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a b s t r a c t

Marginal Conditional Stochastic Dominance (MCSD) developed by Shalit and Yitzhaki (1994) gives the
conditions under which all risk-averse individuals prefer to increase the share of one risky asset over
another in a given portfolio. In this paper, we extend this concept to provide conditions under which most
(and not all) risk-averse investors behave in this way. Instead of stochastic dominance rules, almost
stochastic dominance is used to assess the superiority of one asset over another in a given portfolio.
Switching from MCSD to Almost MCSD (AMCSD) helps to reconcile common practices in asset allocation
and the decision rules supporting stochastic dominance relations. A financial application is further pro-
vided to demonstrate that using AMCSD can indeed improve investment efficiency.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The most common investment rule is certainly the mean–vari-
ance (MV) rule. It is easy to compute, and in some cases even to ex-
press analytically, which explains why the MV rule has become
most widely accepted throughout the financial profession (see Liz-
yayev and Ruszczyński, 2012). On the other hand, Expected utility
(EU) maximization lies at the heart of modern investment theory
and practice. To be analytically consistent with EU maximization,
the MV rule requires strong assumptions (such as quadratic utility
functions or normally distributed returns), which seldom hold in
practice. However, EU requires the specification of the investor’s
utility function which appears extremely difficult.

Stochastic dominance (SD) is an alternative approach which
avoids all these shortcomings by considering the preferences
shared by all the rational decision-makers. Therefore, it does not
require a specific utility function nor a specific return distribution.
Furthermore, it uses the whole probability distribution rather than
the usual MV parameters of standard deviation and mean return.
The second-degree stochastic dominance (SSD) rule is appropriate
for the class of all risk-averse EU maximizers. It has the advantage
that it requires no restrictions on probability distributions nor on
investors’ utility functions outside of the requirement that inves-
tors be risk-averse, EU maximizers.

Given a portfolio of assets, marginal conditional stochastic
dominance (MCSD) has been introduced by Yitzhaki and Olkin
(1991) and Shalit and Yitzhaki (1994) as a condition under which
all risk-averse EU maximizer individuals prefer to increase the
share of one risky asset over that of another. Specifically, these
authors consider risk-averse investors holding a given portfolio
of risky assets and derive criteria expressed in terms of the joint
probability distribution of the assets and of the underlying portfo-
lio to ensure that the share of an asset is increased at the expense
of another in the portfolio. This helps to detect inefficiency and to
improve inefficient portfolios. MCSD has been successfully applied
to solve asset allocation problems by several authors, including
Clark et al. (2011), Clark and Kassimatis (2012, 2013), Shalit and
Yitzhaki (2010). MCSD expresses the conditions under which all
risk-averse investors holding a specific portfolio prefer one asset
to another. Furthermore, MCSD has been shown to involve more
than pairwise comparisons as developed by Shalit and Yitzhaki
(2003). It is a less demanding concept and more adapted to empir-
ical analysis than SSD because it considers only marginal changes
of holding risky assets in a given portfolio.

Despite their theoretical attractiveness, MV and SSD rules may
create paradoxes in the sense that they fail to distinguish between
some risky prospects, whereas it is obvious that the vast majority
of investors would prefer one over the other. This is why Bali et al.
(2009) considered almost stochastic dominance (ASD) as a viable
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alternative. ASD corresponds to all utility functions after eliminat-
ing pathological preferences, keeping only the economically rele-
vant utility functions. Bali et al. (2009) demonstrated that the
ASD rule unambiguously supports some common practice, like
advising a higher stock to bond ratio for long investment horizons.
Switching from SD to ASD thus allows for the provision of a theo-
retical support for the practitioners’ view within the EU paradigm.
The study conducted by these authors suggests that modifying
MCSD into almost MCSD (AMCSD) may also help in the analysis
of economic behavior under risk. This is the subject of the present
work.

In this paper, MCSD is weakened to ensure that most (but not
all) risk-averse decision-makers increase the share of one risky as-
set over another. This extension of MCSD to AMCSD is inspired by
almost stochastic dominance rules introduced by Leshno and Levy
(2002), and suitably corrected by Tzeng et al. (2013).2 Specifically,
restrictions are imposed on the marginal utility function and on its
derivative to exclude extreme forms of preferences that are not
shared by real-world investors. Then, the condition leading to MCSD
is adapted to correspond to utilities defining almost second-degree
stochastic dominance. As pointed out by Levy et al. (2010), invest-
ment rules based on stochastic dominance may cover ‘‘theoretical
preferences that are not encountered in practice’’: there are situa-
tions where stochastic dominance is unable to rank two portfolios,
whereas experimentally 100% of the subjects reveal a clear-cut rank-
ing. The switch from MCSD to AMCSD can be expected to avoid such
paradoxical results.

The remainder of this paper is organized as follows. The next
section extends MCSD to AMCSD. Section 3 discusses a numerical
example comparing the two concepts. Section 4 allows for changes
in multiple assets in MCSD rules. Section 5 provides empirical illus-
trations. Section 6 briefly concludes the paper and discusses how to
extend AMCSD rules to higher orders.

2. Almost marginal conditional stochastic dominance

2.1. Marginal conditional stochastic dominance

Assume that a risk-averse investor with a utility function u
holds a portfolio with n risky assets. Let w0 be the initial wealth,
Xi denote the rate of return on risky asset i and ai be the invest-
ment proportion on asset i; i ¼ 1;2; . . . ;n. A portfolio a is defined
by the shares ai such that

Pn
i¼1ai ¼ 1. The final wealth of the inves-

tor is given by W ¼ w0 1þ
Pn

i¼1aiXi
� �

. Henceforth, we normalize
the initial wealth w0 to unity so that W ¼ 1þ

Pn
i¼1aiXi.

The goal of the investor is to select the weights to maximize
E½uðWÞ�. Given a portfolio a, Shalit and Yitzhaki (1994) have estab-
lished that it is optimal to increase the weight ak of asset k at the
expense of asset j if, and only if,

E u0ðWÞðXk � XjÞ
� �

P 0: ð1Þ

Asset k dominates asset j according to MCSD if condition (1) is ful-
filled for all risk-averse investors, that is, for all concave utility u.

Let R denote the portfolio return, i.e.,

R ¼
Xn

i¼1

aiXi:

Shalit and Yitzhaki (1994) proved that for a given portfolio a, asset k
dominates asset j according to MCSD if, and only if, the inequality

E½XkjR 6 r�P E½XjjR 6 r�
2 Lizyayev and Ruszczyński (2012) provided an alternative definition of almost
stochastic dominance called tractable almost stochastic dominance due to its benefits
in regard to tractability in computation.
holds for all the return levels r. This is easily deduced from (1) by
taking the kinked utilities uðxÞ ¼minfx; rg. In words, MCSD favors
assets performing better in adverse situations (i.e., when the portfo-
lio underperforms () R 6 r).

The next section shows how to define AMCSD as distinct from
MCSD, avoiding extreme forms of preferences.

2.2. From MCSD to AMCSD

MCSD is based on all the non-decreasing and concave utility
functions, that is, on the utility functions in

U2 ¼ utility functions uju0 P 0 and u00 6 0f g:

As explained in Leshno and Levy (2002), U2 contains some extreme
utility functions which presumably rarely represent real-world
investors’ preferences. The prototype is uðxÞ ¼minfx; rg for some
constant r. Note that such utilities form the representative set of
non-decreasing and concave utility functions used by Hadar and
Seo (1988).

To reveal a preference for most investors, but not for all of them,
we restrict U2 to a subset of it. Specifically, following Leshno and
Levy (2002), let us further impose restrictions on the utility func-
tion and define

U�2ðeÞ ¼ u 2 U2j � u00ðxÞ 6 inf �u00ðxÞf g 1
e
� 1

� �
for all x

� 	
; ð2Þ

where e 2 0; 1
2

� �
. The range of the parameter e which controls the

area of violation has been discussed empirically by Levy et al.
(2010).

The following result characterizes the situations where asset j is
dominated by asset k for all investors with u 2 U�2ðeÞ. Before stating
it formally, we need to introduce some additional notation. Let
liðrÞ denote the conditional expected return of asset i when the
portfolio return is r, i.e.,

liðrÞ ¼ E½XijR ¼ r�:

Henceforth, we assume without real loss of generality that the re-
turn is bounded and valued over some interval ½a; b� of the real line.
Furthermore, define

BðtÞ ¼
Z t

a
lkðrÞ � ljðrÞ

 �

dFRðrÞ

¼ E½XkjR 6 t� � E½XjjR 6 t�
� �

FRðtÞ
X ¼ t 2 ½a; b�jBðtÞ < 0f g

and let Xc denote the complement of X in a; b½ �. MCSD requires
BðtÞP 0 for all t, that is, X ¼ ;. If this is not the case, X represents
the set of violations for MCSD.

Proposition 1. Given portfolio a, asset k dominates asset j for all
individuals with preferences represented by the utility function
u 2 U�2ðeÞ if, and only if,

Z
X
ð�BðtÞdtÞ 6 e

Z b

a
j BðtÞ j dt ð3Þ

and E½Xk�P E½Xj�.

The proof of this result can be found in the appendix. Together
with the comparison of expected returns, condition (3) provides
the operational way to check for AMCSD in a given portfolio.

Tzeng et al. (2013) have shown that a distribution is preferred
to another one by all decision makers with utility function
u 2 U�2ðeÞ if and only if the distribution dominates the other one
in terms of almost second-degree stochastic dominance, which
contains two conditions. The first one is that the mean of the dis-
tribution is greater than that of the other one, which corresponds
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to E½Xk�P E½Xj� in Proposition 1. The second condition is that the
area which violates second-degree stochastic dominance cannot
be too large, which indeed is expressed by the inequalityR

X �BðtÞdtð Þ 6 e
R b

a BðtÞj jdt in Proposition 1. In other words, AMCSD
is an extension of ASSD.

Note that Shalit and Yitzhaki (1994, Theorem 3) further pro-
vided necessary conditions for MCSD. Specifically, if asset k domi-
nates asset j according to MCSD then

E½Xk�P E½Xj�; ð4Þ

and

E½Xk� � 2Cov Xk; FRðRÞ½ �P E½Xj� � 2Cov Xj; FRðRÞ
� �

; ð5Þ

These inequalities can be further expressed by means of the Gini in-
dex of the portfolio. It turns out that these conditions are also nec-
essary for AMCSD. The first necessary condition is obviously true for
AMCSD as it explicitly appears in Proposition 1. Shalit and Yitzhaki
(1994) indicated that the second necessary condition can be rewrit-
ten asZ b

a
ðBðtÞÞdt P 0:

For the AMCSD rule, if condition (3) holds, thenZ
X
ð�BðtÞdtÞ 6 1

2

Z b

a
j BðtÞ j dt ð6Þ

so that condition (5) is also true.

3. Numerical illustrations

An example is introduced to demonstrate the application of
Proposition 1. Assume that there exist three independently distrib-
uted risky assets. The distributions of the rates of return for these
three assets are, respectively,

X1 ¼
�10% with probability 1

2

þ15% with probability 1
2

(

X2 ¼
�11% with probability 1

2

þ50% with probability 1
2

(

X3 ¼
�15% with probability 1

2

þ25% with probability 1
2

(

We further assume that the weights in the current portfolio are
a1 ¼ 25%;a2 ¼ 50% and a3 ¼ 25%. Table 1 shows the distribution
of the portfolio returns and the assets’ conditional expected returns.
Column 1 in Table 1 denotes the portfolio returns ranked from the
lowest to the highest. Column 2 represents the probabilities for the
corresponding portfolio returns in Column 1 and Column 3 lists
the cumulative distribution of the portfolio. Columns 4–6 provide
Table 1
Portfolio returns, asset conditional expected returns and ACCs (in %).

r Pr R ¼ r½ � FRðrÞ l1ðrÞ l2ðrÞ

�11.750 12.500 12.500 �10.000 �11.0
�5.500 12.500 25.000 15.000 �11.0
�1.750 12.500 37.500 �10.000 �11.0

4.500 12.500 50.000 15.000 �11.0
18.750 12.500 62.500 �10.000 50.0
25.000 12.500 75.000 15.000 50.0
28.750 12.500 87.500 �10.000 50.0
35.000 12.500 100.000 15.000 50.0
the expected returns conditional on the portfolio return given by
Column 1. For example, the portfolio return �1:75%

ð¼ 25%� �10%ð Þ þ 50%� �11%ð Þ þ 25%� 25%) has a 12.5% prob-
ability of occurring, the cumulative probability is 37.5% and the ex-
pected returns on assets 1, 2 and 3 are �10%, �11% and 25%,
respectively.

Shalit and Yitzhaki (1994) related MCSD to Absolute Concentra-
tion Curves (ACCs) defined as follows. The ACC for asset i with re-
spect to the portfolio a is

ACCiðpÞ ¼
Z F�1

R ðpÞ

�1
liðrÞdFRðrÞ ¼ E½XijR 6 F�1

R ðpÞ� � p ð7Þ

where F�1
R ðpÞ ¼ inffr 2 RjFRðrÞP pg. Table 1 further shows the

ACCs. When the cumulative probability is 37.5%,

ACC1ð0:375Þ ¼ �10%� 12:5%þ 15%� 12:5%þ ð�10%Þ � 12:5%

¼ �0:625%;

ACC2ð0:375Þ ¼ �11%� 12:5%þ ð�11%Þ � 12:5%þ ð�11%Þ
� 12:5% ¼ �4:125%;

ACC3ð0:375Þ ¼ �15%� 12:5%þ ð�15%Þ � 12:5%þ 25%� 12:5%

¼ �0:625%:

From Table 1, the ACCs for the three assets reveal that they do not
MCSD dominate each other since the violation set X – ;. On basis of
the criteria of MCSD, no suggestion can be made to improve the effi-
ciency of the portfolio, but AMCSD can further suggest how to im-
prove the investment.

Among the two criteria of AMCSD in Proposition 1, the criterion
that E½Xk�P E½Xj� can help us to reduce the comparison among as-
sets. Note that E½Xk� ¼ ACCkð1Þ. Table 1 indicates that
E½X2� ¼ 19:5 > E½X3� ¼ 5 > E½X1� ¼ 2:5. Thus, we only need the re-
sults for Bð�Þ in Proposition 1 of 2 vs. 1, 2 vs. 3 and 3 vs. 1 to make
further suggestions. Table 2 displays the corresponding Bð�Þ.

In the case of 2 vs. 1, Table 2 shows that BðtÞ ¼ ACC2ð0:375Þ�
ACC1ð0:375Þ ¼ �4:125%� �0:625%ð Þ ¼ �3:5% when the cumula-
tive probability is 37.5%. Since X denotes the set that BðtÞ < 0, in
this case, X includes the portfolio returns which are less than
F�1

R ð50%Þ ¼ 4:5%. Thus,
R

Xð�BðtÞÞdt ¼ 13:75% and
R b

a j BðtÞ j dt ¼
49:25%. Similarly, Table 2 further shows that

2 vs: 3 :

Z
X
�BðtÞð Þdt ¼ 11:5%;

Z b

a
BðtÞj jdt ¼ 47:25%;

3 vs: 1 :

Z
X
�BðtÞð Þdt ¼ 8:125%;

Z b

a
BðtÞj jdt ¼ 13:75%:

When
R b

a j BðtÞ j dt – 0, condition (3) in Proposition 1 can be rewrit-
ten asR

Xð�BðtÞdtÞR b
a j BðtÞ j dt

6 e: ð8Þ
l3ðrÞ ACC1 ACC2 ACC3

00 �15.000 �1.250 �1.375 �1.875
00 �15.000 0.625 �2.750 �3.750
00 25.000 �0.625 �4.125 �0.625
00 25.000 1.250 �5.500 2.500
00 �15.000 0.000 0.750 0.625
00 �15.000 1.875 7.000 �1.250
00 25.000 0.625 13.250 1.875
00 25.000 2.500 19.500 5.000



Table 3
The criteria of AMCSD (in %).

2 vs. 1 2 vs. 3 3 vs. 1

Differences in expectations 17.000 14.500 2.500R
X �BðtÞ½ �dt=

R b
a jBðtÞjdt 0.279 0.243 0.591

Table 2
Bð�Þ and he criteria of AMCSD (in %).

FR 2 vs. 1 2 vs. 3 3 vs. 1

BðtÞ jBðtÞj in X jBðtÞj BðtÞ jBðtÞj in X jBðtÞj BðtÞ jBðtÞj in X jBðtÞj

12.500 �0.125 0.125 0.125 0.500 0.500 �0.625 0.625 0.625
25.000 �3.375 3.375 3.375 1.000 1.000 �4.375 4.375 4.375
37.500 �3.500 3.500 3.500 �3.500 3.500 3.500 0.000 0.000
50.000 �6.750 6.750 6.750 �8.000 8.000 8.000 1.250 1.250
62.500 0.750 0.750 0.125 0.125 0.625 0.625
75.000 5.125 5.125 8.250 8.250 �3.125 3.125 3.125
87.500 12.625 12.625 11.375 11.375 1.250 1.250

100.000 17.000 17.000 14.500 14.500 2.500 2.500
Summation 13.750 49.250 11.500 47.250 8.125 13.750
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Table 3 shows the two criteria of AMCSD suggested: the differ-
ences in expectations and

R
Xð�BðtÞdtÞ=

R b
a j BðtÞ j dt. In the case of 2

vs. 1, E½X2� � E½X1� ¼ 19:5%� 2:5% ¼ 17%, and
R

Xð�BðtÞdtÞ=R b
a j BðtÞ j dt ¼ 13:75%=49:25% ¼ 0:2792.

Now, let us assume that e ¼ 0:3. From Table 3, asset 2 AMCSD
dominates both assets 1 and 3 for all investors in U�2ðe ¼ 0:3Þ. Thus,
the expected utility of all investors in U�2ðe ¼ 0:3Þ can be further
improved by increasing the weight on asset 2. On the basis of
AMCSD, the current portfolio is not efficient. Asset 2 does not
MCSD dominate either assets 1 or 3 because MCSD seeks the con-
dition for all risk-averse investors. In this example, it is obvious
that asset 2 could be an attractive alternative for most investors.
Therefore, with respect to the current portfolio, most investors,
e.g., those with utility function u 2 U�2ðe ¼ 0:3Þ, are inclined to
invest more in asset 2.

4. AMCSD allowing changes in multiple assets

Using AMCSD rules, a dominating asset can be found by com-
paring two assets in a given portfolio. However, building a portfolio
based on pairwise comparisons may be not effective in practical
use. In this section, we extend the AMCSD analysis to allow for
simultaneous changes in several assets of a portfolio and using
the concept of Lorenz dominance, which is suggested by Shalit
and Yitzhaki (2003).

As in Shalit and Yitzhaki (2003), define the Lorenz curve for
portfolio a as

L F�1
R ðpÞ

h i
¼
Xn

i¼1

aiACCiðpÞ:

Suppose that there exists an alternative portfolio aþ
Pn

i¼1dai wherePn
i¼1dai ¼ 0. Therefore,

dL F�1
R ðpÞ

h i
¼
Xn

i¼1

ACCiðpÞdai

The following result provides AMCSD rules allowing for changes in
multiple assets.

Proposition 2. Given a portfolio a. An alternative portfolio,
aþ

Pn
i¼1dai, is preferred by all individuals with preferences

represented by the utility function u 2 U�2ðeÞ if, and only if,
�
Z

X

Xn

i¼1

ACCiðpÞdaidp 6 e
Z b

a

Xn

i¼1

ACCiðpÞdai

�����
�����dp ð9Þ

and
Pn

i¼1E½Xi�dai P 0, where X ¼ p 2 0;1½ �
Pn

i¼1ACCiðpÞdai < 0
�� �

.

The proof of Proposition 2 is similar to that of Proposition 1 and
is omitted. By Proposition 2, we can test whether a portfolio is effi-
cient by checking all possible variations in the assets’ weights con-
ditional on

Pn
i¼1dai ¼ 0 and

Pn
i¼1E½Xi�dai P 0. Given e, if there are

no dai such that Eq. (9) is satisfied, the initial portfolio a is efficient.
We further demonstrate how to implement Proposition 2 to

check whether a portfolio is efficient. On the basis of Proposition
2, the following programming can help us to identify efficient
portfolios:

min
dai

�
Z

X

Xn

i¼1

ACCiðpÞdaidp� e
Z b

a

Xn

i¼1

ACCiðpÞdai

�����
�����dp ð10Þ

s:t:
Xn

i¼1

E½Xi�dai P 0 ð11Þ

Xn

i¼1

dai ¼ 0 ð12Þ

�ai 6 dai 6 1� ai; i ¼ 1; . . . ;n ð13Þ

where X is as defined in Proposition 2. The objective function and
the first constraint in the above problem directly come from Prop-
osition 2. The second constraint makes sure that the sum of the
portfolio weights is equal to one. The third constraint is added to
avoid short selling. Thus, given a portfolio a, if the optimal value
of the objective function is negative, then the portfolio a is ineffi-
cient in terms of AMCSD.

In practice, the empirical distribution of the portfolio return R is
discrete rather than continuous. Let r1 6 r2 6 . . . 6 rT represent all
the observations of R ranked in ascending order. Therefore, the
objective function (10) can be rewritten as

min
dai

�
X
j2X

Xn

i¼1

ACCi
j
T

� �
dai � e

XT

j¼1

Xn

i¼1

ACCi
j
T

� �
dai

�����
����� ð14Þ

To establish an algorithm which can be solved by linear program-
ming, some notations are defined as follows. Let

Z�j ¼max �
Xn

i¼1

ACCi
j
T

� �
dai;0

( )

and

Zþj ¼max
Xn

i¼1

ACCi
j
T

� �
dai;0

( )
:

Thus, the programming model can be rewritten as
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min
Z�j ;Z

þ
j
;dai

1� eð Þ
XT

j¼1

Z�j � e
XT

j¼1

Zþj ð15Þ

s:t: Zþj � Z�j ¼
Xn

i¼1

ACCi
j
T

� �
dai

Xn

i¼1

E½Xi�dai P 0

Xn

i¼1

dai ¼ 0

� ai 6 dai 6 1� ai; i ¼ 1; . . . ; n:

Note that the objective function and all constraints are linear
functions of Z�j ; Z

þ
j and dai. Thus, the program can be easily

implemented by standard linear programming.
5. Empirical works

This section provides a financial application to demonstrate that
using AMCSD can indeed improve investment efficiency. In a re-
cent work, Bali et al. (2013) apply the almost stochastic dominance
(ASD) approach to test whether hedge funds outperform stocks
and bonds. They use historical and simulated return distributions
and find that the US equity market is dominated in terms of ASD
by the Long/Short Equity Hedge and Emerging Markets hedge fund
strategies, and that the US Treasury market is dominated by the
Long/Short Equity Hedge, Multi-strategy, Managed Futures, and
Global Macro hedge fund strategies. Since both ASD and AMCSD
correspond to all utility functions after eliminating pathological
preferences, we can rely on their findings and further ask how to
improve investment efficiency by the AMCSD approach.

Furthermore, although some hedge fund strategies dominate
the US equity market and/or the US Treasury market, it does not
mean that a 100% holding in the hedge funds is the only efficient
portfolio for investors. Due to the correlations among the return
distributions of hedge funds, stocks and bonds, we might find that
some portfolios including positive weights on these assets are
efficient. The purpose of this section is to show that using AMCSD
can improve the efficiency of existing portfolios by constructing
portfolios including hedge funds, stocks and bonds.

5.1. Data

The hedge fund data are obtained from the Hedge Fund Re-
search database. Our data period is from January 1994 to Decem-
ber 2011, which is the same as in Bali et al. (2013). During that
period, the database contains 11,867 defunct funds and 6853 live
funds. As in Bali et al. (2013), the size of a fund is measured by
Table 4
Descriptive statistics.

Asset Mean (%) Median (%) Std. Dev. (%) Skewn

Emerging Market 1.08 1.74 4.82 �0.90
Macro 0.84 0.74 2.07 0.36
Equity Hedge 0.89 1.12 2.76 �0.44
Event Driven 0.83 1.10 1.86 �1.64
Relative Value 0.69 0.84 1.31 �2.92
Fund of Fund 0.50 0.62 1.66 �0.65
Equity Neutral 0.59 0.58 0.87 �0.14
S&P500 0.56 1.12 4.53 �0.64
1-year T-Bond 0.32 0.32 0.29 0.46

This table presents the descriptive statistics of the monthly returns on the hedge fund por
1994 to December 2011. We compute the equal-weighted average monthly retu
JB ¼ n½S2=6þ ðK � 3Þ2=24�, is a formal statistic for testing whether the returns are norm
kurtosis. JB follows a Chi-square distribution with two degrees of freedom. The last colu
the average monthly assets under management over the life of
the fund. Our data show that the mean and the median hedge fund
size are $149.5 million and $28.2 million, respectively.

We further follow the steps in Bali et al. (2013) to screen our
data. We include both live (6853 funds) and dead funds (11,867)
to avoid survivorship bias. The first 12-month return histories of
all individual hedge funds in our sample are deleted to eliminate
back-fill bias. All hedge funds in our final sample need to have at
least 24 months of return history to mitigate the impact of multi-
period sampling bias and to obtain sensible measures of risk for
funds. After the above screening processes, we have 12,816 hedge
funds in our sample including 7443 dead funds and 5373 live
funds.

In the Hedge Fund Research database, there are 7 investment
styles reported: Emerging Markets, Equity Market Neutral, Event
Driven, Fund of Funds, Macro, Relative Value and Equity Hedge.
Following Bali et al. (2013), we calculate the equally-weighted
average returns of funds for each of the 7 investment strategies.
Furthermore, the S&P500 index returns and the 1-year Treasury
Bond returns are used to proxy the performance of the US equity
market and the performance of the short-term US Treasury
securities.

Table 4 shows the basic statistics for the performance of the
above 7 hedge fund strategies, the S&P500 index, and the 1-year
Treasury Bond. The performance in our study is similar to that in
Bali et al. (2013). The monthly average return of the S&P 500 is
0.56% and the standard deviation is 4.53% in our sample. The aver-
age return of Emerging Market is 1.08%, almost twice that of the
S&P 500, and the standard deviation is 4.82%. Only the return
distributions of Macro and the 1-year T-Bond are skewed to the
right. The other 6 hedge fund strategies and the S&P 500 are char-
acterized by negative skewness. According to the mean–variance
criterion, 5 hedge fund strategies dominate the US equity market,
i.e., Macro, Equity Hedge, Event Driven, Relative Value and Equity
Market Neutral. However, the mean–variance criterion may not
be appropriate for hedge funds since the Jarque–Bera (JB) statistics
reject the hypothesis that the return distribution of the hedge
funds follows a normal distribution, unless the utility function is
quadratic.
5.2. Applying AMCSD

5.2.1. Pairwise comparison
To demonstrate how to apply the AMCSD criterion to improve

investment efficiency, we assume that the current investment
weights on hedge funds, the S&P 500 and T-Bonds are 5%, 85%
and 10%, respectively. We examine whether investors should in-
crease the proportion on one hedge fund strategy by decreasing
that on the S&P 500.
ess Kurtosis Min (%) Max (%) JB p-Value

66 4.6121 �25.28 17.79 209.68 <0.001
55 0.0977 �4.06 7.24 4.78 0.0718
16 2.3616 �10.89 11.06 53.69 <0.001
26 5.9061 �8.70 4.64 392.59 <0.001
49 18.0144 �9.06 4.01 3082.83 <0.001
70 3.2184 �6.43 5.95 102.75 <0.001
81 2.8234 �3.45 3.68 67.90 <0.001
16 0.9372 �16.94 10.77 21.71 0.0019
20 0.3400 �0.33 1.31 8.41 0.0218

tfolios, S&P500 index, and 1-year Treasury Bond for the sample period from January
rns of funds for each of the 7 investment styles. The Jarque–Bera statistic,

ally distributed, where n denotes the number of observations, S skewness and K
mn reports the corresponding p-value.



Table 5
Efficient portfolios.

Hedge fund Efficiency test Inefficient Efficient Difference

Event Driven MCSD (e ¼ 0Þ 983 17
AMCSD (e ¼ 0:01Þ 984 16 1
AMCSD (e ¼ 0:05Þ 984 16 1

Equity Hedge MCSD (e ¼ 0Þ 982 18
AMCSD (e ¼ 0:01Þ 984 16 2

Fig. 2. The ACCs and the corresponding es for the portfolios with weight 5% on the
Emerging Market hedge fund, 85% on the S&P 500 and 10% on the T-Bond.
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Similar to the process in the numerical example, the criteria
E½Xk�P E½Xj� of AMCSD in Proposition 1 can help us to reduce the
comparisons among assets. Table 4 shows that the expected return
of all hedge funds is greater than the return of the S&P 500 except
for the Fund of Fund strategy. Thus, we only provide the compari-
sons between the other 6 hedge fund strategies and the S&P 500.

The empirical e is calculated as follows:

e ¼
R

Xhs
�BhsðtÞdtð ÞR b

a BhsðtÞj jdt
; ð16Þ

where

BhsðtÞ ¼ E½XhedgejR 6 t� � E½XstockjR 6 t�
� �

FRðtÞ;
Xhs ¼ t 2 a; b½ �jBhsðtÞ < 0f g;

Xhedge is the random return of hedge funds and Xstock is that of the
S&P 500.

The same e can be obtained by using ACCs introduced in Sec-
tion 3. Let us use Fig. 1 to show how to obtain e. The x-axis in
Fig. 1 is the cumulative probability of the given portfolio and the
y-axis is the value of ACC as in Eq. (7). As shown in Fig. 1,
ACCstock may cross ACChedge. The area Q denotes the ‘‘violation area’’
which violates the rule of MCSD and the areas P and T are the areas
consistent with the rule of MCSD. Thus, the empirical e can be
obtained by

e ¼ Q
P þ Q þ T

: ð17Þ

Fig. 2 shows the ACCs for the portfolios with a weight of 5% for
the Emerging Market hedge fund, 85% for the S&P 500 and 10% for
the T-Bond. The dashed, solid, and dotted lines represent the ACCs
for the Emerging Market hedge fund, S&P 500 and T-Bond, respec-
tively. Fig. 2 indicates that ACChedge exceeds ACCstock for most level
of the cumulative probability except when the portfolio return is
smaller than the 0.46% quantile. Thus, according to MCSD, the
investment cannot be improved. However, the violation area e is
only 0.0003 while comparing the Emerging Market hedge fund
and S&P 500. According to the experiments proposed by Levy
et al. (2010), the critical value of e is equal to 3.2%. In other words,
most investors will accept the cases with a violation area smaller
than 3.2%. Thus, the current portfolio is inefficient for most inves-
tors since the empirical e ¼ 0:0003 6 3:2%. For most investors, the
current portfolio can be improved by increasing the weight on the
Emerging Market hedge fund.
0 1 CDF

ACC

ACCstock

ACChedge

P

Q

T

Fig. 1. The ACCs.
We further fix the weight on the T-Bond (10%) and vary the
weights on the Emerging Market hedge fund and S&P 500 with a
5% increment in the hedge fund. The ACCs are shown in Fig. 3.
Similar to Fig. 2, the dashed, solid, and dotted lines represent the
ACCs for the Emerging Market hedge fund, S&P 500 and T-Bond,
respectively. The weights on the S&P 500 and Emerging Market
hedge fund are shown at the bottom of each sub-figure, whereas
the corresponding e is shown at the top of each sub-figure. For
example, for the current portfolio with weights of 30% on the
Emerging Market hedge fund, 60% on the S&P 500 and 10% on
the T-Bond, e ¼ 0:0016276. Fig. 3 demonstrates that we cannot
AMCSD (e ¼ 0:05Þ 984 16 2

Macro MCSD (e ¼ 0Þ 933 67
AMCSD (e ¼ 0:01Þ 972 28 39
AMCSD (e ¼ 0:05Þ 977 23 44

Relative Value MCSD (e ¼ 0Þ 989 11
AMCSD (e ¼ 0:01Þ 989 11 0
AMCSD (e ¼ 0:05Þ 989 11 0

FOF MCSD (e ¼ 0Þ 878 122
AMCSD (e ¼ 0:01Þ 954 46 76
AMCSD (e ¼ 0:05Þ 973 26 96

Emerging market MCSD (e ¼ 0Þ 987 13
AMCSD (e ¼ 0:01Þ 987 13 0
AMCSD (e ¼ 0:05Þ 987 13 0

Market Neutral MCSD (e ¼ 0Þ 988 12
AMCSD (e ¼ 0:01Þ 989 11 1
AMCSD (e ¼ 0:05Þ 990 10 2

The simulation results are generated from 1000 random initial weights for seven
cases with alternative hedge funds. The table shows the numbers of portfolios that
are recognized as ‘‘Efficient’’ and ‘‘Inefficient’’ under three different efficiency cri-
teria: (i) MCSD, (ii) AMCSD under e ¼ 0:01 and (iii) AMCSD under e ¼ 0:05. The
numbers of portfolios, which are efficient under MCSD but inefficient under AMCSD,
are shown in the last column.



Fig. 3. The ACCs and the corresponding es for the portfolios with different weights on the Emerging Market hedge fund and S&P 500 given a 10% weight on the T-Bond.
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find any ACC of one asset located above the ACC of another one for
all levels of cumulative probability for the given portfolio. In other
words, MCSD cannot tell investors whether they should change the
weights on the Emerging Market hedge fund, S&P 500 and T-Bond,
but AMCSD can. According to AMCSD, the portfolios with e 6 e� can
be further improved and should be considered to be inefficient. By
using e� ¼ 3:2%, Fig. 3 indicates that the portfolios with investment
weights on the Emerging Market hedge fund lower than 45% are
dominated portfolios in terms of AMCSD when the investment
weight on the T-Bond is fixed at 10%.
5.2.2. Changes in multiple assets
In this part, we employ programming (15) to implement AMCSD

rules allowing changes in multiple assets. In other words, the
weights of the hedge funds, S&P 500 and T-Bond are allowed to
change simultaneously. As an illustration, we generate 1000 sets
of portfolios with random weights and process the algorithm with
e ¼ 0; e ¼ 0:01 and e ¼ 0:05. Under the MCSD rule (e ¼ 0), if the
minimum value of the objective function is equal to zero, this means
that we can change the proportion of assets and obtain an alterna-
tive combination preferred by all risk-averse investors. However,
if the minimum value of the objective function is greater than zero
for all possible dai, the initial weight of the portfolio will be regarded
as efficient. On the other hand, under AMCSD rules (e ¼ 0:01 and
e ¼ 0:05), if the optimal value of the objective function is positive,
then the initial portfolio is efficient. Otherwise, it is inefficient.

Table 5 shows the simulation results generated from 1,000 ran-
dom initial weights for seven cases with alternative hedge funds.
The simulation in Table 5 demonstrates that AMCSD rules could
substantially reduce the set of efficient portfolios in cases with
the Macro or Fund of Funds (FOF) hedge funds.

The findings in Table 5 are kind of on the basis of the point
estimator of e where

e ¼
�
R

X

Pn
i¼1ACCiðpÞdaidpR b

a

Pn
i¼1ACCiðpÞdai

�� ��dp
: ð18Þ



Table 6
Efficiency test.

Hedge fund S&P500 Bond Hedge fund S&P500 Bond Confidence interval Hedge fund S&P500 Bond Confidence interval

Panel A: Efficient portfolio under MCSD Panel B: Dominating portfolio under AMCSD with e ¼ 0:01 Panel C: Dominating portfolio under AMCSD with e ¼ 0:05
0.0000 0.0200 0.9800 1.0000 0.0000 0.0000 (0.0007,0.0068)⁄ 1.0000 0.0000 0.0000 (0.0009,0.007)⁄

0.0100 0.0200 0.9700 1.0000 0.0000 0.0000 (0.0018,0.0192) 1.0000 0.0000 0.0000 (0.0016,0.0198)⁄

0.0600 0.0300 0.9100 0.0748 0.0000 0.9252 (0,0.0896) 0.1165 0.0000 0.8835 (0,0.0122)⁄

0.0700 0.0200 0.9100 0.9077 0.0000 0.0923 (0.0001,0.511) 0.9070 0.0000 0.0930 (0.0002,0.4852)
0.1600 0.0200 0.8200
0.2000 0.0300 0.7700 0.4786 0.5214 0.0000 (0,0.4175) 0.4786 0.5214 0.0000 (0,0.4046)
0.2200 0.0000 0.7800 0.0000 0.5829 0.4171 (0,0.1163) 0.0000 0.8558 0.1442 (0.0002,0.2485)
0.2400 0.0600 0.7000 0.2678 0.0000 0.7322 (0,0.0436) 0.2678 0.0000 0.7322 (0,0.0446)⁄

0.2400 0.0800 0.6800 0.2770 0.0000 0.7230 (0,0.0255) 0.2770 0.0000 0.7230 (0,0.0244)⁄

0.2600 0.0900 0.6500 0.3017 0.0000 0.6983 (0,0.0222) 0.3017 0.0000 0.6983 (0,0.0222)⁄

0.2600 0.0900 0.6500 0.3017 0.0000 0.6983 (0,0.0239) 0.3017 0.0000 0.6983 (0,0.0246)⁄

0.2900 0.0000 0.7100 0.0000 0.6264 0.3736 (0,0.15) 0.0000 0.6429 0.3571 (0,0.1706)
0.2900 0.0500 0.6600 0.3132 0.0000 0.6868 (0,0.1253) 0.3131 0.0000 0.6869 (0,0.1492)
0.2900 0.0900 0.6200 0.3317 0.0000 0.6683 (0,0.0277) 0.3317 0.0000 0.6683 (0,0.0254)⁄

0.3100 0.0300 0.6600
0.3100 0.0300 0.6600
0.3300 0.0300 0.6400
0.3300 0.0600 0.6100 0.3579 0.0000 0.6421 (0,0.0688) 0.3578 0.0000 0.6422 (0,0.0667)
0.3400 0.0200 0.6400
0.3600 0.0200 0.6200
0.3600 0.0600 0.5800 0.3879 0.0000 0.6121 (0,0.1056) 0.3878 0.0000 0.6122 (0,0.0902)
0.3600 0.0600 0.5800 0.3879 0.0000 0.6121 (0,0.0797) 0.3878 0.0000 0.6122 (0,0.1072)
0.3600 0.0700 0.5700 0.3925 0.0000 0.6075 (0,0.0605) 0.3924 0.0000 0.6076 (0,0.0579)
0.3600 0.0800 0.5600 0.3972 0.0000 0.6028 (0,0.0448) 0.3970 0.0000 0.6030 (0,0.0431)⁄

0.3700 0.0000 0.6300 0.0000 0.8217 0.1783 (0,0.2141) 0.0000 0.8271 0.1729 (0,0.2701)
0.3700 0.0300 0.6000
0.4200 0.0300 0.5500
0.4500 0.0800 0.4700 0.4872 0.0000 0.5128 (0,0.0694) 0.4870 0.0000 0.5130 (0,0.0718)
0.4600 0.0000 0.5400 0.0000 0.9936 0.0064 (0,0.2938) 0.0000 0.9936 0.0064 (0,0.2495)
0.4600 0.0000 0.5400 0.0000 0.9936 0.0064 (0,0.1883) 0.0000 0.9936 0.0064 (0,0.2586)
0.4600 0.0600 0.4800 0.4879 0.0000 0.5121 (0,0.215) 0.4878 0.0000 0.5122 (0,0.2395)
0.5100 0.0400 0.4500
0.5200 0.0300 0.4500
0.5200 0.0400 0.4400
0.5200 0.0800 0.4000 0.5572 0.0000 0.4428 (0,0.0949) 0.5570 0.0000 0.4430 (0,0.0853)
0.5300 0.0500 0.4200 0.5531 0.0000 0.4469 (0,0.6131)
0.5400 0.0000 0.4600 0.1435 0.8565 0.0000 (0,0.2948) 0.1435 0.8565 0.0000 (0,0.3606)
0.5500 0.0400 0.4100
0.5500 0.0500 0.4000 0.5731 0.0000 0.4269 (0.0002,0.5861)
0.5500 0.0600 0.3900 0.5783 0.0000 0.4217 (0,0.3795) 0.5778 0.0000 0.4222 (0,0.3227)
0.5700 0.0500 0.3800 0.5931 0.0000 0.4069 (0.0003,0.6557)
0.6400 0.0300 0.3300
0.6400 0.0700 0.2900 0.6725 0.0000 0.3275 (0,0.3212) 0.6724 0.0000 0.3276 (0,0.3092)
0.6600 0.1100 0.2300 0.7111 0.0000 0.2889 (0,0.0549) 0.7109 0.0000 0.2891 (0,0.063)
0.7100 0.0600 0.2300
0.7200 0.0000 0.2800 0.7021 0.2979 0.0000 (0,0.3642) 0.7021 0.2979 0.0000 (0,0.4063)
0.7200 0.0500 0.2300
0.7300 0.0400 0.2300
0.7300 0.1100 0.1600 0.7826 0.0000 0.2174 (0,0.0907) 0.7809 0.0000 0.2191 (0,0.0847)
0.7300 0.1100 0.1600 0.7826 0.0000 0.2174 (0,0.0815) 0.7809 0.0000 0.2191 (0,0.0874)
0.7500 0.0300 0.2200
0.7500 0.0500 0.2000
0.7700 0.0600 0.1700
0.7700 0.0700 0.1600 0.2139 0.0000 0.7861 (0.0001,0.389)
0.7800 0.1400 0.0800 0.8448 0.0000 0.1552 (0,0.0405) 0.8448 0.0000 0.1552 (0,0.042)⁄

0.7900 0.1500 0.0600 0.8594 0.0000 0.1406 (0,0.0425) 0.8594 0.0000 0.1406 (0,0.0396)⁄

0.8100 0.1400 0.0500 0.8748 0.0000 0.1252 (0,0.0523) 0.8748 0.0000 0.1252 (0,0.0487)⁄

0.8300 0.0600 0.1100
0.8300 0.0600 0.1100
0.8400 0.0000 0.1600 0.7021 0.2979 0.0000 (0,0.4349) 0.7021 0.2979 0.0000 (0,0.4428)
0.8400 0.0000 0.1600 0.8024 0.0000 0.1976 (0.0003,0.5253) 0.8024 0.0000 0.1976 (0.0002,0.4811)
0.8500 0.1500 0.0000 0.9194 0.0000 0.0806 (0,0.0465) 0.9194 0.0000 0.0806 (0,0.0446)⁄

0.8500 0.1500 0.0000 0.9194 0.0000 0.0806 (0,0.049) 0.9194 0.0000 0.0806 (0,0.0472)⁄

0.8700 0.0800 0.0500 0.0878 0.0000 0.9122 (0.0001,0.4687)
0.9100 0.0900 0.0000 0.9524 0.0000 0.0476 (0.0002,0.4509) 0.9517 0.0000 0.0483 (0.0002,0.3559)
0.9300 0.0600 0.0100
1.0000 0.0000 0.0000

This table presents the efficient portfolio weights generated from 1000 random initial weights for Macro hedge funds. Panel A shows the efficient portfolio weights on the
hedge funds, S&P 500 and Bond under the MCSD rule, respectively. Panel B shows the efficient portfolio weights on the hedge funds, S&P 500 and Bond under the AMCSD rule
with e ¼ 0:01 and the corresponding 95% confidence interval for e. Panel C shows the efficient portfolio weights on the hedge funds, S&P 500 and Bond under the AMCSD rule
with e ¼ 0:05 and the corresponding 95% confidence interval for e. If the initial portfolio is efficient under the MCSD rule as well as under the AMCSD rule, then the
dominating portfolio weights are not shown in Panels B and C. The asterisk denotes the case where the estimated e is smaller than the critical value at the 5% significance
level.
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Following Bali et al. (2013), we further estimate confidence bands
for e by using the bootstrap method.3 Since 216 monthly observa-
tions on asset returns can only estimate one e at a time, the bootstrap
resampling method is used to simulate actual data and generates a
confidence interval of the estimator. First, each e is simulated by ran-
dom sampling with replacement from actual data repeated 2000
times, and then these series returns will be used to compute Eq.
(18). This process is repeated 1000 times. Finally, the 95% confidence
intervals are obtained by the percentile bootstrap method. Specifi-
cally, 1000 e estimators are sorted. Then, the 25th smallest and the
25th largest e estimators are used to form the lower bound and upper
bound of the confidence interval.

In Table 6, we only focus on the case of the Macro hedge fund in
our illustration. We show that, when e ¼ 0:01, 28 portfolios are
inefficient under point estimation but only one portfolio is signifi-
cant under the 95% confidence interval, ð0:0007;0:0068Þ. The port-
folio happens to be the one allocating all money in the Macro
hedge fund. Similarly, the last column of Table 6 shows that,
among 23 inefficient portfolios, there are 14 portfolios that are sig-
nificant at the 5% level.

The benefits and costs of AMCSD vs. MCSD can be identified
according to the above empirical findings. On the one hand,
AMCSD indeed improves investment efficiency by constructing a
smaller set of efficient portfolios than MCSD (e.g., in the cases
where the portfolio contains a Macro hedge fund or Fund of Funds
strategy). The transaction costs could be substantially reduced by
applying AMCSD. On the other hand, the benefit of AMCSD is sus-
tained by the cost of an increase in e. That is, the decision rule can
be applied for a smaller set of decision makers.

6. Discussion

This paper develops a new methodology for improving existing
portfolios, based on MCSD but replacing stochastic dominance
with almost stochastic dominance. This helps to exclude extreme
forms of preferences, not shared by real-world investors. Given
the increasing importance of MCSD in constructing efficient portfo-
lios, we believe that the extension proposed in the present paper
will be useful for active asset management. In this respect, switch-
ing from MCSD to AMCSD helps to reduce the inconsistency be-
tween common practice in asset allocation and the elegant
decision rules in modern portfolio theory inspired from stochastic
dominance relations. This is done by considering only economi-
cally relevant utility functions, i.e. by excluding pathological pref-
erences. In our simple numerical example, we discovered that a
portfolio without possible MCSD improvement may appear to be
dominated based on AMCSD. In this case, AMCSD tends to favor
investing less in assets with lower means which is in line with
common practice in asset management.

To conclude, let us mention that AMCSD can also be extended to
higher orders that account for attitudes towards risk beyond risk
aversion. Recall that the Nth order stochastic dominance is based
on the common preferences shared by all the decision-makers with
the utility function

UN ¼ utility function ujð�1Þnþ1uðnÞ P 0; n ¼ 1;2; . . . ;N
n o

;

where uðnÞ denotes the nth derivative of the utility function u, and
N > 2. Besides risk aversion, UN entails behavioral traits such as
prudence (N ¼ 3), temperance (N ¼ 4), and more generally risk
3 MCSD benefits from the statistical test developed by Chow (2001) and Schecht-
man et al. (2008). The tests have been implemented in many papers, e.g., Clark et al.
(2011), Clark and Kassimatis (2012). To the best of our knowledge, AMCSD involves
set estimation and lacks proper statistics with well behaved asymptotic distributions
in the literature. Thus, we follow Bali et al. (2013) to estimate e.
apportionment of order N in the terminology of Eeckhoudt and
Schlesinger (2006).

Almost Nth order stochastic dominance introduced by Tzeng
et al. (2013) excludes extreme forms of preferences by being re-
stricted to

U�NðeNÞ ¼ u 2 UNjð�1ÞNþ1uðNÞðxÞ 6 inf ð�1ÞNþ1uðNÞðxÞ
n o 1

eN
� 1

� ��
for all xg:

Now, starting from B 1ð ÞðtÞ ¼ BðtÞ, let us define iteratively for
n ¼ 2;3; . . . N

BðnÞðtÞ ¼
Z t

a
Bðn�1ÞðsÞds;

Xn ¼ t 2 a; b½ � : B nð ÞðtÞ < 0
n o

, and Xc
n as the complement of Xn in

a; b½ �. Following the reasoning that leads to Proposition 1, we can
show that given portfolio a, asset k dominates asset j for all individ-
uals with preferences u 2 U�NðeNÞ;N > 2, if and only ifZ

XN

�BðNÞðtÞ

 �

dt 6 eN

Z b

a
BðNÞðtÞ
��� ���dt

and BðnÞðbÞP 0; n ¼ 2;3; . . . N. This provides the necessary and suffi-
cient condition that asset j is dominated by asset k for all investors
with u 2 U�NðeNÞ.
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Appendix A. Proof of Proposition 1

A.1. ‘‘If’’ part

Let us first prove that (3) together with E½Xk�P E½Xj� ensure that
inequality (1) holds true. To this end,

E u0ðWÞðXk � XjÞ
� �

¼ E u0ðWÞ E½XkjW� � E½XjjW�
� �� �

¼
Z b

a
u0ðtÞðlkðtÞ � ljðtÞÞdFRðtÞ ¼

Z b

a
u0ðtÞdBðtÞ:

Integrating the above equation by parts yields

E u0ðWÞðXk � XjÞ
� �

¼ u0ðbÞBðbÞ þ
Z b

a
�u00ðtÞð ÞBðtÞdt:

Since

BðbÞ ¼
Z b

a
lkðtÞ � ljðtÞ

 �

dFRðtÞ ¼ E½Xk� � E½Xj�;

the conditions u0 > 0 and E½Xk�P E½Xj� ensure that u0ðbÞBðbÞP 0.
Furthermore,Z b

a
�u00ðtÞð ÞBðtÞdt¼

Z
X
�u00ðtÞð ÞBðtÞdtþ

Z
Xc
�u00ðtÞð ÞBðtÞdt

P
Z

X
sup �u00ðtÞf gBðtÞdtþ

Z
Xc

inf �u00ðtÞf gBðtÞdt

¼ sup �u00ðtÞf g
Z

X
BðtÞdtþ inf �u00ðtÞf g

Z
Xc

BðtÞdt

¼ sup �u00ðtÞf gþ inf �u00ðtÞf gð Þ
Z

X
BðtÞdt

þ inf �u00ðtÞf g
Z

Xc
BðtÞdt�

Z
X

BðtÞdt
� �

¼� sup �u00ðtÞf gþ inf �u00ðtÞf gð Þ
Z

X
�BðtÞð Þdt

þ inf �u00ðtÞf g
Z b

a
BðtÞj jdt:
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Since u 2 U�2ðeÞ, based on the definition of U�2ðeÞ, we have

sup �u00ðtÞf g 6 inf �u00ðtÞf g 1
e
� 1

� �

() e 6
inf �u00ðtÞf g

sup �u00ðtÞf g þ inf �u00ðtÞf g :

Thus, condition (3) ensures thatZ
X
�BðtÞð Þdt 6

inf �u00ðtÞf g
sup �u00ðtÞf g þ inf �u00ðtÞf g

Z b

a
BðtÞj jdt:

Rearranging the above equation yields

� sup �u00ðtÞf g þ inf �u00ðtÞf gð Þ
Z

X
�BðtÞð Þdt

þ inf �u00ðtÞf g
Z b

a
BðtÞj jdt P 0:

Thus, we have
R b

a �u00ðtÞð ÞBðtÞdt P 0 and hence
E u0ðWÞ Xk � Xj

� �� �
P 0, which ends the proof of the ‘‘if’’ part.

A.2. ‘‘Only if’’ part

We would like to prove that ifZ
X
ð�BðtÞÞdt > e

Z b

a
BðtÞj jdt or E½Xk� < E½Xj�;

then there exists one individual with preferences u 2 U�2ðeÞ such
that inequality (1) is violated. Let us first show the following
statement:Z

X
ð�BðtÞÞdt > e

Z b

a
BðtÞj jdt ) 9u

2 U�2ðeÞ such that ð1Þ is violated:

Let h and �h be two positive real numbers such that e ¼ h
�hþh

. Assume

that X ¼ c;d½ �, where a 6 c 6 d 6 b. Define a marginal utility func-
tion as follows:

u0ðxÞ ¼
h b� dð Þ þ �h d� cð Þ þ h c � xð Þ if a 6 x 6 c

h b� dð Þ þ �h d� xð Þ if c 6 x 6 d

h b� xð Þ if d 6 x 6 b

8><
>: ;

which belongs to U�2ðeÞ. Since u0ðbÞ ¼ 0, we have

E u0ðWÞ Xk � Xj
� �� �

¼
Z b

a
�u00ðtÞð ÞBðtÞdt ¼ �h

Z d

c
BðtÞdt þ h

Z
XC

BðtÞdt

¼ � �hþ h
� � Z b

a
�BðtÞð Þdt þ h

Z b

a
BðtÞj jdt:

Since e ¼ h
�hþh

, andZ
X
�BðtÞð Þdt >

h
�hþ h

Z b

a
BðtÞj jdt;

we have E u0ðWÞ Xk � Xj
� �� �

< 0, which is the desired result.
Now, let us prove that

E½Xk� < E½Xj� ) 9u 2 U�2ðeÞ such that ð1Þ is violated:

Define

u0ðxÞ ¼ c � dx;

where d is a positive constant small enough to ensure c > db. Thus,
u 2 U�2ðeÞ. Furthermore,

E u0ðWÞ Xk � Xj
� �� �

¼ u0ðbÞBðbÞ þ
Z b

a
�u00ðtÞð ÞBðtÞdt

¼ c � dbð ÞBðbÞ þ d
Z b

a
BðtÞdt:

Now, if c is such that

c � dbð Þ E½Xk� � E½Xj�
� �

þ d
Z b

a
BðtÞdt < 0 () c

> db�
d
R b

a BðtÞdt
E½Xk� � E½Xj�

;

we have E u0ðWÞ Xk � Xj
� �� �

< 0 which contradicts (1) and completes
the proof.
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