline model as a special case with β = 0. In Appendix C
(available online), we provide detailed derivations. Here, we sketch out the
key equations of this extended model. With the additional term β ln ht in the
utility function, Eq. 7 derived from dynamic optimization becomes

rt =
.
wt

wt
− δ + ξ

(
1 − nt

θ

)
+ β

ξct

wtht
, (51)

where βξct/(wtht) captures the additional benefit of accumulating human
capital. The steady-state growth rate of human capital per capita in Eq. 23
becomes

gh = ξ
(

1 − n
θ

)
+ β

ξct

wtht
− n − ρ − δ, (52)

where ct/(wtht) = μsx from Eq. 13 and sx ≡ Lx,t/(ht Nt). Equating Eqs. 52 and
27 yields

et

ht
= 1 − n

θ
− ρ

ξ
+ βξμsx, (53)

23Persons in households with older children spend even less time for child caring.
24We would like to thank a referee for suggesting this interesting extension.
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which replaces Eq. 28. Substituting Eq. 53 into Eq. 26 yields
ρ

ξ
= sr + (1 + βξμ)sx, (54)

which replaces Eq. 29. Combining Eqs. 54 and 25 yields a polynomial function
that implicitly solves the equilibrium s∗

r for φ ∈ (0.1). Finally, the equilibrium
n∗ is still given by Eq. 31.

We find that s∗
r is increasing in patent breadth μ as before. As a result, g∗

z =
(ϕ ln z)(s∗

r )
φ is also increasing in μ. As for n∗, we also find that n∗ continues

to be increasing in μ. In other words, the comparative statics of {s∗
r , g∗

z, n∗}
with respect to μ are the same as in the baseline model. This finding may
not be surprising because the baseline model also contains an implicit quality–
quantity trade-off of fertility as follows. On the one hand, fertility has a direct
positive effect on utility. On the other hand, fertility has the negative crowding-
out and dilution effects on the accumulation of human capital, which in turn
affects utility through consumption. Therefore, allowing for an explicit quality–
quantity trade-off should not alter our results. Interestingly, in the extended
model, the effect of μ on g∗

h becomes ambiguous because the additional
benefit of accumulating human capital is increasing in patent breadth (i.e.,
βξct/(wtht) = βξμsx is increasing in μ). Rewriting Eq. 52 yields

g∗
h = βξμs∗

x − (1 + ξ/θ) n∗ + ξ − ρ − δ, (55)

where μs∗
x is increasing in μ. We find that there exists a threshold value of

β below (above) which the negative effect of μ on g∗
h through n∗ dominates

(is dominated by) the positive effect of μ through μs∗
x. These results are

summarized in the following proposition.

Proposition 3 In the extended model, an increase in the strength of patent
protection μ increases (a) the fertility rate n∗, (b) the R&D share s∗

r of human
capital, and (c) the growth rate g∗

z of technology. However, it has opposing
ef fects on the growth rate g∗

h of human capital. There exists a threshold value
of β below (above) which the negative (positive) ef fect of μ on g∗

h dominates.
If the negative ef fect dominates, then the overall ef fect of μ on the growth rate
g∗

c of consumption would be ambiguous. In this case, if the fertility-preference
parameter α is suf f iciently large, then g∗

c would be decreasing in μ.

Proof See Appendix C (available online). ��

6 Conclusion

In this study, we have first developed a simple scale-invariant quality-ladder
model with endogenous fertility and human capital accumulation and then
apply the model to analyze the theoretical effects of patent policy on economic
growth. We find that although strengthening patent protection has a positive
effect on technological progress, it also has a negative effect on human capital
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accumulation. As a result, the overall effect on economic growth is ambiguous.
In the quantitative analysis, we find that the relative magnitude of these two
effects depends on the empirical value of a preference parameter on fertility.
Calibrating this parameter to a reasonable value for the US economy, we find
that the positive effect on technological progress is likely to dominate the neg-
ative effect on human capital accumulation rendering a positive overall effect
on economic growth. However, if the country experiences a strengthening of
fertility preference, the negative effect of patent policy on economic growth
would become quantitatively significant and may even dominate the positive
effect.

Acknowledgements The authors would like to thank Silvia Galli, Oded Galor, and the anony-
mous referees for their insightful comments and helpful suggestions. The usual disclaimer applies.

References

Aghion P, Howitt P (1992) A model of growth through creative destruction. Econometrica 60:323–
351

Barro R, Becker G (1989) Fertility choice in a model of economic growth. Econometrica 57:481–
501

Bessen J, Meurer M (2008) Patent failure: how judges, bureaucrats, and lawyers put innovators at
risk. Princeton University Press, Princeton

Boldrin M, Levine D (2008) Against intellectual monopoly. Cambridge University Press, Cam-
bridge

Chu A (2009) Effects of blocking patents on R&D: a quantitative DGE analysis. J Econ Growth
14:55–78

Chu A, Cozzi G (2011) Cultural preference on fertility and the long-run growth effects of intellec-
tual property rights. MPRA Papers No 29059

Chu A, Cozzi G, Galli S (2012) Does intellectual monopoly stimulate or stifle innovation? Eur
Econ Rev 56:727–746

Connolly M, Peretto P (2003) Industry and the family: two engines of growth. J Econ Growth
8:115–148

Cozzi G (2001) Inventing or spying? Implications for growth. J Econ Growth 6:55–77
Cozzi G (2007) The Arrow effect under competitive R&D. Contrib Macroecon 7:Article 2
Cozzi G, Giordani P, Zamparelli L (2007) The refoundation of the symmetric equilibrium in

Schumpeterian growth models. J Econ Theory 136:788–797
Cozzi G, Spinesi L (2006) Intellectual appropriability, product differentiation, and growth. Macro-

econ Dyn 10:39–55
Cysne R, Turchick D (2012) Intellectual property rights protection and endogenous economic

growth revisited. J Econ Dyn Control 36:851–861
Davis L, Sener F (2012) Private patent protection in the theory of Schumpeterian growth. Manu-

script, Union College
Dinopoulos E, Syropoulos C (2007) Rent protection as a barrier to innovation and growth. Econ

Theory 32:309–332
Dinopoulos E, Thompson P (1998) Schumpeterian growth without scale effects. J Econ Growth

3:313–335
Furukawa Y (2007) The protection of intellectual property rights and endogenous growth: is

stronger always better? J Econ Dyn Control 31:3644–3670
Furukawa Y (2010) Intellectual property protection and innovation: an inverted-U relationship.

Econ Lett 109:99–101
Futagami K, Iwaisako T (2007) Dynamic analysis of patent policy in an endogenous growth model.

J Econ Theory 132:306–334
Gilbert R, Shapiro C (1990) Optimal patent length and breadth. RAND J Econ 21:106–112



202 A.C. Chu et al.

Grossman G, Helpman E (1991) Quality ladders in the theory of growth. Rev Econ Stud 58:43–61
Growiec J (2006) Fertility choice and semi-endogenous growth: where Becker meets Jones. Top

Macroecon 6:Article 10
Ha J, Howitt P (2007) Accounting for trends in productivity and R&D: a Schumpeterian critique

of semi-endogenous growth theory. J Money Credit Bank 39:733–774
Horii R, Iwaisako T (2007) Economic growth with imperfect protection of intellectual property

rights. J Econ 90:45–85
Horowitz A, Lai E (1996) Patent length and the rate of innovation. Int Econ Rev 37:785–801
Iwaisako T, Futagami K (2003) Patent policy in an endogenous growth model. J Econ 78:239–258
Iwaisako T, Futagami K (2011) Patent protection, capital accumulation, and economic growth.

Econ Theory. doi:10.1007/s00199-011-0658-y
Jaffe A, Lerner J (2004) Innovation and its discontents: how our broken system is endangering

innovation and progress, and what to do about it. Princeton University Press, Princeton
Jones C (1995) R&D-based models of economic growth. J Polit Econ 103:759–784
Jones C (1999) Growth: with or without scale effects. Am Econ Rev 89:139–144
Jones C (2001) Was an industrial revolution inevitable? Economic growth over the very long run.

Adv Macroecon 1:Article 1
Jones C (2003) Population and ideas: a theory of endogenous growth. In: Aghion P, Frydman R,

Stiglitz J, Woodford M (eds) Knowledge, information, and expectations in modern macroeco-
nomics: in honor of Edmund S. Phelps. Princeton University Press, Princeton

Jones C, Williams J (2000) Too much of a good thing? The economics of investment in R&D. J
Econ Growth 5:65–85

Judd K (1985) On the performance of patents. Econometrica 53:567–586
Kortum S (1992) Inventions, R&D and industry growth. Ph.D. Dissertation, Yale University
Kortum S (1997) Research, patenting, and technological change. Econometrica 65:1389–1419
Kwan Y, Lai E (2003) Intellectual property rights protection and endogenous economic growth. J

Econ Dyn Control 27:853–873
Laincz C, Peretto P (2006) Scale effects in endogenous growth theory: an error of aggregation not

specification. J Econ Growth 11:263–288
Laitner J, Stolyarov D (2011) Derivative ideas and the value of intangible assets. Manuscript,

University of Michigan
Li CW (2001) On the policy implications of endogenous technological progress. Econ J 111:C164–

C179
Nordhaus W (1969) Invention, growth, and welfare: a theoretical treatment of technological

change. The MIT Press, Cambridge
O’Donoghue T, Zweimuller J (2004) Patents in a model of endogenous growth. J Econ Growth

9:81–123
Peretto P (1998) Technological change and population growth. J Econ Growth 3:283–311
Razin A, Ben-Zion U (1975) An intergenerational model of population growth. Am Econ Rev

65:923–933
Romer P (1990) Endogenous technological change. J Polit Econ 98:S71–S102
Scotchmer S (2004) Innovation and incentives. MIT Press, Cambridge
Segerstrom P (1998) Endogenous growth without scale effects. Am Econ Rev 88:1290–1310
Stokey N, Rebelo S (1995) Growth effects of flat-rate taxes. J Polit Econ 103:619–550
Strulik H (2005) The role of human capital and population growth in R&D-based models of

economic growth. Rev Int Econ 13:129–145
Yip C, Zhang J (1997) A simple endogenous growth model with endogenous fertility: indetermi-

nacy and uniqueness. J Popul Econ 10:97–110
Young A (1998) Growth without scale effects. J Polit Econ 106:41–63

http://dx.doi.org/10.1007/s00199-011-0658-y


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	c.148_2012_Article_433.pdf
	Endogenous fertility and human capital in a Schumpeterian growth model
	Abstract
	Introduction
	A quality-ladder model with endogenous fertility and human capital accumulation
	Households
	Final goods
	Intermediate goods
	R&D

	Decentralized equilibrium
	Balanced growth path
	Comparative statics

	Growth and welfare effects of patent breadth
	Welfare analysis
	Quantitative analysis

	Quality--quantity trade-off
	Conclusion
	References



