ON THE EMDEN－FOWLER EQUATION $u^{\prime \prime}(t) u(t)=c_{1}+c_{2} u^{\prime}(t)^{2}$ WITH $c_{1} \geq 0, c_{2} \geq 0^{*}$
 Li Mengrong（李明融）
 Department of Mathematical Sciences，National Chengchi University， 116 Taipei，China
 E－mail：liwei＠math．nccu．edu．tw

Abstract In this article，we study the following initial value problem for the nonlinear equation

$$
\left\{\begin{array}{l}
u^{\prime \prime} u(t)=c_{1}+c_{2} u^{\prime}(t)^{2}, c_{1} \geq 0, c_{2} \geq 0 \\
u(0)=u_{0}, u^{\prime}(0)=u_{1}
\end{array}\right.
$$

We are interested in properties of solutions of the above problem．We find the life－span， blow－up rate，blow－up constant and the regularity，null point，critical point，and asymptotic behavior at infinity of the solutions．

Key words Blow－up；Life－span；Blow－up constant；asymptotic behavior；null
2000 MR Subject Classification 34A34；34c05；34c11；34c99

0 Introduction

In our articles，we studied the semi－linear wave equation $\square u+f(u)=0$ under some conditions，and found some results concerning blow－up，blow－up rate，and the estimates for the life－span of solutions．Here，we consider the following equation

$$
\begin{equation*}
u^{\prime \prime}=u^{p}\left(c_{1}+c_{2}\left(u^{\prime}(t)\right)^{q}\right), u(0)=u_{0}, u^{\prime}(0)=u_{1}, c_{1}>0, c_{2}>0 \tag{0.1}
\end{equation*}
$$

it is a particular form of the generalized Emden－Fowler equation

$$
y_{x x}^{\prime \prime}=x^{n} y^{m}\left(A+B\left(y_{x}^{\prime}\right)^{l}\right)
$$

To study the behavior of the solutions for the above equation，we separate q into five parts， $q<0,0<q<1,1 \leq q<2, q=2$ and $q>2$ ．We considered the case that $p>1$ and $q>1$ in［10］，and obtained some results on life－span，blow－up rates of solutions；this method in［10］ cannot be applied to the case of $p=-1, q=2$ ；here we focus on the study on such a particular case with $c_{1} \geq 0$ and $c_{2} \geq 0$ ．We also find the life－span，blow－up rate and blow－up constant and other properties of u ．For further informations on such equation we refer the reader to $[1]^{1}$ ．

[^0]We say that a function $g: \mathbb{R} \rightarrow \mathbb{R}$ having blow-up time T^{*} and a blow-up rate α means that there is a finite number T^{*} such that $g(t)$ exists for $t<T^{*}$ and $\lim _{t \rightarrow T^{*}} g(t)^{-1}=0$ and there exists a nonzero $\beta \in \mathbb{R}$ with $\lim _{t \rightarrow T^{*}}\left(T^{*}-t\right)^{\alpha} g(t)=\beta$, in this case, β is called the blow-up constant of g. By the standard arguments of existence of solutions to ordinary differential equations, one can prove the local existence of solutions to the nonlinear equation

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t) u(t)=c_{1}+c_{2} u^{\prime}(t)^{2}, u(0)=u_{0}, u^{\prime}(0)=u_{1} c_{1} \geq 0, c_{2} \geq 0 \tag{0.2}\\
u(0)=u_{0}, u^{\prime}(0)=u_{1}
\end{array}\right.
$$

and for $u_{0} \neq 0$, we have found the following result:
For (i) $c_{2}>1$, the blow-up rate and blow-up constant of solutions are obtained;
(ii) $c_{2} \in(0,1)$, the solution u can be characterized as the property of the function $t^{\frac{1}{1-c_{2}}}$, and we have got the results concerning critical point and asymptotic behavior at infinity of the solutions.

We will often use the following lemma:
Lemma 0.1 Suppose that $f \in C^{1}\left[t_{0}, \infty\right) \cap C^{2}\left(t_{0}, \infty\right), f\left(t_{0}\right)>0, f^{\prime}(t)<0$, and $f^{\prime \prime}(t) \leq 0$, for $t>t_{0}$. Then, there exists a finite positive number $T>t_{0}$, such that $f(T)=0$.

Lemma 0.2 Suppose that u is the solution of (0.2). If $u_{0}>0$ and $u_{1}>0$, then, $u(t), u^{\prime}(t)$, and $u^{\prime \prime}(t)>0$, for $t \in\left[0, T^{*}\right)$, where T^{*} is the life-span of u.

Proof After some computations, one can obtain Lemma 0.1. We only prove Lemma 0.2. Suppose that there exists a positive number t_{0}, such that $u^{\prime}\left(t_{0}\right) \leq 0$. Because $u \in C^{2}$ and $u_{1}>0$, there exists a positive number t_{1}, defined by $t_{1}=\inf \left\{t \in\left(0, t_{0}\right]: u^{\prime}(t) \leq 0\right\}$, then, $u^{\prime}\left(t_{1}\right)=0$, and $u^{\prime}(t)>0, u(t)>0$ for $t \in\left[0, t_{1}\right)$ and $u^{\prime \prime}(t)>0$, for $t \in\left[0, t_{1}\right)$; therefore, $u^{\prime}\left(t_{1}\right) \geq u_{1}>0$. This result contradicts with $u^{\prime}\left(t_{1}\right)=0$; thus, we conclude that $u^{\prime}(t)>0$ for $t \in\left[0, T^{*}\right)$.

Together the equation (0.2) and the continuities of u, u^{\prime}, and $u^{\prime \prime}$, the lemma follows.

1 Blow-up Phenomena for $c_{2}>1$

For $u_{0} \neq 0$, we obtain
Theorem 1 If T^{*} is the life-span of u and u is the solution of problem (0.2), then, T^{*} is finite, that is, u is only a local solution of (0.2), if one of the following is valid
(i) $u_{0} u_{1} \geq 0$ or (ii) $u_{0} u_{1}<0$.

Further, in the case of (i), we have the estimate

$$
\begin{equation*}
T^{*} \leq T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)=\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}}\left(u_{0}^{2}\right)^{\frac{1}{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)^{\frac{-1}{2 c_{2}}} \int_{0}^{\alpha} \frac{\mathrm{d} r}{\sqrt{1-r^{\frac{2 c_{2}}{c_{2}-1}}}} \tag{1.1}
\end{equation*}
$$

where $\alpha=\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)^{\frac{c_{2}-1}{-2 c_{2}}}$. In the case of (ii), we have

$$
\begin{equation*}
T \leq T_{2}^{*}\left(u_{0}, u_{1}, c_{2}\right)=\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}}\left(u_{0}^{2}\right)^{\frac{1}{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)^{\frac{-1}{2 c_{2}}}\left(\int_{0}^{1}+\int_{\alpha}^{1}\right) \frac{\mathrm{d} r}{\sqrt{1-r^{\frac{2 c_{2}}{c_{2}-1}}}} \tag{1.2}
\end{equation*}
$$

we have further

$$
\begin{equation*}
z_{1}\left(u_{0}, u_{1}, c_{2}\right)=\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}}\left(u_{0}^{2}\right)^{\frac{1}{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)^{\frac{-1}{2 c_{2}}} \int_{\alpha}^{1} \frac{\mathrm{~d} r}{\sqrt{1-r^{\frac{2 c_{2}}{c_{2}-1}}}} \tag{1.3}
\end{equation*}
$$

is a critical point of u^{2}.
Remark According to this theorem, one can obtain the asymptotic behavior of life-span $T_{1, \varepsilon}^{*}\left(u_{0}, u_{1}, c_{2}\right)$ by $T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)$: If T^{*} is the life-span of u and u is the solution of the problem

$$
u^{\prime \prime}(t) u(t)=c_{1}+c_{2} u^{\prime}(t)^{2}, u(0)=\varepsilon u_{0}, u^{\prime}(0)=\varepsilon u_{1}, \quad u_{0} u_{1}>0
$$

then, T^{*} is given by

$$
T^{*} \leq T_{1, \varepsilon}^{*}\left(u_{0}, u_{1}, c_{2}\right)=\frac{\varepsilon}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}}\left(u_{0}^{2}\right)^{\frac{1}{2}}\left(1+\frac{c_{2}}{c_{1}} \varepsilon^{2} u_{1}^{2}\right)^{\frac{-1}{2 c_{2}}} \int_{0}^{\left(1+\frac{c_{2}}{c_{1}} \varepsilon^{2} u_{1}^{2}\right)^{\frac{c_{2}-1}{-2 c_{2}}}} \frac{\mathrm{~d} r}{\sqrt{1-r^{\frac{2 c_{2}}{c_{2}-1}}}}
$$

and

$$
\begin{align*}
T^{*} & \sim \frac{\varepsilon}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}}\left(u_{0}^{2}\right)^{\frac{1}{2}}\left(1+\frac{c_{2}}{c_{1}} \varepsilon^{2} u_{1}^{2}\right)^{\frac{-1}{2 c_{2}}} \int_{0}^{1} \frac{\mathrm{~d} r}{\sqrt{1-r^{\frac{2 c_{2}}{c_{2}-1}}}} \\
& =\frac{\varepsilon c}{2} \sqrt{\frac{1}{c_{1} c_{2}}}\left(u_{0}^{2}\right)^{\frac{1}{2}}\left(1+\frac{c_{2}}{c_{1}} \varepsilon^{2} u_{1}^{2}\right)^{\frac{-1}{2 c_{2}}} \text { as } \varepsilon^{\sim} 0^{+}, \tag{1.4}
\end{align*}
$$

where $c=\beta\left(\frac{1}{2}, \frac{2 c_{2}}{c_{2}-1}\right)$, that means there exists no classic solution to the equation (0.2) if the initial values are zero.

Proof of Theorem 1 Consider the function $J_{u}(t)=\left(u(t)^{2}\right)^{-\frac{c_{2}-1}{2}}$, we have

$$
\begin{align*}
J_{u}^{\prime}(t)= & \left(1-c_{2}\right)\left(u(t)^{2}\right)^{-\frac{c_{2}-1}{2}-1}\left(u(t) u^{\prime}(t)\right) \\
J_{u}^{\prime \prime}(t)= & \left(1-c_{2}\right)\left(u(t)^{2}\right)^{-\frac{c_{2}-1}{2}-1}\left(u(t) u^{\prime \prime}(t)+u^{\prime}(t)^{2}\right) \\
& -\left(1-c_{2}\right)\left(c_{2}+1\right)\left(u(t) u^{\prime}(t)\right)^{2}\left(u(t)^{2}\right)^{-\frac{c_{2}-1}{2}-2} \\
= & \left(1-c_{2}\right)\left(u(t)^{2}\right)^{-\frac{c_{2}-1}{2}-1}\left(u(t) u^{\prime \prime}(t)-c_{2} u^{\prime}(t)^{2}\right) \\
= & c_{1}\left(1-c_{2}\right)\left(u(t)^{2}\right)^{-\frac{c_{2}+1}{2}}=c_{1}\left(1-c_{2}\right)\left(J_{u}(t)\right)^{\frac{c_{2}+1}{c_{2}-1}} \tag{1.5}
\end{align*}
$$

Apply the energy method to the equation for J_{u}, we obtain

$$
\begin{equation*}
J_{u}^{\prime}(t)^{2}+\frac{c_{1}}{c_{2}}\left(1-c_{2}\right)^{2} J_{u}(t)^{\frac{2 c_{2}}{c_{2}-1}}=E_{J}(0)=c_{2}^{-1}\left(1-c_{2}\right)^{2}\left(u_{0}^{2}\right)^{-c_{2}}\left(c_{1}+c_{2} u_{1}^{2}\right)>0 \tag{1.6}
\end{equation*}
$$

According to the fact that $c_{1}>0, c_{2}>1$, and (1.5), $J_{u}^{\prime \prime}(t)<0$, for all $t \geq 0$. Thus, for
(i) $u_{0} u_{1}>0$, then, $J_{u}^{\prime}(0)<0$ and for $t \geq \frac{-J_{u}(0)}{J_{u}(0)}=\frac{-u_{0}}{\left(1-c_{2}\right) u_{1}}, J_{u}^{\prime \prime}(t)<0, J_{u}^{\prime}(t) \leq J_{u}^{\prime}(0)$, and $J_{u}(t) \leq J_{u}(0)+J_{u}^{\prime}(0) t \leq 0$, which means that there exists a real finite number $T_{1}^{*} \leq \frac{-u_{0}}{\left(1-c_{2}\right) u_{1}}$ with

$$
J_{u}\left(T_{1}^{*}\right)=0=\lim _{t \rightarrow T_{1}^{*}}\left(u(t)^{2}\right)^{-\frac{c_{2}-1}{2}}
$$

that is, u blows up at finite time T_{1}^{*}. By (1.6), we obtain

$$
\begin{align*}
& J_{u}^{\prime}(t)=-\sqrt{E_{J}(0)-\frac{c_{1}}{c_{2}}\left(1-c_{2}\right)^{2} J_{u}(t)^{\frac{2 c_{2}}{c_{2}-1}}} \\
&=-\frac{c_{2}-1}{\sqrt{c_{2}}} \sqrt{c_{1}} \sqrt{\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)-J_{u}(t)^{\frac{2 c_{2}}{c_{2}-1}}} \tag{1.7}\\
& t=-\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}} \int_{J_{u}(0)}^{J_{u}(t)} \frac{\mathrm{d} r}{\sqrt{\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)-r^{\frac{2 c_{2}}{c_{2}-1}}}}
\end{align*}
$$

$$
\begin{equation*}
T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)=\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}} \int_{0}^{J_{u}(0)} \frac{\mathrm{d} r}{\sqrt{\left(u_{0}^{2}-c_{2}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)-r^{\frac{2 c_{2}}{c_{2}-1}}\right.}} \tag{1.8}
\end{equation*}
$$

The estimates (1.1) and (1.8) are equivalent.
(ii) $u_{0} u_{1}<0$, then, by equation (0.2), we have

$$
\left(u(t) u^{\prime}(t)\right)^{\prime}=c_{1}+\left(1+c_{2}\right) u^{\prime}(t)^{2} \geq c_{1}>0, u(t) u^{\prime}(t) \geq u_{0} u_{1}+c_{1} t>0 \text { for } t>\frac{-u_{0} u_{1}}{c_{1}}
$$

therefore, there exists a critical point $z_{1}\left(u_{0}, u_{1}, c_{2}\right):=z_{1}$ of J_{u}, that is $J_{u}^{\prime}\left(z_{1}\right)=0=u^{\prime}\left(z_{1}\right)$. By (1.6), we have

$$
\begin{aligned}
& J_{u}^{\prime}(t)=\frac{c_{2}-1}{\sqrt{c_{2}}} \sqrt{c_{1}} \sqrt{\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)-J_{u}(t)^{\frac{2 c_{2}}{c_{2}-1}}}, \\
& J_{u}\left(z_{1}\right)=\left(\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)\right)^{\frac{c_{2}-1}{2 c_{2}}}=J_{u}(0)\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)^{\frac{c_{2}-1}{2 c_{2}}}, \\
& z_{1}=\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}} \int_{J_{u}(0)}^{J_{u}\left(z_{1}\right)} \frac{\mathrm{d} r}{\sqrt{\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)-r^{\frac{2 c_{2}}{c_{2}-1}}}} \\
& \quad=\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}} \int_{J_{u}(0)}^{J_{u}(0)\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)^{\frac{c_{2}-1}{2 c_{2}}}} \frac{\mathrm{~d} r}{\sqrt{\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)-r^{\frac{2 c_{2}-1}{c_{2}-1}}}} \\
& \quad=\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}} \frac{J_{u}(0)\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)^{\frac{c_{2}-1}{2 c_{2}}}}{\sqrt{\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)}} \int_{\left(1+\frac{c_{2}}{\left.c_{1} u_{1}^{2}\right)^{\frac{c_{2}-1}{2 c_{2}}}} \frac{\mathrm{~d} r}{\sqrt{1-r^{\frac{2 c_{2}-1}{c_{2}-1}}}}\right.}^{l}
\end{aligned}
$$

We obtain (1.3). Using (1.6), we obtain $J_{u}\left(z_{1}\right)=\left(\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)\right)^{\frac{c_{2}-1}{2 c_{2}}}$ and for $t \geq z_{1}$,

$$
\begin{align*}
& J_{u}^{\prime}(t)=-\frac{c_{2}-1}{\sqrt{c_{2}}} \sqrt{c_{1}} \sqrt{\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)-J_{u}(t)^{\frac{2 c_{2}}{c_{2}-1}}} \\
& t-z_{1}=-\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}} \int_{J_{u}\left(z_{1}\right)}^{J_{u}(t)} \frac{\mathrm{d} r}{\sqrt{\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)-r^{\frac{2 c_{2}}{c_{2}-1}}}} \\
& T_{2}^{*}=z_{1}+\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}} \int_{0}^{J_{u}\left(z_{1}\right)} \frac{\mathrm{d} r}{\sqrt{\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)-r^{\frac{2 c_{2}}{c_{2}-1}}}} \tag{1.9}
\end{align*}
$$

From (1.9), we get estimate (1.2).

2 Blow-up Rate and Blow-up Constant for $c_{2}>1$

In this section, we study the blow-up rate and blow-up constant for $u^{2},\left(u^{2}\right)^{\prime}$, and $\left(u^{2}\right)^{\prime \prime}$ under the conditions in Section 1. We have the following results.

Theorem 2 If u satisfies one of the conditions in Theorem 1. Then, the blow-up rate of u^{2} is $2 /\left(c_{2}-1\right)$, and the blow-up constant of u^{2} is $\left(\frac{1}{c_{2}-1}\right)^{\frac{2}{c_{2}-1}}\left(\frac{c_{2}}{c_{1}+c_{2} u_{1}^{2}}\right)^{\frac{1}{c_{2}-1}}\left|u_{0}\right|^{\frac{2 c_{2}}{c_{2}-1}}$, that is, for $m \in\{1,2\}$

$$
\begin{equation*}
\lim _{t \rightarrow T_{m}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(T_{m}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right)^{\frac{2}{c_{2}-1}} u(t)^{2}=\left(\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}+c_{2} u_{1}^{2}}}\left|u_{0}\right|^{c_{2}}\right)^{\frac{2}{c_{2}-1}} \tag{2.1}
\end{equation*}
$$

The blow-up rate of $\left(u^{2}\right)^{\prime}$ is $\left(c_{2}+1\right) /\left(c_{2}-1\right)$, and the blow-up constant of $\left(u^{2}\right)^{\prime}$ is $2 c_{2}^{\frac{1}{c_{2}-1}}\left|u_{0}\right|^{\frac{2 c_{2}}{c_{2}-1}}\left(c_{1}+c_{2} u_{1}^{2}\right)^{-\frac{1}{c_{2}-1}}\left(c_{2}-1\right)^{-\frac{c_{2}+1}{c_{2}-1}}$, that is,

$$
\begin{align*}
& \lim _{t \rightarrow T_{m}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(T_{m}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right)^{\frac{c_{2}+1}{c_{2}-1}}\left(u^{2}\right)^{\prime}(t) \\
= & 2 c_{2}^{\frac{1}{c_{2}-1}}\left|u_{0}\right|^{\frac{2 c_{2}}{c_{2}-1}}\left(c_{1}+c_{2} u_{1}^{2}\right)^{-\frac{1}{c_{2}-1}}\left(c_{2}-1\right)^{-\frac{c_{2}+1}{c_{2}-1}} . \tag{2.2}
\end{align*}
$$

The blow-up rate of $\left(u^{2}\right)^{\prime \prime}$ is $2 c_{2} /\left(c_{2}-1\right)$, and the blow-up constant of $\left(u^{2}\right)^{\prime \prime}$ is $2\left(c_{2}+1\right) c_{2}^{\frac{1}{c_{2}-1}}\left|u_{0}\right|^{\frac{2 c_{2}}{c_{2}-1}}\left(c_{1}+c_{2} u_{1}^{2}\right)^{\frac{-c_{2}-1}{c_{2}-1}}\left(\frac{1}{c_{2}-1}\right)^{\frac{2 c_{2}}{c_{2}-1}}$, that is,

$$
\begin{align*}
& \lim _{t \rightarrow T_{m}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(T_{m}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right)^{\frac{2 c_{2}}{c_{2}-1}}\left(u^{2}\right)^{\prime \prime}(t) \\
= & 2\left(c_{2}+1\right) c_{2}^{\frac{1}{c_{2}-1}}\left|u_{0}\right|^{\frac{2 c_{2}}{c_{2}-1}}\left(c_{1}+c_{2} u_{1}^{2}\right)^{\frac{-c_{2}-1}{c_{2}-1}}\left(\frac{1}{c_{2}-1}\right)^{\frac{2 c_{2}}{c_{2}-1}} . \tag{2.3}
\end{align*}
$$

Proof For (i) $u_{0} u_{1} \geq 0$, by (1.8), we obtain

$$
\begin{gathered}
T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t=\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}}} \int_{0}^{J_{u}(t)} \frac{\mathrm{d} r}{\sqrt{\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)-r^{\frac{2 c_{2}}{c_{2}-1}}}}, \\
\lim _{t \rightarrow T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right) J_{u}^{-1}(t)=\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}+c_{2} u_{1}^{2}}}\left|u_{0}\right|^{c_{2}}, \\
\lim _{t \rightarrow T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right)\left(u(t)^{2}\right)^{\frac{c_{2}-1}{2}}=\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}+c_{2} u_{1}^{2}}}\left|u_{0}\right|^{c_{2}}, \\
\lim _{t \rightarrow T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right)^{\frac{2}{c_{2}-1}} u(t)^{2}=\left(\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}+c_{2} u_{1}^{2}}}\left|u_{0}\right|^{c_{2}}\right)^{\frac{2}{c_{2}-1}} .
\end{gathered}
$$

Thus, the assertion (2.1) is completely proved for $u_{0} u_{1} \geq 0$. By (1.7) and (2.1), we have

$$
\left.\begin{array}{rl}
& \lim _{t \rightarrow T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(1-c_{2}\right)\left(u(t)^{2}\left(T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right)^{\frac{2}{c_{2}-1}}\right)^{-\frac{c_{2}-1}{2}-1} \\
& \times \lim _{t \rightarrow T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(u(t) u^{\prime}(t)\right)\left(\left(T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right)^{\frac{c_{2}+1}{c_{2}-1}}\right) \\
= & -\frac{c_{2}-1}{\sqrt{c_{2}}} \sqrt{c_{1}} \sqrt{\left(u_{0}^{2}\right)^{-c_{2}}\left(1+\frac{c_{2}}{c_{1}} u_{1}^{2}\right)}=-\frac{c_{2}-1}{\sqrt{c_{2}}}\left|u_{0}\right|^{-c_{2}} \sqrt{c_{1}+c_{2} u_{1}^{2}}, \\
& t \rightarrow T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-} \\
= & \left.\left.\frac{1}{\sqrt{c_{2}}} \right\rvert\, u(t) u^{\prime}(t)\right)\left(\left(T _ { 1 } ^ { * } | ^ { - c _ { 2 } } \sqrt { c _ { 1 } + u _ { 2 } u _ { 1 } ^ { 2 } } \left(\frac{1}{c_{2}-1} \sqrt{\frac{\left.c_{2}\right)-t}{c_{1}+c_{2} u_{1}^{2}}}\left|u_{0}\right|^{c_{2} c_{2}-1}\right.\right.\right.
\end{array}\right)^{\frac{c_{2}+1}{c_{2}-1}} .
$$

Thus, (2.2) is obtained for $u_{0} u_{1} \geq 0$. By (1.5), (2.1), and (2.2), we conclude that

$$
\begin{aligned}
& \lim _{t \rightarrow T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(u^{2}(t)\right)^{\prime \prime}\left(T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right)^{\frac{2 c_{2}}{c_{2}-1}} \\
= & 2\left(c_{2}+1\right) \lim _{t \rightarrow T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(u(t) u^{\prime}(t)\left(T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right)^{\frac{c_{2}+1}{c_{2}-1}}\right)^{2} \\
& \times \lim _{t \rightarrow T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(u(t)^{2}\left(T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right)^{\frac{2}{c_{2}-1}}\right)^{-1} \\
& +2 c_{1} \lim _{t \rightarrow T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)^{-}}\left(T_{1}^{*}\left(u_{0}, u_{1}, c_{2}\right)-t\right)^{\frac{2 c_{2}}{c_{2}-1}} \\
= & 2\left(c_{2}+1\right) \frac{1}{c_{2}}\left|u_{0}\right|^{-2 c_{2}}\left(c_{1}+c_{2} u_{1}^{2}\right)\left(\frac{1}{c_{2}-1} \sqrt{\frac{c_{2}}{c_{1}+c_{2} u_{1}^{2}}}\left|u_{0}\right|^{c_{2}}\right)^{\frac{2 c_{2}}{c_{2}-1}} .
\end{aligned}
$$

Therefore, (2.3) is obtained for $u_{0} u_{1} \geq 0$.
For (ii) $u_{0} u_{1}<0$, one can get the conclusions through the same argument as above using (1.9). We do not repeat the steps.

3 Solution Property for $c_{2} \in(0.5,1)$

For $c_{2}=1 / 2$, then $2 u^{\prime \prime} u(t)=2 c_{1}+u^{\prime}(t)^{2}$. After some computation, we find that $u(t)=$ $u_{0}+u_{1} t+\frac{1}{2}\left(c_{1}+\frac{u_{1}^{2}}{2}\right) u_{0}^{-1} t^{2}$ is the solution of equation (0.2). Thus, we have the fallowing result.

Suppose that u is a solution of equation (0.2) for $c_{2}=1 / 2$. Then,

$$
\lim _{t \rightarrow \infty} u(t) t^{-\frac{1}{c_{2}}}=\frac{1}{2} u_{0}^{-2 c_{2}}\left(c_{1}+c_{2} u_{1}^{2}\right), \quad \lim _{t \rightarrow \infty} u^{\prime}(t) t^{-\frac{1+c_{2}}{c_{2}}}=u_{0}^{-2 c_{2}}\left(c_{1}+c_{2} u_{1}^{2}\right)
$$

Here, we discuss the case $u_{0} \neq 0$. We have the following result on critical point and asymptotic behavior at infinity of the solutions for equation (0.2):

Theorem 3 Suppose that u is a solution of problem (0.2) with $u_{0} \neq 0$. Then, for
(i) $u_{0}>0, u_{1}>0$,

$$
\lim _{t \rightarrow \infty} u(t) t^{-\frac{1}{1-c_{2}}}=\left(\frac{1-c_{2}}{\sqrt{c_{2}}}\right)^{\frac{1}{1-c_{2}}}\left|u_{0}\right|^{\frac{-c_{2}}{1-c_{2}}}\left(c_{1}+c_{2} u_{1}^{2}\right)^{\frac{-1}{2 c_{2}-2}}
$$

(ii) $u_{0}>0, u_{1}<0$, there exists a constant $Z_{2}\left(u_{0}, u_{1}, c_{1}, c_{2}\right):=Z_{2}$, such that $\lim _{t \rightarrow Z_{2}} u^{\prime}(t)=0$ and

$$
Z_{2}=\frac{1}{2} c_{2}^{\frac{-1}{2}} u_{0}\left(c_{1}+c_{2} u_{1}^{2}\right)^{\frac{-1}{2 c_{2}}} \int_{\frac{c_{1}}{c_{1}+c_{2} u_{1}^{2}}}^{1} s^{\frac{-c_{2}-1}{2 c_{2}}}(1-s)^{-\frac{1}{2}} \mathrm{~d} s
$$

(iii) $u_{0}<0, u_{1}<0$,

$$
\lim _{t \rightarrow \infty} u(t) t^{-\frac{1}{1-c_{2}}}=-\left(\frac{1-c_{2}}{\sqrt{c_{2}}}\right)^{\frac{1}{1-c_{2}}}\left|u_{0}\right|^{\frac{-c_{2}}{1-c_{2}}}\left(c_{1}+c_{2} u_{1}^{2}\right)^{\frac{-1}{2 c_{2}-2}}
$$

(iv) $u_{0}<0, u_{1}>0$, there exists a constant $Z_{3}\left(u_{0}, u_{1}, c_{1}, c_{2}\right):=Z_{3}$, such that $\lim _{t \rightarrow Z_{3}} u^{\prime}(t)=$ 0 and

$$
Z_{3}=\frac{1}{2} c_{2}^{\frac{-1}{2}} u_{0}\left(c_{1}+c_{2} u_{1}^{2}\right)^{\frac{-1}{2 c_{2}}} \int_{\frac{c_{1}}{c_{1}+c_{2} u_{1}^{2}}}^{1} s^{\frac{-c_{2}-1}{2 c_{2}}}(1-s)^{-\frac{1}{2}} \mathrm{~d} s
$$

Remark After some verification, the following argumentations are also valid for the case of $c_{2} \in(0,0.5)$.

Proof (1) For $u_{0}>0$ and $u_{1}>0$, by (1.5), (1.6), we have

$$
\begin{gathered}
J_{u}^{\prime}(t)=\left(1-c_{2}\right)\left(u(t)^{2}\right)^{\frac{1-c_{2}}{2}-1}\left(u(t) u^{\prime}(t)\right), \\
J_{u}^{\prime \prime}(t)=c_{1}\left(1-c_{2}\right) J_{u}(t)^{-\frac{c_{2}+1}{1-c_{2}}}>0, \\
J_{u}^{\prime}(t) \geq\left(1-c_{2}\right) u_{0}^{-c_{2}} u_{1}>0, \\
J_{u}^{\prime}(t)^{2} \leq E_{J}(0)=c_{2}^{-1}\left(1-c_{2}\right)^{2}\left(u_{0}^{2}\right)^{-c_{2}}\left(c_{1}+c_{2} u_{1}^{2}\right), \\
J_{u}(t) \leq J_{u}(0)+\sqrt{E_{J}(0)} t .
\end{gathered}
$$

In contrast, we can see that

$$
\begin{gathered}
J_{u}^{\prime}(t) \geq \sqrt{E_{J}(0)}-\sqrt{\frac{c_{1}}{c_{2}}}\left(1-c_{2}\right) J_{u}(t)^{\frac{-c_{2}}{1-c_{2}}}>0, \\
J_{u}(t) \geq J_{u}(0)+\sqrt{E_{J}(0)} t-\sqrt{\frac{c_{1}}{c_{2}}}\left(1-c_{2}\right) \int_{0}^{t} J_{u}(r)^{\frac{-c_{2}}{1-c_{2}}} \mathrm{~d} r
\end{gathered}
$$

and

$$
\begin{aligned}
& \int_{0}^{t} J_{u}(r)^{\frac{-c_{2}}{1-c_{2}}} \mathrm{~d} r=\int_{J_{u}(t)^{\frac{-c_{2}}{1-c_{2}}}}^{J_{u}\left(0 \frac{-c_{2}}{1-c_{2}}\right.} \frac{1-c_{2}}{c_{2}} s^{1-\frac{1}{c_{2}}}\left(E_{J}(0)-\frac{c_{1}}{c_{2}}\left(1-c_{2}\right)^{2} s^{2}\right)^{-\frac{1}{2}} \mathrm{~d} s \\
= & \frac{1}{2 \sqrt{c_{1} c_{2}}}\left(\sqrt{\frac{c_{2} E_{J}(0)}{c_{1}}} \frac{1}{1-c_{2}}\right)^{1-\frac{1}{c_{2}}} \int_{\frac{c_{1}}{c_{2}}\left(1-c_{2}\right)^{2} E_{J}(0)^{-1} J_{u}(t)^{\frac{-2 c_{2}}{1-c_{2}}}}^{\frac{c_{2}}{c_{2}}(1-s)^{\frac{1}{2}-1} s^{\frac{2 c_{2}-1}{2 c_{2}}-1} \mathrm{~d} s} \\
\leq & \frac{1}{2 \sqrt{c_{1} c_{2}}}\left(\sqrt{\frac{c_{2} E_{J}(0)}{c_{1}}} \frac{1}{1-c_{2}}\right)^{1-\frac{1}{c_{2}}} \beta\left(\frac{1}{2}, \frac{2 c_{2}-1}{2 c_{2}}\right) ;
\end{aligned}
$$

therefore,

$$
J_{u}(t) \geq J_{u}(0)+\sqrt{E_{J}(0)} t-\frac{1-c_{2}}{2 c_{2}}\left(\sqrt{\frac{c_{2} E_{J}(0)}{c_{1}}} \frac{1}{1-c_{2}}\right)^{1-\frac{1}{c_{2}}} \beta\left(\frac{1}{2}, \frac{2 c_{2}-1}{2 c_{2}}\right)
$$

and then, we conclude that $\lim _{t \rightarrow \infty} J_{u}(t) t^{-1}=\sqrt{E_{J}(0)}$, and obtain the conclusion under (i).
(2) For $u_{0}>0, u_{1}<0$, using (1.5) and (1.6), we have

$$
J_{u}^{\prime}(t)=-\sqrt{E_{J}(0)-\frac{c_{1}}{c_{2}}\left(1-c_{2}\right)^{2} J_{u}(t)^{\frac{2 c_{2}}{c_{2}-1}}} .
$$

Suppose that $J_{u}^{\prime}(t)<0$ for all $t \geq 0$. Then,

$$
\begin{aligned}
& J_{u}(t) \leq\left(\frac{c_{2}}{c_{1}\left(1-c_{2}\right)^{2}}\right)^{\frac{c_{2}-1}{2 c_{2}}} E_{J}(0)^{\frac{c_{2}-1}{2 c_{2}}}, \\
& t=\int_{J_{u}(t)}^{J_{u}(0)} \frac{\mathrm{d} r}{\sqrt{E_{J}(0)-\frac{c_{1}}{c_{2}}\left(1-c_{2}\right)^{2} r^{\frac{2 c_{2}}{c_{2}-1}}}} \\
&=\frac{1}{2}\left(1-c_{2}\right)^{\frac{1}{c_{2}}} c_{2}^{\frac{-c_{2}-1}{2 c_{2}}} E_{J}(0)^{\frac{-1}{2 c_{2}}} \int_{\frac{c_{1}}{c_{2} E_{J}(0)}\left(1-c_{2}\right)^{2} J_{u}(0)^{\frac{c_{1}}{c_{2} E_{J}\left(0 c_{2}\right.}\left(1-c_{2}\right)^{2} J_{u}(t) \frac{-2 c_{2}}{1-c_{2}}} s^{\frac{-c_{2}-1}{2 c_{2}}}(1-s)^{\frac{1}{2}-1} \mathrm{~d} s} \\
& \leq \frac{1}{2\left(1-c_{2}\right)} E_{J}(0)^{\frac{1}{2}} c_{1}^{\frac{-c_{2}-1}{2 c_{2}}} J_{u}(0)^{\frac{c_{1}+1}{1^{2}-c_{2}}} \int_{\frac{c_{1}}{1}\left(1-c_{2}\right)^{2} J_{u}(0)^{\frac{-2 c_{2}}{1-c_{2}}}(1-s)^{-\frac{1}{2}} \mathrm{~d} s}^{c_{2} E_{J}(0)} \\
&=\frac{1}{1-c_{2}} E_{J}(0)^{\frac{1}{2}} c_{1}^{\frac{-c_{2}-1}{2 c_{2}}} J_{u}(0)^{\frac{c_{1}+1}{1-c_{2}}}\left(1-\frac{c_{1}}{c_{2} E_{J}(0)}\left(1-c_{2}\right)^{2} J_{u}(0)^{\frac{-2 c_{2}}{1-c_{2}}}\right)^{\frac{1}{2}} .
\end{aligned}
$$

It creates a contradiction; thus, there exists a constant $Z_{2}\left(u_{0}, u_{1}, c_{1}, c_{2}\right):=Z_{2}$, such that $\lim _{t \rightarrow Z_{2}} u^{\prime}(t)=0=\lim _{t \rightarrow Z_{2}} J_{u}^{\prime}(t)$ and $J_{u}\left(Z_{2}\right)=\left(\frac{c_{2}}{c_{1}\left(1-c_{2}\right)^{2}}\right)^{\frac{c_{2}-1}{2 c_{2}}} E_{J}(0)^{\frac{c_{2}-1}{2 c_{2}}}$, also,

$$
Z_{2}=\int_{\left(\frac{c_{2}}{c_{1}\left(1-c_{2}\right)^{2}}\right.}^{J_{u}(0)}{ }^{\frac{c_{2}-1}{2 c_{2}}} E_{J(0)}{ }^{\frac{c_{2}-1}{2_{2}}} \frac{\mathrm{~d} r}{\sqrt{E_{J}(0)-\frac{c_{1}}{c_{2}}\left(1-c_{2}\right)^{2} r^{\frac{2 c_{2}}{c_{2}-1}}}}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(1-c_{2}\right)^{\frac{1}{c_{2}}} c_{2}^{\frac{-c_{2}-1}{2 c_{2}}} E_{J}(0)^{\frac{-1}{2 c_{2}}} \int_{\frac{c_{1}}{c_{2} E_{J}(0)}\left(1-c_{2}\right)^{2} J_{u}(0)^{\frac{-2 c_{2}}{1-c_{2}}}}^{1} s^{\frac{-c_{2}-1}{2 c_{2}}}(1-s)^{\frac{-1}{2}} \mathrm{~d} s \\
& =\frac{1}{2} c_{2}^{\frac{-1}{2}} u_{0}\left(c_{1}+c_{2} u_{1}^{2}\right)^{\frac{-1}{2 c_{2}}} \int_{\frac{c_{1}}{c_{1}+c_{2} u_{1}^{2}}}^{1} s^{\frac{-c_{2}-1}{2 c_{2}}}(1-s)^{\frac{-1}{2}} \mathrm{~d} s
\end{aligned}
$$

The estimates under (ii) are completely proved.
(3) Similar to the above arguments, it results in the estimates under (iii) and (iv).

Acknowledgements Thanks are due to Professor Long-Yi Tsai and Professor Tai-Ping Liu for their continuous encouragement and discussions over this work, and to Companies Grand Hall, Metta Education Technology, E-Ton Solar and Auria Solar for their financial assistance.

References

[1] Li Mengrong. On the Differential Equation $u^{\prime \prime}-|u|^{p-1} u=0$. Nonlinear Analysis, 2006, 64: 1025-1056
[2] Li Mengrong. On the blow-up time and blow-up rate of positive solutions of semi-linear wave equations $\square u-u^{p}=0$ in 1-dimensional space. CPAA, 2009 to appear
[3] Li Mengrong. Estimates for the life-span of solutions of semilinear wave equations. CPAA, 2008, 7(2): 417-432
[4] Li Mengrong, Pai Jente. Quenching problem in some semilinear wave equations. Acta Mathematica Scientia, 2008, 28(3): 523-529
[5] Li Mengrong. Existence and uniqueness of solutions of quasilinear wave equations (II). Bulletin Ins Math Academia Sinica, 2006, 1(2): 263-279
[6] Li Mengrong. On The Semilinear Wave Equations. Taiwanese Journal of Mathematics, 1998, 2(3): 329345
[7] Li Mengrong. Estimates for the life-span of solutions for semilinear wave equations//Proceedings of the Workshop on Differential Equations V. Taiwan: National Tsing -Hua Uni Hsinchu, 1997: 129-138
[8] Li Mengrong, Tsai Longyi. On a system of nonlinear wave equations. Taiwanese Journal of Mathematics. 2003, 7(4): 557-573
[9] Li Mengrong, Tsai Longyi. Existence and nonexistence of global solutions of some systems of semilinear wave equations. Nonlinear Analysis, 2003, 54: 1397-1415
[10] Li Mengrong. Blow-up solutions to the nonlinear second order differential equation. Taiwanese Journal of Mathematics. 2008, 12(3): 599-621
[11] Li Mengrong, Lin Zinghung. Regularity and blow-up constants of solutions for nonlinear differential equation $u^{\prime \prime}-u^{p}=0$. Taiwanese Journal of Mathematics, 2006, 10(3): 777-796
[12] Chen I-Chen. Some Studies in Differential Equation. National Chengchi University, 1999
[13] Corduneanu C. Principle of Differential and Integral Equations. Boston: Allyn and Bacon, Inc, 1971
[14] Duan Renjun, Li Mengrong, Yang Tong. Propagation of Singularities in the Solutions to the Boltzmann Equation near Equilibrium. Mathematical Models and Methods in Applied Sciences (M3AS), 2008, 18(7): 1093-1114
[15] Li Mengrong, Chang Yueloong. On a particular Emden-Fowler Equation with non-positive energyMathematical model of enterprise competitiveness and performance. Applied Math Letters, 2007, 20(9): 1011-1015
[16] Shieh T H, Liou T M, Li M R, et al. Analysis on numerical results for stage separation with different exhaust holes. International communications in heat and mass transfer, 2009, 36(4): 342-345
[17] Shieh Tzonghann, Li Mengrong. Numeric treatment of contact discontinuity with multi-gases. Journal of computational and applied mathematics, 2009, 230(2): 656-673

[^0]: ＊Received December 20，2007．There are more discussion which concern nonlinear differential equation in ［13］
 ${ }^{1}$ For results on the blow－up character of solution of the equation $\left(\left|u^{\prime}\right|^{m-2} u^{\prime}\right)^{\prime}=u^{p}$ ，see［12］

