
Journal of Public Economics 105 (2013) 58–71

Contents lists available at SciVerse ScienceDirect

Journal of Public Economics

j ourna l homepage: www.e lsev ie r .com/ locate / jpube
Optimal linear and two-bracket income taxes with idiosyncratic
earnings risk☆
Minchung Hsu a, C.C. Yang b,c,d,⁎
a National Graduate Institute For Policy Studies (GRIPS), Tokyo, Japan
b Institute of Economics, Academia Sinica, Taiwan
c Department of Public Finance, National Chengchi University, Taiwan
d Department of Public Finance, Feng Chia University, Taiwan
☆ We are grateful to two referees for their comments an
us significantly improve the paper. C.C. Yang acknowled
Taiwan NSC under the grant NSC 101-2410-H-001-004-M
⁎ Corresponding author at: Institute of Economics, Ac

115, Taiwan.
E-mail addresses: minchunghsu@grips.ac.jp (M. Hsu

(C.C. Yang).

0047-2727/$ – see front matter © 2013 Elsevier B.V. All
http://dx.doi.org/10.1016/j.jpubeco.2013.06.006
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 2 August 2012
Received in revised form 14 June 2013
Accepted 17 June 2013
Available online 28 June 2013

Keywords:
Optimal taxation
Piecewise linear tax
Idiosyncratic risk
This paper quantitatively characterizes optimal linear and two-bracket income taxes. We consider a
dynamic-stochastic-general-equilibrium model in which tax design involves redistributing income for both
equity and social insurance. Substantive findings include: (i) a significant fraction of agents supply zero
labor or hold zero assets at the optimum; (ii) neglecting tax distortion imposed on either of labor–leisure
and consumption–saving decisions will lead to the prescription of tax codes that deviate substantially from
the optimum; and (iii) the optimal two-bracket tax schedule will turn from regressivity to progressivity in
the marginal tax rate once the volatility of idiosyncratic shocks becomes sufficiently large. The last finding
is consistent with the results in Apps et al. (forthcoming), and it also reconciles the contradictory results
regarding the optimal two-bracket tax schedule between Slemrod et al. (1994) and Strawczynski (1998).
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1. Introduction

Mirrlees (1974) pioneered the study of optimal income taxation in a
setting where ex ante identical agents face idiosyncratic shocks to their
earnings, but relevant insurance markets are missing. This missing-
market setting invites a role for income tax to serve as a partial substi-
tute to absorb income fluctuations and share the idiosyncratic risk
across agents. The motive for redistributive taxation here is not for
equity per se, but rather for social insurance.

Varian (1980) took up the issue addressed by Mirrlees (1974) with
the emphasis that a large portion of income differences between agents
is attributable to pure luck rather than innate ability. Unlike Mirrlees's
static framework where agents make a choice between labor and
leisure, Varian considered a dynamic framework where agents make a
choice between current and future consumption.

The Mirrlees–Varian model of optimal income taxation is one of the
pioneeringworks in themoral hazard class of the principal-agent prob-
lem, in which the key tradeoff involved is between inducing incentives
and providing insurance (Laffont and Martimort, 2002). Subsequent
works, including Tuomala (1984), Strawczynski (1998), Low and
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Maldoom (2004) and Kanbur et al. (2008), have elaborated on
Mirrlees–Varian's original idea in a variety of directions. Our paper
contributes to this line of the optimal taxation literature mainly on the
front that the tax design problem in our model involves “correcting”
income distribution across agents for equity as well as providing social
insurance to buffer against agents' idiosyncratic risk.1

Under plausible assumptions,Mirrlees (1971) found that the optimal
non-linear income tax is approximately linear. In contrast to Mirrlees
(1974), this 1971 seminal work belongs to the adverse selection class
of the principal-agent problem, in which income differences between
agents are attributed to innate ability (type) rather than pure luck. The
government's tax design in the Mirrlees (1971) framework is to trade
off “correcting” income distribution for equity against dulling incentives
to work (Laffont and Martimort, 2002).

Subsequent studies followingMirrlees (1971) have further explored
the tax schedules of optimal income taxation.2 Many of them are based
on the mechanism design approach, which gives rise to highly
nonlinear tax schedules. However, in the realworld, virtually all income
tax systems are piecewise linear. In this paper we focus on piecewise
linear income tax and, in particular, the linear and the two-bracket
income tax.
1 Strawczynski (1998) mainly considered the Varian problem in a representative-
agent framework; however, he also analyzed a four-agent economy in which two
levels of skill apply respectively to two realizations of shock. See also Eaton and Rosen
(1980) and Diamond et al. (1980).

2 Tuomala (2010) provides a recent study on the issue; see the references therein for
other studies.
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Stern (1976) is perhaps the most celebrated work that quantita-
tively characterizes the optimal linear income tax. His model is static
and deterministic in the framework of Mirrlees (1971), while our
model is dynamic and stochastic. In the context of the two-bracket
income tax, Slemrod et al. (1994) found quantitatively that the second
marginal tax rate is lower than the first at the optimum, whereas
Strawczynski (1998) derived the opposite result.3 It should be noted
that the former is framed in a static, deterministic, and ability-driven
environment à la Mirrlees (1971), whereas the latter is framed in a
dynamic, stochastic, and luck-driven environment à la Varian (1980).
The results of our model are driven by agent heterogeneity in both
ability and luck. We investigate why the optimal two-bracket income
tax may be progressive or regressive in the marginal tax rate.

The work of Slemrod et al. (1994) basically follows that of Stern
(1976), but extends the numerical analysis to the two-bracket case.
Specifically, it assumes a lognormal wage rate (ability) distribution, the
parameters of which are taken from Stern (1976). In a recent paper,
Apps et al. (forthcoming) revisited the problem of the optimal two-
bracket income tax and presented simulation results based on Pareto
wage rate distributions. They numerically discerned the circumstances
under which marginal tax rate progressivity or regressivity will arise.
Apps et al. (forthcoming) considered their problem in the framework
of Mirrlees (1971) and so naturally they did not address the issue of
conflicting findings between Slemrod et al. (1994) and Strawczynski
(1998).We complement the Apps et al. (forthcoming) results by tackling
the left-out issue.

In addition to the studies mentioned above, our paper is closely
related to Conesa and Krueger (2006) and Conesa et al. (2009), both
of which address optimal income taxation in a dynamic-stochastic-
general-equilibrium setting.4 Besides modeling details and derived
results, there are at least three major differences between our paper
and theirs. First, we consider the piecewise linear income tax, whereas
they considered a three-parameter family of nonlinear income tax
schedules. As such, we are able to relate our findings directly to the
previous literature on optimal linear and two-bracket income taxation,
while they cannot. Second, they addressed optimal taxation in a life-
cyclemodel, whilewe are in an infinite-horizon framework. Abstracting
from life-cycle complications enables us to focus on non-life-cycle ele-
ments that are responsible for the design of income tax. Barro (1991)
argued that the infinite horizon applies naturally if agents care about
their children, who in turn care about their children, and so on. Third,
while tax revenues collected are used solely tofinance government con-
sumption in Conesa and Krueger (2006) and Conesa et al. (2009), they
are used to finance transfer payments as well as government consump-
tion in our paper. In line with the tradition of optimal income taxation
à la Mirrlees (1971, 1974), the so-called “tax” schedule in our model
actually represents a “tax and transfer” schedule. As Brewer et al. (2010,
p. 94) remarked: “Despite its name, optimal tax theory concerns itself
just as much with the design of benefits as it does the setting of income
tax rates …”

A recent paper by Boadway andSato (2011) has analytically provided
a fairly general treatment of optimal income taxation when differences
in individual income are attributed to both ability and luck. For simplic-
ity, they assumed that preferences are quasi-linear in labor so as to
eliminate income effects in the demand for consumption. Even in this
simplified setting, the derived analytical results seem rather complicated
andmay fail to prescribe concrete tax structures; see their Proposition 2.
As noted by Boadway and Sato (2011), there has been relatively
little attention devoted to studying optimal income taxation in the
3 See also Sheshinski (1989), who presented a proof in the framework of Mirrlees
(1971) that a regressive two-bracket tax code can never be optimal. However, Slemrod
et al. (1994) showed that Sheshinski's proof is flawed since it ignores a possible discon-
tinuity in the tax revenue function.

4 There is also a literature called “new dynamic public finance,” in which the empha-
sis is on the implications of information frictions for optimal taxes in dynamic settings;
see Golosov et al. (2006) and Kocherlakota (2010) for reviews.
presence of heterogeneity in both ability and luck. Following Stern
(1976), Slemrod et al. (1994), Strawczynski (1998), and Apps et al.
(forthcoming), we quantitatively characterize optimal linear and two-
bracket income taxes but synthesize these previous studies in a frame-
work where both ability and luck matter for the determination of
individual income.

The rest of the paper is organized as follows. Section 2 introduces
our model. Section 3 calibrates the parameter values of the model.
Section 4 considers welfare criteria for optimal taxation. Sections 5–8
report our results and Section 9 concludes.

2. Economic environment

In an important benchmark of the incomplete markets model,5

Aiyagari (1994) considered a dynamic-stochastic-general-equilibrium
(DSGE) setting in which agents face idiosyncratic earnings risk that
cannot be insured. Our model follows his model closely. In the Aiyagari
economy, labor hours are exogenously given and income is not subject
to taxation.We allow for the choice of labor hours and the imposition of
income taxes. The Aiyagari model is interesting from the viewpoint of
taxation, in that it generates an endogenous cross-sectional distribution
of income and of wealth, which is conditional upon tax parameters.

2.1. Setting

Time is discrete and runs from t = 0, 1,..., ∞. The economy is
populated by a continuum of infinitely-lived agents (households) of
unit mass. Each agent is atomistic and so a price taker. Agents are
heterogeneous in that they face different histories of realizations of
idiosyncratic shocks to their labor productivity. This is the only source
of heterogeneity across agents in the model.

There are three sectors in the economy: households, firms, and the
government. There are three goods: the service of labor, the service of
capital, and a final good that can be used for either consumption or
investment. We let the final good be the numeraire.

2.2. Labor productivity shocks

There is no aggregate risk in the economy. All agents are subject to
idiosyncratic labor productivity shocks, which are realized at the
beginning of each period t N 0 (each agent starts identically at time
0 with some initial productivity shock). There are no viable insurance
markets or state-contingent securities available for agents to insure
against the risk of the shocks. The realized shocks take a finite number
of possible values, which are observed by agents before making their
labor–leisure and consumption–saving decisions in each period. The
stochastic process of the shocks is identical and independent across
agents, and follows a Markov chain with stationary transitions over
time. The Markov chain is parameterized by appealing to econometric
studies based on micro-level data. The details of this process will be
deferred to the next section when we calibrate the model.

We let z denote the generic realization of the labor productivity
shock, and normalize the mean of z to be unity. The effective labor
supply for an agent equals zn, where n is her labor hours chosen.

2.3. Asset market

There are no state-contingent assets but a single risk-free, one-
period asset. Agents have no asset at time zero; however, they can
accumulate their asset holdings by saving. Saving will be channeled to
become capital, which is used by firms in production. Since there is
only one asset held by agents, the distribution of this asset represents
the distribution of wealth in the economy.
5 For introductions to the incomplete market model, see Heathcote et al. (2009) and
Guvenen (2011).
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Agents may trade in the asset to absorb idiosyncratic risk. However,
agents face a borrowing constraint so that the amount of their next
period's asset cannot fall below a lower bound b.6 This borrowing con-
straint not only rules out Ponzi schemes, but also serves as an effective
way of limiting the ability of agents to fully smooth consumption over
time. As a result of the constraint, agents may save in a precautionary
manner to self-insure against future income drops. Agents may also
supply labor in a precautionary manner as emphasized in the static
model of Low and Maldoom (2004). It should be noted that while
self-insurance behavior arises in static models as in Low and Maldoom
(2004) if the third derivative of the period utility function is positive,
it arises in dynamic models as long as agents are risk-averse and face
a borrowing constraint that can bind due to adverse shocks.7

At any given time each agent is characterized by a state s = (z, a),
where z is her realization of idiosyncratic labor productivity shocks
and a is her asset holdings. Different states represent different types
of agents. We let Ft(s) denote the type distribution of agents at time t.

2.4. Production technology

The aggregate output Y of the economy at time t is given by a
Cobb–Douglas production function

Yt ¼ Kθ
t L

1−θ
t ;

where K and L are the aggregate capital and effective labor, and θ is
the capital share. Capital depreciates at an exogenous rate of δ�(0,1)
in each and every period. All markets behave competitively. With a
constant returns to scale technology and perfect competition, we
assume without loss of generality the existence of a representative
firm operating this technology.

Let w denote the real wage rate per unit of effective labor, and r
the net-of-depreciation real rental rate per unit of capital. Given w
and r, the representative firm's maximizing profit yields the following
condition:

wt ¼ 1−θð Þ Kt=Ltð Þθ;
rt ¼ θ Kt=Ltð Þθ−1−δ:

2.5. Government and income tax schedules

The government via taxes and transfers engages in redistributing
income across agents and, at the same time, it must collect enough
tax revenue to finance a sequence of exogenously given government
consumption {Gt}t = 0

∞ .
Let y denote agent pre-tax income, i.e., y = wzn + ra, which

equals labor income wzn plus capital income ra. Let T be the tax-
transfer schedule imposed on y by the government. Following the
convention, we shall refer to T(y) simply as a tax schedule. The
government is committed to applying the same tax schedule in each
period, and the tax schedule does not discriminate between labor and
capital income. Both features approximately hold in the real world.8

We focus on the piecewise linear income tax and, in particular, on its
two simplest forms: linear and two-bracket.
6 For arguments in favor of borrowing constraint settings see, for example, Aiyagari
(1994).

7 Huggett and Ospina (2001) showed that precautionary saving occurs in an infinite
horizon setting if and only if the borrowing constraint binds for some agents; it is not
necessary to have convexity of marginal utility to generate precautionary behavior.

8 For example, the current US personal income tax code is applied year after year
(unless there is some tax reform), and it does not distinguish sources of income in gen-
eral when computing tax liabilities. A notable exception with discrimination between
sources of income is the so-called “dual income tax” (see Sorensen, 1994, for the
detail).
A linear income tax is defined as

T yð Þ ¼ τy−g;

where τ is the marginal tax rate applied to pre-tax income, and g is
the uniform per capita grant. A two-bracket income tax is defined as

T yð Þ ¼ τ1y−g if y ≤ y0
τ1y0 þ τ2 y−y0ð Þ−g if y N y0

;

�
where y0 is the cutoff point, τ1 is the marginal tax rate applied to the
first income bracket (y ≤ y0), and τ2 is the marginal tax rate applied
to the second income bracket (y N y0). Note that T(y = 0) = − g,
which is the transfer role of the tax schedule.

Following Conesa and Krueger (2006) and Conesa et al. (2009),
the government is required to balance its budget in each period and
so we have

Gt ¼ ∫T yt sð Þ½ �dFt sð Þ:

Given G, the parameters of the tax schedule to be determined at the
optimum are τ in the case of the linear tax, and τ1, τ2, and y0 in the case
of the two-bracket tax. The amount of transfer g is determined residually
from the government's balanced budget.

2.6. Households

2.6.1. Preferences
In each period each agent (household) is endowed with one unit

of time, which is divided between labor, n, and leisure, 1−n. Agent
preferences over consumption and leisure in each period are repre-
sented by a period utility function of the form:

u c;1−nð Þ ¼
cϕ 1−nð Þ1−ϕ
h i1−μ

1−μ
;

where ϕ is a parameter denoting the relative importance of consump-
tion versus leisure, and μ is a parameter related to the risk aversion of
the agent. Given the intertemporal budget constraint specified later,
labor hours chosen can be derived in closed form:

n ¼ 1− 1−ϕð Þc
ϕ 1−τy
� �

wz
; ð1Þ

where τy is the marginal income tax rate that an agent faces. Note that
the value of n derived from the above equation may be negative.
Whenever this occurs, we set n = 0.

The period utility function specified above is widely used in the
macro literature. It is consistent with balanced growth, which is a
broad fact about the growth of advanced industrial economies; see
Heer and Maussner (2009, Chapter 1).9

2.6.2. Household problem
Given an income tax schedule T(y) and factor pricesw and r, agent

i's objective is to maximize her expected discounted lifetime utility

E0
X∞
t¼0

βtu ci;t ;1−ni;t

� �" #
;

9 The implied (Frisch) labor supply elasticity is around unity, which may be relatively
high compared to those found inmicroeconometric studies; see Chetty et al. (2011). How-
ever, Keane and Rogerson (2011) argued for several possible routes for reconciling
micro and macro labor supply elasticities; see also Chetty (2012). In an earlier version
of the paper, we also consider an alternative utility function that is widely used in the mi-
cro literature, u c;1−nð Þ ¼ c1−μ1

1−μ1
þ n 1−nð Þ1−μ2

1−μ2
and address the sensitivity of our results by

allowing for lower labor supply elasticities. The main results remain qualitatively
unchanged.



10 Let ft(z, a) be the probability density function of Ft(z, a). Note that ft(z,a) = Pr(zt =
z, at = a). When we constrain asset holdings (a) to a grid A = [0 b a1 b a2... b an], the
exogenous Markov chain on labor productivity shocks (denoted by P(z, z′)) and the opti-
mal saving decision by agents (denoted by a′ = g(z, a)) induce a law ofmotion for ft(z, a):

f tþ1 z′ ; ; a′
� �

¼ ∑
z

∑
a:a′¼g z;að Þf g

f t z; að ÞP z; z′
� �

;

where a prime denotes next-period variables and {a : a′ = g(z, a)} refers to all states of a
that satisfy a′ = g(z, a), given a specific z. A stationary distribution F solves the above
equation with ft + 1 = ft (and so Ft + 1 = Ft). A direct way to compute F is to iterate to
convergence on the equation. To prove the convergence, the so-called “supermartigale
convergence theorem” is applied. Ljungqvist and Sargent (2012, Chapters 17–18) provid-
ed a detailed treatment on the issue. See alsoHeer andMaussner (2009, Chapter 7) for the
detail on the concept of the stationary equilibrium.
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where β is the time discount factor, and the expectation E0 is taken
with respect to the stochastic process governing labor productivity
shocks z as of time 0.

We apply standard dynamic programming techniques to solve the
agent's problem. Let s = (a,z) summarize the state of an agent and
V(s) denote the agent's value function. The problem facing an agent
can be expressed as follows:

V sð Þ ¼ max
c;n;a′

u c;1−nð Þ þ βEV s′
� �

ð2Þ

subject to

cþ a′ ¼ wznþ 1þ rð Þa ‐ T yð Þ;
T yð Þ is either linear or two‐bracket;
y ¼ wznþ ra;
a′ ≥ ‐b;c ≥ 0;0 ≤ n ≤ 1; a t ¼ 0ð Þ ¼ 0; z t ¼ 0ð Þ ¼ 1

where, as is common in dynamic programming, we use a prime to
denote all next-period variables. The weak inequality a′ ≥ − b denotes
the borrowing constraint faced by the agent.We allow for the possibility
of corner solutions with a′ = − b or n = 0. The corner solution where
c = 0 or n = 1will not arise because themarginal period utility will go
to infinity (the Inada condition) under our parameterization.

2.6.2.1. Linear income tax. There are two possibilities to consider in the
case of the linear income tax, depending on whether the borrowing
constraint is binding or not.

(i) Not binding (a′ N − b): Using the budget constraint c = wzn +
(1 + r)a − T(y) − a′ gives the Euler equation:

uc c;1−nð Þ ¼ βEVa′ s′
� �

:

Calculate uc and substitute in the closed-form solution of n as
expressed by (1) if n N 0. We can then write the above Euler
equation as

ϕ
1−ϕð Þ

ϕ 1−τð Þwz

� � 1−ϕð Þ 1−μð Þ
c−μ ¼ βEVa′ s′

� �
;

⇒ c ¼
βEVa′ s′

� �
ϕ 1−ϕð Þ

ϕ 1−τð Þwz

� � 1−ϕð Þ 1−μð Þ

26664
37775
−1

μ

:

Applying the envelope theorem yields:

EVa′ s′
� �

¼ E 1þ r′ 1−τð Þ
� �

uc′ c′;1−n′
� �h i

:

Thus we have

c ¼
βE 1þ r′ 1−τð Þ

� �
uc′ c′;1−n′

� �h i
ϕ 1−ϕð Þ

ϕ 1−τð Þwz

� � 1−ϕð Þ 1−μð Þ

8>>><>>>:
9>>>=>>>;

−1
μ

:

If n = 0, we simply substitute in n = 0 instead of the closed-
form solution of n.

(ii) Binding (a′ = − b):We use the budget constraint to solve for c:

c ¼ wznþ 1þ rð Þa−T yð Þ þ b

⇒ c ¼ 1−τð Þwz 1− 1−ϕð Þc
ϕ 1−τð Þwz

� �
þ 1þ rð Þa−τraþ g þ b

⇒ c ¼ ϕ 1−τð Þwzþ 1þ r 1−τð Þð Þaþ g þ b½ �:
If n = 0, we simply substitute in n = 0 instead of the closed-
form solution of n.

2.6.2.2. Two-bracket income tax. There are also two possibilities to
consider in the case of the two-bracket income tax, depending on
whether the borrowing constraint is binding or not. Similar to the
case of the linear income tax, we make use of the Euler equation to
solve for c if the borrowing constraint is not binding, and the budget
constraint to solve for c if the borrowing constraint is binding. How-
ever, each possibility now has three subcases: τy = τ1 if y b y0,
τy = τ2 if y N y0, and τy is undefined if y = y0. When y = y0, the
closed-form solution of n fails to apply even if n N 0. The choice of
labor hours n in this subcase is solved by making use of the equality
wzn + ra = y0.

2.7. Stationary equilibrium

Our analysis focuses on the stationary equilibrium, which is the
counterpart of the steady state in our stochastic economy. While all
variables are constant in the steady state, the prices and the distribution
of the state variables are all constant in the stationary equilibrium. In
particular, we have Ft = Ft + 1 = F, that is, the type distribution of
agents is time invariant.10 The focus on stationary equilibrium is useful
if we want to concentrate on the long-run effects of taxes imposed.

Let Gt = G from some period t onward. Conditional on government
consumption G and the income tax schedule T(y), a stationary equilib-
rium for the economy consists of a value function V(s) and decision
rules (c(s), n(s), a′(s)) for agents, an allocation of factors (K, L) for the
representative firm, a time-invariant type distribution F(s), and relative
prices of labor and capital (w, r), such that the following conditions are
satisfied:

• Given (w, r), the value functionV(s) is a solution to the agent's decision
problem (2), and (c(s), n(s), a′(s)) are the associated optimal decision
rules.

• Given (w,r), the firm maximizes profits satisfying:

w ¼ 1−θð Þ K=Lð Þθ;
r ¼ θ K=Lð Þθ−1−δ:

• Given (w, r), F(s) is time-invariant or stationary, and consistent with
the optimal decision rule a′(s) and theMarkov chain for the labor pro-
ductivity shock z.

• Given (w, r), the government's budget constraint is met, i.e., G = ∫ T
[y(s)]dF(s).

• All markets are clear:

K ¼ ∫adF sð Þ;
L ¼ ∫zn sð ÞdF sð Þ
C þ I þ G ¼ Y ¼ KθL1−θ

;

where C = ∫ c(s)dF(s) and I = K′ − (1 − δ)K.
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Conditional on government consumption G and the income tax
schedule T(y), the stationary type distribution of agents does not
change over time according to the definition of stationary equilibrium.
This implies that the aggregates L and K are constant in stationary equi-
librium and so are the factor pricesw and r. Crucially, although the type
distribution of agents is time invariant in stationary equilibrium, the
state facing an agent may vary from one period to the next simply
because idiosyncratic shocks still evolve stochastically. As a conse-
quence, agents may move around in the time-invariant cross-sectional
distribution even in stationary equilibrium. As long as the so-called
“monotonemixing condition” is satisfied, therewill be a unique station-
ary type distribution in equilibrium; see Heathcote et al. (2009) for the
detail. This condition, which is met in our model, basically requires
sufficient upward and downward social mobility for agents.

In Mirrlees (1971), taxation is imposed after each agent learns her
own labor productivity (type) and so income taxes serve as a device
for correcting the “inequitable” income distribution of ex post hetero-
geneous agents. Cremer andGahvari (1999) and Chetty and Saez (2010)
considered optimal taxation in the framework of Mirrlees (1971) but
with a modification—all agents are behind the veil of ignorance, that is,
taxation is imposed before each agent learns her own labor productivity.
Income taxes then serve as a device for providing social insurance for ex
ante homogeneous agents. Ourmodel is in some sense a dynamic exten-
sion of the later models with two distinct characteristics. First, shocks
occur only once in these models, whereas shocks occur repeatedly in
ourmodel. Secondly, agents face no risk ex post in these models, where-
as agents face risk even in stationary equilibrium in our model since
shocks still stochastically evolve in stationary equilibrium. At any time
t in stationary equilibrium, agents have different histories of their real-
ized labor productivity up to time t, but at the same time they are behind
the veil of ignorance regarding the possible realization of their labor
productivity beyond time t. As a result, our tax design problem involves
both the ex post feature of the Mirrlees model and the ex ante feature
of the Cremer–Gahvari–Chetty–Saez model and, therefore, it involves
redistributing income for both equity and social insurance.

Only very few exceptions allow for the derivation of analytical
results in a heterogeneous-agent DSGE model (Heer and Maussner,
2009, chapter 7). We numerically solve for the stationary equilibrium
of our model.11
3. Parameterization

3.1. Production technology and preferences

The model will be calibrated to the U.S. economy. One period in
our model is taken to be one year of calendar time. Except for the
endogenous choice of labor hours and the imposition of income taxes,
our model follows Aiyagari (1994) closely. As such, the chosen values
of our parameters follow Aiyagari (1994) closely, too. Aiyagari noted
that these parameter values for technology and preference are consis-
tent with aggregate features of the postwar U.S. economy and are com-
monly used in macro models.

On the production side, following Aiyagari (1994), the capital
share θ is set to 0.36 and the depreciation rate of capital δ is set to
0.08 per year. The parameter μ in the utility function is set to 2 in the
baseline. We also consider higher values of μ. The borrowing constraint
b is set to zero as in Aiyagari (1994) and Huggett (1997); see Heathcote
(2005) for a discussion on this parameterization.
11 The algorithm for the numerical solution is standard and similar to that in Aiyagari
(1994). To speed up computations, we apply the endogenous grid method for solving
an agent's dynamic stochastic optimization problems, as introduced in Carroll (2006)
and Barillas and Fernandez-Villaverde (2007); we also use the approach of non-
stochastic simulation for generating model equilibrium features, as introduced in
Young (2010).
We set the discount factor β = 0.96 as in Aiyagari (1994) and
choose the parameter ϕ = 0.4 in the utility function so that average
hours worked in the economy equal one-third of the time endowment
when the income tax is only used to finance government consumption.
The resulting capital-output ratio equals 3.3, which is in the range of
values in the U.S. data; see, for example, Cooley and Prescott (1995) in
which they match the capital-output ratio to 3.32.

3.2. Labor productivity shocks

In addressing optimal taxation in the static, deterministic frame-
work of Mirrlees (1971), Saez (2001) advanced the literature by
parameterizing the distribution of unobservable innate ability to match
real-world data. Our approach here is in a similar vein, though in a
dynamic, stochastic rather than static, deterministic framework.

Letωi,t denote the log of the real wage for agent i in period t. A fairly
common setup to estimate the process for ωi,t is as follows12:

ωi;t ¼ γxi;t þ αi þ χi;t þ νi;t ; νi;t e N 0;σ2
v

� �
; ð3Þ

where xi,t is a vector of observable characteristics of agents, αi reflects
agent i's unobserved fixed effect, χi,t represents a shock, and vi,t is a
residual term that may capture measurement errors. The primal object
of interest is the shock χ, which is related to our model shock z with
z = exp(χ). Other effects on ωi,t are included so that χi,t can be better
estimated. The shock χi,t is assumed to evolve according to a first-
order autoregression (AR(1)) process:

χi;t ¼ ρχi;t−1 þ εi;t ; εi;t e N 0;σ2
ε

� �
;χi;0 ¼ 0;

where ρ determines the degree of persistence in shocks. The variates vi,t
and �i,t are assumed to be independent of each other and of other vari-
ables across agents and over time.

The empirical estimates regarding the shock χi,t vary somewhat.
Using the U.S. Panel Study of Income Dynamics (PSID) data and letting
ωi,t be annual labor earnings, Storesletten et al. (2004) found that
ρ = 0.99 and σ� = 0.13. Using PSID data as well but letting ωi,t be the
hourly wage relative to others, Floden and Linde (2001) found a less
persistent but more volatile process with ρ = 0.92 and σ� = 0.21.
Our parameterization adopts Floden and Linde's estimates, mainly
because the labor productivity term z in ourmodel ismore in alignment
with the hourly wage than annual labor earnings (while labor hours are
endogenously determined in Floden and Linde, they are supplied
inelastically in Storesleten et al.).

Given the estimated AR(1) process of χ, we approximate z =
exp(χ) using a five-state Markov chain, on the range of plus and
minus 2 times the standard deviation from themean of z, as described
in Tauchen (1986). The resulting labor productivity shock z takes five
possible values:

z ∈ 0:3424;0:5852;1:0000;1:7089;2:9202f g;

with the transition matrix:

Pr z′jz
� �

¼

0:80720:19250:00030:00000:0000
0:06940:78860:14180:00010:0000
0:00010:10100:79800:10100:0001
0:00000:00010:14180:78860:0694
0:00000:00000:00030:19250:8072

0BBBB@
1CCCCA :
12 There is an alternative approach in which αi in Eq. (3) is replaced by αi + βit,
where βi denotes differences in learning ability across agents. This approach allows
for heterogeneous trends and usually leads to estimates with a lower persistency in la-
bor productivity shocks; see Guvenen (2011).
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The Markov chain above can be shown to approach a unique sta-
tionary distribution:

Π zð Þ ¼ 0:0874;0:2424;0:3405;0:2424;0:0874ð Þ:

Table 1 summarizes the parametric values used in our baseline
model. Alternative values of some parameters will also be explored
for the purpose of better understanding their impacts on optimal
taxation.

4. Welfare criterion

We assume a utilitarian welfare criterion, which is the average of
the expected lifetime values of all agents in stationary equilibrium:

SW ¼ ∫V sð ÞdF sð Þ:

What is the welfare difference between an economy in autarky (no
taxes imposed) and an economy with the operation of optimal taxes?
Following Lucas (1987) and analogous to Low and Maldoom (2004),
we report a measure for the welfare difference. This measure, ζ,
known as the consumption-equivalent variation (CEV) in the literature,
is implicitly defined by

∫iE0
X∞
t¼0

βtu ci;t−opt;1−ni;t−opt

� �" #

¼ ∫
i
E0

X∞
t¼0

βtu 1þ ζð Þci;t−aut;1−ni;t−aut

� �" #
;

where ci,t − opt and ni,t − opt are agent i's consumption and labor hours
chosen at time t in the optimal-tax economy, and ci,t −aut and ni,t − aut

are agent i's corresponding choices in the autarky economy. In words,
ζ represents a markup (if ζ N 0) or markdown (if ζ b 0) of agent
consumption in the autarky economy such that the utilitarian autarky
societywould be aswell off as that in the utilitarian optimal-tax society.
Note that ζmeasures a proportionate increase or decrease in consump-
tion in all periods and for all agents.

Utilizing our specified period utility function gives rise to

∫iE0
X∞
t¼0

βtu ci;t−opt;1−ni;t−opt

� �" #

¼ 1þ ζð Þϕ 1−μð Þ∫
i
E0

X∞
t¼0

βtu ci;t−aut;1−ni;t−aut

� �" #
:

This then leads to

ζ ¼ SWopt

SWaut

� � 1
ϕ 1−μð Þ

−1;

where SWopt and SWaut denote SWunder theoptimal tax and the autarky
economy, respectively. As a reference, we also report ζ resulting from a
Rawlsian social welfare criterion.

In addition to ζ, we report Gini coefficients for income and wealth
distributions resulting from the imposition of taxes.
Table 1
Summary of parameters.

Parameters θ δ μ ϕ β b ρ σ

Baseline 0.36 0.08 2 0.4 0.96 0 0.92 0.21
Variants – – {3,4} – – – {0,1} {0.315, 0.42}
5. Optimal linear income tax

To present the results more clearly, we first consider a pure tax-
transfer system without government consumption (G = 0). This
means that the total tax revenue collected by the government will
uniformly be transferred back to all agents in a lump-sum manner.

The resulting social welfare with respect to the income tax rate, in
terms of CEV, displays a hump shape as plotted in Fig. 1. The value of
CEV reaches its highest level at the tax rate 16%, and the welfare
improvement from the autarky to the optimal-tax economy equals a
0.39% increase in lifetime consumption. This improvement in welfare
is rather moderate. However, as will be shown later, if the agent risk
aversion, μ, or the standard deviation of shocks, σ�, increases, the
resulting values of CEV will become much higher.

Taxation distorts both labor–leisure and consumption–saving
decisions in our model. From Figs. 2 and 3, we see that aggregate labor
hours and asset holdings are both monotonically decreasing in the tax
rate. This is the cost side of imposing income tax. However, imposing
income tax has its beneficial side in that it redistributes income for
equity and social insurance. The resulting social benefit against the cost
of tax distortions leads to a hump shape for CEV as displayed in Fig. 1.

Fig. 4 presents the patterns of the Gini coefficient for after-tax total
income, pre-tax labor income, andwealth as the income tax rate varies.
The distribution of after-tax total income in terms of the Gini coefficient
is improving in the tax rate. However, the distributions of pre-tax labor
income and of wealth are both deteriorating in the tax rate. We report
in Table 2 that ourmodel generates the right empirical ranking between
wealth and income inequality as in Aiyagari (1994): wealth ismore dis-
persed than income.

Fig. 5 shows that the fraction of agents choosing to supply zero
labor and those choosing to hold zero assets are both increasing in the
tax rate. At the optimal linear income tax rate (16%), 7.15% of agents sup-
ply zero labor and 12.38% of agents hold zero assets.13 It has been known
that optimal income taxation is compatible with the outcome that a
non-trivial fraction of agents do not work (Kaplow, 2008, Chapter 4).
Hubbard et al. (1995) argued that nil asset holdings can be explained
as a utility-maximizing response to the government's welfare programs.
We show here that optimal income taxation is also compatible with the
outcome that a non-trivial fraction of agents do not accumulate any
wealth.

It is worth knowing how distributions of labor hours and asset
holdings change as tax rates increase. We report changes for the top
and the bottom 20% of the distributions. As expected, increases in tax
rates discourage labor hours and asset holdings of both the top 20%
and the bottom 20% of agents. However, the magnitudes are quite
different in general. For example, when the tax rate is increased from
0 to 20%, the average labor hours (asset holdings) of the top 20% will
decrease by 8.5% (22.9%), whereas they will decrease by 61.5% (59.6%)
for the bottom 20%. In particular, as shown in Fig. 5, the fractions of
the bottom agents who supply zero labor or hold zero assets become
higher as tax rates increase. These lead to increasing Gini coefficients
of assets and of gross earnings in the tax rate; see Fig. 4. The results
are mainly due to: (i) while the tax-transfer system does not provide
sufficient insurance for the rich, it does smooth consumption fairly
well for the poor and so substantially reduces their precautionary-
saving motives; (ii) the tax-transfer system overall transfers income
from the rich to the poor and so it delivers negative income effects to
the rich but positive effects to the poor; these income effects enhance
the labor supply of the rich but reduce the labor supply of the poor.

Table 2 summarizes the results for the autarky economy and the
optimal-tax economy with a utilitarian social welfare function. For
reference, we also report the optimal results for a Rawlsian social
welfare function, in that the government's aim is to maximize the
13 It is interesting to note from our simulation that no agents supply zero labor and
hold zero assets at the same time.



0.15

0.20

0.25

0.30

0.35

0.40

0% 5% 10% 15% 20% 25% 30% 35% 40%
tax rate

la
b

o
r 

h
o

u
rs

Fig. 2. Aggregate labor hours.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0% 5% 10% 15% 20% 25% 30% 35% 40%

as
se

ts

-1.2%

-1.0%

-0.8%

-0.6%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0% 5% 10% 15% 20% 25% 30% 35% 40%

C
V

E

tax rate

Fig. 1. Utilitarian CEV.

64 M. Hsu, C.C. Yang / Journal of Public Economics 105 (2013) 58–71
expected lifetime values of agents who accumulate zero wealth in
stationary equilibrium.14 It is not surprising to find that, with the
Rawlsian objective, the optimal tax rate becomes higher and the distri-
bution of after-tax total income improves, while aggregate labor hours
and asset holdings become lower and the distributions of pre-tax
labor income and of wealth deteriorate relative to the utilitarian objec-
tive. At the optimum, 8.46% of agents supply zero labor and 12.85% of
agents hold zero assets with the Rawlsian objective. Both are higher
compared to the utilitarian objective.

5.1. Self-insurance through increasing saving and labor supply

When facing uninsurable shocks, agents will exhibit precautionary
incentives and self-insure against income drops. Following Low and
Maldoom (2004), we address the comparative static effects of increas-
ing risk aversion (μ) and of increasing shock volatility (σ�). A main
difference between Low and Maldoom (2004) and our paper is that
while self-insurance must take place through the channel of increasing
labor supply in the Low–Maldoommodel, it can take place through the
channel of increasing saving aswell as that of increasing labor supply in
our model.

Papers including Low (2005), Floden (2006), Pijoan-Mas (2006)
and Marcet et al. (2007) explored the insurance value of increasing
labor supply, and the interaction between labor supply and saving as
self-insurance mechanisms. We complement their findings in the con-
text of optimal taxation.

5.1.1. Increasing risk aversion
When agents become more risk averse, sharing idiosyncratic risk

between agents should be more valuable. We perform the same
numerical simulations as in the baseline economy but allow for higher
degrees of risk aversion for agents. The results are reported in Table 3.

The optimal tax rates and associated asset holdings become some-
what higher if μ = 3, 4 rather than μ = 2. However, the resulting CEV
compared to the baseline economy improves significantly, jumping
from a 0.39% increase in lifetime consumption to 1.26% if μ = 3 and
to 2.66% if μ = 4. This finding is consistent with that in Low and
Maldoom (2004), which shows a higher value of income tax acting
as an insurance device against income fluctuations as agents become
more risk averse.

5.1.2. Increasing shock volatility
When agents are subject to larger volatile shocks, sharing idiosyn-

cratic risk between agents should also be more valuable. We perform
the same numerical simulations as in the baseline economy, except
that we allow for standard deviations of productivity shocks at 1.5
and 2 times the original (i.e., 1.5σ� and 2σ�). The results are reported
14 Agents who supply zero labor hours have higher expected lifetime values than
those who hold zero assets in our model.
in Table 4. Note that both the optimal tax rate and the CEV increase
substantially compared to the baseline economy. This result is consis-
tent with Mirrlees (1990), which shows that adding uncertainty
always increases the marginal tax rate of the linear income tax.

Low and Maldoom (2004) observed that there are two opposite
effects on incentives as shock volatility increases. On the one hand,
larger risk directly increases agents' precautionary incentives (direct
effect). On the other hand, larger risk raises the value of insurance,
and the resulting higher social insurance provided by a benevolent
government indirectly lowers agents' precautionary incentives (indirect
effect). It is interesting to note from Table 4 that, along with increased
optimal tax rates, aggregate labor hours decrease significantly while
aggregate asset holdings increase significantly relative to the baseline.
Thus, in response to increased shock volatility (σ�), the indirect effect
dominates the direct effect in the case of self-insurance via labor
hours, but the opposite occurs in the case of self-insurance via asset
holdings. Low and Maldoom (2004) also found that the indirect effect
dominates the direct effect when individuals self-insure by increasing
labor hours. However, due to the static nature of their model, they did
not have the opposite result that the direct effect dominates the indirect
effect when individuals self-insure by increasing asset holdings.

5.2. Labor–leisure versus consumption–saving tax distortion

Income tax distorts both labor–leisure and consumption–saving
decisions in our model. How important is one distortion relative to the
other in the design of income tax? To answer the question, we perform
counter-factual exercises by shutting down one distortion at a time.

5.2.1. Fixed labor hours
To shut down the tax distortion imposed on the labor–leisure

decision, we fix labor hours for all agents at the equilibrium average
level of the optimal-tax baseline economy. That is, we let labor hours
be fixed at n = 0.28 for all agents and all the time (remember that
tax rate

Fig. 3. Aggregate asset holdings.
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Table 2
Optimal linear tax in the baseline economy.

Economy Tax
τ

Incentives Gini coefficient

Hours
n

Assets
a

Wealth Gross
earnings

Net
income

Output

Y CEV

No tax 0% 0.34 3.36 0.58 0.44 0.42 0.92 NA
Opt. tax
(Utilitarian)

16% 0.28 2.65 0.60 0.49 0.38 0.78 0.39%

Opt. tax
(Rawlsian)

21% 0.26 2.43 0.61 0.51 0.37 0.73 0.82%
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our economy is populated by a unit mass of agents).15 Income tax
would not affect the labor–leisure decision at all in such a counter-
factual case. The second row of Table 5 reports the results. When labor
hours were fixed, the optimal tax rate would increase significantly
from 16% in the baseline economy to 30%.

The analytical investigations conducted by Floden (2006) show that
the flexibility of labor supply will raise precautionary saving in the face
of future uncertainty when preferences are consistent with balanced
growth. Low (2005) obtained a similar result in a calibrated life-cycle
model. Table 5 shows that agents' asset holdings would decrease rela-
tive to the baseline if labor hours were fixed rather than flexible (1.68
vs. 2.65). Our result is consistent with these previous findings.
15%

20%

25%
5.2.2. Fixed asset holdings
To shut down the tax distortion imposed on the consumption–

saving decision, we fix asset holdings for all agents at the equilibrium
average level of the optimal-tax baseline economy.16 That is, we let
asset holdings be fixed at a = 2.65 for all agents and all the time.
Income tax would not affect the consumption–saving decision at all in
such a counter-factual case. The third row of Table 5 reports the results.
When asset holdings were fixed, the optimal tax rate would increase
substantially from 16% in the baseline economy to 34%.

To sum up, we conclude that neglecting either of the tax distortions
imposed on labor–leisure and consumption–saving decisions will sub-
stantially underestimate the extent of tax distortion and hence substan-
tially overestimate the optimal degree of progressivity for income
taxation. This highlights the importance of taking into consideration
both incentive margins at the same time in a model.

The tax-distortion view above can also be interpreted from a
different angle. Agents self-insure against risk through the channel of
adjusting labor supply or saving in our model. If labor hours or asset
holdings were fixed, agents would not be able to hedge their risk as
much as in the situation where both labor hours and asset holdings
are flexible. This largely explains why the optimal tax rate would
becomemuch higher as shown in Table 5: the inflexibility of the private
sector against risk expands the scope of income tax as a device for insur-
ance. This also explains why CEV from optimal taxation in the baseline
economy is rather small when both labor hours and asset holdings are
flexible.
15 We also consider the other case where labor hours for all agents were fixed at the
equilibrium average level of the no-tax economy. The resulting outcomes remain the
same qualitatively.
16 We also consider the other case where asset holdings for all agents were fixed at
the equilibrium average level of the no-tax economy. The resulting outcomes remain
the same qualitatively.
5.3. Taxation for equity versus for social insurance

Agents are heterogeneous in our model, in the sense that they have
different histories of realizations of idiosyncratic shocks to their labor
productivity and that these shocks are highly persistent. Belowwe com-
pare our model with two counter-factual polar cases: (i) the occurrence
of productivity shockswere to followan i.i.d. process (i.e., no persistency
at all) all the time, and (ii) the occurrence of productivity shockswere to
be once and for all (i.e., perfect persistency plus no volatility) from the
very beginning. The comparison will enable us to address the relative
importance of redistributive taxation for equity versus for social
insurance.
5.3.1. Transitory (i.i.d.) shock
Let ρ = 0 in the AR(1) process, so that labor productivity shocks

would exhibit no persistency at all. The labor productivity states are
assumed to remain the same as before, but their occurrence in each
and every period is to be determined by an i.i.d. process, for which
we use the same stationary distribution of labor productivity implied
by the original Markov chain, that is, Π(z). In such a counter-factual
case where labor productivity shocks are i.i.d. so as to be purely tran-
sitory, agents become more or less homogeneous since they all have
more or less the same expected lifetime value at any point of time.
As a consequence, the tax scheme acts mainly as a device of providing
social insurance for agents, since shocks still stochastically evolve in
stationary equilibrium.

The results are reported in Table 6 in the second row, which indi-
cates that the optimal tax rate would equal 0%, a corner solution. This
outcome implies that the cost of tax distortion would dominate the
benefit of risk sharing provided by income tax and, therefore, self-
insurance rather than income tax should be relied on to take care of
idiosyncratic risk if the shocks were to follow an i.i.d. process. Intui-
tively, when idiosyncratic shocks are transitory in nature, they are
easier to smooth through self-insurance by individuals and so greatly
reduce the value of income tax as a device to insure against income
fluctuations.
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Fig. 5. Ratio of zero labor supply and of zero asset holdings.



Table 3
Optimal linear tax: various risk aversions.

Economy Opt. tax
τ

Incentives Gini coefficient

Hours
n

Assets
a

Wealth Gross
earnings

Net
income

Output

Y CEV

μ = 2
(baseline)

16% 0.28 2.65 0.60 0.49 0.38 0.78 0.39%

μ = 3 18% 0.27 2.69 0.58 0.49 0.37 0.78 1.26%
μ = 4 19% 0.27 2.79 0.56 0.49 0.37 0.79 2.66%

Table 5
Optimal linear tax: fixed hours vs. asset holdings.

Economy Opt. tax
τ

Hours
n

Assets
a

Output
Y

Baseline 16% 0.28 2.65 0.78
Hours fixed 30% 0.28 1.68 0.59
Assets fixed 34% 0.24 2.65 0.71
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5.3.2. Permanent shock
Weconsider the other counter-factual polar casewhere productivity

differences between agents were permanent from the very beginning.
The same five labor productivity states are employed as before and
their distribution remains the same as the stationary distribution
implied by the original Markov chain, that is,Π(z). The only difference
from the baseline is that there is no longer a transition of labor produc-
tivity shocks and each agent will carry her initial realization of produc-
tivity shocks forever. This implies no volatility of shocks, either. In such
a case where labor productivity shocks are permanent from the very
beginning, our model reduces to a model of pure adverse selection as
in Mirrlees (1971) and the tax scheme acts solely as a device for equity.

The results are reported in Table 6 in the third row, which indicates
that the optimal tax ratewould equal 17%, a result that is pretty close to
the optimal tax rate of 16% in the baseline economy. Overall, the optimal
taxation in the baseline economy seems to mainly serve as a device for
equity rather than for social insurance. This finding is reminiscent of
Levine and Zame (2002), who showed that market incompleteness
in the presence of idiosyncratic shocks has little effect on welfare, pro-
vided that agents are long-lived and patient to self-insure against the
risk.

It is worth noting that the aggregate amount of asset holdings in
equilibrium will be reduced significantly compared to the baseline
(1.81 vs. 2.65). This is largely due to the absence of precautionary
incentives to accumulate assets once shocks become permanent at the
very beginning.

5.4. Government consumption

So far we have considered a pure tax-transfer system without
government consumption (G = 0). In the real world, government
consumption does exist and is required to be financed by tax revenue.
We hereby set G as of 17% of GDP (equal to output Y in our model) as
in Conesa et al. (2009), and investigate the impact of incorporating G
on the optimal linear tax scheme. A minimum linear tax rate to support
G as of 17% of GDP (Y) is equal to 24% of income (y).

In Fig. 6 we plot the resulting pattern of CEV with respect to the
income tax rate in the presence of G. The optimal tax rate equals 16%
without G, while it equals 33% as G is 17% of GDP. Table 7 shows that
the amount of the transfer as a percentage of income y at the optimum
decreases from16% in the absence ofG to 10% in the presence ofG. It has
long been known in the literature (Inman, 1987) that the provision of
government consumption will crowd out the provision of government
transfers. Our finding here corroborates this result. Table 7 also shows
that Gini coefficients remain roughly the same with and without G,
Table 4
Optimal linear tax: various shock volatilities.

Economy Opt. tax
τ

Incentives Gini coefficient

Hours
n

Assets
a

Wealth Gross
earnings

Net
income

Output

Y CEV

σɛ (baseline) 16% 0.28 2.65 0.60 0.49 0.38 0.78 0.39%
1.5σɛ 31% 0.18 2.98 0.63 0.70 0.45 0.87 3.00%
2σɛ 41% 0.12 3.30 0.65 0.80 0.44 1.05 7.11%
and that a higher optimal tax rate exerts a relatively larger effect on
capital accumulation than labor supply if compared to the baseline
economy. Finally, the resulting CEV has a 0.27% increase in lifetime
consumption.

The most celebrated work on the quantitative characterization of
optimal linear income tax is perhaps Stern (1976), who considered
a static, deterministic model à la Mirrlees (1971). Because there are
several important differences in modeling, it may not be so meaningful
to make a comparison between his findings and ours. Nevertheless, it is
worth noting that,with a utilitarian socialwelfare criterion andG as 20%
of GNP, his central estimate yields an optimal tax rate of 25%. This level
is lower than our optimal tax rate of 33% with G as 17% of GDP.17

6. Alternative settings

This section considers several alternative settings and examines
the robustness of the results found in the previous section.

6.1. Government debt

We rule out government debt in ourmodel. Allowing for its presence,
the government's intertemporal budget constraint becomes

Gt þ 1þ rð ÞDt ¼ ∫T yt sð Þ½ �dFt sð Þ þ Dtþ1;

where Dt is the level of government debt at the beginning of period t.
Following Aiyagari and McGrattan (1998), we assume that gov-

ernment debt is risk free and a perfect substitute for the private
risk-free asset. As such, the asset held by agents, a, now also includes
the debt issued by the government.

In the presence of government debt, the main changes of a
stationary equilibrium are in the government budget constraint and
the market clearing conditions:

• Given (w, r), the government's budget constraint is met, i.e., G +
rD = ∫ T[y(s)]dF(s).

• All markets are clear:18

K þ D ¼ ∫adF sð Þ;
L ¼ ∫zn sð ÞdF sð Þ;
C þ I þ Gþ rD ¼ Y ¼ KθL1−θ

:

This revised model is close to Aiyagari and McGrattan (1998) but
with an important difference: the transfer g is endogenous in our
model, while it is exogenously fixed in the Aiyagari–McGrattan model.
17 It should be noted that Stern's (1976) simulations are mainly designed to explore
the sensitivity of optimal linear tax rates with respect to the revenue requirement, the
elasticity of substitution between consumption and leisure, and the form of the social
welfare function.
18 Let κ denote the debt to GDP ratio and so D = κY. We know capital income (r + δ)
K = θY and hence Y ¼ rþδ

θ K . From the asset market clearing condition,

K þ κ r þ δð Þ
θ

K ¼ ∫adF sð Þ⇒K ¼ θ
θþ κ r þ δð Þ∫adF sð Þ: ð4Þ



21 A critical element of the life-cycle model is to explicitly account for the age dimen-
sion of agents. The recent literature has suggested that it may be desirable to consider
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Table 6
Optimal linear tax: transitory vs. permanent shock.

Economy Opt. tax
τ

Hours
n

Assets
a

Output
Y

Baseline 16% 0.28 2.65 0.78
Transitory (i.i.d) shock 0% 0.26 2.76 0.86
Permanent shock 17% 0.30 1.81 0.65
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The findings, reported in Table 8, are summarized below.19

• The optimal debt level is zero and, therefore, the optimal tax is the
same as that in the baseline model. This result differs from the
positive level of optimum debt reported by Aiyagari and McGrattan
(1998). The benefit of having positive debt in the Aiyagari type of
models is to loosen the agent's borrowing constraint and drive up
the interest rate (due to the crowding-out of private capital) so that
agents can use savings to smooth consumption more effectively;
see Aiyagari and McGrattan (1998) for the detail. However, in our
environment the presence of government debt will also crowd out
transfer g so as to mitigate risk sharing provided by the tax-transfer
system.

• If we take the debt to output ratio as given, then the resulting optimal
tax rate does not change significantly. For example, the optimal tax
rate will be 15% rather than 16% in the baseline economy as the debt
to output ratio equals 60%.

• If we consider the same setting as in Aiyagari and McGrattan (1998),
that is, we fix a transfer level, it is possible to yield a positive level of
government debt at the optimum as in Aiyagari and McGrattan
(1998). However, the optimal debt level is sensitive to the discount
factor β, as found in Aiyagari and McGrattan. We also confirm that
moving to an optimal debt level does not gain much social welfare
as noted by Aiyagari and McGrattan. We find in general that the
welfare gain is lower than 0.1% in CEV.

Overall, our investigation suggests that there is not much loss of
generality if we abstract our model economy from government debt.

6.2. Separate taxation of labor and capital income

The tax schedule does not discriminate between labor and capital
income in ourmodel. Allowing for discrimination leads to the following
tax schedule

T ¼ τlwznþ τkra−g;

where τl is themarginal tax rate applied to pre-tax labor income, and τk
is the marginal tax rate applied to pre-tax capital income.

Table 9 reports the optimal tax rates on labor income under various
given tax rates imposed on capital income. We find that the optimal
capital tax rate is equal to zero (τk = 0) and the corresponding optimal
labor tax rate is 18%. The resulting CEV from the no-tax economy is
0.47%, which is higher than that in the baseline model (CEV = 0.39%).
It can be seen from the table that a higher capital tax results in both a
lower optimal labor tax and a lower welfare gain.

In their startling work, Chamley (1986) and Judd (1985) showed
that government policy should set the tax rate on capital to zero in
the steady state.20 Conesa et al. (2009) argued that incomplete markets
or life cycle features can cause optimal taxation on capital to deviate
from the Chamley/Judd type of results. By incorporating both incom-
plete markets and the life cycle in a framework, they found the optimal
19 Values of CEV in the table are to measure welfare gains from the no-tax and no-
debt economy.
20 When preferences are weakly separable between consumption and labor, Atkinson
and Stiglitz (1976) have implied the same result. However, their result is not applica-
ble here, since our utility function rules out the separability.
capital tax rate to be as high as 36%. Our result suggests that the life
cycle rather than incomplete markets could be the key to their finding.
Indeed, in offering an intuition for their result, Conesa et al. (2009, p. 41)
explicitly explained: “in a life-cycle model in which household labor
supply changes with age, if the government cannot condition the tax
function on age, it optimally uses the capital income tax to mimic
age-dependent labor income taxes.”21

6.3. Permanent productivity differences

We focus on idiosyncratic earnings risk and exclude permanent
productivity differences between agents in our model. To allow for a
permanent component of labor productivity, we modify zi,t = exp(χi,t)
to become

zi;t ¼ exp χi;t þ ψi

� �
;

where ψi is a permanent component of agent i's labor productivity. ψi is
assumed to be i.i.d. distributed with mean zero and variance σψ

2. χi,t, a
non-permanent productivity shock, is assumed to remain the same as
before. χ and ψ are independent.

Floden and Linde (2001) have estimated the permanent labor
productivity and reported that σψ

2 = 0.1175(σψ = 0.34) for the U.S.
economy. We consider a simple extension of our model in which there
exist two permanent-productivity groups with ψ ∈ {−0.17, 0.17} to
match σψ = 0.34. The resulting labor productivity shock z becomes:

z Ψ ¼ ‐0:17ð Þ ∈ 0:2889;0:4937;0:8437;1:4417;2:4637f g;
z Ψ ¼ 0:17ð Þ ∈ 0:4059;0:6936;1:1853;2:0255;3:4613f g:

Table 10 reports the results. Because the distribution of the perma-
nent productivity is symmetric and the productivity shock volatility
faced by agents remains the same, we find that the incorporation of
the permanent component does not affect the results significantly. In
particular, the resulting optimal tax rates and CEV's become higher but
both are not substantially different from those in the baseline economy
(compared with Table 2).
age-dependent tax schedules; see, for example, Blomquist and Micheletto (2008) and
Weinzierl (2011). In the incomplete market framework of Aiyagari (1994), Aiyagari
(1995) showed that if a government can choose its consumption optimally, the opti-
mal tax on capital income will be positive. This result is applicable neither to Conesa
et al. (2009) nor to our paper, since government consumption is assumed exogenously
given in both papers.



Table 7
Optimal linear tax: plus government consumption.

Economy Opt.
τ

Transfer/income Incentives Gini coefficient Y CEV

Hours
n

Assets
a

Wealth Gross earnings Net income

Baseline 16% 16% 0.28 2.65 0.60 0.49 0.38 0.78 0.39%
With G 33% 10% 0.28 2.33 0.59 0.49 0.38 0.75 0.27%
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7. Optimal two-bracket income tax

The shape of the income tax schedule is a central focus in the
literature on optimal income taxation. Specifically, many attempts
have been made to yield an optimal income tax schedule that is
consistent with what we typically observe in the real world, that is,
progressive marginal tax rates; see Salanie (2003, Chapter 4) for a
review. The two-bracket income tax – a direct extension of the linear
income tax – could offer important insights into the issue.

Table 11 summarizes the results of the optimal two-bracket tax for
the baseline economy with the utilitarian and the Rawlsian social
welfare criterion, respectively. Several features of the results are worth
noting.

First, in the case of the utilitarian, CEV = 0.44% at the optimum,
which is close to CEV = 0.39% in the linear case; in the case of the
Rawlsian, CEV = 0.86% at the optimum, which is also close to CEV =
0.82% in the linear case (compared with Table 2). Our result is thus
similar to Slemrod et al. (1994), which finds that the social welfare
gain from using a two-bracket tax rather than being confined to a linear
tax is minor. However, it is important to recognize that our model,
though complex enough, is after all a stylized and simple model of
any real economy. For this reason we would regard the result as a
reference rather than a verdict.

Second, the optimal marginal tax rates are regressive since the
second marginal tax rate is lower than the first one. The result holds,
regardless of whether social welfare is utilitarian or Rawlsian. We shall
explore later why this regressive marginal tax schedule arises at the
optimum.

Third, the optimal cut points equal 1.43 and 1.36 of mean income
(y), respectively, for the utilitarian and the Rawlsian social welfare
functions. It is found that at the optimum the fraction of agents in
the first bracket is 70.03% and that in the second bracket is 29.97% for
the utilitarian function (those for the Rawlsian function are 67.94%
and 32.06%).

Fourth, aggregate labor hours, aggregate asset holdings, outputs, and
Gini coefficients remain roughly the same as those in the optimal linear
tax (compared with Table 2). This may explain why CEV improvements
are small from the extension of the linear to the two-bracket tax.

In the case of the linear income tax, it is found that 7.15% of agents
supply zero labor and 12.38% of agents hold zero assets at the optimum
if the social welfare is evaluated in terms of the utilitarian criterion (the
corresponding numbers are 8.46% and 12.85% if evaluated in terms
of the Rawlsian criterion). The fractions become somewhat higher in
Table 8
Optimal linear tax under various debt levels.

Debt/output
D/Y

Optimal tax
τ

Transfer/income
g/y

Welfare gain
CEV

0% 16% 16.0% 0.39%
10% 15% 14.6% 0.37%
20% 15% 14.3% 0.36%
60% 15% 12.8% 0.27%
the case of the two-bracket income tax; they are 8.66% and 13.39%,
respectively (the corresponding numbers for the Rawlsian are 12.48%
and 14.64%).22 The higher fractions could be due to the regressive struc-
ture of the marginal tax rates in the optimal two-bracket income tax.

7.1. Increasing risk aversion vs. shock volatility

Table 12 reports the results if agents become more risk averse, and
Table 13 reports the results if agents face larger volatility of idiosyncratic
shocks.23 These results are qualitatively similar to those in the linear-tax
case (compared with Tables 3 and 4). For example, if shock volatility
becomes larger, CEV increases substantially, and aggregate labor hours
decrease significantly while aggregate asset holdings increase signifi-
cantly. The most interesting finding is perhaps that the optimal two-
bracket tax schedule changes from regressive to progressive in the
marginal tax rate as σε in the baseline economy is increased to 1.5σ�

and 2σ�. We explain this result below.
Kaplow (2008, p. 64) provided an intuition for why the optimal

two-bracket tax schedule derived by Slemrod et al. (1994) is regressive
in the marginal tax rate. A high first-bracket tax rate is inframarginal
rather than marginal to high-income agents and thus it collects a high
amount of tax revenue from high-income agents without distorting
their labor supply. On the other hand, a low second-bracket tax rate
induces high labor effort from high-income agents and thus it collects
a high amountof tax revenue fromhigh-income agentswithout affecting
low-income agents.

The above intuition fails to apply once incomes are driven by luck.
First, a high first-bracket tax rate may not be inframarginal to high-
income agents' effort since their high incomes may simply stem
from good luck, not from labor effort. Second, a low second-bracket
tax rate may not induce high labor effort from high-income agents
since once again their high incomes may simply stem from good
luck, not from labor effort. In fact, as demonstrated by Strawczynski
(1998), the second-bracket tax rate should be set at 100% if high
incomes are completely due to pure luck. This 100% tax-rate result is
in stark contrast to the celebrated result of the “zero distortion at the
top” established by Sadka (1976) and Seade (1977) in the Mirrlees
(1971) framework.

The first row of Table 13 shows that the resulting two-bracket tax
schedule is regressive rather than progressive in the marginal tax rate.
It implies that the regressive ability-driven force underlying Slemrod
et al. (1994) dominates the progressive luck-driven force underlying
Strawczynski (1998) in the baseline economy. However, it seems
logical to conjecture that if future uncertainty facing agents becomes
sufficiently high so that the progressive luck-driven force underlying
Strawczynski (1998) is strong enough, then the opposite result with
progressive marginal tax rates will arise at the optimum. This
22 Similar to the optimal linear tax, it is interesting to note that none supply zero la-
bor and hold zero assets at the same time in the case of the optimal two-bracket tax.
23 Many comparative-static results for the two-bracket are qualitatively similar to
those for the linear. To avoid repetition, we have not reported them.



Table 11
Optimal two-bracket tax in the baseline economy.

Opt. tax Hours Assets Output

τ1 τ2 y0 n a Y CEV

Utilitarian 0.2 0.1 1.43y 0.28 2.71 0.79 0.44%
Rawlsian 0.3 0.2 1.36y 0.24 2.28 0.70 0.86%

Gini coefficient

Wealth Gross earnings Net income

Utilitarian 0.61 0.51 0.40
Rawlsian 0.63 0.55 0.38

Table 9
Optimal labor taxes under various capital taxes.

Capital tax
τk

Optimal labor
tax τl

Hours
n

Assets
a

Welfare gain
CEV

0% 18% 0.28 2.75 0.47%
10% 17% 0.28 2.68 0.41%
20% 13% 0.29 2.69 0.33%
30% 13% 0.29 2.55 0.23%
40% 12% 0.29 2.41 0.10%

Table 12
Optimal two-bracket tax: various risk aversions.

Economy Opt. tax Hours
n

Assets
a

Output
Y

CEV

τ1 τ2 y0

μ = 2 (baseline) 0.2 0.1 1.43y 0.28 2.71 0.79 0.44%
μ = 3 0.2 0.1 1.42y 0.28 2.87 0.81 1.36%
μ = 4 0.3 0.1 1.47y 0.25 2.80 0.79 2.73%
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conjecture is indeed borne out as shown in the second and the third
rows of Table 13when volatilityσ� in the baseline economy is increased
to 1.5σ� and 2σ�.

Kaplow's provided intuition takes the shape of the wage rate or
productivity type distribution as given. As such, it may fail to apply
too if the underlying wage rate distribution changes substantially. This
possibility is explored in a recent paper by Apps et al. (forthcoming),
which emphasizes the important driver of the wage rate distribution
in shaping the optimal tax structure. Similar to Slemrod et al. (1994),
they considered a piecewise linear income tax in the framework of
Mirrlees (1971), but argued that the parameters of the lognormal
wage distributions employed by Slemrod et al. (taken from Stern,
1976) are based on data in the late 1960's/early 1970's; however,
wage inequality has increased dramatically since then. Employing
Pareto rather than lognormal wage distributions to match recent real-
world data, they showed that marginal tax rate progressivity is optimal
when thewage distribution is atfirst relativelyflat and then rises steeply
in the higher deciles, a pattern currently observed in many OECD
countries.

It is known that the second moment of a lognormal distribution is
finite, whereas the second moment of a Pareto distribution is not
finite under plausible parameter values. This may explain why as far as
modeling the recent dramatic increase in wage inequality is concerned,
the upper tail of wage rates ismuch bettermodeled by a Pareto distribu-
tion than a lognormal distribution. Sticking to the lognormal assump-
tion, a possible way of capturing the recent dramatic rise in earnings
inequality is to let the variance of a lognormal productivity-type distri-
bution increase substantially. This increase leads to a substantial
increase in earnings inequality (in terms of Gini coefficients) in station-
ary equilibrium. We find that the Gini coefficients of earnings for σ�,
1.5σ� and 2σ� in the absence of tax equal 0.44, 0.58 and 0.67, respectively.
This result is not surprising in that an increased shock volatility implies
not only ex ante an increase in earnings risk, but also ex post an increase
in earnings inequality once shocks are realized. Table 13 shows that the
increased shock volatility turns the optimal two-bracket tax schedule
from regressivity to progressivity in the marginal tax rate. Although
we adopt a different approach, our result is consistent with the finding
of Apps et al. (forthcoming). That is, the two-bracket tax schedule
should be progressive rather than regressive in the marginal tax rate
once earnings risk/inequality has increased to a large extent.
Table 10
Optimal linear tax with permanent component of labor productivity.

Economy Tax
τ

Incentives Gini coefficient Output
Y

CEV

Hours
n

Assets
a

Wealth Gross
earnings

Net
income

No tax
Opt. tax

0% 0.34 3.38 0.58 0.45 0.42 0.93 NA

(Utilitarian) 17% 0.27 2.63 0.61 0.50 0.39 0.74 0.51%
Opt. tax
(Rawlsian)

23% 0.25 2.36 0.62 0.52 0.37 0.72 1.04%
8. Upper tail of earnings distribution

This section makes an attempt to account for the upper tail of the
earnings distribution in the realworld. The explorationwill enable us to
gain further insights into the issue of marginal tax rate progressivity or
regressivity at the optimum.

It is assumed in our model that the labor productivity shock
follows an AR(1) process with a stationary lognormal distribution.
We adopt an estimated AR(1) process using the PSID data and employ
a five-state Markov chain to approximate this process. The first and
the second rows of Table 14 provide a comparison of the earnings
distribution between the U.S. data and our baseline economy in
stationary equilibrium (the income tax rate is set at 35%).24 The Gini
coefficient from our model is lower than, but not far away from, the
actual data; however, the model does not capture the earnings share
of the top income group well—the top 5% hold 31.2% of total earnings
in the data, while only 21.2% in the baseline model.

Castaneda et al. (2003) argued that reported earnings data such as
the PSID are not specifically concerned with a careful measurement of
the earnings in the top tail of the earnings distribution and, moreover,
they are often subject to a significant amount of top-coding; as a result,
econometric studies based on these datamay not be reliable to address-
ing the upper tail of earnings inequality. To get around theproblem, they
instead used the U.S. Lorenz curve of earnings reported in Table 14 to
calibrate the process of stochastic productivity shocks. What they did
in the end was to allow for the incidence of some abnormally high pro-
ductivity shock with a low probability. This approach enables them to
generate a highly skewed earnings distribution in a dynamic framework
and, in particular, match the earnings share of the very rich in the U.S.
data.

To account for the upper tail of the earnings distribution in the U.S.
economy, we follow an approach similar to Castaneda et al. (2003).
Specifically, we modify the original Markov chain of the productivity
shock, z ∈ {z1, z2,..., z5}, by in addition incorporating an abnormally
high productivity shock zh. To construct a new shock process with
the addition of zh, denoted by ẑ ∈ z1; z2; :::; z5; zhf g, we assume that
only those agents who receive z5 have a chance to reach zh with a
24 The U.S. data are compiled by Castaneda et al. (2003) using the 1992 Survey of
Consumer Finances, and they are confirmed by many other empirical studies; see
Castaneda et al. (2003).



Table 15
Optimal tax with high shock zh.

Tax system Opt. tax Gini coefficient

τ1 τ2 y0 Wealth Earnings Net income CEV

Baseline economy
Linear 0.00 0.16 0.00 0.60 0.49 0.38 0.39%
Two-bracket 0.2 0.1 1.43y 0.61 0.51 0.40 0.44%

High-shock economy
Linear 0.00 0.25 0.00 0.66 0.59 0.40 1.19%
Two-bracket 0.2 0.4 1.39y 0.65 0.56 0.37 1.37%

Table 13
Optimal two-bracket tax: various shock volatilities.

Opt. tax Hours Assets Output

Economy τ1 τ2 y0 n a Y CEV

σɛ (baseline) 0.2 0.1 1.43y 0.28 2.71 0.79 0.44%
1.5σɛ 0.1 0.3 0.18y 0.20 2.95 0.88 3.35%
2σɛ 0.2 0.4 0.29y 0.14 3.57 1.10 7.16%
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probability 0.1. Agents who currently receive zh are assumed to either
stay at zh or move down to z5 in the next period. The probability of

staying at zh, Pr ẑ′ ¼ zhjẑ ¼ zh
� �

, is assumed to equal that of staying

at z5, Pr(z′ = z5|z = z5).
We calibrate the value of zh such that the model Gini coefficient of

earnings can be close to the data, 0.63. As a result, ẑ takes six possible
values:

ẑ ∈ 0:3424;0:5852;1:0000;1:7089;2:9202;5:5547f g;

with the transition matrix:

Pr ẑ′jẑ
� �

¼

0:8072 0:1925 0:0003 0:0000 0:0000 0:0000
0:0694 0:7886 0:1418 0:0001 0:0000 0:0000
0:0001 0:1010 0:7980 0:1010 0:0001 0:0000
0:0000 0:0001 0:1418 0:7886 0:0625 0:0069
0:0000 0:0000 0:0003 0:1925 0:7265 0:0807
0:0000 0:0000 0:0000 0:0000 0:1928 0:8072

0BBBBBB@

1CCCCCCA:

The implied stationary distribution of ẑ is:

Π ẑð Þ ¼ 0:0836;0:2319;0:3257;0:2319;0:0836;0:0434ð Þ:

The distribution of earnings in the model economy with the incor-
poration of the new shock process ẑ and the 35% income tax rate is
presented in the third row of Table 14. Note that the earnings of the
top 5% in the data are captured much better with the modified
shock process in the model (31.2% in the data vs. 31.7% in the model).

Table 15 reports the optimal linear and two-bracket income taxes
with the new shock process under the title of “High-shock economy”
along with “Baseline economy.” The optimal linear tax rate becomes
25% and the resulting CEV is 1.19%. Both figures are significantly
higher than those in the baseline economy.

Most importantly, we find that the optimal two-bracket tax structure
becomes progressive in the marginal tax rate with τ1 = 0.2 and τ1 =
0.4 rather than τ1 = 0.2 and τ2 = 0.1 in the baseline economy. The
intuition for this result is arguably similar to that of increasing shock
volatility before. Thus, this result is also consistent with the finding of
Apps et al. (forthcoming).

9. Conclusion

Following Stern (1976), Slemrod et al. (1994), Strawczynski (1998),
and Apps et al. (forthcoming), this paper quantitatively characterizes
optimal linear and two-bracket income taxes but synthesizes these pre-
vious studies in a framework where both ability and luck matter for the
determination of individual income. Substantive findings include: (i) a
significant fraction of agents supply zero labor or hold zero assets at
the optimum; (ii) neglecting tax distortion imposed on either of
Table 14
Distribution of earnings.

Economy Gini Bottom 40% Top 20% Top 10% Top 5%

US data 0.63 3.2 61.4 43.5 31.2
Baseline τ = 0.35 0.566 5.6 56.9 37.4 21.2
High-shock τ = 0.35 0.638 3.9 64.2 47.3 31.7
labor–leisure and consumption–saving decisions will lead to the pre-
scription of tax codes that deviate substantially from the optimum;
and (iii) the optimal two-bracket tax schedule will turn from regressive
to progressive in themarginal tax rate once the volatility of idiosyncratic
shocks becomes sufficiently large. The last finding is consistent with the
results in Apps et al. (forthcoming), and it also reconciles the contradic-
tory results regarding the optimal two-bracket tax schedule between
Slemrod et al. (1994) and Strawczynski (1998).

Several abstractions of our model from real-world complications
are worth noting. First, we assume homogeneous preferences and
exclude preference heterogeneity across agents. Second, we confine
our analysis to individual-specific shocks and disallow for aggregate
shocks. Third,we consider the two simplest formsof thepiecewise linear
income tax (linear and two-bracket) and do not go beyond them.25

Finally, channels of insurance against shocks are limited to agents' self-
insurance and the government's provided taxes and transfers. Relaxing
these abstractions should be worth investigating.
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