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a b s t r a c t

All-to-all communication occurs in many important applications in parallel processing. In
this paper, we study the all-to-all broadcast number (the shortest time needed to complete
the all-to-all broadcast) of graphs under the assumption that: each vertex can use all of its
links at the same time, and each communication link is half duplex and can carry only one
message at a unit of time. We give upper and lower bounds for the all-to-all broadcast
number of graphs and give formulas for the all-to-all broadcast number of trees, complete
bipartite graphs and double loop networks under this model.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Broadcasting refers to the process of message dissemination in a connected network. This problem has been extensively
investigated in recent years formany different networks and under a large variety of models. For an account of the history of
the area of broadcasting and the intensive research devoted to it, see the surveys [6,13,14] and [15]. For different variations
and models of the broadcasting problem, such as the k-broadcasting problem (each informed vertex can send the message
to at most k of its neighbors in a given time unit), the line broadcasting problem (an informed vertex can send themessage to
any other vertex through a path between the two vertices in a given time unit), themultiple originator broadcasting problem
(broadcast a message from a set of originators), the multiple message broadcasting problem (m messages, originated by one
vertex, are transmitted to all vertices of the network), the all-to-all personalized communication problem (each vertex sends
a specific message to every other vertex), see [1–5,7–12,16–19] and the references there in.

Broadcasting can be one-to-all or all-to-all. In one-to-all broadcasting, we assume that somemessages are sent from one
vertex, the originator, to all vertices of the graph. And in all-to-all broadcasting, we assume that each vertex in the graph has
a message needed to be sent to every other vertices of the graph.
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Different models arise when considering the broadcast problem. The models studied most frequently in the literature
are the 1-port model and the all-port model. In the 1-port model, a vertex can only use one of its edges to transmit or receive
messages in a unit of time. And in the all-port model, a vertex can use all its edges to transmit or receive messages in a unit
of time.

Here, we study the broadcast problem under the half duplex (only one message can travel a link at a time unit) all-port
model with the restriction that each edge can transmit at most one message during each time unit (we add this constraint
since in real applications, the size of the messages that can be transferred by a link at a time unit may be limited). That is,
we assume that at each time unit, vertices exchange their messages under the following rules:
(1) communication links are half duplex,
(2) each edge can transmit at most one message during each time unit,
(3) each vertex can use all of its links at the same time.

We call such model the HA1 model. Note that in this model, a vertex can send and receive messages during the same time
unit, and a vertex can receive multiple messages during the same time unit.

In this paper, we study the all-to-all broadcast problem of some classes of graphs which are used frequently in network
under the HA1 model. We give upper and lower bounds for all-to-all broadcast number (the shortest time needed to
complete all-to-all broadcast) of graphs and give formulas for all-to-all broadcast number of trees, complete bipartite graphs
and double loop networks.

2. Preliminary

All graphs we consider in this paper are connected and simple (loopless and without multiple edges). We first fix some
notations that will be used later. Given a graph G and a vertex v in V (G), we usem0(v) = {a} to denote that at the beginning,
v owns a private message a. And we use {a}i−→uv to denote that at the ith time unit, u send the message a to vertex v, and call
{a}i−→uv a call. A set of calls B(G) is a scheme of G if for each {a}i−→uv ∈ B(G), a ∈ {b : {b}l−→

wu
∈ B(G), 1 ≤ l ≤ i − 1} ∪ m0(u). For a

scheme B(G) ofG, we use∆B(G) to denote themaximumnumber of time used in B(G) (that is,∆B(G) = max{i : {a}i−→uv ∈ B(G)}),
and for all v in V (G) and all i, 1 ≤ i ≤ ∆B(G), we use (mi(v))B(G) (or, simply,mi(v), if B(G) need not to be specified) to denote
the set of messages received by vertex v till time unit i (that is, (mi(v))B(G) = {a : {a}l−→uv ∈ B(G), 1 ≤ l ≤ i} ∪ m0(v)).

A scheme B(G) of G is a broadcasting set of G if (m∆B(G)
(v))B(G) =


w∈V (G) m0(w) for all v ∈ V (G) (that is, if all vertices

receive all the messages in


w∈V (G) m0(w) by using the scheme B(G)). A broadcasting set of G is a k-step broadcasting set of
G if ∆B(G) = k. For a graph G, the all-to-all broadcast number of G is the number t(G) = min{∆B(G) : B(G) is a broadcasting
set of G}. A broadcasting set B(G) is called an optimal broadcasting set if ∆B(G) = t(G).

From now on, when considering a scheme B(G) of G, we always assume that no vertex receives the same message twice.
And, when considering the graphs Kn and Cn, we always assume that V (Kn) = V (Cn) = {v0, v1, . . . , vn−1} and m0(vi) = {i}
for all i, 0 ≤ i ≤ n − 1. The following lemma is easy to verify.

Lemma 1. If H is a spanning subgraph of a graph G, then t(G) ≤ t(H).

Lemma 2. For any graph G with |V (G)| = n and |E(G)| = m, t(G) ≥


n(n−1)

m


.

Proof. The total number of messages need to be transmitted is n(n − 1). Since at most m messages can be transmitted at
each time unit (see Figs. 1–3), it follows that


n(n−1)

m


time units are necessary. �

Lemma 3. For any graph G with |V (G)| = n and |E(G)| = m, if B(G) is a k-step broadcasting set of G such that for some r > 0,
the number of calls in B(G) at each time unit till time unit r is equal to m, and the total number of calls in B(G) from time unit r+1
to time unit k is greater than or equal to (k− r − 1)m+ 1, then B(G) is an optimal broadcasting set of G, and t(G) =


n(n−1)

m


.

Proof. Note that for any broadcasting set B(G) of G, the number of messages that can be transmitted at each time unit is at
most m. If B(G) is a broadcasting set of G such that the number of messages that are transmitted at each time unit till time
unit r is equal tom and the total number of messages that are transmitted from time unit r +1 to time unit k is greater than
or equal to (k− r − 1)m+ 1, then, since the total number of messages need to be transmitted is n(n− 1), n(n− 1) ≥ rm+

(k− r−1)m+1 = (k−1)m+1. Hence t(G) ≥


n(n−1)

m


≥


(k−1)m+1

m


= k by Lemma 2. Since B(G) is a k-step broadcasting

set of G, B(G) is an optimal broadcasting set of G and t(G) = k =


n(n−1)

m


. �

For a connected graph G, the distance between two vertices u and v, written dG (u, v) (or simply, d (u, v)), is theminimum
length of all u–v paths in G. For a vertex v in G, the eccentricity of v, written ϵG(v) (or simply, ϵ(v)), is maxu∈V (G) dG (u, v) .

Lemma 4. Given a graph G with |V (G)| = n, if uv is a cut-edge of G and G1,G2 are components of G − uv containing u, v,
respectively, then

t(G) ≥ n + min{ϵG1(u), ϵG2(v)}.
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Proof. Let B(G) be an optimal broadcasting set ofG. Note that since uv is a cut-edge ofG, everymessage in∪v∈V (G) m(v)must
pass through uv at some transmitting step. If in B(G), a is the last message in ∪v∈V (G) m(v) that pass through uv, then there
exists k, k ≥ n, such that {a}k−→uv ∈ B(G) or {a}k−→

vu
∈ B(G). If {a}k−→uv ∈ B(G), and x is a vertex in G2 such that dG2(v, x) = ϵG2(v),

then there exists a vertex y and a number k′, such that {a}k
′

−→yx
∈ B(G). Clearly, k′

≥ k + dG2(v, x). Thus t(G) = ∆B(G) ≥ k′
≥

k + dG2(v, x) ≥ n + ϵG2(v) in this case. By a similar argument, t(G) ≥ n + ϵG1(u) if {a}k−→
vu

∈ B(G). Hence t(G) ≥ n +

min{ϵG1(u), ϵG2(v)}. �

Theorem 5. t(G) ≥ 2 for any graph G with |V (G)| ≥ 2. And equality holds if and only if G = Kn, n ≥ 2.
Proof. t(G) ≥ 2 for any graph G with |V (G)| ≥ 2 follows from Lemma 2. For the graph Kn, consider the scheme B(Kn) of Kn
defined by B(Kn) = {{j}1−−→vjvk

: 0 ≤ j < k ≤ n−1}∪{{k}2−−→vkvj
: 0 ≤ j < k ≤ n−1}. Since each vertex vi received all themessages

in {0, 1, . . . , i − 1} at the first time unit, and received all the messages in {i + 1, i + 2, . . . , n − 1} at the second time unit,
B(Kn) is a 2-step broadcasting set of Kn. Thus t(Kn) ≤ 2. By Lemma 2, we also have t(Kn) ≥


n(n−1)
|E(Kn)|


= 2. Hence t(Kn) = 2

for all n ≥ 2. Note that the equality does not hold if |E(G)| < n(n−1)
2 . Hence t(G) = 2 if and only if G = Kn, n ≥ 2. �

From now on, for convenience, we use the notation [k]n to denote the number (kmod n).

Theorem 6. t(Cn) = n − 1 for all n ≥ 3.
Proof. Consider the scheme B(Cn) of Cn, defined by B(Cn) = {{[j+1− i]n}i−−−−−→vjv[j+1]n

: 1 ≤ i ≤ n−1, 0 ≤ j ≤ n−1}. Since each
vertex vj received the message [j − i]n at the ith time unit, (mn−1(vi))B(Cn) = {0, 1, 2, . . . , n − 1} for each vertex vi. Hence

B(Cn) is an (n − 1)-step broadcasting set of Cn, and so t(Cn) ≤ n − 1. By Lemma 2, we also have t(Cn) ≥


n(n−1)
|E(Cn)|


= n − 1.

Hence t(Cn) = n − 1 for all n ≥ 3. �

3. Trees

Given a graphG and a vertex v inV (G), the (open) neighborhood of v isN(v) = {u ∈ V (G) : uv ∈ E(G)}, and the eccentricity
of v, written ϵG(v) (or simply, ϵ(v)), is maxu∈V (G) d (u, v) . For a graph G, the radius of G, written rad(G), is minu∈V (G) ϵ(u). A
vertex v in V (G) is a central vertex of G if ϵ(v) = rad(G).

A rooted tree is a tree with one vertex chosen as the root. We use Tv to denote a tree T rooted at v. The height h(Tv) of Tv is
defined by h(Tv) = max{d(v, w) : w ∈ V (T )}. For a vertex u in Tv , we use Tu to denote the subtree of Tv rooted at u. For each
vertex u in V (Tv), let PTv (u) be the unique u–v path in Tv . The parent of u in Tv , denoted by up|Tv (or simply, up, if Tv is the only
rooted tree we considered), is its neighbor on PTv (u). And the children of u in Tv are the neighbors of u different from up|Tv .

Algorithm BT
Input: A tree T with V (T ) = {v0, v1, v2, . . . , vn−1} rooted at v0.
Output: A broadcasting set B(Tv0) of Tv0 and the time units t needed to complete the
broadcast.
Method:
1. Set t = 0, B(Tv0) = ∅, and for each vertex vi, set m0(vi) = {i}.
2. While ∩v∈V (T ) mt(v) ≠ {0, . . . , n − 1}, //at least one vertex did not receive all the
messages in {0, . . . , n − 1}//

do {
For each vivj ∈ E(T ), and d(vi, v0) > d(vj, v0), do {

If mt(vi) \ mt(vj) ≠ ∅, choose any x ∈ mt(vi) \ mt(vj),
set B(Tv0) = B(Tv0) ∪ {{x}t−→vivj}, and set mt+1(vj) = mt(vj) ∪ {x};

Else ifmt(vj) \ mt(vi) ≠ ∅, choose any x ∈ mt(vj) \ mt(vi),
set B(Tv0) = B(Tv0) ∪ {{x}t−→vjvi}, and set mt+1(vi) = mt(vi) ∪ {x};}

t = t + 1;}.
3. Return B(Tv0) and t.

In Algorithm BT, we first choose a vertex v0 as a root, and consider the rooted tree Tv0 . At each time unit t , t ≥ 1, for a
vertex u in Tv0 , ifmt−1(u) ⊈ mt−1(up), thenwe choose amessage inmt−1(u)\mt−1(up) and send it to up at time unit t . And for
a childw of u, ifmt−1(w) ⊆ mt−1(u) andmt−1(w) ≠ mt−1(u), thenwe choose amessage inmt−1(u)\mt−1(w) and send it to
w at timeunit t . Clearly,when the algorithm terminate, the set B(Tv0), produced by this algorithm, is a broadcasting set of Tv0 .

Lemma 7. For a rooted tree Tv0 with V (Tv0) = {v0, v1, v2, . . . , vn−1}, the set B(Tv0), produced by Algorithm BT, is an (n +

h(Tv0) − 1)-step broadcasting set of Tv0 .

Proof. Let B(Tv0) andmt(vi), 0 ≤ i ≤ n−1, 0 ≤ t ≤ ∆B(Tv0 ), be the sets produced byAlgorithmBT. By step 2 of the algorithm,
each vertex vi satisfies the condition that mti(vi) = ∪vk∈V (Tvi )

m0(vk), where ti = |V (Tvi)|. Moreover, if vj is the parent of vi,
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Fig. 1. A tree T and the first few transmission steps of T .

Fig. 2. D12(1, 3).

then |mtj(vk)| ≥ |mtj(vj)| − dTvj (vk, vj) + 1 for all vertices vk in Tvi . Hencemt∗(vi) = {0, 1, 2, . . . , n− 1} for all vertices vi in
Tv0 , where t∗ = |mt0(v0)|+max{dTv0 (vk, v0) : vk ∈ V (Tv0)}−1 = n+h(Tv0)−1. Therefore, B(Tv0) is an (n+h(Tv0)−1)-step
broadcasting set of Tv0 . �

Theorem 8. For any tree T with |V (T )| = n ≥ 2, t(T ) = n + rad(T ) − 1.

Proof. Choose a central vertex v in V (T ), and consider the rooted tree Tv. By Lemma 7, there exists a (n + h(Tv) − 1)-step
broadcasting set B(Tv) of Tv . Hence t(T ) ≤ ∆B(Tv) = n + h(Tv) − 1. Since v is a central vertex, h(Tv) = rad(T ), thus t(T ) ≤

n+ rad(T )− 1. To prove the lower bound, consider a vertex w in V (Tv) with d(v, w) = rad(T ), and let u be a vertex in N(v)
so that the rooted subtree Tu of Tv contains the vertex w. Then, by Lemma 4, t(G) ≥ n + d(u, w) = n + rad(T ) − 1. Hence
t(T ) = n + rad(T ) − 1 for any tree T with |V (T )| = n ≥ 2. �

Corollary 9. t(Pn) = n +
 n

2


− 1 for all n ≥ 2.

Combining Lemma 1 and Theorem 8, we have

Corollary 10. For any graph G with |V (G)| ≥ 2, t(G) ≤ |V (G)| + rad(G) − 1.
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Fig. 3. Transmission of the message 0 in D12(1, 3).

For a cut-edge uv of G, we use α(u, v) to denote the number min{ϵG1(u), ϵG2(v)}, where G1,G2 are components of G−uv
containing u, v, respectively. By Lemma 4 and Corollary 10, we have

Corollary 11. If G is a graph with cut-edges, then |V (G)| + max{α(u, v) : uv is a cut-edge of G} − 1 ≤ t(G) ≤ |V (G)| +

rad(G) − 1.

4. Complete bipartite graphs

In this section, we study the all-to-all broadcast number of complete bipartite graphs. For convenience, when considering
the complete bipartite graph Km,n, m ≥ n, we always assume that V (Km,n) = {vi : 0 ≤ i ≤ m + n − 1}, E(Km,n) = {vivj :

0 ≤ i ≤ m − 1,m ≤ j ≤ m + n − 1}, andm0(vi) = {i} for all i, 0 ≤ i ≤ m + n − 1.

Theorem 12. t(Km,n) =


(m+n)(m+n−1)

mn


for all m ≥ n ≥ 1.

Proof. Letm − 1 = nq + r , where 0 ≤ r ≤ n − 1, and let r ′
= [mr]n. Let

B1(Km,n) =


{j}1−−−−→vjvm+i

: 0 ≤ j ≤ m − 1, 0 ≤ i ≤ n − 1


,

B2(Km,n) =


{m + i}2−−−−→vm+ivj

: 0 ≤ j ≤ m − 1, 0 ≤ i ≤ n − 1


,

and for all l, 3 ≤ l ≤ q + 2, let

Bl(Km,n) =


{[(l − 3)n + j + i + 1]m}

l
−−−−→vm+ivj

: 0 ≤ j ≤ m − 1, 0 ≤ i ≤ n − 1


.

Consider the following cases:
Case 1.mr + n(n − 1) ≤ mn.

In this case, let

Bq+3(Km,n) =




nq + i +


i
m


+ 1


m

q+3

−−−−−−−−−−−−−−→v
m+


i+


id
mn


n
v[i]m

: 0 ≤ i ≤ mr − 1


 


m +


r ′

+ i +

rd
n


+


i
n


+ 1


n

q+3

−−−−−−−−−−−−−−−−→v[i]m v
m+


r′+i+


rd
n


n

: 0 ≤ i ≤ n2
− n − 1

 ,

and let B(Km,n) = ∪
q+3
i=1 Bi(Km,n).
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Case 2. mr + n(n − 1) > mn.
In this case, let

Bq+3(Km,n) =


{[qn + j + i + 1]m}

q+3
−−−−→vm+ivj

: 0 ≤ j ≤ m − 1, 0 ≤ i ≤ r − 1


,

Bq+4(Km,n) =


{m + [j + i + 1]n}

q+4
−−−−→vjvm+i

: 0 ≤ j ≤ n − 2, 0 ≤ i ≤ n − 1


,

and let B(Km,n) = ∪
q+4
i=1 Bi(Km,n).

It is easy to verify that for each of the two cases above, B(Km,n) is a broadcasting set of Km,n. Since |{{a}i−→uv : {a}i−→uv ∈

B(Km,n)}| = mn for all i, 1 ≤ i ≤ q+2, and |{{a}q+3
−→uv

: {a}q+3
−→uv

∈ B(Km,n)}|+|{{a}q+4
−→uv

: {a}q+4
−→uv

∈ B(Km,n)}| ≥ mn+1whenmr+

n(n−1) > mn, by Lemma 3, B(Km,n) is an optimal broadcasting set of Km,n, and t(Km,n) =


(m+n)(m+n−1)

mn


in either cases. �

5. Double loop network

A double-loop network
−→
Dn(a, b) with n being positive integer, 0 < a < n, 0 < b < n, and a ≠ b can be viewed as a

directed graph with n vertices v0, v1, v2, . . . , vn−1 and 2n directed edges of the form −−−−→viv[i+a]n and −−−−→viv[i+b]n , referred to as
a-links and b-links. The underlying graph of the directed graph

−→
Dn(a; b) is denoted by Dn(a, b). In this section, we study the

all-to-all broadcast number of Dn(1, b). Note that Dn(1, b) is isomorphic to Dn(1, n − b) for all b, 2 ≤ b ≤ n − 2. Hence,
when consider the graph Dn(1, b), we always assume that 2 ≤ b ≤

 n
2


.

For convenience, when considering the graph Dn(1, b), we always assume thatm0(vi) = {i} for all i, 0 ≤ i ≤ n − 1.

Theorem 13. t(Dn(1, b)) =
 n−1

2


for all n ≥ 5, 2 ≤ b ≤

 n−1
2


.

Proof. Let n − 1 = (2b − 2)q + r , where 0 ≤ r ≤ 2b − 3, and let jb = [j − 1]b−1 +
 j−1

b−1


(2b − 2), j∗b = 2j − 2 for all

positive integer j. For each i, 0 ≤ i ≤ n − 1, let

Bi(Dn(1, b)) =


{i}j−−−−−−−−−−−−→v[i+jb]n v[i+jb+1]n

: 1 ≤ j ≤ (b − 1)q


 
{i}j−−−−−−−−−−−−→v[i+jb]n v[i+jb+b]n

: 1 ≤ j ≤ (b − 1)q


 
{i}j−−−−−−−−−−−−→v

[i+j∗b ]n v
[i+j∗b+1]n

: (b − 1)q + 1 ≤ j ≤ (b − 1)q +

 r
2


 

{i}j−−−−−−−−−−−−−−−−−→v[i+j∗b+2−b]n
v[i+j∗b+2]n

: (b − 1)q + 1 ≤ j ≤ (b − 1)q +

 r
2


,

and let B(Dn(1, b)) = ∪
n−1
i=0 Bi(Dn(1, b)). By the definition of Bi(Dn(1, b)), all vertices vj own the message i after the [(b −

1)q+
 r

2


]
th step. Hence B(Dn(1, b)) is a broadcasting set ofDn(1, b). Therefore, t(Dn(1, b)) ≤ ∆B(Dn(1,b)) = (b−1)q+

 r
2


= n−1

2


. Since |E(Dn(1, b))| = 2n, by Lemma2,we also have t(Dn(1, b)) ≥

 n−1
2


. Thus t(Dn(1, b)) =

 n−1
2


for all n ≥ 5, 2 ≤

b ≤
 n−1

2


. �
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