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Abstract In this article, we study the following initial value problem for the nonlinear
equation

uw'u(t) = 1 + et/ ()2, ¢1 > 0,¢2 >0,

u(0) = uo, u'(0) = us.
We are interested in properties of solutions of the above problem. We find the life-span,
blow-up rate, blow-up constant and the regularity, null point, critical point, and asymptotic
behavior at infinity of the solutions.
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0 Introduction

In our articles, we studied the semi-linear wave equation Ou + f(u) = 0 under some
conditions, and found some results concerning blow-up, blow-up rate, and the estimates for the

life-span of solutions. Here, we consider the following equation
u’ =uP(c1 + ea(u'(t))?), u(0) = ug, v’ (0) = us,c; > 0,c0 >0, (0.1)
it is a particular form of the generalized Emden-Fowler equation
Yre = 2"y (A+ B(y,)").

To study the behavior of the solutions for the above equation, we separate ¢ into five parts,
g<0,0<g<1,1<g<2 qgq=2andq>2 We considered the case that p > 1 and ¢ > 1
in [10], and obtained some results on life-span, blow-up rates of solutions; this method in [10]
cannot be applied to the case of p = —1, ¢ = 2; here we focus on the study on such a particular
case with ¢; > 0 and ¢ > 0. We also find the life-span, blow-up rate and blow-up constant and

other properties of u. For further informations on such equation we refer the reader to [1].

*Received December 20, 2007. There are more discussion which concern nonlinear differential equation in
[13]
IFor results on the blow-up character of solution of the equation (| u’ |™~2 «')’ = uP, see [12]
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We say that a function g : R — R having blow-up time 7™ and a blow-up rate o means
that there is a finite number 7™ such that g(t) exists for ¢ < T* and tEI? g(t)™! = 0 and there
exists a nonzero 8 € R with tEI%l (T*—1t)*g(t) = B, in this case, § is called the blow-up constant
of g. By the standard arguments of existence of solutions to ordinary differential equations, one

can prove the local existence of solutions to the nonlinear equation

' (t)u(t) = c1 + eat (), u(0) = ug,u’'(0) = uy ¢1 > 0,¢2 > 0,

0.2
u(0) = ug, u'(0) = uy, (0.2)

and for ug # 0, we have found the following result:

For (i) ¢z > 1, the blow-up rate and blow-up constant of solutions are obtained;

(ii) ¢2 € (0,1), the solution u can be characterized as the property of the function tﬁ,
and we have got the results concerning critical point and asymptotic behavior at infinity of the
solutions.

We will often use the following lemma:

Lemma 0.1 Suppose that f € Ct[tg, 00)NC?(tg, 0), f(to) > 0, f/(t) < 0, and f”(t) <0,
for ¢ > to. Then, there exists a finite positive number T > g, such that f(T') = 0.

Lemma 0.2 Suppose that u is the solution of (0.2). If ug > 0 and u; > 0, then,
u(t),u'(t), and u”(t) > 0, for ¢t € [0,T*), where T™* is the life-span of u.

Proof After some computations, one can obtain Lemma 0.1. We only prove Lemma 0.2.
Suppose that there exists a positive number ¢(, such that v’ (ty) < 0. Because u € C? and u; > 0,
there exists a positive number ¢1, defined by ¢; = inf {¢t € (0,%o] : v/(¢) < 0}, then, w'(¢;) = 0,
and u'(t) > 0,u(t) > 0 for ¢t € [0,%1) and u”(¢) > 0, for t € [0,¢1); therefore, w'(t1) > us > 0.
This result contradicts with w'(¢1) = 0; thus, we conclude that u/(t) > 0 for ¢ € [0,T*).

Together the equation (0.2) and the continuities of u, v/, and u”, the lemma follows.

1 Blow-up Phenomena for c; > 1

For ug # 0, we obtain

Theorem 1 If T* is the life-span of u and u is the solution of problem (0.2), then, T* is
finite, that is, u is only a local solution of (0.2), if one of the following is valid

(i) wous >0or (ii) wouy <O0.

Further, in the case of (i), we have the estimate

. . 1 c 1 c 5 [ dr
T §T1(u0,u1,02):02—_14/£(ug)%(1+£u§)22/0 — (1.1)
1 —re2-1

cog—1
where a = (1 + E—fu%)%% In the case of (ii), we have

1 c c B
TST;(UO’U1702):CQ—11/02( )%(14— 2 2 = / / 262 R (1.2)

1—1"02

we have further

1 (6] 2

C2 1 CQ 2 202
2 (1 / (1.3)

1—re-

Zl(u()a Ui, 02) =
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is a critical point of u2.
Remark According to this theorem, one can obtain the asymptotic behavior of life-span
Ty (uo, u1, c2) by T7 (ug, w1, co): If T* is the life-span of u and w is the solution of the problem

u” (H)u(t) = 1 + o ()%, u(0) = cug, ' (0) = cuy, uouy >0

then, T* is given by

c2-1
(1+§*282u?)TC2 d
T < Tl*.s(u07u1702) c ’/ 02( )%(1 =+ —282u2)2C2 / ! r
’ Cy — 1 &1 0 209
1 —pre-1
and
* < €2 C2 2 2 262
T* ~ (1
Coy — 1\/?( ) T / 262
~SVaa® >(1+“2) s <707 (1.4
2 C1C2 c1 U1 ’ .

where ¢ = B(%, 2%2-), that means there exists no classic solution to the equation (0.2) if the
2 c2 1

initial values are zero.
Proof of Theorem 1 Consider the function .J,(t) = (u(t)Q)_c%l, we have

Ju(t) = (1= c2)(u(t)®) 7= ~(u(t)u'(t),

T () = (1= e2)(u(t)®) ™77 ~Hu(t)u"(t) + ' (t)?)
—(1 = c2)(e2 + D) (u(ty' (1) (u(t)) =5 2

= (1= e2)(u(t)®)” = ~Hult)u" (1) — e/ (1)%)

2+ co+1

= e1(1— ) (u(t)®) " = cr(1— o) (Ju(t)) . (1.5)

Apply the energy method to the equation for J,, we obtain

C 2¢o _ e
L1 =) Ju(t)7 T = Ef(0) = ¢; ' (1 — ¢2)*(u2) " (c1 + cou?) > 0. (1.6)

C2

According to the fact that ¢; > 0,¢2 > 1, and (1.5), J//(¢) < 0, for all ¢ > 0. Thus, for
(i) wouy > 0, then, J/,(0) < 0 and for t > —ny(g%) = G eSur Ju(t) <0, Ji(t) < J(0), and
Ju(t) < Ju(0) + J/(0)t < 0, which means that there exists a real finite number T} < ——%X

(1762)’u.1
with

T () +

Jo(T7) =0 = lim (u(t)?)~ " ;

t—Tf

that is, u blows up at finite time T7. By (1.6), we obtain

Ju(t) = _\/EJ(O) ~ 1 - )2

C2

2—1

= \ﬁ\/ ug)=e2(1+ —ul) Ju ()T, (1.7)

- CQ/ dr
02_1\/ 0)\/ c21_|_62 2) 2C27
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T (UQ U1 02 C2 /JH(O) dr . (18)
’ ’ CQ -1 C1 \/ —es 1 n 02 2) 262

The estimates (1.1) and (1.8) are equivalent.

(ii) wour < 0, then, by equation (0.2), we have

(u()u' (1)) = c1 + (1 + e’ (1)* > 1 > 0, u(t)u/(t) > uopuy + 1t > 0 for t > —toth,
C1

therefore, there exists a critical point z1(ug, u1,c2) := 21 of Jy, that is J,,(21) = 0 = u/(21).
By (1.6), we have

—1 2c
T =" \F\/ )21+ Za) - Ju ()5,

cg—1 cg—1

Ju(z1) = (( 2)=c (1+—u1))§T2 _ (0)(1+c2 2)7

\/E/Ju (21) dr
2 —1 ¢ J 1,00 \/ —er(14 & u?) — rf;fl
L E e o

2—1 €1 J.7,(0) \/( 2)-e(l+ 2ul) — ol
_ \/E w(0)(1 + & 2) /1 dr
= 2_ 1 C1 \/ug Cg 2) (1_,’_2%“%)% 2co .

1—re-t

We obtain (1.3). Using (1.6), we obtain J,(21) = ((ud)~2(1 + @u%))% and for t > 2z,

2co

Tt = - \/E\/(u%)c2(1 + 203 )

c2 Ju(®) dr
t— z1 = 1 Fos
C2 — C1 JJ,(z1) \/ —co 1 + Cz 2) rea-1
c (21) dr
T =2 + = . (1.9)
2¢c
Co — 1 C1 \/ —ca 1 + 02 2) 2

From (1.9), we get estimate (1.2).

62—1

2 Blow-up Rate and Blow-up Constant for c; > 1

In this section, we study the blow-up rate and blow-up constant for u?, (u?)’, and (u?)”
under the conditions in Section 1. We have the following results.
Theorem 2 If u satisfies one of the conditions in Theorem 1. Then, the blow-up rate of

2c
u? is 2/(ca — 1), and the blow-up constant of u? is (C2171)c2271 (=22) e |uo|=-T, that is, for
1
m e {1,2}

T 1 2 =T
t_)T7T1(u0)u1)02)7( m( 0 2) ) () C2—1m| 0| ( )
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The blow- up rate of (u?) is (c2 + 1)/(c2 — 1), and the blow-up constant of (u?) is

_a _catl
252" |u0|C2 = (c1 + cou?) 2T (cg — 1) e-1, that is,
(T (o, e2) = )57 (u2) (1)
Ug, U1, c2) —t)e2 1 (u
t—T (uo,u1,c2)” m =0, B, C2
1 2c co+1
=2c5%"" |uO|T*21 (1 + czu%)fﬁ(q - 1)763*1. (2.2)

The blow—up rate of (u?)” is 202/( ¢ — 1), and the blow-up constant of (u?)” is

2c
2(es + 1)ei Juo| T (e + coul) 2T (021_1)70231,that is,
2c
lim (T (w0, un, c2) — £)72- 7 (u2)"(¢)
t—T7 (uo,u1,c2)™
— - 1\ o2&
= 2ca+ 1)e® " Juol =T (1 + cqul) T ( 1) . (2.3)
o

Proof For (i) upuy > 0, by (1.8), we obtain

Ju(t)
. c dr
1Y (uo, u1, c2) — 202—1“;/ \/ = )
—C2 1+ C2 2)
lim (T (uo, u1, c2) — 1) I (t) = 2 |,
t—Tf (ug,u1,c2)~ Coy — 1 C1 + 02u2

: co—1 1 Co
1 Ty ) ) -t t 2 22 = C2 ,
tﬂT{‘(ulﬂlm)*( 1 (o, w1, e2) = H((t)’) co — 1\ e1 + cou? oo

2 1 Co T
1. T* ) ) — t)e2-1 t 2 = ( ) .
HT{(ulﬂl,@)f( T (ug, ut, co) —t)2-Tu(t) o1\ o Fond lug|™

Thus, the assertion (2.1) is completely proved for uguy > 0. By (1.7) and (2.1), we have

lim (1- 02)(u(t)2(T1*(u0, U, Co) — t)ﬁ)‘”? -1

t—T (uo,u1,c2)~

X lim (u(t)u () (T (ug, u1, c2) — t) zgfi)

t—T7 (uo,u1,c2)~

co—1 _ 2 co—1 —c
=~ e )1+ ) =~ ol e+ e

co+1

lim (u(t)u' () (T} (uo, w1, c2) — )77

t—T} (uo,u1,c2)~

= — ol yfer 4 caud (2 2l |02>2§ti
NCh PR G Ve a2 Y '

Thus, (2.2) is obtained for upu; > 0. By (1.5), (2.1), and (2.2), we conclude that

lim (u?(t))" (T (uo, u1, c2) — t)%

t—T7 (uo,u1,c2)~

co+1
—2es 1) lim (O (8)(TF (g, s, ca) — £) )2
t—T7 (uo,u1,c2)~
X lim (u(t)* (T (ug,u1, c2) — f)#)_l
t—T (uo,u1,c2)~
2c
+2c; lim (T (ug, u1, c2) —t) =

t—T} (uo,u1,c2)”

1 Co 2C721
— ey +1 2 ( / ) .
(co + ) o |uo | “ (1 + couf) p— Cl+c2u2| up|”
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Therefore, (2.3) is obtained for ugu; > 0.
For (ii) upui < 0, one can get the conclusions through the same argument as above using
(1.9). We do not repeat the steps.

3 Solution Property for c. € (0.5,1)

For ¢y = 1/2, then 2u"u(t) = 2c; + u/(t)?. After some computation, we find that u(t) =
2
uo +urt + 3(c1 + 5 )ug 't? is the solution of equation (0.2). Thus, we have the fallowing result.
Suppose that u is a solution of equation (0.2) for co = 1/2. Then,
_14eo

—1 1
lim w(t)t 5 = EuSQQ (c1 +coud), lim /' ()t 2 = uy>?(c; + coul).

t—oo t—o0

Here, we discuss the case ug # 0. We have the following result on critical point and
asymptotic behavior at infinity of the solutions for equation (0.2):

Theorem 3 Suppose that u is a solution of problem (0.2) with ug # 0. Then, for

(i) wo >0, u; >0,

- 1- %c —c2 -1
lim w(t)t e = ( 82) o |u0|1*622 (c1 + coui)?ea—2;

t—o0o \/6

(ii) wp > 0, uy < 0, there exists a constant Zz(ug, u1, ¢1, ¢2) 1= Za, such that lim «/(¢t) =0

d t—2Zs
an
1 = 9\ L ! —ca—1 1
Zy = 5022 ug(c1 + couy) 2 / s 22 (1 —s)"2ds;
cl+c12u%
(lll) up <0, u; <0,
. 1 1-— C2 ﬁ —c2 oy e—L_
T—eg — (= T—c Zcp—2 -
N N
(iv) wo < 0, ug > 0, there exists a constant Zs(ug, u1,c1,c2) := Z3, such that tlilg u'(t) =
—43
0 and
-1 gt 1 —op1 1
Z3 = 5022 uo(e1 + cout)®e2 / s 72 (1—s)  2ds.
c1

cq +02u%
Remark After some verification, the following argumentations are also valid for the case
of ¢3 € (0,0.5).
Proof (1) For up > 0 and uq > 0, by (1.5), (1.6), we have

1-cp 4

Ju(t) = (1= c2)(u(t)®) = ~Hu(t)u'(t)),

cotl

Jg(t) = Cl(l — CQ)Ju(t)_1762 >0,

JL(t) > (1= c2)ug “uy >0,
Ju()? < B5(0) = ¢3 ' (1 — e2)?(ug) ™ (e1 + cui),

Ju(t) < Ju(0) + V E;(0)2.
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In contrast, we can see that

2
and
t . J (0) 17662 1 — _1
/ Ju(r) =adr = / ey 2 gl-a (EJ(O) - —1(1 —c )252) “ds
0 J (t) T—co C2 (6]
L [aB) 1 \“E pEeermeheTE
- < Cantt) > / oy (1—s)2ls 22 lds
2\/6102 C1 1-— Co %(I—CQ)QEJ(O)*lJu(t) 1—cp
1 eE;(0) 1 1‘326(1 202—1)'
2“6102 C1 1-— (6] 2, 202 '
therefore,

1
1—co B (0) 1 \'"F= 1 2,1
W(t) > T, E;(0)t — 2’
Ju(t) > Ju(0) + VE;(0) 202( o0 1o 5(, 2@)

and then, we conclude that tlim Ju(t)t7t = \/E;(0), and obtain the conclusion under (i).
(2) For up >0, uy; <0, using (1.5) and (1.6), we have

2co

J;(lf) = _\/EJ(O) — Z—;(l — 62)2Ju(t) ea—1

Suppose that J, (t) < 0 for all ¢ > 0. Then,

C2 2co cg—1
Ju(t) < (m) EJ(O) 2e3
L /JH(O) dr
- _2eg_
u(t) \/EJ(O) — S (1= cp)2reaT
—2¢y
e L fapte (el T2
= 1 1—co %C 252 E;(0 202 28500 s 232 1 - %71d8
2 —2cp
? czEci‘l,(o)(1*C2)2Ju(0) T-c2
1 —c2—1 cot1
= WEJ(O)%C1 L0 [ (1 5)tds
? T},(o)(lfcz)?]u(o)lfcz
1 5 76371 co+1 c Z2ey 1
= 1 B0 RO (1 a1 0T )

It creates a contradiction; thus, there exists a constant Zs(ug,u1,c1,c2) := Za, such that
cog—1 co—1
Jim /(1) = 0= lim J.(t) and Ju(Zs) = (-2 ) %2 E;(0) %2 | also,
— 42 — 42

61(1762)2

Ju(0) dr

Zy =

o 0371 c2271 Zcg
c c —_— =
(a—g) ° Bs(0) % \/EJ(O) — & (1 —co)?re T

C2
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1 g Tt e —ey=1 -
= 5(1 —cg)ezey 2 Ejy(0)2e2 L2 8 222 (1 —8)2 ds
by (12?0 (0) 43
1
1 =t =1 —cp—1 -1
= 5022 ug(cy + cauf)2e2 s 72 (1—s5)7=ds.
c1
c1+02u%

The estimates under (ii) are completely proved.

(3) Similar to the above arguments, it results in the estimates under (iii) and (iv).
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