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ON THE EMDEN-FOWLER EQUATION

u′′(t)u(t) = c1 + c2u
′(t)2 WITH c1 ≥ 0, c2 ≥ 0∗
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Abstract In this article, we study the following initial value problem for the nonlinear

equation ��
�

u′′u(t) = c1 + c2u
′(t)2, c1 ≥ 0, c2 ≥ 0,

u(0) = u0, u′(0) = u1.

We are interested in properties of solutions of the above problem. We find the life-span,

blow-up rate, blow-up constant and the regularity, null point, critical point, and asymptotic

behavior at infinity of the solutions.
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0 Introduction

In our articles, we studied the semi-linear wave equation �u + f(u) = 0 under some

conditions, and found some results concerning blow-up, blow-up rate, and the estimates for the

life-span of solutions. Here, we consider the following equation

u′′ = up(c1 + c2(u
′(t))q), u(0) = u0, u

′(0) = u1, c1 > 0, c2 > 0, (0.1)

it is a particular form of the generalized Emden-Fowler equation

y′′xx = xnym(A + B(y′x)l).

To study the behavior of the solutions for the above equation, we separate q into five parts,

q < 0, 0 < q < 1, 1 ≤ q < 2, q = 2 and q > 2. We considered the case that p > 1 and q > 1

in [10], and obtained some results on life-span, blow-up rates of solutions; this method in [10]

cannot be applied to the case of p = −1, q = 2; here we focus on the study on such a particular

case with c1 ≥ 0 and c2 ≥ 0. We also find the life-span, blow-up rate and blow-up constant and

other properties of u. For further informations on such equation we refer the reader to [1]1.

∗Received December 20, 2007. There are more discussion which concern nonlinear differential equation in

[13]
1For results on the blow-up character of solution of the equation (| u′ |m−2 u′)′ = up, see [12]
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We say that a function g : R → R having blow-up time T ∗ and a blow-up rate α means

that there is a finite number T ∗ such that g(t) exists for t < T ∗ and lim
t→T∗

g(t)−1 = 0 and there

exists a nonzero β ∈ R with lim
t→T∗

(T ∗−t)αg(t) = β, in this case, β is called the blow-up constant

of g. By the standard arguments of existence of solutions to ordinary differential equations, one

can prove the local existence of solutions to the nonlinear equation⎧⎨
⎩u′′(t)u(t) = c1 + c2u

′(t)2, u(0) = u0, u
′(0) = u1 c1 ≥ 0, c2 ≥ 0,

u(0) = u0, u
′(0) = u1,

(0.2)

and for u0 �= 0, we have found the following result:

For (i) c2 > 1, the blow-up rate and blow-up constant of solutions are obtained;

(ii) c2 ∈ (0, 1), the solution u can be characterized as the property of the function t
1

1−c2 ,

and we have got the results concerning critical point and asymptotic behavior at infinity of the

solutions.

We will often use the following lemma:

Lemma 0.1 Suppose that f ∈ C1[t0,∞)∩C2(t0,∞), f(t0) > 0, f ′(t) < 0, and f ′′(t) ≤ 0,

for t > t0. Then, there exists a finite positive number T > t0, such that f(T ) = 0.

Lemma 0.2 Suppose that u is the solution of (0.2). If u0 > 0 and u1 > 0, then,

u(t), u′(t), and u′′(t) > 0, for t ∈ [0, T ∗), where T ∗ is the life-span of u.

Proof After some computations, one can obtain Lemma 0.1. We only prove Lemma 0.2.

Suppose that there exists a positive number t0, such that u′(t0) ≤ 0. Because u ∈ C2 and u1 > 0,

there exists a positive number t1, defined by t1 = inf {t ∈ (0, t0] : u′(t) ≤ 0} , then, u′(t1) = 0,

and u′(t) > 0, u(t) > 0 for t ∈ [0, t1) and u′′(t) > 0, for t ∈ [0, t1); therefore, u′(t1) ≥ u1 > 0.

This result contradicts with u′(t1) = 0; thus, we conclude that u′(t) > 0 for t ∈ [0, T ∗).

Together the equation (0.2) and the continuities of u, u′, and u′′, the lemma follows.

1 Blow-up Phenomena for c2 > 1

For u0 �= 0, we obtain

Theorem 1 If T ∗ is the life-span of u and u is the solution of problem (0.2), then, T ∗ is

finite, that is, u is only a local solution of (0.2), if one of the following is valid

(i) u0u1 ≥ 0 or (ii) u0u1 < 0.

Further, in the case of (i), we have the estimate

T ∗ ≤ T ∗1 (u0, u1, c2) =
1

c2 − 1

√
c2

c1
(u2

0)
1
2

(
1 +

c2

c1
u2

1

) −1
2c2

∫ α

0

dr√
1− r

2c2
c2−1

, (1.1)

where α = (1 + c2

c1
u2

1)
c2−1
−2c2 . In the case of (ii), we have

T ≤ T ∗2 (u0, u1, c2) =
1

c2 − 1

√
c2

c1
(u2

0)
1
2

(
1 +

c2

c1
u2

1

) −1
2c2

( ∫ 1

0

+

∫ 1

α

) dr√
1− r

2c2
c2−1

; (1.2)

we have further

z1(u0, u1, c2) =
1

c2 − 1

√
c2

c1
(u2

0)
1
2

(
1 +

c2

c1
u2

1

) −1
2c2

∫ 1

α

dr√
1− r

2c2
c2−1

(1.3)
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is a critical point of u2.

Remark According to this theorem, one can obtain the asymptotic behavior of life-span

T ∗1,ε(u0, u1, c2) by T ∗1 (u0, u1, c2): If T ∗ is the life-span of u and u is the solution of the problem

u′′(t)u(t) = c1 + c2u
′(t)2, u(0) = εu0, u

′(0) = εu1, u0u1 > 0

then, T ∗ is given by

T ∗ ≤ T ∗1,ε(u0, u1, c2) =
ε

c2 − 1

√
c2

c1
(u2

0)
1
2 (1 +

c2

c1
ε2u2

1)
−1
2c2

∫ (1+
c2
c1

ε2u2
1)

c2−1
−2c2

0

dr√
1− r

2c2
c2−1

and

T ∗ ∼ ε

c2 − 1

√
c2

c1
(u2

0)
1
2

(
1 +

c2

c1
ε2u2

1

) −1
2c2

∫ 1

0

dr√
1− r

2c2
c2−1

=
εc

2

√
1

c1c2
(u2

0)
1
2

(
1 +

c2

c1
ε2u2

1

) −1
2c2

as ε˜0+, (1.4)

where c = β(1
2 , 2c2

c2−1 ), that means there exists no classic solution to the equation (0.2) if the

initial values are zero.

Proof of Theorem 1 Consider the function Ju(t) = (u(t)2)−
c2−1

2 , we have

J ′u(t) = (1− c2)(u(t)2)−
c2−1

2 −1(u(t)u′(t)),

J ′′u (t) = (1− c2)(u(t)2)−
c2−1

2 −1(u(t)u′′(t) + u′(t)2)

−(1− c2)(c2 + 1)(u(t)u′(t))2(u(t)2)−
c2−1

2 −2

= (1− c2)(u(t)2)−
c2−1

2 −1(u(t)u′′(t)− c2u
′(t)2)

= c1(1− c2)(u(t)2)−
c2+1

2 = c1(1− c2)(Ju(t))
c2+1

c2−1 . (1.5)

Apply the energy method to the equation for Ju, we obtain

J ′u(t)2 +
c1

c2
(1 − c2)

2Ju(t)
2c2

c2−1 = EJ(0) = c−1
2 (1− c2)

2(u2
0)
−c2(c1 + c2u

2
1) > 0. (1.6)

According to the fact that c1 > 0, c2 > 1, and (1.5), J ′′u (t) < 0, for all t ≥ 0. Thus, for

(i) u0u1 > 0, then, J ′u(0) < 0 and for t ≥ −Ju(0)
Ju
′(0) = −u0

(1−c2)u1
, J ′′u (t) < 0, J ′u(t) ≤ J ′u(0), and

Ju(t) ≤ Ju(0) + J ′u(0)t ≤ 0, which means that there exists a real finite number T ∗1 ≤ −u0

(1−c2)u1

with

Ju(T ∗1 ) = 0 = lim
t→T∗1

(u(t)2)−
c2−1

2 ;

that is, u blows up at finite time T ∗1 . By (1.6), we obtain

J ′u(t) = −
√

EJ (0)− c1

c2
(1− c2)2Ju(t)

2c2
c2−1

= −c2 − 1√
c2

√
c1

√
(u2

0)
−c2(1 +

c2

c1
u2

1)− Ju(t)
2c2

c2−1 , (1.7)

t = − 1

c2 − 1

√
c2

c1

∫ Ju(t)

Ju(0)

dr√
(u2

0)
−c2(1 + c2

c1
u2

1)− r
2c2

c2−1

,
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T ∗1 (u0, u1, c2) =
1

c2 − 1

√
c2

c1

∫ Ju(0)

0

dr√
(u2

0)
−c2(1 + c2

c1
u2

1)− r
2c2

c2−1

. (1.8)

The estimates (1.1) and (1.8) are equivalent.

(ii) u0u1 < 0, then, by equation (0.2), we have

(u(t)u′(t))′ = c1 + (1 + c2)u
′(t)2 ≥ c1 > 0, u(t)u′(t) ≥ u0u1 + c1t > 0 for t >

−u0u1

c1
;

therefore, there exists a critical point z1(u0, u1, c2) := z1 of Ju, that is J ′u(z1) = 0 = u′(z1).

By (1.6), we have

J ′u(t) =
c2 − 1√

c2

√
c1

√
(u2

0)
−c2(1 +

c2

c1
u2

1)− Ju(t)
2c2

c2−1 ,

Ju(z1) =
(
(u2

0)
−c2

(
1 +

c2

c1
u2

1

)) c2−1

2c2
= Ju(0)

(
1 +

c2

c1
u2

1

) c2−1

2c2
,

z1 =
1

c2 − 1

√
c2

c1

∫ Ju(z1)

Ju(0)

dr√
(u2

0)
−c2(1 + c2

c1
u2

1)− r
2c2

c2−1

=
1

c2 − 1

√
c2

c1

∫ Ju(0)(1+
c2
c1

u2
1)

c2−1
2c2

Ju(0)

dr√
(u2

0)
−c2(1 + c2

c1
u2

1)− r
2c2

c2−1

=
1

c2 − 1

√
c2

c1

Ju(0)(1 + c2

c1
u2

1)
c2−1

2c2√
(u2

0)
−c2(1 + c2

c1
u2

1)

∫ 1

(1+
c2
c1

u2
1)

c2−1
−2c2

dr√
1− r

2c2
c2−1

.

We obtain (1.3). Using (1.6), we obtain Ju(z1) = ((u2
0)
−c2(1 + c2

c1
u2

1))
c2−1

2c2 and for t ≥ z1,

J ′u(t) = −c2 − 1√
c2

√
c1

√
(u2

0)
−c2(1 +

c2

c1
u2

1)− Ju(t)
2c2

c2−1 ,

t− z1 = − 1

c2 − 1

√
c2

c1

∫ Ju(t)

Ju(z1)

dr√
(u2

0)
−c2(1 + c2

c1
u2

1)− r
2c2

c2−1

,

T ∗2 = z1 +
1

c2 − 1

√
c2

c1

∫ Ju(z1)

0

dr√
(u2

0)
−c2(1 + c2

c1
u2

1)− r
2c2

c2−1

. (1.9)

From (1.9), we get estimate (1.2).

2 Blow-up Rate and Blow-up Constant for c2 > 1

In this section, we study the blow-up rate and blow-up constant for u2, (u2)′, and (u2)′′

under the conditions in Section 1. We have the following results.

Theorem 2 If u satisfies one of the conditions in Theorem 1. Then, the blow-up rate of

u2 is 2/(c2− 1), and the blow-up constant of u2 is ( 1
c2−1 )

2
c2−1 ( c2

c1+c2u2
1
)

1
c2−1 |u0|

2c2
c2−1 , that is, for

m ∈ {1, 2}

lim
t→T∗

m
(u0,u1,c2)−

(T ∗m(u0, u1, c2)− t)
2

c2−1 u(t)2 =
( 1

c2 − 1

√
c2

c1 + c2u2
1

|u0|c2

) 2
c2−1

. (2.1)
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The blow-up rate of (u2)′ is (c2 + 1)/(c2 − 1), and the blow-up constant of (u2)′ is

2c
1

c2−1

2 |u0|
2c2

c2−1 (c1 + c2u
2
1)
−

1
c2−1 (c2 − 1)−

c2+1
c2−1 , that is,

lim
t→T∗

m
(u0,u1,c2)−

(T ∗m(u0, u1, c2)− t)
c2+1
c2−1 (u2)′(t)

= 2c
1

c2−1

2 |u0|
2c2

c2−1 (c1 + c2u
2
1)
−

1
c2−1 (c2 − 1)−

c2+1
c2−1 . (2.2)

The blow-up rate of (u2)′′ is 2c2/(c2 − 1), and the blow-up constant of (u2)′′ is

2(c2 + 1)c
1

c2−1

2 |u0|
2c2

c2−1 (c1 + c2u
2
1)
−c2−1
c2−1 ( 1

c2−1 )
2c2

c2−1 , that is,

lim
t→T∗

m
(u0,u1,c2)−

(T ∗m(u0, u1, c2)− t)
2c2

c2−1 (u2)′′(t)

= 2(c2 + 1)c
1

c2−1

2 |u0|
2c2

c2−1 (c1 + c2u
2
1)
−c2−1
c2−1

( 1

c2 − 1

) 2c2
c2−1

. (2.3)

Proof For (i) u0u1 ≥ 0, by (1.8), we obtain

T ∗1 (u0, u1, c2)− t =
1

c2 − 1

√
c2

c1

∫ Ju(t)

0

dr√
(u2

0)
−c2(1 + c2

c1
u2

1)− r
2c2

c2−1

,

lim
t→T∗1 (u0,u1,c2)−

(T ∗1 (u0, u1, c2)− t)J−1
u (t) =

1

c2 − 1

√
c2

c1 + c2u2
1

|u0|c2 ,

lim
t→T∗1 (u0,u1,c2)−

(T ∗1 (u0, u1, c2)− t)(u(t)2)
c2−1

2 =
1

c2 − 1

√
c2

c1 + c2u2
1

|u0|c2 ,

lim
t→T∗1 (u0,u1,c2)−

(T ∗1 (u0, u1, c2)− t)
2

c2−1 u(t)2 =
( 1

c2 − 1

√
c2

c1 + c2u2
1

|u0|c2

) 2
c2−1

.

Thus, the assertion (2.1) is completely proved for u0u1 ≥ 0. By (1.7) and (2.1), we have

lim
t→T∗1 (u0,u1,c2)−

(1− c2)(u(t)2(T ∗1 (u0, u1, c2)− t)
2

c2−1 )−
c2−1

2 −1

× lim
t→T∗1 (u0,u1,c2)−

(u(t)u′(t))((T ∗1 (u0, u1, c2)− t)
c2+1
c2−1 )

= −c2 − 1√
c2

√
c1

√
(u2

0)
−c2(1 +

c2

c1
u2

1) = −c2 − 1√
c2

|u0|−c2

√
c1 + c2u2

1,

lim
t→T∗1 (u0,u1,c2)−

(u(t)u′(t))((T ∗1 (u0, u1, c2)− t)
c2+1
c2−1 )

=
1√
c2
|u0|−c2

√
c1 + c2u2

1

( 1

c2 − 1

√
c2

c1 + c2u2
1

|u0|c2

) c2+1
c2−1

.

Thus, (2.2) is obtained for u0u1 ≥ 0. By (1.5), (2.1), and (2.2), we conclude that

lim
t→T∗1 (u0,u1,c2)−

(u2(t))′′(T ∗1 (u0, u1, c2)− t)
2c2

c2−1

= 2(c2 + 1) lim
t→T∗1 (u0,u1,c2)−

(u(t)u′(t)(T ∗1 (u0, u1, c2)− t)
c2+1
c2−1 )2

× lim
t→T∗1 (u0,u1,c2)−

(u(t)2(T ∗1 (u0, u1, c2)− t)
2

c2−1 )−1

+2c1 lim
t→T∗1 (u0,u1,c2)−

(T ∗1 (u0, u1, c2)− t)
2c2

c2−1

= 2(c2 + 1)
1

c2
|u0|−2c2 (c1 + c2u

2
1)

( 1

c2 − 1

√
c2

c1 + c2u2
1

|u0|c2

) 2c2
c2−1

.
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Therefore, (2.3) is obtained for u0u1 ≥ 0.

For (ii) u0u1 < 0, one can get the conclusions through the same argument as above using

(1.9). We do not repeat the steps.

3 Solution Property for c2 ∈ (0.5, 1)

For c2 = 1/2, then 2u′′u(t) = 2c1 + u′(t)2. After some computation, we find that u(t) =

u0 +u1t+ 1
2 (c1 +

u
2
1

2 )u−1
0 t2 is the solution of equation (0.2). Thus, we have the fallowing result.

Suppose that u is a solution of equation (0.2) for c2 = 1/2. Then,

lim
t→∞

u(t)t
−

1
c2 =

1

2
u−2c2

0 (c1 + c2u
2
1), lim

t→∞
u′(t)t

−
1+c2

c2 = u−2c2
0 (c1 + c2u

2
1).

Here, we discuss the case u0 �= 0. We have the following result on critical point and

asymptotic behavior at infinity of the solutions for equation (0.2):

Theorem 3 Suppose that u is a solution of problem (0.2) with u0 �= 0. Then, for

(i) u0 > 0, u1 > 0,

lim
t→∞

u(t)t
−

1
1−c2 =

(1− c2√
c2

) 1
1−c2 |u0|

−c2
1−c2 (c1 + c2u

2
1)

−1
2c2−2 ;

(ii) u0 > 0, u1 < 0, there exists a constant Z2(u0, u1, c1, c2) := Z2, such that lim
t→Z2

u′(t) = 0

and

Z2 =
1

2
c
−1
2

2 u0(c1 + c2u
2
1)
−1
2c2

∫ 1

c1
c1+c2u2

1

s
−c2−1

2c2 (1 − s)−
1
2 ds;

(iii) u0 < 0, u1 < 0,

lim
t→∞

u(t)t−
1

1−c2 = −
(1− c2√

c2

) 1
1−c2 |u0|

−c2
1−c2 (c1 + c2u

2
1)

−1
2c2−2 ;

(iv) u0 < 0, u1 > 0, there exists a constant Z3(u0, u1, c1, c2) := Z3, such that lim
t→Z3

u′(t) =

0 and

Z3 =
1

2
c
−1
2

2 u0(c1 + c2u
2
1)
−1
2c2

∫ 1

c1
c1+c2u2

1

s
−c2−1

2c2 (1 − s)−
1
2 ds.

Remark After some verification, the following argumentations are also valid for the case

of c2 ∈ (0, 0.5).

Proof (1) For u0 > 0 and u1 > 0, by (1.5), (1.6), we have

J ′u(t) = (1 − c2)(u(t)2)
1−c2

2 −1(u(t)u′(t)),

J ′′u (t) = c1(1− c2)Ju(t)−
c2+1
1−c2 > 0,

J ′u(t) ≥ (1− c2)u
−c2
0 u1 > 0,

J ′u(t)2 ≤ EJ (0) = c−1
2 (1 − c2)

2(u2
0)
−c2(c1 + c2u

2
1),

Ju(t) ≤ Ju(0) +
√

EJ(0)t.
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In contrast, we can see that

J ′u(t) ≥
√

EJ (0)−
√

c1

c2
(1− c2)Ju(t)

−c2
1−c2 > 0,

Ju(t) ≥ Ju(0) +
√

EJ(0)t−
√

c1

c2
(1− c2)

∫ t

0

Ju(r)
−c2
1−c2 dr

and

∫ t

0

Ju(r)
−c2
1−c2 dr =

∫ Ju(0)
−c2
1−c2

Ju(t)
−c2
1−c2

1− c2

c2
s
1− 1

c2

(
EJ(0)− c1

c2
(1− c2)

2s2
)
−

1
2

ds

=
1

2
√

c1c2

(√
c2EJ (0)

c1

1

1− c2

)1− 1
c2

∫ c1
c2

(1−c2)
2EJ (0)−1Ju(0)

−2c2
1−c2

c1
c2

(1−c2)2EJ (0)−1Ju(t)
−2c2
1−c2

(1− s)
1
2−1s

2c2−1
2c2

−1
ds

≤ 1

2
√

c1c2

(√
c2EJ (0)

c1

1

1− c2

)1− 1
c2

β
(1

2
,
2c2 − 1

2c2

)
;

therefore,

Ju(t) ≥ Ju(0) +
√

EJ(0)t− 1− c2

2c2

(√
c2EJ (0)

c1

1

1− c2

)1− 1
c2

β
(1

2
,
2c2 − 1

2c2

)

and then, we conclude that lim
t→∞

Ju(t)t−1 =
√

EJ (0), and obtain the conclusion under (i).

(2) For u0 > 0, u1 < 0, using (1.5) and (1.6), we have

J ′u(t) = −
√

EJ(0)− c1

c2
(1− c2)2Ju(t)

2c2
c2−1 .

Suppose that J ′u(t) < 0 for all t ≥ 0. Then,

Ju(t) ≤
( c2

c1(1 − c2)2

) c2−1
2c2

EJ(0)
c2−1
2c2 ,

t =

∫ Ju(0)

Ju(t)

dr√
EJ(0)− c1

c2
(1− c2)2r

2c2
c2−1

=
1

2
(1− c2)

1
c2 c

−c2−1
2c2

2 EJ(0)
−1
2c2

∫ c1
c2EJ (0)

(1−c2)
2Ju(t)

−2c2
1−c2

c1
c2EJ (0)

(1−c2)2Ju(0)
−2c2
1−c2

s
−c2−1

2c2 (1− s)
1
2
−1ds

≤ 1

2(1− c2)
EJ(0)

1
2 c
−c2−1

2c2

1 Ju(0)
c2+1
1−c2

∫ 1

c1
c2EJ (0)

(1−c2)2Ju(0)
−2c2
1−c2

(1− s)−
1
2 ds

=
1

1− c2
EJ(0)

1
2 c
−c2−1

2c2
1 Ju(0)

c2+1
1−c2

(
1− c1

c2EJ (0)
(1− c2)

2Ju(0)
−2c2
1−c2

) 1
2

.

It creates a contradiction; thus, there exists a constant Z2(u0, u1, c1, c2) := Z2, such that

lim
t→Z2

u′(t) = 0 = lim
t→Z2

J ′u(t) and Ju(Z2) = ( c2

c1(1−c2)2
)

c2−1
2c2 EJ (0)

c2−1
2c2 , also,

Z2 =

∫ Ju(0)

(
c2

c1(1−c2)2
)

c2−1
2c2 EJ (0)

c2−1
2c2

dr√
EJ(0)− c1

c2
(1− c2)2r

2c2
c2−1
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=
1

2
(1− c2)

1
c2 c

−c2−1
2c2

2 EJ (0)
−1
2c2

∫ 1

c1
c2EJ (0) (1−c2)2Ju(0)

−2c2
1−c2

s
−c2−1

2c2 (1− s)
−1
2 ds

=
1

2
c
−1
2

2 u0(c1 + c2u
2
1)
−1
2c2

∫ 1

c1
c1+c2u2

1

s
−c2−1

2c2 (1− s)
−1
2 ds.

The estimates under (ii) are completely proved.

(3) Similar to the above arguments, it results in the estimates under (iii) and (iv).
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