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1 We provide an example to demonstrate that variance does not sa
monotonicity with respect to stochastic dominance. Assume that there
lotteries, A and B . Let A ¼ ð0:1;0:9;�1;11Þ and B ¼ ð0:1; 0:9; 10;�
ðAÞ ¼ 12:96 > Var ðBÞ ¼ 10:89. However, A first-order stochastic dominates B
the cumulative distribution function of B is always higher than that of A. Sin
order stochastic dominance implies higher order stochastic dominance, A
order stochastic dominates B.

2 In responding to A&S, Foster and Hart (2009) develop an alternative op
riskiness measure that only focuses on the wealth level. In addition, Bali et a
extend A&S and Foster and Hart (2009) by proposing a generalized me
riskiness that nests the above two measures.
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In this paper, we propose a new spot-futures hedging method that determines the optimal hedge ratio by
minimizing the riskiness of hedged portfolio returns, where the riskiness is measured by the index of
Aumann and Serrano (2008). Unlike the risk measurements widely used in the literature, the riskiness
index employed in our method satisfies monotonicity with respect to stochastic dominance. We also pro-
vide an empirical example to demonstrate how to estimate and test this optimal hedge ratio in equity
data by the method-of-moments.
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1. Introduction

One of the important purposes for financial derivatives, such as
futures, is hedging. The fundamental concept of hedging is to com-
bine investments in the spot market and futures market and to
form a portfolio that eliminates the risk of the investment value.
The optimal hedge ratio has been well-studied in the literature;
it depends on the particular objective function to be optimized.
Chen et al. (2003) provide a broad review on different theoretical
approaches to the optimal hedge ratio. They suggest that, in gen-
eral, no single optimal hedge ratio is superior to others.

Numerous papers have provided the solution for the optimal
hedge ratio by minimizing alternative risk measures. Early studies,
such as Ederington (1979), use variance as the risk measure. How-
ard and D’Antonio (1984) further propose a Sharpe ratio-based
hedge ratio. More recently, the mean-Gini coefficient (Cheung
et al., 1990; Kolb and Okunev, 1993; Lien and Luo, 1993), general-
ized semi-variance (GSV) (De Jong et al., 1997; Lien and Tse, 1998),
and mean-GSV (Chen et al., 2001) have also been considered as risk
measures in the studies on optimal hedging. Brooks et al. (2002)
highlight the importance of allowing the optimal hedge ratio to
be time-varying and asymmetric based on the value at risk (VaR).

Although the prior literature has documented many ingenious
findings, the risk measures employed by most papers do not satisfy
the monotonicity with respect to stochastic dominance1: if the
return distribution of one asset (lottery) first- or second-order
stochastically dominates that of the other asset (lottery), then the
riskiness index of the former asset (lottery) is smaller than that of
the latter. Recently, Aumann and Serrano (2008, A&S hereafter) have
proposed an economic index of riskiness.2 It is the reciprocal of the
absolute risk aversion parameter of a constant risk-averse individual
who is indifferent in taking or not taking the lottery. They show that
the index follows two axioms: duality and positive homogeneity.
Specifically, any index satisfying the duality and positive homogene-
ity axioms is a multiple of their riskiness index. More importantly,
, because
ce lower
second-

erational
l. (2011)
asure of
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they also show that the index satisfies monotonicity with respect to
stochastic dominance.

Following A&S, some papers apply the riskiness measure to var-
ious issues in finance. For example, Homm and Pigorsch (2012)
propose a new performance measure based on the A&S riskiness
index that generalizes the Sharpe ratio. They also provide empirical
examinations from mutual fund data. In addition, Schreiber (2012)
develops a theoretical framework on an equivalent index to mea-
sure relative risk, complementing the A&S riskiness index that
measures absolute risk.

Our study, motivated by the riskiness index introduced by A&S,
is different from the above two applications, because we estimate
the optimal hedge ratio based on the A&S riskiness index. As their
riskiness index is consistent with the concept of stochastic domi-
nance and the theoretical axioms, it is intriguing and crucial to
re-investigate the optimal hedge ratio by applying the new risk
measurement. The optimal hedge ratio minimizing A&S riskiness
index guarantees that there exists no other portfolio which sec-
ond-order stochastic dominates the optimal portfolio. In another
word, it is also true that, for all risk averse investors, there exists
no other portfolio whose expected utility is larger than that of
the optimal one.

There are several other advantages for the riskiness index pro-
posed by A&S over the traditional risk measures. For example, var-
iance, as a measure of dispersion, takes little account of the
direction of deviations from the mean. In comparison, the A&S risk-
iness index gives less credit for gains but penalizes more for losses.
Another commonly used risk measure is the Sharpe ratio. The im-
plicit assumption for building the Sharpe ratio is that the mean and
standard deviation of an asset return completely characterize the
risk of the asset. However, it is well known that returns in the
financial markets are often skewed with excess kurtosis. The A&S
riskiness index, on the other hand, is derived by a moment gener-
ating function restriction that has an expected utility interpreta-
tion. Finally, VaR is a widely used risk measure, but it ignores the
gain side of an asset. Even on the loss side, VaR focuses only on
the losses that are below a pre-specified threshold. The A&S riski-
ness index takes into account not only the loss side but also the
gain side.

With the above motivations, we contribute to the literature by
calculating the optimal hedge ratio3 on the basis of the A&S riski-
ness index and by providing the associated estimation and testing
methods. Specifically, we first derive the optimal hedge ratio by min-
imizing the riskiness index of the hedged portfolio. We provide the
analytical solution of this riskiness-minimizing (R-min) hedge ratio
under the normality assumption, and propose a general rule to cal-
culate the R-min hedge ratio when the returns do not follow normal
distributions. We also compare the R-min hedge ratio with the var-
iance-minimizing (V-min) hedge ratio, and show the differences in
their empirical implications. By using the method-of-moments, we
can easily estimate these optimal hedge ratios and test whether
the R-min hedge ratio is statistically different from the V-min hedge
ratio (or any other fixed hedge ratios).

Finally, we further demonstrate an empirical application of our
method using the daily spot and futures prices of a set of US stock
indices. We find that the R-min hedged portfolio can effectively
reduce the riskiness of the spot measured by the A&S riskiness in-
dex, and has higher mean and variance and much lower riskiness
than the V-min hedged portfolio. These empirical findings are all
consistent with the theoretical results that will be explored later
in the paper. We also find that the R-min hedge ratio is signifi-
cantly different from zero and one, implying that the decision mak-
ers should neither choose the naked portfolio (that is, the spot) nor
3 We note that our choice of optimal hedge ratio is not based on a dynamic setting 4 To be precise, xt is the return from t to t þ 1.
.
the fully-hedged portfolio for minimizing the riskiness. Moreover,
we find that the R-min hedged ratio is significantly smaller than
the V-min hedged ratio. This suggests that the empirical differ-
ences between the R-min hedge portfolio and the V-min hedge
portfolio are statistically meaningful.

The remainder of this paper is organized as follows. Section 2
presents a description of the A&S riskiness index, and explores
how this riskiness index behaves under non-normality. Section 3
discusses the R-min method, and compares it with the V-min
method. Section 4 offers the estimation and testing methods and
provides an analysis of the empirical example. Finally, in Section 5,
we present our conclusions. Appendix A collects some mathemat-
ical derivations.

2. Riskiness index

Let xt be the return on an asset at time t with Pðxt < 0Þ > 0 and
E½xt � > 0, and w be the initial wealth of a decision maker in regard
to this asset.4 This individual has the utility UðwÞ at time t þ 1 if she
does not invest in this asset at time t, and has the expected utility
E½Uðwþ xtÞ� at time t þ 1 if she makes the investment at time t.
Given the constant absolute risk aversion (CARA hereafter) utility
function: UðwÞ ¼ �c�1 expð�cwÞ with the risk aversion coefficient
c > 0, the individual would be indifferent between making and not
making the investment if c ¼ c�, where c� is given by the expected
utility restriction:

� 1
c�

expð�c�wÞ ¼ E � 1
c�

expð�c�ðwþ xtÞÞ
� �

:

By denoting that Rx :¼ 1=c� > 0, we can write this restriction as:

E exp � xt

Rx

� �� �
¼ 1: ð1Þ

A&S proposed using Rx as an economic index for the riskiness of
investing in this asset, and proved that this index has the appealing
properties mentioned in Section 1.

Riskiness index of A&S does not require that the underlying util-
ity function is CARA. They apply the CARA utility function as a
bridge to derive a measurement which satisfies monotonicity with
respect to stochastic dominance. In another word, for all risk
averse individuals, if lottery A is preferred to lottery B, then the
riskiness of lottery A is smaller than that of lottery B. Thus, in the-
ory, we can only conclude that there does not exist a portfolio pre-
ferred by all risk averse investors to the portfolio under the optimal
hedge ratio minimizing A&S riskiness index. However, for a specific
utility function, the portfolio minimizing A&S riskiness index may
not be always preferred. To illustrate the above argument, later in
Section 3.3, we further provide quadratic utility function to com-
pare the expected utility of the portfolio minimizing A&S riskiness
index and the portfolio minimizing variance.

To explore the statistical features of Rx, note that E½expðsxtÞ�
with s 2 R is the moment generating function of xt when it exists.
Thus, according to (1), we may derive Rx from a moment generat-
ing function restriction for some particular distributions. For exam-
ple, xt has the moment generating function:

E½expðsxtÞ� ¼ exp lxsþ
1
2
r2

xs
2

� �
;

with lx :¼ E½xt� > 0 and r2
x :¼ var½xt�, when xt � N lx;r2

x

� �
. In this

normality case, we can write (1) as

exp �lx

Rx
þ r2

x

2R2
x

 !
¼ 1 ð2Þ



Table 1
Rx under non-normal distributions.

tðmÞ L�ðxÞ LþðxÞ

m lx ¼ 0:1 0.25 0.5 x lx ¼ 0:1 0.25 0.5 x lx ¼ 0:1 0.25 0.5

4 5.249 2.249 1.249 0.05 5.035 2.046 1.049 0.05 4.955 1.951 0.951
6 5.082 2.146 1.249 0.10 5.084 2.098 1.102 0.10 4.906 1.901 0.903
8 5.062 2.070 1.153 0.15 5.135 2.151 1.158 0.15 4.856 1.852 0.856

10 5.055 2.049 1.093 0.20 5.187 2.207 1.218 0.20 4.805 1.802 0.809
12 5.051 2.038 1.067 0.25 5.242 2.266 1.283 0.25 4.753 1.752 0.763
14 5.049 2.032 1.053 0.30 5.300 2.330 1.355 0.30 4.699 1.701 0.717
16 5.048 2.028 1.044 0.35 5.361 2.400 1.436 0.35 4.643 1.649 0.671
18 5.046 2.025 1.038 0.40 5.429 2.477 1.529 0.40 4.585 1.595 0.625
20 5.046 2.022 1.033 0.45 5.502 2.564 1.639 0.45 4.523 1.539 0.579
22 5.045 2.021 1.030 0.50 5.584 2.665 1.770 0.50 4.457 1.481 0.533

Note: The entries are the (simulated) riskiness of xt under non-normal distributions.
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and obtain a particular Rx:

Rn
x ¼

r2
x

2lx
; ð3Þ

see A&S (p. 820) for a different derivation of (3). This simple formula
demonstrates that, under the normality assumption, the riskiness of
xt not only increases with r2

x but also decreases with lx.
In general, it is difficult to obtain an analytical form of Rx in the

presence of non-normality.5 Nonetheless, Rn
x might be regarded as a

sensible approximation to Rx when lx is sufficiently small. The ratio-
nale is that, by fixing r2

x , the riskiness index Rn
x increases as the

expected return lx decreases. This implies that expð�xt=Rn
x Þ with

an arbitrarily fixed xt should converge to one (and hence E½exp
ð�xt=Rn

x Þ� should converge to E½expð�xt=RxÞ�) when lx approaches
zero. Observing this relationship is useful because daily stock returns
are typically non-normal and have rather small means.

To explore how Rx behaves under non-normality by means of a
simulation, we consider the standardized tðmÞ distribution with the
probability density function (PDF):

gtðu; mÞ ¼
Cððmþ 1Þ=2Þ

Cðm=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 2Þp

p 1þ u2

m� 2

� ��mþ1
2

; ð4Þ

where u 2 R and Cð�Þ denotes the gamma function, and the stan-
dardized log–normal distribution LþðxÞ with the PDF:

gþL ðu;xÞ ¼
rxffiffiffiffiffiffiffi

2p
p

x l1=2
x þ rxu

	 

� exp �1

2
1
x

ln l1=2
x þ rxu

� �� �2
 !

; ð5Þ

where u > �r�1
x lx (otherwise, zero), lx :¼ expðx2Þ, and r2

x :¼ exp
ðx2Þðexpðx2Þ � 1Þ. Like Nð0;1Þ, these two distributions are both of
zero mean and unit variance. Unlike Nð0;1Þ; tðmÞ is heavily-tailed
when m is small and LþðxÞ is right-skewed when x > 0. The former
converges to Nð0;1Þ as m!1, and the latter degenerates to Nð0;1Þ
as x ¼ 0. We also consider the ‘‘left-skewed log–normal distribu-
tion’’ L�ðxÞ which is defined to have the PDF g�L ðu;xÞ :¼ gþL ð�u;xÞ.

In Table 1, we show the simulated Rx’s of xt :¼ lx þ rxut , with
rx ¼ 1, under different combinations of ðlx;utÞ’s, including
lx ¼ 0:1;0:25;0:5, ut � tðmÞ with m ¼ 4;6; . . . ;22, and L�ðxÞ and
LþðxÞwith x ¼ 0:05;0:1; . . . ;0:5. We compute these Rx’s by solving
the equation: T�1PT

t¼1 expð�xt=RxÞ ¼ 1, where T ¼ 106 and fxtgT
t¼1

is a random sample drawn from the distribution being considered.
From this table, we can observe that, by fixing lx, Rx tends to
5 Schulze (2010) derives numerical and closed-form solutions for the riskiness of
certain particular distributions, including exponential, Poisson, Gamma, and variance-
Gamma distributions.
increase when tðmÞ becomes more heavily-tailed (m decreases),
L�ðxÞ becomes more left-skewed (x increases), or LþðxÞ becomes
less right-skewed (x increases). Meanwhile, Rx becomes closer to
Rn

x ¼ ð2lxÞ
�1 as m increases or x decreases. Moreover, as expected,

the discrepancy between Rx and Rn
x decreases (that is, the ratio

Rx=Rn
x is closer to one) when lx becomes smaller.

We also consider the Gram–Charlier type-A expansion as an-
other example in exploring the behavior of Rx under non-normal-
ity.6 Let Sx and Kx be, respectively, the skewness coefficient and
the kurtosis coefficient of xt . This expansion for the PDF of xt is of
the form:

gðxÞ ¼ 1
rx

/
x� lx

rx

� �
1þ j3

6r3
x

H3
x� lx

rx

� �
þ j4

24r4
x

H4
x� lx

rx

� �� �
;

ð6Þ

in which H3ðzÞ :¼ z3 � 3z and H4ðzÞ :¼ z4 � 6z2 þ 3 are, respectively,
the third and fourth Hermite polynomials, /ðzÞ :¼ ð2pÞ�1=2 exp
ð�z2=2Þ, with z 2 R, is the PDF of Nð0;1Þ, and j3 :¼ r3

x Sx and
j4 :¼ r4

x ðKx � 3Þ are, respectively, the third and fourth cumulants
of xt; see, e.g., Gallant and Tauchen (1989) and Jondeau and Rockin-
ger (2001) for its financial applications. In Appendix A, we show
that if the PDF of xt follows (6), then Rx is the solution of the nonlin-
ear equation:

1� Sx

6
rx

Rx

� �3

þ ðKx � 3Þ
24

rx

Rx

� �4

¼ exp �lx

rx

rx

Rx

� �
þ 1

2
rx

Rx

� �2
 !

:ð7Þ

In this example, Rx is determined by the first four moments of xt ,
and includes Rn

x as a special case where Sx ¼ 0 and Kx ¼ 3 (that is,
the skewness and kurtosis coefficient restrictions under normality.)

In Table 2, we present the Rx numerically solved from (6) under
the same first four moment combinations considered by Table 1.
Specifically, we set lx ¼ 0:1, 0.25, and 0.5, r2

x ¼ 1, and ðSx;KxÞ ¼
ðkSðxÞ;3Þ and ð0; kKðmÞÞ, with kSðxÞ :¼ ðexpðx2Þ þ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðx2Þ � 2

p
denoting the skewness coefficient of LþðxÞ and
kKðmÞ :¼ 3þ 6=ðm� 4Þ denoting the kurtosis coefficient of tðmÞ, for
the ðm;xÞ’s shown in Table 1. Because kKðmÞ is only defined when
m > 4, the case where m ¼ 4 is infeasible in Table 2. In Fig. 1, we plot
kSðxÞ and kKðmÞ and compare the PDFs of Nðl;r2Þ; tðmÞ, and L�ðxÞ
with the Gram–Charlier expansion gð�Þ with lx ¼ 0:25;r2

x ¼ 1;
m ¼ 6 or 8, and x ¼ 0:3 or 0.5. This figure shows that the distribu-
tion shape of gð�Þ is quite different from that of tðmÞ or L�ðxÞ even
though they have the same lx;r2

x ; Sx, and Kx. Like Tables 1 and 2
shows that Rx converges to Rn

x when ðSx;KxÞ approaches to (0,3),
and the discrepancy between Rx and Rn

x decreases when lx be-
comes smaller. However, unlike Tables 1 and 2 indicates that
6 We thank an anonymous referee for this comment.



Fig. 1. The PDFs of N lx;r2
x

� �
; tðmÞ, and L�ðxÞ and the Gram–Charlier expansion gð�Þ.

Table 2
Rx under the Gram–Charlier expansion.

ðSx;KxÞ ¼ ð0; kK ðmÞÞ ðSx ;KxÞ ¼ ð�kSðxÞ;3Þ ðSx ;KxÞ ¼ ðkSðxÞ;3Þ

m lx ¼ 0:1 0.25 0.5 x lx ¼ 0:1 0.25 0.5 x lx ¼ 0:1 0.25 0.5

4 – – – 0.05 4.998 1.998 0.998 0.05 5.003 2.002 1.003
6 4.948 1.856 0.431 0.10 4.990 1.990 0.990 0.10 5.010 2.010 1.010
8 4.975 1.933 0.829 0.15 4.978 1.977 0.977 0.15 5.023 2.023 1.022

10 4.983 1.957 0.900 0.20 4.958 1.958 0.957 0.20 5.040 2.040 1.040
12 4.988 1.968 0.929 0.25 4.933 1.932 0.931 0.25 5.066 2.064 1.063
14 4.990 1.974 0.945 0.30 4.902 1.898 0.895 0.30 5.094 2.093 1.091
16 4.993 1.979 0.955 0.35 4.859 1.854 0.848 0.35 5.133 2.128 1.124
18 4.993 1.982 0.962 0.40 4.810 1.797 0.786 0.40 5.176 2.170 1.163
20 4.993 1.984 0.967 0.45 4.746 1.723 0.706 0.45 5.230 2.219 1.207
22 4.995 1.986 0.971 0.50 4.666 1.624 0.612 0.50 5.294 2.275 1.257

Note: The entries are the riskiness of xt numerically solved from (7).
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Rx > Rn
x in the excess-kurtosis case where ðSx;KxÞ ¼ ð0; kkðmÞÞ or in

the negative-skewness case where ðSx;KxÞ ¼ ð�kSðxÞ;3Þ, and
Rx < Rn

x in the positive-skewness case where ðSx;KxÞ ¼ ðkSðxÞ;3Þ.
This may be related to the fact that, as shown by Fig. 1, the distri-
bution shape of gð�Þ is quite different from those of tðmÞ and L�ðxÞ
under non-normality. The function gð�Þ has a higher peakedness
than the PDFs of tðmÞ and N lx;r2

x

� �
in the excess-kurtosis case,

and has a larger (lower) mode than L�ðxÞ and N lx;r2
x

� �
in the neg-

ative-skewness (positive-skewness) case.
Generally speaking, the results in Tables 1 and 2 suggest that

lx;r2
x

� �
may play a more essential role than the distribution sym-

metry and tails, or ðSx;KxÞ, in determining Rx under non-normality;
moreover, various non-normal distributions could have various
Rx’s even when these distributions have the same lx;r2

x ; Sx;Kx
� �

.
This means that it is important to estimate Rx based on the general
moment restriction in (1), rather than its particular formula, in the
presence of non-normality.
3. The riskiness-minimizing method

Let st and ft be, respectively, the spot return and the futures re-
turn at time t. We denote ls :¼ E½st �;r2

s :¼ var½st �;lf :¼ E½ft �;r2
f :¼

var½ft �;rsf :¼ covðst; ftÞ, and qsf :¼ corrðst ; ftÞ, and assume that
ls > 0;lf > 0, and jqsf j < 1. The purpose of hedging is to mitigate
certain undesirable features, such as the risk measures mentioned
in Section 1, of a portfolio which comprises a long spot position
and a short futures position. Let ptðaÞ :¼ st � aft be the return on
a hedged portfolio, with a 2 A standing for the hedge ratio and
with A denoting the parameter space of a. Also, denote

lpðaÞ :¼ E½ptðaÞ� ¼ ls � alf ð8Þ

and

r2
pðaÞ :¼ var½ptðaÞ� ¼ r2

s � 2arsf þ a2r2
f : ð9Þ



158 Y.-T. Chen et al. / Journal of Banking & Finance 40 (2014) 154–164
The optimal choice of a is determined by the risk measure to be
minimized.

Conventionally, researchers consider the variance r2
pðaÞ as the

risk measure to be minimized. This V-min method generates an
optimal hedge ratio:

aV :¼ arg min
a2A

var½ptðaÞ�;

which can be written as:

aV ¼
rsf

r2
f

¼ qsf
rs

rf

� �
: ð10Þ

By applying (1) to xt ¼ ptðaÞ, we can define the riskiness of ptðaÞ as
RpðaÞ, which is given by the moment restriction:

E exp � ptðaÞ
RpðaÞ

� �� �
¼ 1; ð11Þ

provided that lpðaÞ > 0 (that is, a < ls=lf ). Unlike the V-min meth-
od, the R-min method considers RpðaÞ as the risk measure to be
minimized. Correspondingly, the R-min hedge ratio is defined as:

aR :¼ arg min
a2A0

RpðaÞ; ð12Þ

where A0 :¼ fa < ls=lf g. The result in (10) indicates that the V-min
hedge ratio aV is fully determined by the second moments of st and
ft . In comparison, because RpðaÞ is more complicated than var½ptðaÞ�,
the R-min hedge ratio aR is determined by not only the second mo-
ments but also other features of the distribution of ðst; ftÞ.

3.1. Normality

In the case where ðst ; ftÞ follows a bivariate normal distribution,

ptðaÞ is of the normal distribution N lpðaÞ;r2
pðaÞ

	 

. Since we are in

the normality case, RpðaÞ is equal to Rn
pðaÞ defined in the particular

form:

Rn
pðaÞ ¼

r2
s � 2arsf þ a2r2

f

2ðls � alf Þ
; ð13Þ

which is obtained by plugging xt ¼ ptðaÞ into (3). In Appendix A, we
show that the R-min hedge ratio can be expressed as:

an
R ¼

ls

lf

 !
� A1=2

; ð14Þ

where

A ¼ ls

lf
� rs

rf

 !2

þ 2ð1� qsf Þ
ls

lf

 !
rs

rf

� �
;

in this case. It is easy to see that A > 0, because by assuming

ls=lf > 0. This means that the restriction: an
R <

ls
lf

	 

is satisfied

and the riskiness index Rn
pðaÞ is well-defined when it is evaluated

at a ¼ an
R.

3.2. General distributions

In the case where ðst ; ftÞ does not have a normal distribution, we
can still first identify RpðaÞ from (11) for each a 2 A0 and then solve
aR as the minimizer of Rpð�Þ as defined in (12). The R-min hedge
ratio aR can be understood as the solution of the first-order
condition:

R0pðaRÞ ¼ 0; ð15Þ

provided that the second-order condition:
R00pðaRÞ > 0 ð16Þ

is satisfied.
To be specific on conditions (15) and (16), we denote

BðaÞ :¼ �E exp � ptðaÞ
RpðaÞ

� �
ft

� �
and

CðaÞ :¼ E exp � ptðaÞ
RpðaÞ

� �
ptðaÞ

� �
:

Note that CðaÞ may tend to be negative because of the functional
form of expð�x=RÞx. Specifically, by fixing an arbitrary R > 0; exp
ð�x=RÞx is negative (positive) when x < 0 (when x > 0), and
diverges to negative infinity (converges to zero) as x decreases (in-
creases) from zero. Thus, CðaÞ ought to be negative provided that
the distribution of ptðaÞ is not extremely concentrated on the gain
side. Indeed, as proved in Appendix A, we have the result:

CðaÞ ¼ �lpðaÞ ð17Þ

under normality; by construction, CðaÞ is negative when lpðaÞ > 0.
Thus, we assume that CðaÞ < 0 in the following discussions.

By differentiating (11) with respect to a, we have the result:

E exp � ptðaÞ
RpðaÞ

� �
ft

RpðaÞ
þ

ptðaÞR
0
pðaÞ

RpðaÞ2

 !" #
¼ 0:

Since RpðaÞ and R0pðaÞ do not depend on st and ft , the above equation
can be rewritten as

�RpðaÞE exp � ptðaÞ
RpðaÞ

� �
ft

� �
¼ E exp � ptðaÞ

RpðaÞ

� �
ptðaÞ

� �
R0pðaÞ;

which implies that

R0pðaÞ ¼
BðaÞ
CðaÞ

� �
RpðaÞ: ð18Þ

Consequently, we can reexpress the first-order condition in (15) as
BðaRÞ ¼ 0; that is,

E exp � ptðaRÞ
RpðaRÞ

� �
ft

� �
¼ 0: ð19Þ

By differentiating (18) with respect to a, we can further show that

R00pðaÞ ¼
BðaÞ
CðaÞ

� �
R0pðaÞ þ

B0ðaÞ
CðaÞ �

BðaÞC 0ðaÞ
CðaÞ2

 !
RpðaÞ;

where

B0ðaÞ :¼ �E exp � ptðaÞ
RpðaÞ

� �
f t

ft

RpðaÞ
þ

ptðaÞR
0
pðaÞ

RpðaÞ2

 !" #
:

Using the first-order condition: R0pðaRÞ ¼ 0 or BðaRÞ ¼ 0, we can ob-
tain that

R00pðaRÞ ¼
B0ðaRÞ
CðaRÞ

RpðaRÞ; ð20Þ

where

B0ðaRÞ ¼ �E exp � ptðaRÞ
RpðaRÞ

� �
f 2
t

RpðaRÞ

� �� �
< 0:

Thus, the second-order condition: R00pðaRÞ > 0 holds when CðaRÞ < 0.
As a consequence, we can interpret the explicit form of the

first-order condition in (19) as the moment condition of the
R-min hedge ratio aR. Introducing this moment condition is impor-
tant for the method-of-moments estimation for aR that will be dis-
cussed in Section 4.



7 This formula implicitly assumes that an investor buys a futures contract, invests
e�rt Ft dollars in Treasury bills for the settlement of his futures position, and posts
Treasury bills as margin (see Bodie and Rosansky, 1980).
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3.3. Comparison with the V-min method

To compare the R-min method with the V-min method in an
easier and clearer way, we focus on the normality case where aR

has the analytical solution in (14). To facilitate this comparison,
we first reexpress the component A in (14) as:

A ¼ ls

lf

 !
� aV

" #2

þ 1� q2
sf

	 
 rs

rf

� �2

:

Accordingly, we can use the restriction: jqsf j < 1 to show that

A1=2
>

ls

lf

 !
� aV : ð21Þ

Combining (14) with (21), we can obtain the result: an
R < aV . This

indicates that the R-min hedge ratio an
R is smaller than the V-min

hedge ratio aV . Since Rnðan
RÞ < RnðaV Þ holds by construction, this also

means that the V-min method is over-hedged if the riskiness of
ptðaÞ to be hedged is measured by RpðaÞ, rather than by r2

pðaÞ. More-
over, unlike aV which is independent of ls and lf , an

R is dependent
on the mean ratio ls=lf as in (14). In particular, the R-min hedge
ratio an

R would increase with the ratio ls=lf because

@an
R

@ðls=lf Þ
¼ 1� A�1=2 ls

lf
� aV

 !

is positive as implied by (21).
Following (8) and (9), and the aforementioned result:

aV � an
R > 0, we can further see that

lpðan
RÞ � lpðaV Þ ¼ ðaV � an

RÞlf > 0

and

r2
p an

R

� �
� r2

pðaV Þ ¼ 2 aV � an
R

� �
rsf � a2

V � an
R

� �2
	 


r2
f

¼ 2 aV � an
R

� �
aVr2

f � a2
V � an

R

� �2
	 


r2
f

¼ 2 aV � an
R

� �
aV � a2

V � an
R

� �2
	 
	 


r2
f

¼ aV � an
R

� �2r2
f > 0;

in which the second equality is due to (10). Put differently, the R-
min portfolio return pt an

R

� �
has a larger mean and variance than

the V-min portfolio return ptðaV Þ. Thus, the choice between these
two methods is determined by the utility function of investors.

Recall that Uð�Þ denotes a utility function. Using the fact that
p0tðaÞ ¼ �ft and @kptðaÞ=@ak ¼ 0 when k > 1, we may use Taylor’s
expansion to show that

U pt an
R

� �� �
¼ UðptðaV ÞÞ þ aV � an

R

� �
U0ðptðaV ÞÞft ;

the second-order and higher-order terms of this expansion are
zeros because

@kUðptðaÞÞ
@ak

¼ @
kUðptðaÞÞ
@ptðaÞ

k
� @

kptðaÞ
@ak

¼ 0

when k > 1. Accordingly, the expected utilities generated by pt an
R

� �
and ptðaV Þ are of the discrepancy:

E U pt an
R

� �� �� �
� E½UðptðaV ÞÞ� ¼ aV � an

R

� �
E½U0ðptðaV ÞÞft �; ð22Þ

which is positive (negative) if E½U0ðptðaV ÞÞft� is positive (negative).
In (22), we do not assume that U0ð�Þ is a constant which is the

case of risk neutrality. Following (22), we further discuss two cases,
one is assumed risk neutral preference and the other exhibits
mean–variance preference. If Uð�Þ is the risk-neutral utility func-
tion such that UðptðaÞÞ ¼ ptðaÞ, then E½U0ðptðaV ÞÞft� ¼ lf and hence
E U pt an
R

� �� �� �
> E½UðptðaV ÞÞ�. In this example, the investor would

certainly prefer the R-min portfolio to the V-min portfolio. If Uð�Þ
is the quadratic utility function such that

UðptðaÞÞ ¼ aþ bptðaÞ � cptðaÞ
2
;

with b > 0 and c > 0, then

E½U0ðptðaV ÞÞft� ¼ ðb=ð2cÞ � ðls � aVlf ÞÞ2clf :

In this example, E U pt an
R

� �� �� �
P E½UðptðaV ÞÞ� if b=ð2cÞP ðls � aVlf Þ.

By fixing ptðaÞ, since b=ð2cÞ decreases with the Arrow–Pratt abso-
lute risk-aversion measure:

�U00ðptðaÞÞ
U0ðptðaÞÞ

¼ 1
b=ð2cÞ � ptðaÞ

;

the condition: b=ð2cÞP ðls � aVlf Þ is more likely to be valid when
the investor is less risk-averse. The underlying intuition is that the
R-min portfolio considers both mean and variance, whereas the V-
min portfolio only takes into account the variance. Since less risk-
averse individuals attach more weight to the mean than the vari-
ance, they would favor the R-min method.

4. Empirical example

In this empirical example, we show the applicability of the pro-
posed R-min portfolio to real data by using the method-of-mo-
ments. Let St and Ft be, respectively, the spot and futures prices
of one of the three US stock indices: Standard & Poor’s 400 (S&P
400), S&P 500, and NASDAQ 100 on date t. Among these indices,
the S&P 400 index includes 400 medium-sized companies, the
S&P 500 index is a value-weighted index consisting of the largest
500 companies in the US stock markets, and the NASDAQ 100 in-
dex consists of the largest 100 firms listed on the NASDAQ. The
price data are retrieved from Datastream. The sampling period is
from June 1996 to May 2011 with the sample size T ¼ 3912. Let
rt be the risk-free rate, which is represented by the 1-month Trea-
sury bill rate. The daily spot and futures returns are, respectively,
computed as st ¼ 100� ðStþ1 � StÞ=St and ft ¼ 100� ðFtþ1�
e�rt FtÞ=ðe�rt FtÞ.7

Denote the sample means l̂x :¼ T�1PT
t¼1xt ; l̂s :¼ T�1PT

t¼1st , and

l̂f :¼ T�1PT
t¼1ft , the sample variances r̂2

x :¼ T�1PT
t¼1ðxt � l̂xÞ2;

r̂2
s :¼ T�1PT

t¼1ðst � l̂sÞ2, and r̂2
f :¼ T�1PT

t¼1ðft � l̂f Þ2, the sample

covariance r̂sf :¼ T�1PT
t¼1ðst � l̂sÞðft � l̂f Þ, and the sample correla-

tion q̂sf :¼ r̂sf =ðr̂sr̂f Þ. Recall that the parameters Rn
x ;aV ;R

n
pðaÞ, and

an
R have analytical solutions. Thus, we can easily and consistently

estimate the parameters: Rn
x ;aV ;R

n
pðaÞ, and an

R using their sample
analogs:

bRn
x ¼

r̂2
x

2l̂x
; ð23Þ

âV ¼
r̂sf

r̂2
f

; ð24Þ

bRn
pðaÞ ¼

r̂2
s � 2ar̂sf þ a2r̂2

f

2ðl̂s � al̂f Þ
; ð25Þ

and

ân
R ¼

l̂s

l̂f

� �
� bA1=2; ð26Þ

with



Table 3
Summary statistics for the spot and futures returns.

S&P 400 S&P 500 NASDAQ 100

xt ¼ st xt ¼ ft xt ¼ st xt ¼ ft xt ¼ st xt ¼ ft

l̂x 0.04593 0.04779 0.02611 0.02880 0.05205 0.04939
r̂2

x 1.88073 1.99779 1.65066 1.71781 4.12794 4.02786bRn
x

20.47506 20.90397 31.60898 29.82506 39.65054 40.77923bRx
20.60285 21.06038 31.64085 29.79565 39.46765 40.66929

q̂sf 0.96927 0.97712 0.97272bSx
�0.17428 �0.19145 0.00521 0.17729 0.33457 0.23055bK x

9.34883 11.48109 10.97327 13.35146 8.30095 8.53895

n̂x 14.24446⁄⁄ 10.93818⁄⁄ 13.24167⁄⁄ 10.37304⁄⁄ 11.06737⁄⁄ 20.33798⁄⁄

Note: The returns are in percentage unit. The notations: bSx :¼ T�1PT
t¼1 ðxt � l̂xÞ=r̂xð Þ3; bK x :¼ T�1PT

t¼1 ðxt � l̂xÞ=r̂xð Þ4, and n̂x are, respectively, the sample skewness coefficient,

the sample kurtosis coefficient, and the skewness-kurtosis-based normality test statistic of Bai and Ng (2005, Theorem 4). Denote U :¼ limT!1var 1ffiffi
T
p
PT

t¼1Zt

h i
with

Zt :¼ ðxt � lxÞ; ðxt � lxÞ
2 � r2

x ; ðxt � lxÞ
3; ðxt � lxÞ

4 � 3r4
x

	 
>
. The test statistic n̂x is defined as:

n̂x :¼ bY> ĉÛĉ>
h i�1 bY ; where bY :¼

r̂3
x

ffiffiffi
T
p bSx

r̂4
x

ffiffiffi
T
p
ðbK x � 3Þ

" #
; ĉ :¼ �3r̂2

x 0 1 0
0 �6r̂2

x 0 1

" #
;

and Û is an HAC (heteroskedasticity–autocorrelation-consistent) estimator for U, and has the asymptotic distribution: n̂x!
d v2ð2Þ under the null of normality; see Appendix A

for how the HAC estimator is computed in this paper. The 99% critical value of v2ð2Þ is 9.2103.
⁄⁄ Indicates that the normality test statistic is significant at the 1% level.
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bA :¼ l̂s

l̂f

� �2

� 2q̂sf
l̂s

l̂f

� �
r̂s

r̂f

� �
þ r̂s

r̂f

� �2

;

respectively. In general, the parameters: Rx;RpðaÞ, and aR may not
have analytical solutions. Nonetheless, we can still consistently
estimate Rx and RpðaÞ by bRx and bRpðaÞ that are, respectively, solved
from the estimating equations:

1
T

XT

t¼1

exp � xtbRx

 !
¼ 1 ð27Þ

and

1
T

XT

t¼1

exp � ptðaÞbRpðaÞ

 !
¼ 1 ð28Þ

that are, respectively, the sample analogs of the moment condi-
tions: (1) and (11). Using the fact that aR is the minimizer of Rpð�Þ,
we can also estimate aR by the minimizer of bRpð�Þ which is denoted
as âR. Corresponding to the moment condition of aR in (19), the esti-
mator âR is of the estimating equation:

1
T

XT

t¼1

exp � ptðâRÞbRpðâRÞ

 !
ft ¼ 0; ð29Þ

(19) and (29) are, respectively, the first-order conditions of mini-

mizing Rpð�Þ and minimizing bRpð�Þ. Following a standard asymp-
totic method discussed in Newey and McFadden (1994) and
many others, it is not difficult to derive the asymptotic distribu-
tions of these estimators and the associated significance tests.
We provide the derivations in a supplementary appendix which
is not reported here for the sake of brevity but is available upon
requested.

In Table 3, we show a set of summary statistics of the return se-
quences: fstg and fftg. From this table, we can see that the sample
mean l̂x is positive for all the spot and futures returns. This per-

mits us to estimate the riskiness of these assets using bRn
x or bRx. It

is straightforward to compute bRn
x according to (23). The bRn

x ’s of
fstg and fftg are about 20.475 and 20.904 for the S&P 400, 31.609
and 29.825 for the S&P 500, and 39.651 and 40.779 for the NASDAQ

100. On the other hand, we compute bRx as the minimizer of the
objective function:
bQ ðRÞ :¼ 1
T

XT

t¼1

expð�xt=RÞ � 1

 !2

because the associated first-order condition is the same as the esti-
mating Eq. (27). We implement the numerical optimization using
the OPTMUM of GAUSSTM with the Newton–Raphson method. Since
we already have the sample of xt , the procedure of optimization

starts with assigning an initial point of R by bRn
x . Then, the change

in R is determined by the sign of bQ 0ðRÞ. The searching process stops

when bQ 0ðRÞ is sufficiently close to zero.
By this method, the bRx’s for fstg and fftg are about 20.603 and

21.060 for the S&P 400, 31.641 and 29.796 for the S&P 500, and
39.468 and 40.669 for the NASDAQ 100; see Table 3. In Fig. 2, we

plot the sequences of the fbQ ðRÞ0:25g’s with a range of R’s around

the bRx’s. This figure verifies that these bRx’s are the minimizers of

the associated bQ ðRÞ’s. Clearly, bRn
x is very close to bRx for all the

ðst ; ftÞ’s considered. This is consistent with our theoretical finding
in Section 2 that Rn

x ought to be close to Rx when lx is sufficiently
small.

Theoretically, the choice between these two riskiness estimates
is dependent on whether the hypothesis of normality is satisfied.
To check this hypothesis, we conduct the skewness-kurtosis-based
test of Bai and Ng (2005), which also allows the return sequences
to be serially dependent. The test statistics are also shown in Ta-
ble 3; see the footnote of this table for more details about this test.
Not surprisingly, the normality hypothesis is strongly rejected by
this test for all the returns considered. This suggests that we should
choose bRx as the riskiness estimate and explore the empirical per-
formance of the R-min method without using the normality
assumption. Thus, the normality-based estimates: bRn

pðaÞ and ân
R

will not be considered in the following discussions.
To compare the R-min method with the V-min method in terms

of their empirical performance, we show the optimal hedge ratio
estimates: âR and âV and a set of summary statistics of the hedged
portfolio returns: fptðâRÞg and fptðâV Þg in Table 4. In this table, we

report the riskiness estimates: bRpðâRÞ and bRpðâV Þ for all but the

case of the S&P 500 because l̂pðâV Þ is negative and hence bRpðâV Þ
is undefined (or infinite) in this case. As we detail in this section,
âV is estimated from (24), while âR is estimated from the



Fig. 2. The sequence fbQ ðRÞ0:25g.

Table 4
The R-min and V-min hedged portfolios.

S&P 400 S&P 500 NASDAQ 100

â ¼ âR â ¼ âV â ¼ âR â ¼ âV â ¼ âR â ¼ âV

â 0.72339 0.94044 0.69345 0.95783 0.80815 0.98473
l̂pðâÞ 0.01136 0.00099 0.00614 �0.00147 0.01214 0.00342

r̂2
pðâÞ 0.20724 0.11292 0.19415 0.07386 0.34609 0.22014bSpðâÞ 0.03183 0.07903 �0.20657 �0.26857 0.12362 �0.50218bK pðâÞ 8.31906 11.44760 8.28384 9.76390 10.41737 17.71967bRpðâÞ 9.12671 57.12148 15.84411 – 14.24178 32.16472

Note: The notations: bSpðâÞ and bK pðâÞ are, respectively, the sample skewness and
kurtosis coefficients of the hedged portfolio returns fp̂tðâgT

t¼1.
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second-step estimation in (29), where the first-step estimation ofbRpðaÞ is based on (28).
In Fig. 3, we plot the adaptive kernel density estimates of

fstg; fftg; fptðâRÞg, and fptðâV Þg; see Breiman et al. (1977). This fig-
ure shows that the density estimate of st is essentially indistin-
guishable from that of ft for all the stock indices considered.
Moreover, the density estimates of st and ft have much thicker tails
than those of ptðâRÞ and ptðâV Þ. This suggests that the R-min meth-
od and the V-min method are both useful for reducing the disper-
sion of st (or ft). However, from this figure, we can also observe that
ptðâRÞ and ptðâV Þ have different distributions. In the following, we
summarize the main differences between these two hedged port-
folios according to the results in Table 4, and explain that these dif-
ferences are consistent with our theoretical findings.

First, the R-min hedge ratio âR is systematically smaller than the
V-min hedge ratio âV for all the stock indices considered. The value
of âR (âV ) is about 0.723, 0.693, and 0.808 (0.940, 0.958, and 0.985)
for the S&P 400, S&P 500, and NASDAQ 100, respectively. The âV ’s
Fig. 3. Adaptive kernel density estimate
are close to one for all the indices considered. This reflects the fact
that the ratios of the standard deviations and the sample correla-
tion coefficients between fstg and fftg, shown in Table 3, are all
close to one. In comparison, the âR’s are of a greater variation,
and their variation is consistent with that of the sample mean ratio
l̂s=l̂f which is about 0.961, 0.906, and 1.054 for the S&P 400, S&P
500, and NASDAQ 100, respectively. This empirical finding reflects
the theoretical results: an

R 6 an
V and @an

R=@ðls=lf Þ > 0 shown in
Section 3.3, and suggests that the V-min method tends to generate
an over-hedged portfolio if the undesirable feature to be mini-
mized is the riskiness, rather than the variance, of a portfolio.

Second, the sample mean l̂pðâRÞ is systematically greater than
l̂pðâV Þ for all the stock indices considered. Put differently, the R-
min method is useful for generating a higher averaged return than
the V-min method. This is consistent with the theoretical result:
lpðaRÞ > lpðaV Þmentioned in Section 3.3. Nonetheless, the sample

variance r̂2
pðâRÞ is also systematically greater than r̂2

pðâV Þ by con-
struction. Thus, as mentioned before, the R-min method does not
stochastically dominate the V-min method and vice versa. This
empirical finding suggests that the R-min method may be pre-
ferred to the V-min method by investors who are more concerned
about the mean than the variance of returns.

Third, by construction, the R-min method is much more effec-
tive for remedying the riskiness of spot (and futures) than the V-
min method. By fixing xt ¼ st , the R-method substantially reduces
the riskiness from bRx ¼ 20:603 to bRpðâRÞ ¼ 9:127 for the S&P 400,
from 31.609 to 15.844 for the S&P 500, and from 39.468 to
14.242 for the NASDAQ 100. By contrast, the V-min method only
slightly reduces the riskiness of NASDAQ 100 from 39.468 to
32.165. Importantly, the V-min method does not reduce but rather
increases the riskiness in the cases of the S&P 400 and S&P 500. For
the S&P 400 (S&P 500), the riskiness increases from 20.603 to
57.122 (from 31.609 to infinity) by this method.
s of fstg; fftg; fptðâRÞg, and fptðâV Þg.



Table 5
Significance test statistics.

Hypothesis S&P 400 S&P 500 NASDAQ 100

Ho : aR ¼ aV �3.31305⁄⁄ �2.04201⁄ �2.36062⁄

Ho : aR ¼ 0 10.98460⁄⁄ 5.35700⁄⁄ 10.74883⁄⁄

Ho : aR ¼ 1 �4.20029⁄⁄ �2.36814⁄ �2.55171⁄

Note: See Appendix A for the formulae and the asymptotic null distribution of the
significance test statistics.
⁄ Indicates that the test statistic is significant at the 5% level.
⁄⁄ Indicates that the test statistic is significant at the 1% level.
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Fourth, Table 4 also shows that the sample kurtosis coefficients
of fptðâRÞg are systematically smaller than those of fptðâV Þg for all
the stock indices considered. This is consistent with Fig. 3 which
shows that the distribution of ptðâRÞ is of a lower peakedness than
that of ptðâV Þ for these stock indices. This suggests that the R-min
portfolio returns are ‘‘more regular’’ than the V-min portfolio
returns.

Since the R-min hedged portfolio return ptðaRÞ, the spot return
st ¼ ptð0Þ, the fully-hedged portfolio return ptð1Þ, and the V-min
hedged portfolio return ptðaV Þ are only different in terms of their
hedge ratios: a ¼ aR, a ¼ 0;a ¼ 1, and a ¼ aV , we can further check
whether ptðaRÞ is significantly different from ptð0Þ; ptð1Þ, and ptðaV Þ
by testing the parameter restrictions: aR ¼ aV ;aR ¼ 0, and aR ¼ 1,
respectively. In Table 5, we show the significance test statistics
for these parameter restrictions. The formulae and the asymptotic
null distribution of the significance test statistics are provided in
Appendix A. As shown by this table, the test statistics are all signif-
icant at the 5% level for all the cases considered. Thus, the R-min
portfolio is significantly different from the spot, the fully-hedged
portfolio, and the V-min portfolio in this empirical example.

5. Conclusions

In this paper, we propose calculating the optimal hedge ratio by
minimizing the A&S riskiness index of the hedged portfolio returns.
Compared to the alternative risk measures used in the literature on
hedged portfolios, this riskiness index has better economic inter-
pretations and theoretical properties. We derive the analytical
solution of the R-min hedge ratio under normality, and provide a
general solution to this optimal hedge ratio in the presence of
non-normality. In addition, we also demonstrate a number of dif-
ferences between the empirical implications of the R-min portfolio
and the V-min portfolio. In addition, we further facilitate the prac-
tical applications of the R-min portfolio by using a set of method-
of-moments-based estimators and significance tests. The empirical
example shows that the R-min portfolio is effective for reducing
the riskiness of the spot. Moreover, it has quite different empirical
performance from the V-min portfolio, and the empirical differ-
ences between these two hedged portfolios are consistent with
our theoretical findings. We also apply the significance tests to
show that the R-min portfolio is statistically different from the V-
min portfolio (and the naked and fully-hedged portfolios).

Appendix A

A.1. Derivation of (7)

If the PDF of xt follows (6), then the expectation operator E½�� is
taken with respect to (6). Accordingly, we can rewrite the moment
condition in (1) as:Z

gðx;lx;rx;RxÞ 1þSx

6
H3

x�lx

rx

� �
þðKx�3Þ

24
H4
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� �� �
dx¼1;

ðA1Þ
where

gðx;lx;rx;RxÞ :¼ 1
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/
x� lx
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exp � x

Rx

� �
: ðA2Þ

Let w x;lx;r2
x ;Rx

� �
be the PDF of N lx � r2

x=Rx;r2
x

� �
. Note that
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which can be further expressed as:

gðx;lx;rx;RxÞ¼
1ffiffiffiffiffiffiffi
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:

Accordingly, we can rewrite (A1) asZ
1þ Sx

6
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x� lx
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Denote the standardized variable: x� :¼ r�1
x x� ðlx � r2

x=RxÞ
� �

.
Using the fact that r�1

x ðx� lxÞ ¼ x� � ðrx=RxÞ and the definition of
H3ðzÞ and H4ðzÞ, we can show that
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Furthermore, using the fact that w x;lx;r2
x ;Rx

� �
is the PDF of

N lx � r2
x=Rx;r2

x

� �
, we also have the restriction:

Z
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According to A4, A5 and A6, we obtain thatZ
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2
x ;Rx

� �
dx ¼ 1; ðA7ÞZ
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The result in (7) is obtained by introducing A7, A8 and A9 into
(A3). �
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A.2. Derivation of (14)

To minimize Rn
pðaÞ, we take the derivative of (13) with

respect to a and set it equal to zero. This yields the first-order
condition:

�2rsf þ 2ar2
f

	 

ðls � alf Þ þ r2

s � 2arsf þ a2r2
f

	 

lf ¼ 0:

Dividing both sides of the above equation by r2
f lf , we can rewrite

this condition as:
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Using the fact that rsf ¼ qsf rsrf , we can further write this condition
as:
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Accordingly, we have the equation:
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that has the solutions: a ¼ ls
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� A1=2. It can be checked that
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@a2 > 0, whereas a ¼ ls
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@a2 < 0. Thus, the optimal hedge ratio is an
R ¼
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A.3. Derivation of (17)

Under the normality assumption: ptðaÞ � N lpðaÞ;r2
pðaÞ

	 

, we

can write that
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Denote l�pðaÞ :¼ lpðaÞ � r2
pðaÞRpðaÞ�1. By combining (A10) with the

result:
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we can further write that
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Recall that RpðaÞ ¼ r2
pðaÞ=ð2lpðaÞÞ and l�pðaÞ ¼ lpðaÞ � 2lpðaÞ ¼

�lpðaÞ hold under the normality assumption. We obtain (17) by
plugging this result into (A11).

A.4. Significance tests

The derivation of the following significance tests is presented in
a supplementary appendix which is available upon requested.
Denote

JðaV Þ :¼ 0;0;0;1=r2
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;
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For the null hypothesis: aR ¼ aV , the significance test statistic is of
the form:
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;
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and has the asymptotic null distribution: SðâR; âV Þ!
d

Nð0;1Þ. For the
null hypothesis: Ho : aR ¼ ao, with a known ao (such as ao ¼ 0 or
ao ¼ 1), the significance test statistic is of the form:
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T
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where X̂ðâRÞ :¼ bJðâRÞ2R̂ðâRÞ with bJðâRÞ :¼ �bRpðâRÞ T�1PT
t¼1 exp

h
� pt ðâRÞbRpðâRÞ

� �
f 2
t �
�1 and R̂ðâRÞ denotes an HAC estimator for

RðaRÞ :¼ limT!1var T�1=2PT
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h i
, and has the asymptotic null

distribution: SðâR;aoÞ!
d

Nð0;1Þ. Let n̂tðâRÞ be the sample analog of
ntðaRÞ. In computing SðâR;aoÞ, we make use of the HAC estimator
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;

the kernel function jð�Þ, and the smoothing parameter s; see, e.g.,
Newey and West (1987) and Andrews (1991). In this paper, we
set jð�Þ as the Bartlett kernel and set s ¼ 3, as in the empirical study
of Hong et al. (2007). The HAC estimator x̂ðâR; âV Þ is also computed
in a similar way. The 95% and 99% critical values of the test statistics
are, respectively, about �1:96 and �2:576.
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