All-to-all broadcast problem of some classes of graphs under the half duplex all-port model

Fei-Huang Chang ${ }^{\mathrm{a}}$, Young-Ming Chen ${ }^{\mathrm{b}}$, Ma-Lian Chia ${ }^{\mathrm{c}}$, David Kuo ${ }^{\mathrm{d}, *}$, Ming-fen Yu^{b}
${ }^{\text {a }}$ Department of Mathematics and Science, National Taiwan Normal University, New Taipei City, Taiwan
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, National Chengchi University, Mucha, Taipei 11623, Taiwan
${ }^{\text {c }}$ Department of Applied Mathematics, Aletheia University, Tamsui 251, Taiwan
${ }^{\text {d }}$ Department of Applied Mathematics, National Dong Hwa University, Hualien 97401, Taiwan

ARTICLE INFO

Article history:

Received 11 January 2012
Received in revised form 22 February 2014
Accepted 30 March 2014
Available online 16 April 2014

Keywords:

All-to-all broadcast
Broadcasting set
All-to-all broadcast number
Tree
Complete bipartite graph
Double loop network

Abstract

All-to-all communication occurs in many important applications in parallel processing. In this paper, we study the all-to-all broadcast number (the shortest time needed to complete the all-to-all broadcast) of graphs under the assumption that: each vertex can use all of its links at the same time, and each communication link is half duplex and can carry only one message at a unit of time. We give upper and lower bounds for the all-to-all broadcast number of graphs and give formulas for the all-to-all broadcast number of trees, complete bipartite graphs and double loop networks under this model.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Broadcasting refers to the process of message dissemination in a connected network. This problem has been extensively investigated in recent years for many different networks and under a large variety of models. For an account of the history of the area of broadcasting and the intensive research devoted to it, see the surveys $[6,13,14]$ and [15]. For different variations and models of the broadcasting problem, such as the k-broadcasting problem (each informed vertex can send the message to at most k of its neighbors in a given time unit), the line broadcasting problem (an informed vertex can send the message to any other vertex through a path between the two vertices in a given time unit), the multiple originator broadcasting problem (broadcast a message from a set of originators), the multiple message broadcasting problem (m messages, originated by one vertex, are transmitted to all vertices of the network), the all-to-all personalized communication problem (each vertex sends a specific message to every other vertex), see [1-5,7-12,16-19] and the references there in.

Broadcasting can be one-to-all or all-to-all. In one-to-all broadcasting, we assume that some messages are sent from one vertex, the originator, to all vertices of the graph. And in all-to-all broadcasting, we assume that each vertex in the graph has a message needed to be sent to every other vertices of the graph.

[^0]Different models arise when considering the broadcast problem. The models studied most frequently in the literature are the 1-port model and the all-port model. In the 1-port model, a vertex can only use one of its edges to transmit or receive messages in a unit of time. And in the all-port model, a vertex can use all its edges to transmit or receive messages in a unit of time.

Here, we study the broadcast problem under the half duplex (only one message can travel a link at a time unit) all-port model with the restriction that each edge can transmit at most one message during each time unit (we add this constraint since in real applications, the size of the messages that can be transferred by a link at a time unit may be limited). That is, we assume that at each time unit, vertices exchange their messages under the following rules:
(1) communication links are half duplex,
(2) each edge can transmit at most one message during each time unit,
(3) each vertex can use all of its links at the same time.

We call such model the HA1 model. Note that in this model, a vertex can send and receive messages during the same time unit, and a vertex can receive multiple messages during the same time unit.

In this paper, we study the all-to-all broadcast problem of some classes of graphs which are used frequently in network under the HA1 model. We give upper and lower bounds for all-to-all broadcast number (the shortest time needed to complete all-to-all broadcast) of graphs and give formulas for all-to-all broadcast number of trees, complete bipartite graphs and double loop networks.

2. Preliminary

All graphs we consider in this paper are connected and simple (loopless and without multiple edges). We first fix some notations that will be used later. Given a graph G and a vertex v in $V(G)$, we use $m_{0}(v)=\{a\}$ to denote that at the beginning, v owns a private message a. And we use $\{a\}_{\overrightarrow{u v}}^{i}$ to denote that at the i th time unit, u send the message a to vertex v, and call $\{a\}_{\vec{u} v}^{i}$ a call. A set of calls $B(G)$ is a scheme of G if for each $\{a\}_{\overrightarrow{u v}}^{i} \in B(G), a \in\left\{b:\{b\}_{\vec{w}}^{l} \in B(G), 1 \leq l \leq i-1\right\} \cup m_{0}(u)$. For a scheme $B(G)$ of G, we use $\Delta_{B(G)}$ to denote the maximum number of time used in $B(G)$ (that is, $\Delta_{B(G)}=\max \left\{i:\{a\}_{\overrightarrow{u v}}^{i} \in B(G)\right\}$), and for all v in $V(G)$ and all $i, 1 \leq i \leq \Delta_{B(G)}$, we use $\left(m_{i}(v)\right)_{B(G)}$ (or, simply, $m_{i}(v)$, if $B(G)$ need not to be specified) to denote the set of messages received by vertex v till time unit i (that is, $\left(m_{i}(v)\right)_{B(G)}=\left\{a:\{a\}_{\overrightarrow{u v}}^{l} \in B(G), 1 \leq l \leq i\right\} \cup m_{0}(v)$).

A scheme $B(G)$ of G is a broadcasting set of G if $\left(m_{\Delta_{B(G)}}(v)\right)_{B(G)}=\bigcup_{w \in V(G)} m_{0}(w)$ for all $v \in V(G)$ (that is, if all vertices receive all the messages in $\bigcup_{w \in V(G)} m_{0}(w)$ by using the scheme $\left.B(G)\right)$. A broadcasting set of G is a k-step broadcasting set of G if $\Delta_{B(G)}=k$. For a graph G, the all-to-all broadcast number of G is the number $t(G)=\min \left\{\Delta_{B(G)}: B(G)\right.$ is a broadcasting set of $G\}$. A broadcasting set $B(G)$ is called an optimal broadcasting set if $\Delta_{B(G)}=t(G)$.

From now on, when considering a scheme $B(G)$ of G, we always assume that no vertex receives the same message twice. And, when considering the graphs K_{n} and C_{n}, we always assume that $V\left(K_{n}\right)=V\left(C_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $m_{0}\left(v_{i}\right)=\{i\}$ for all $i, 0 \leq i \leq n-1$. The following lemma is easy to verify.

Lemma 1. If H is a spanning subgraph of a graph G, then $t(G) \leq t(H)$.
Lemma 2. For any graph G with $|V(G)|=n$ and $|E(G)|=m, t(G) \geq\left\lceil\frac{n(n-1)}{m}\right\rceil$.
Proof. The total number of messages need to be transmitted is $n(n-1)$. Since at most m messages can be transmitted at each time unit (see Figs. 1-3), it follows that $\left\lceil\frac{n(n-1)}{m}\right\rceil$ time units are necessary.

Lemma 3. For any graph G with $|V(G)|=n$ and $|E(G)|=m$, if $B(G)$ is a k-step broadcasting set of G such that for some $r>0$, the number of calls in $B(G)$ at each time unit till time unit r is equal to m, and the total number of calls in $B(G)$ from time unit $r+1$ to time unit k is greater than or equal to $(k-r-1) m+1$, then $B(G)$ is an optimal broadcasting set of G, and $t(G)=\left\lceil\frac{n(n-1)}{m}\right\rceil$.
Proof. Note that for any broadcasting set $B(G)$ of G, the number of messages that can be transmitted at each time unit is at most m. If $B(G)$ is a broadcasting set of G such that the number of messages that are transmitted at each time unit till time unit r is equal to m and the total number of messages that are transmitted from time unit $r+1$ to time unit k is greater than or equal to $(k-r-1) m+1$, then, since the total number of messages need to be transmitted is $n(n-1), n(n-1) \geq r m+$ $(k-r-1) m+1=(k-1) m+1$. Hence $t(G) \geq\left\lceil\frac{n(n-1)}{m}\right\rceil \geq\left\lceil\frac{(k-1) m+1}{m}\right\rceil=k$ by Lemma 2 . Since $B(G)$ is a k-step broadcasting set of $G, B(G)$ is an optimal broadcasting set of G and $t(G)=k=\left\lceil\frac{n(n-1)}{m}\right\rceil$.

For a connected graph G, the distance between two vertices u and v, written $d_{G}(u, v)$ (or simply, $d(u, v)$), is the minimum length of all $u-v$ paths in G. For a vertex v in G, the eccentricity of v, written $\epsilon_{G}(v)$ (or simply, $\epsilon(v)$), is $\max _{u \in V(G)} d_{G}(u, v)$.

Lemma 4. Given a graph G with $|V(G)|=n$, if $u v$ is a cut-edge of G and G_{1}, G_{2} are components of $G-u v$ containing u, v, respectively, then

$$
t(G) \geq n+\min \left\{\epsilon_{G_{1}}(u), \epsilon_{G_{2}}(v)\right\}
$$

Proof. Let $B(G)$ be an optimal broadcasting set of G. Note that since $u v$ is a cut-edge of G, every message in $\cup_{v \in V(G)} m(v)$ must pass through $u v$ at some transmitting step. If in $B(G), a$ is the last message in $\cup_{v \in V(G)} m(v)$ that pass through $u v$, then there exists $k, k \geq n$, such that $\{a\}_{\overrightarrow{u v}}^{k} \in B(G)$ or $\{a\}_{\overrightarrow{v u}}^{k} \in B(G)$. If $\{a\}_{\overrightarrow{u v}}^{k} \in B(G)$, and x is a vertex in G_{2} such that $d_{G_{2}}(v, x)=\epsilon_{G_{2}}(v)$, then there exists a vertex y and a number k^{\prime}, such that $\{a\}_{\overrightarrow{y x}}^{k^{\prime}} \in B(G)$. Clearly, $k^{\prime} \geq k+d_{G_{2}}(v, x)$. Thus $t(G)=\Delta_{B(G)} \geq k^{\prime} \geq$ $k+d_{G_{2}}(v, x) \geq n+\epsilon_{G_{2}}(v)$ in this case. By a similar argument, $t(G) \geq n+\epsilon_{G_{1}}(u)$ if $\{a\}_{\overrightarrow{v u}}^{k} \in B(G)$. Hence $t(G) \geq n+$ $\min \left\{\epsilon_{G_{1}}(u), \epsilon_{G_{2}}(v)\right\}$.

Theorem 5. $t(G) \geq 2$ for any graph G with $|V(G)| \geq 2$. And equality holds if and only if $G=K_{n}, n \geq 2$.
Proof. $t(G) \geq 2$ for any graph G with $|V(G)| \geq 2$ follows from Lemma 2. For the graph K_{n}, consider the scheme $B\left(K_{n}\right)$ of K_{n} defined by $B\left(K_{n}\right)=\left\{\{j\}_{v_{j} v_{k}}^{1}: 0 \leq j<k \leq n-\overline{1}\right\} \cup\left\{\{k\}_{\overrightarrow{v_{k}} \vec{v}_{j}}^{2}: 0 \leq j<k \leq n-1\right\}$. Since each vertex v_{i} received all the messages in $\{0,1, \ldots, i-1\}$ at the first time unit, and received all the messages in $\{i+1, i+2, \ldots, n-1\}$ at the second time unit, $B\left(K_{n}\right)$ is a 2-step broadcasting set of K_{n}. Thus $t\left(K_{n}\right) \leq 2$. By Lemma 2, we also have $t\left(K_{n}\right) \geq\left\lceil\frac{n(n-1)}{\left|E\left(K_{n}\right)\right|}\right\rceil=2$. Hence $t\left(K_{n}\right)=2$ for all $n \geq 2$. Note that the equality does not hold if $|E(G)|<\frac{n(n-1)}{2}$. Hence $t(G)=2$ if and only if $G=K_{n}, n \geq 2$.

From now on, for convenience, we use the notation $[k]_{n}$ to denote the number $(k \bmod n)$.
Theorem 6. $t\left(C_{n}\right)=n-1$ for all $n \geq 3$.
Proof. Consider the scheme $B\left(C_{n}\right)$ of C_{n}, defined by $B\left(C_{n}\right)=\left\{\left\{[j+1-i]_{n}\right\}_{\overrightarrow{v_{j}} \bar{i} V_{[j+1] n}}: 1 \leq i \leq n-1,0 \leq j \leq n-1\right\}$. Since each vertex v_{j} received the message $[j-i]_{n}$ at the i th time unit, $\left(m_{n-1}\left(v_{i}\right)\right)_{B\left(C_{n}\right)}=\{0,1,2, \ldots, n-1\}$ for each vertex v_{i}. Hence $B\left(C_{n}\right)$ is an $(n-1)$-step broadcasting set of C_{n}, and so $t\left(C_{n}\right) \leq n-1$. By Lemma 2 , we also have $t\left(C_{n}\right) \geq\left\lceil\frac{n(n-1)}{\left|E\left(C_{n}\right)\right|}\right\rceil=n-1$. Hence $t\left(C_{n}\right)=n-1$ for all $n \geq 3$.

3. Trees

Given a graph G and a vertex v in $V(G)$, the (open) neighborhood of v is $N(v)=\{u \in V(G): u v \in E(G)\}$, and the eccentricity of v, written $\epsilon_{G}(v)$ (or simply, $\epsilon(v)$), is $\max _{u \in V(G)} d(u, v)$. For a graph G, the radius of G, written $\operatorname{rad}(G)$, is $\min _{u \in V(G)} \epsilon(u)$. A vertex v in $V(G)$ is a central vertex of G if $\epsilon(v)=\operatorname{rad}(G)$.

A rooted tree is a tree with one vertex chosen as the root. We use T_{v} to denote a tree T rooted at v. The height $h\left(T_{v}\right)$ of T_{v} is defined by $h\left(T_{v}\right)=\max \{d(v, w): w \in V(T)\}$. For a vertex u in T_{v}, we use T_{u} to denote the subtree of T_{v} rooted at u. For each vertex u in $V\left(T_{v}\right)$, let $P_{T_{v}}(u)$ be the unique $u-v$ path in T_{v}. The parent of u in T_{v}, denoted by $u_{p \mid T_{v}}$ (or simply, u_{p}, if T_{v} is the only rooted tree we considered), is its neighbor on $P_{T_{v}}(u)$. And the children of u in T_{v} are the neighbors of u different from $u_{\left.p\right|_{T_{v}}}$.

Algorithm BT

Input: A tree T with $V(T)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ rooted at v_{0}.
Output: A broadcasting set $B\left(T_{v_{0}}\right)$ of $T_{v_{0}}$ and the time units t needed to complete the broadcast.

Method:

1. Set $t=0, B\left(T_{v_{0}}\right)=\emptyset$, and for each vertex v_{i}, set $m_{0}\left(v_{i}\right)=\{i\}$.
2. While $\cap_{v \in V(T)} m_{t}(v) \neq\{0, \ldots, n-1\}$, //at least one vertex did not receive all the
messages in $\{0, \ldots, n-1\} / /$
do \{
For each $v_{i} v_{j} \in E(T)$, and $d\left(v_{i}, v_{0}\right)>d\left(v_{j}, v_{0}\right)$, do $\{$
If $m_{t}\left(v_{i}\right) \backslash m_{t}\left(v_{j}\right) \neq \emptyset$, choose any $x \in m_{t}\left(v_{i}\right) \backslash m_{t}\left(v_{j}\right)$, set $B\left(T_{v_{0}}\right)=B\left(T_{v_{0}}\right) \cup\left\{\{x\}_{\stackrel{v_{i} v_{j}}{t}}^{t}\right\}$, and set $m_{t+1}\left(v_{j}\right)=m_{t}\left(v_{j}\right) \cup\{x\}$;
Else if $m_{t}\left(v_{j}\right) \backslash m_{t}\left(v_{i}\right) \neq \emptyset$, choose any $x \in m_{t}\left(v_{j}\right) \backslash m_{t}\left(v_{i}\right)$,

$$
\text { set } \left.B\left(T_{v_{0}}\right)=B\left(T_{v_{0}}\right) \cup\left\{\{x\}_{\overrightarrow{v_{j} v_{i}}}^{t}\right\}, \text { and set } m_{t+1}\left(v_{i}\right)=m_{t}\left(v_{i}\right) \cup\{x\} ;\right\}
$$

$t=t+1 ;\}$.
3. Return $B\left(T_{v_{0}}\right)$ and t.

In Algorithm BT, we first choose a vertex v_{0} as a root, and consider the rooted tree $T_{v_{0}}$. At each time unit $t, t \geq 1$, for a vertex u in $T_{v_{0}}$, if $m_{t-1}(u) \nsubseteq m_{t-1}\left(u_{p}\right)$, then we choose a message in $m_{t-1}(u) \backslash m_{t-1}\left(u_{p}\right)$ and send it to u_{p} at time unit t. And for a child w of u, if $m_{t-1}(w) \subseteq m_{t-1}(u)$ and $m_{t-1}(w) \neq m_{t-1}(u)$, then we choose a message in $m_{t-1}(u) \backslash m_{t-1}(w)$ and send it to w at time unit t. Clearly, when the algorithm terminate, the set $B\left(T_{v_{0}}\right)$, produced by this algorithm, is a broadcasting set of $T_{v_{0}}$.

Lemma 7. For a rooted tree $T_{v_{0}}$ with $V\left(T_{v_{0}}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$, the set $B\left(T_{v_{0}}\right)$, produced by Algorithm $B T$, is an ($n+$ $\left.h\left(T_{v_{0}}\right)-1\right)$-step broadcasting set of $T_{v_{0}}$.
Proof. Let $B\left(T_{v_{0}}\right)$ and $m_{t}\left(v_{i}\right), 0 \leq i \leq n-1,0 \leq t \leq \Delta_{B\left(T_{v_{0}}\right)}$, be the sets produced by Algorithm BT. By step 2 of the algorithm, each vertex v_{i} satisfies the condition that $m_{t_{i}}\left(v_{i}\right)=\cup_{v_{k} \in V\left(T_{v_{i}}\right)} m_{0}\left(v_{k}\right)$, where $t_{i}=\left|V\left(T_{v_{i}}\right)\right|$. Moreover, if v_{j} is the parent of v_{i},

Fig. 1. A tree T and the first few transmission steps of T.

Fig. 2. $D_{12}(1,3)$.
then $\left|m_{t_{j}}\left(v_{k}\right)\right| \geq\left|m_{t_{j}}\left(v_{j}\right)\right|-d_{T_{v_{j}}}\left(v_{k}, v_{j}\right)+1$ for all vertices v_{k} in $T_{v_{i}}$. Hence $m_{t^{*}}\left(v_{i}\right)=\{0,1,2, \ldots, n-1\}$ for all vertices v_{i} in $T_{v_{0}}$, where $t^{*}=\left|m_{t_{0}}\left(v_{0}\right)\right|+\max \left\{d_{T_{v_{0}}}\left(v_{k}, v_{0}\right): v_{k} \in V\left(T_{v_{0}}\right)\right\}-1=n+h\left(T_{v_{0}}\right)-1$. Therefore, $B\left(T_{v_{0}}\right)$ is an $\left(n+h\left(T_{v_{0}}\right)-1\right)$-step broadcasting set of $T_{v_{0}}$.

Theorem 8. For any tree T with $|V(T)|=n \geq 2, t(T)=n+\operatorname{rad}(T)-1$.
Proof. Choose a central vertex v in $V(T)$, and consider the rooted tree T_{v}. By Lemma 7, there exists a $\left(n+h\left(T_{v}\right)-1\right)$-step broadcasting set $B\left(T_{v}\right)$ of T_{v}. Hence $t(T) \leq \Delta_{B\left(T_{v}\right)}=n+h\left(T_{v}\right)-1$. Since v is a central vertex, $h\left(T_{v}\right)=\operatorname{rad}(T)$, thus $t(T) \leq$ $n+\operatorname{rad}(T)-1$. To prove the lower bound, consider a vertex w in $V\left(T_{v}\right)$ with $d(v, w)=\operatorname{rad}(T)$, and let u be a vertex in $N(v)$ so that the rooted subtree T_{u} of T_{v} contains the vertex w. Then, by Lemma $4, t(G) \geq n+d(u, w)=n+\operatorname{rad}(T)-1$. Hence $t(T)=n+\operatorname{rad}(T)-1$ for any tree T with $|V(T)|=n \geq 2$.

Corollary 9. $t\left(P_{n}\right)=n+\left\lfloor\frac{n}{2}\right\rfloor-1$ for all $n \geq 2$.
Combining Lemma 1 and Theorem 8, we have
Corollary 10. For any graph G with $|V(G)| \geq 2, t(G) \leq|V(G)|+\operatorname{rad}(G)-1$.

Fig. 3. Transmission of the message 0 in $D_{12}(1,3)$.
For a cut-edge $u v$ of G, we use $\alpha(u, v)$ to denote the number $\min \left\{\epsilon_{G_{1}}(u), \epsilon_{G_{2}}(v)\right\}$, where G_{1}, G_{2} are components of $G-u v$ containing u, v, respectively. By Lemma 4 and Corollary 10, we have

Corollary 11. If G is a graph with cut-edges, then $|V(G)|+\max \{\alpha(u, v)$: uv is a cut-edge of $G\}-1 \leq t(G) \leq|V(G)|+$ $\operatorname{rad}(G)-1$.

4. Complete bipartite graphs

In this section, we study the all-to-all broadcast number of complete bipartite graphs. For convenience, when considering the complete bipartite graph $K_{m, n}, m \geq n$, we always assume that $V\left(K_{m, n}\right)=\left\{v_{i}: 0 \leq i \leq m+n-1\right\}, E\left(K_{m, n}\right)=\left\{v_{i} v_{j}\right.$: $0 \leq i \leq m-1, m \leq j \leq m+n-1\}$, and $m_{0}\left(v_{i}\right)=\{i\}$ for all $i, 0 \leq i \leq m+n-1$.
Theorem 12. $t\left(K_{m, n}\right)=\left\lceil\frac{(m+n)(m+n-1)}{m n}\right\rceil$ for all $m \geq n \geq 1$.
Proof. Let $m-1=n q+r$, where $0 \leq r \leq n-1$, and let $r^{\prime}=[m r]_{n}$. Let

$$
\begin{gathered}
B^{1}\left(K_{m, n}\right)=\left\{\{j\} \frac{1}{\vec{v}_{v_{m+i}}}: 0 \leq j \leq m-1,0 \leq i \leq n-1\right\}, \\
B^{2}\left(K_{m, n}\right)=\left\{\{m+i\}_{\overline{v_{m+i} v_{j}}}^{2}: 0 \leq j \leq m-1,0 \leq i \leq n-1\right\},
\end{gathered}
$$

and for all $l, 3 \leq l \leq q+2$, let

$$
B^{l}\left(K_{m, n}\right)=\left\{\left\{[(l-3) n+j+i+1]_{m}\right\} \stackrel{l}{\stackrel{l}{v_{m+i} v_{j}}}: 0 \leq j \leq m-1,0 \leq i \leq n-1\right\} .
$$

Consider the following cases:
Case 1. $m r+n(n-1) \leq m n$.
In this case, let

$$
\begin{aligned}
& B^{q+3}\left(K_{m, n}\right)=\left\{\left\{\left[n q+i+\left\lfloor\frac{i}{m}\right\rfloor+1\right]_{m}\right\}_{\overrightarrow{\left.v_{m+\left[i+\left\lfloor\frac{i d}{m n}\right.\right.}^{m}\right]_{n} v_{[i] m}}}^{q+3}: 0 \leq i \leq m r-1\right\} \\
& \bigcup\left\{\left\{m+\left[r^{\prime}+i+\left\lfloor\frac{r d}{n}\right\rfloor+\left\lfloor\frac{i}{n}\right\rfloor+1\right]_{n}\right\}_{\left.\overrightarrow{v_{[i] m} v_{m+\left[r^{\prime}+i+\left\lfloor\frac{r d}{n}\right]\right]_{n}}^{q+3}}: 0 \leq i \leq n^{2}-n-1\right\},} \quad: \quad,\right.
\end{aligned}
$$

and let $B\left(K_{m, n}\right)=\cup_{i=1}^{q+3} B^{i}\left(K_{m, n}\right)$.

Case 2. $m r+n(n-1)>m n$.
In this case, let

$$
\begin{gathered}
B^{q+3}\left(K_{m, n}\right)=\left\{\left\{[q n+j+i+1]_{m}\right\} \frac{v_{v_{m+i}} \vec{v}_{j}}{q+3}: 0 \leq j \leq m-1,0 \leq i \leq r-1\right\}, \\
B^{q+4}\left(K_{m, n}\right)=\left\{\left\{m+[j+i+1]_{n}\right\}_{\overrightarrow{v_{j} v_{m+i}}}^{q+4}: 0 \leq j \leq n-2,0 \leq i \leq n-1\right\},
\end{gathered}
$$

and let $B\left(K_{m, n}\right)=\cup_{i=1}^{q+4} B^{i}\left(K_{m, n}\right)$.
It is easy to verify that for each of the two cases above, $B\left(K_{m, n}\right)$ is a broadcasting set of $K_{m, n}$. Since $\mid\left\{\{a\}_{\overrightarrow{u v}}^{i}:\{a\}_{\overrightarrow{u v}}^{i} \in\right.$ $\left.B\left(K_{m, n}\right)\right\} \mid=m n$ for all $i, 1 \leq i \leq q+2$, and $\left|\left\{\{a\}_{\overrightarrow{u v}}^{q+3}:\{a\}_{\overrightarrow{u v}}^{q+3} \in B\left(K_{m, n}\right)\right\}\right|+\left|\left\{\{a\}_{\overrightarrow{u v}}^{q+4}:\{a\}_{\overrightarrow{u v}}^{q+4} \in B\left(K_{m, n}\right)\right\}\right| \geq m n+1$ when $m r+$ $n(n-1)>m n$, by Lemma $3, B\left(K_{m, n}\right)$ is an optimal broadcasting set of $K_{m, n}$, and $t\left(K_{m, n}\right)=\left\lceil\frac{(m+n)(m+n-1)}{m n}\right\rceil$ in either cases.

5. Double loop network

A double-loop network $\overrightarrow{D_{n}}(a, b)$ with n being positive integer, $0<a<n, 0<b<n$, and $a \neq b$ can be viewed as a directed graph with n vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}$ and $2 n$ directed edges of the form $\xrightarrow[{v_{i} v_{[i+a]_{n}}}]{ }$ and $\xrightarrow[{v_{i} v_{[i+b]_{n}}}]{ }$, referred to as a-links and b-links. The underlying graph of the directed graph $\overrightarrow{D_{n}}(a ; b)$ is denoted by $D_{n}(a, b)$. In this section, we study the all-to-all broadcast number of $D_{n}(1, b)$. Note that $D_{n}(1, b)$ is isomorphic to $D_{n}(1, n-b)$ for all $b, 2 \leq b \leq n-2$. Hence, when consider the graph $D_{n}(1, b)$, we always assume that $2 \leq b \leq\left\lfloor\frac{n}{2}\right\rfloor$.

For convenience, when considering the graph $D_{n}(1, b)$, we always assume that $m_{0}\left(v_{i}\right)=\{i\}$ for all $i, 0 \leq i \leq n-1$.
Theorem 13. $t\left(D_{n}(1, b)\right)=\left\lceil\frac{n-1}{2}\right\rceil$ for all $n \geq 5,2 \leq b \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.
Proof. Let $n-1=(2 b-2) q+r$, where $0 \leq r \leq 2 b-3$, and let $j_{b}=[j-1]_{b-1}+\left\lfloor\frac{j-1}{b-1}\right\rfloor(2 b-2), j_{b}^{*}=2 j-2$ for all positive integer j. For each $i, 0 \leq i \leq n-1$, let

$$
\begin{aligned}
B^{i}\left(D_{n}(1, b)\right) & =\left\{\{i\}_{\overrightarrow{v_{\left[i+j_{b}\right] n} v_{\left[i+j_{b}+1\right] n}}}^{j}: 1 \leq j \leq(b-1) q\right\} \\
& \bigcup\left\{\{i\}_{\overrightarrow{v_{\left[i+j_{b}\right] n} v_{\left[i+j_{b}+b\right] n}}}^{j}: 1 \leq j \leq(b-1) q\right\} \\
& \bigcup\left\{\{i\}_{\overrightarrow{v_{\left[i+j_{b}^{*}\right] n} v_{\left[i+j_{b}^{*}+1\right] n}}}^{j}:(b-1) q+1 \leq j \leq(b-1) q+\left\lceil\frac{r}{2}\right\rceil\right\} \\
& \bigcup\left\{\{i\}_{\overrightarrow{v_{\left[i+j_{b}^{*}+2-b\right]_{n}}^{j}\left[i+j_{b}^{*}+2\right]_{n}}}:(b-1) q+1 \leq j \leq(b-1) q+\left\lfloor\frac{r}{2}\right]\right\},
\end{aligned}
$$

and let $B\left(D_{n}(1, b)\right)=\cup_{i=0}^{n-1} B^{i}\left(D_{n}(1, b)\right)$. By the definition of $B^{i}\left(D_{n}(1, b)\right)$, all vertices v_{j} own the message i after the $[(b-$ 1) $\left.q+\left\lceil\frac{r}{2}\right\rceil\right]^{\text {th }}$ step. Hence $B\left(D_{n}(1, b)\right)$ is a broadcasting set of $D_{n}(1, b)$. Therefore, $t\left(D_{n}(1, b)\right) \leq \Delta_{B\left(D_{n}(1, b)\right)}=(b-1) q+\left\lceil\frac{r}{2}\right\rceil=$ $\left\lceil\frac{n-1}{2}\right\rceil$. Since $\left|E\left(D_{n}(1, b)\right)\right|=2 n$, by Lemma 2 , we also have $t\left(D_{n}(1, b)\right) \geq\left\lceil\frac{n-1}{2}\right\rceil$. Thus $t\left(D_{n}(1, b)\right)=\left\lceil\frac{n-1}{2}\right\rceil$ for all $n \geq 5,2 \leq$ $b \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.

Acknowledgments

The authors thank the referees for helpful comments which resulted in an improvement in the clarity of exposition of the paper. First author was supported in part by the National Science Council Taiwan under grant NSC98-2115-M-003-017-MY2. Third author was supported in part by the National Science Council Taiwan under grant NSC99-2115-M-156-002. Fourth author was supported in part by the National Science Council Taiwan under grant NSC97-2115-M-259-002-MY3.

References

[1] A. Bar-Noy, S. Kipnis, B. Schieber, Optimal multiple message broadcasting in telephone-like communication systems, Discrete Appl. Math. 100 (2000) $1-15$.
[2] M.L. Chia, D. Kuo, M.F. Tung, The multiple originator broadcasting problem in graphs, Discrete Appl. Math. 155 (2007) 1188-1199.
[3] W.Y. Chou, C. Chen, All-to-all personalized exchange in generalized shuffle-exchange networks, Theoret. Comput. Sci. 411 (2010) $1669-1684$.
[4] A. Farley, Broadcast time in communication networks, SIAM J. Appl. Math. 39 (1980) 385-390.
[5] A. Farley, A. Proskurowski, Broadcasting in trees with multiple originators, SIAM J. Alg. Discrete Methods 2 (1981) 381-386.
[6] P. Fraigniaud, E. Lazard, Methods and problems of communication in usual networks, Discrete Appl. Math. 53 (1994) 79-133.
[7] I. Gaber, Minimal-time k-line broadcasting, SIAM J. Discrete Math. 18 (2005) 769-777.
[8] H.A. Harutyunyan, Minimum multiple message broadcast graphs, Networks 47 (2006) 218-224.
[9] H.A. Harutyunyan, A.L. Liestman, Improved upper and lower bounds for k-broadcasting, Networks 37 (2) (2001) 94-101.
[10] H.A. Harutyunyan, A.L. Liestman, k-broadcasting in trees, Networks 38 (3) (2001) 163-168.
[11] H.A. Harutyunyan, A.L. Liestman, On the monotonicity of the broadcast function, Discrete Math. 262 (2003) 149-157.
[12] H.A. Harutyunyan, A.L. Liestman, B. Shao, A linear algorithm for finding the k-broadcast center of a tree, Networks 53 (2009) $287-292$.
[13] S.M. Hedetniemi, S.T. Hedetniemi, A.L. Liestman, A survey of gossiping and broadcasting in communication networks, Networks 18 (1988) 319-349.
[14] J. Hromkovic, R. Klasing, B. Monien, R. Peine, Dissemination of information in interconnection networks (broadcasting \& gossiping), 1996.
[15] J. Hromkovic, R. Klasing, A. Pelc, P. Ruzicka, W. Unger, Dissemination of Information in Communication Networks. Broadcasting, Gossiping, Leader Election, Fault-Tolerance, Springer-Verlag, 2005.
[16] J.O. Kane, J.G. Peters, Line broadcasting in cycles, Discrete Appl. Math. 83 (1998) 207-228.
[17] A.L. Liestman, D. Richards, L. Stacho, Broadcasting from multiple originators, Discrete Appl. Math. 157 (2009) 2886-2891.
[18] V.W. Liu, C. Chen, R.B. Chen, Optimal all-to-all personalized exchange in d-nary banyan multistage interconnection networks, J. Comb. Optim. 14 (2007) 131-142.
[19] A. Massini, All-to-all personalized communication on multistage interconnection networks, Discrete Appl. Math. 128 (2003) 435-446.

[^0]: * Corresponding author. Tel.: +886 3 8633525; fax: +886 38633510 .

 E-mail addresses: cfh@ntnu.edu.tw (F.-H. Chang), deed@math.nccu.edu.tw (Y.-M. Chen), mlchia@mail.au.edu.tw (M.-L. Chia), davidk@mail.ndhu.edu.tw, davidk@mail.am.ndhu.edu.tw (D. Kuo), mf_yu1120@yahoo.com.tw (M.-f. Yu).
 http://dx.doi.org/10.1016/j.dam.2014.03.014
 0166-218X/© 2014 Elsevier B.V. All rights reserved.

