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a b s t r a c t

This work considers the solution of the Vasicek-type forward interest rate model. A deterministic process
is adopted to model the random behavior of interest rate variation as a deterministic perturbation. It
shows that the solution of the Vasicek-type forward interest rate model can be obtained by solving a non-
linear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving
the resulting optimization problem. The features of the proposed method are tested using a set of real
data and compared with some commonly used spline fitting methods.
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1. Introduction

The interest rate model plays a central role in the theory of modern economics and finance. In past studies interest rate models de-
scribed by stochastic processes were widely used. It is often assumed that a small number of interest rates are sufficient statistics for
the stochastic movement of the entire term structure. An enormous amount of work has been directed towards modeling and estimation
of the short term interest rate dynamics. Some single-factor models [7,9,37] have been proposed and widely used in practice because of
their tractability and their ability to fit reasonably well the dynamics of short term interest rates. Econometric estimation of these models
has also been intensively studied in the literature [7,11,12,1,25]. Recently, Kortanek and Medvedev [19] introduced a deterministic process
to model the random behavior of interest rate variation as a deterministic perturbation which was later investigated by Staffa [30], and
Tichatschke et al. [34]. Moreover, McCulloch [22], Carleton and Cooper [5], Schaefer [28], Vasicek and Fong [38], Chambers et al. [6], Nelson
and Siegel [24], Steeley [32] and Pham [26] used curve fitting techniques with the observed government coupon bond prices to estimate
the pure discount bond yield curve. As it is well known, the use of piece-wise quadratic functions to approximate the yield curve may gen-
erate a non-smooth forward yield curve [21], and the use of polynomial functions to fit the entire yield curve may lead to unacceptable
yield patterns [20]. Brown and Dybvig [3], Brown and Schaefer [4], de Munnik and Schotman [23] and Sercu et al. [29] used economic func-
tions such as the Vasicek [37] and the Cox et al. [9] term structure models to fit the market yield curve. Although these functions can pro-
vide economic explanations, they fail to provide a rich variety of shapes to fit the versatile market yield curve [21]. Inspired and motivated
by the recent research, this work considers the Vasicek-type forward interest rate model, which contains a one-dimensional source of ran-
domness affecting bond prices (i.e. one-dimensional Brownian motion). For a fixed current time t, the Vasicek-type forward interest rate
model considers the differentiation of the forward interest rate with respect to the time to maturity s, which can be described as follows:
df ðsjtÞ ¼ ðaðtÞ þ bðtÞf ðsjtÞÞdsþ dBðsjtÞ; 8s P t; f ðtjtÞ ¼ rðtÞ; ð1Þ
where f is the instantaneous forward interest rate, BðsjtÞ is the one-dimensional standard Brownian motion with BðtjtÞ ¼ 0, the increment
BðsjtÞ � BðsjtÞ is normally distributed with mean zero and variance s� s, for t 6 s 6 s [18], the coefficients aðtÞ; bðtÞ, and the spot rate
rðtÞ satisfy the following conditions:
0 < aðtÞ 6 aðtÞ 6 �aðtÞ; bðtÞ 6 bðtÞ 6 �bðtÞ < 0; 0 < rðtÞ 6 rðtÞ 6 �rðtÞ;
with the pre-assigned bounds aðtÞ; �aðtÞ; bðtÞ; �bðtÞ; rðtÞ; �rðtÞ. While the bounds on the short rate are imposed for reasons of compatibility
with the impulse perturbation formulation below, it should be noted that a negative short rate would imply arbitrage in a world in which one
ll rights reserved.
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can always hold cash [33], and the mean-reverting property (which is implied by the bounds on b) implies that extremely high (or low) val-
ues of r are extremely unlikely. We assume the spot rate is bounded less than infinity and greater than zero in this work.

The main feature of the Vasicek-type forward interest rate model (1) is the instantaneous trend of the process to revert to its long run
mean value. The parameter bðtÞ determines a speed of the adjustment and should be negative to ensure convergence [19]. The Vasicek-type
model has also been extended in subsequent research. The work of Dothan [10], Courtadon [8], Cox et al. [9] and Stapleton and Subrah-
manyam [31] can also be placed in this category.

To solve the Vasicek-type forward interest rate model (1), the concept of deterministic perturbations is adopted to deal with the random
behavior of interest rate variations. It is shown that the solution of the Vasicek-type forward interest rate model (1) can be obtained by
solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is proposed for solving the resulting optimiza-
tion problem. In each iteration, we solve a finite optimization problem and add one or more constraints. The proposed algorithm chooses a
point at which the infinite constraints are violated to a degree rather than the violation being maximized. The organization of the rest of
this paper is as follows. Section 2 provides some basic definitions to formulate the Brownian motion in the Vasicek-type forward interest
rate model in terms of the deterministic perturbation. It shows that the Vasicek-type forward interest rate model can be solved via a non-
linear semi-infinite programming problem. Solution algorithms are developed in Section 3 for solving the resulting semi-infinite program-
ming problem. The numerical results and comparison to some commonly used spline fitting methods are reported in Section 4. The paper is
concluded in Section 5.

2. The Vasicek-type forward interest rate model with impulse perturbation

As mentioned in the previous section, in this paper a deterministic process is adopted to model the uncertainty in the interest rate
behavior. It is assumed that the uncertainty is deterministic, which depends on the time to maturity s. For convenience we denote the
uncertainty as an integral function wðsjtÞ, and �wðsjtÞ; �wðsjtÞ are assumed to be the pre-assigned upper and lower bounds of wðsjtÞ, respec-
tively, i.e.,
�wðsjtÞ 6 wðsjtÞ 6 �wðsjtÞ: ð2Þ
In this case, the Vasicek-type forward interest rate model can be formulated as the following differential equation with uncertainty:
df ðsjtÞ
ds

¼ aðtÞ þ bðtÞf ðsjtÞ þwðsjtÞ; 8s P t: ð3Þ
To specify the perturbation function wðsjtÞ, we introduce some notation and definitions.
Assume that for some present time t, there are M observed yields Ri with times to maturity si; i ¼ 1;2; . . . ;M. Let e@ , fs0; s1; . . . ; sMg,

where s0 , t; si�1 < si, and @i , ½si�1; si�; i ¼ 1;2; . . . ;M.

Definition 1 (The observed Treasury yield). The observed Treasury yield is defined as follows:
RðsjtÞ , Ri; 8s 2 @i; i ¼ 1;2; . . . ;M:
It is well known that using linear interpolation for all maturities between the observed yields may cause the forward rate yield curve being
extremely bumpy and convex where it should be concave [36]. Therefore, in this work the observed Treasury yield is effectively defined as a
step function.

Definition 2 (The yield function). The yield function is defined as the mean value of the integral of forward interest rates, i.e.,
RðsjtÞ , 1
s� t

Z s

t
f ðsjtÞds: ð4Þ
Definition 3 (The estimation error). The estimation error is defined as the maximum absolute value of the difference of the yield function
and the observed Treasury yield, i.e.,
�i , max
s2@i

jRðsjtÞ � RðsjtÞj; i ¼ 1;2; . . . ;M: ð5Þ
Definition 4 (The impulse perturbation). Let wðsjtÞ , wiðsjtÞ; 8s 2 @i; i ¼ 1;2; . . . ;M. The impulse perturbation is defined to be
wiðsjtÞ ¼ ki; 8s 2 @i; i ¼ 1;2; . . . ;M; ð6Þ
where ki 2 R; i ¼ 1;2; . . . ;M, are constants and
wiðsjtÞ 6 wiðsjtÞ 6 �wiðsjtÞ; 8s 2 @i; i ¼ 1;2; . . . ;M;
with wiðsjtÞ and �wiðsjtÞ; i ¼ 1;2; . . . ;M, are pre-assigned bounds for the perturbations.
The solution of the Vasicek-type forward interest rate model (3) with the impulse perturbation function defined in (6) can be derived

from Theorem 1.

Theorem 1. The instantaneous forward interest rate function of the Vasicek-type forward interest rate model (3) is given by
f ðsjtÞ ¼ rðtÞebðtÞðs�tÞ þ aðtÞ
bðtÞ ðe

bðtÞðs�tÞ � 1Þ þ 1
bðtÞ

Xi�1

j¼1

ðebðtÞðs�sj�1Þ � ebðtÞðs�sjÞÞwjðsjtÞ þ
ðebðtÞðs�si�1Þ � 1ÞwiðsjtÞ

bðtÞ ; s 2 @i; i ¼ 1; . . . ;M: ð7Þ
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Proof. Multiply both sides with the integrating factor e�bðtÞðs�tÞ for (3) we have
df ðsjtÞ
ds

� bðtÞf ðsjtÞ
� �

e�bðtÞðs�tÞ ¼ aðtÞe�bðtÞðs�tÞ þwðsjtÞe�bðtÞðs�tÞ:
Integrating each side from t to s
Z s

t
ðdf ðsjtÞe�bðtÞðs�tÞÞ ¼

Z s

t
ðaðtÞe�bðtÞðs�tÞ þwðsjtÞe�bðtÞðs�tÞÞds;
f ðsjtÞe�bðtÞðs�tÞ � f ðtjtÞe�bðtÞðt�tÞ ¼ aðtÞ
bðtÞ ð1� e�bðtÞðs�tÞÞ þ

Z s

t
wðsjtÞe�bðtÞðs�tÞ ds ¼ aðtÞ

bðtÞ ð1� e�bðtÞðs�tÞÞ þ
Z s1

t
w1ðsjtÞe�bðtÞðs�tÞ ds

þ
Z s2

s1

w2ðsjtÞe�bðtÞðs�tÞ dsþ � � � þ
Z si�1

si�2

wi�1ðsjtÞe�bðtÞðs�tÞ dsþ
Z s

si�1

wiðsjtÞe�bðtÞðs�tÞ ds;

f ðsjtÞe�bðtÞðs�tÞ ¼ rðtÞ þ aðtÞ
bðtÞ ð1� e�bðtÞðs�tÞÞ þw1ðsjtÞ

bðtÞ ð1� e�bðtÞðs1�tÞÞ þw2ðsjtÞ
bðtÞ ðe

�bðtÞðs1�tÞ � e�bðtÞðs2�tÞÞ þ � � �

þwi�1ðsjtÞ
bðtÞ ðe�bðtÞðsi�2�tÞ � e�bðtÞðsi�1�tÞÞ þwiðsjtÞ

bðtÞ ðe
�bðtÞðsi�1�tÞ � 1Þ:
Hence
f ðsjtÞ ¼ rðtÞebðtÞðs�tÞ þ aðtÞ
bðtÞ ðe

bðtÞðs�tÞ � 1Þ þ 1
bðtÞ

Xi�1

j¼1

ðebðtÞðs�sj�1Þ � ebðtÞðs�sjÞÞwjðsjtÞ þ
ðebðtÞðs�si�1Þ � 1ÞwiðsjtÞ

bðtÞ ; s 2 @i; i ¼ 1; . . . ;M: �
It is well known that the yield function is one of the most important financial indicators in the theory of modern economics and finance.
Substituting (7) into (4) yields the following result.

Theorem 2. The yield function has the form
RðsjtÞ ¼ 1
s� t

ebðtÞðs�tÞ � 1
bðtÞ rðtÞ þ ebðtÞðs�tÞ � 1

b2ðtÞ
� s� t

bðtÞ

 !
aðtÞ þ

Xi�1

j¼1

ebðtÞðs�sj�1Þ � ebðtÞðs�sjÞ

b2ðtÞ
� sj � sj�1

bðtÞ

 !
wjðsjtÞ

(

þ ebðtÞðs�si�1Þ � 1
b2ðtÞ

� s� si�1

bðtÞ

 !
wiðsjtÞ

)
; s 2 @i; i ¼ 1;2; . . . ;M: ð8Þ
Proof
1
s� t

Z s

t
f ðsjtÞds ¼ 1

s� t

Z s

t
rðtÞebðtÞðs�tÞ þ aðtÞ

bðtÞ ðe
bðtÞðs�tÞ � 1Þ þ

Xi�1

j¼1

ðebðtÞðs�sj�1Þ � ebðtÞðs�sjÞÞwjðsjtÞ þ
ðebðtÞðs�si�1Þ � 1Þ

bðtÞ wiðsjtÞ
( )

ds

¼ 1
s� t

rðtÞ
bðtÞ e

bðtÞðs�tÞ
����s

t

þ aðtÞ
b2ðtÞ

ðebðtÞðs�tÞ � bðtÞsÞ
�����
s

t

þ
Z s1

t

ebðtÞðs�tÞ � 1
bðtÞ w1ðsjtÞdsþ

Z s2

s1

ebðtÞðs�tÞ � ebðtÞðs�s1Þ

bðtÞ w1ðsjtÞ
�(

þ ebðtÞðs�s1Þ � 1
bðtÞ w2ðsjtÞ

�
dsþ � � � þ

Z si�1

si�2

Xi�2

j¼1

ebðtÞðs�sj�1Þ � ebðtÞðs�sjÞ

bðtÞ wjðsjtÞ þ
ebðtÞðs�si�2Þ � 1

bðtÞ wi�1ðsjtÞ
 !

ds

þ
Z s

si�1

Xi�1

j¼1

ebðtÞðs�sj�1Þ � ebðtÞðs�sjÞ

bðtÞ wjðsjtÞ þ
ebðtÞðs�si�1Þ � 1

bðtÞ wiðsjtÞ
 !

ds

)

¼ 1
s� t

ebðtÞðs�tÞ � 1
bðtÞ rðtÞ þ ebðtÞðs�tÞ � 1

b2ðtÞ
� s� t

bðtÞ

 !
aðtÞ þ

Z s1

t

ebðtÞðs�tÞ � 1
bðtÞ w1ðsjtÞds

�(

þ
Z s2

s1

ebðtÞðs�tÞ � ebðtÞðs�s1Þ

bðtÞ w1ðsjtÞdsþ � � � þ
Z si�1

si�2

ebðtÞðs�tÞ � ebðtÞðs�s1Þ

bðtÞ w1ðsjtÞdsþ
Z s

si�1

ebðtÞðs�tÞ � ebðtÞðs�s1Þ

bðtÞ w1ðsjtÞds

!

þ
Z s2

s1

ebðtÞðs�s1Þ � 1
bðtÞ w2ðsjtÞdsþ � � � þ

Z si�1

si�2

ebðtÞðs�s1Þ � ebðtÞðs�s2Þ

bðtÞ w2ðsjtÞds

 

þ
Z s

si�1

ebðtÞðs�s1Þ � ebðtÞðs�s2Þ

bðtÞ w2ðsjtÞds

!
þ � � � þ

Z s

si�1

ebðtÞðs�si�1Þ � 1
bðtÞ wiðsjtÞds

 !)
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¼ 1
s� t

ebðtÞðs�tÞ � 1
bðtÞ rðtÞ þ ðe

bðtÞðs�tÞ � 1
b2ðtÞ

� s� t
bðtÞ ÞaðtÞ þ

Xi�1

j¼1

Z sj

sj�1

ebðtÞðs�si�1Þ � 1
bðtÞ wjðsjtÞds

 (

þ
Z s

sj

ebðtÞðs�sj�1Þ � ebðtÞðs�sjÞ

bðtÞ wjðsjtÞds

!
þ

Z s

si�1

ebðtÞðs�si�1Þ � 1
bðtÞ wiðsjtÞds

 !)

¼ 1
s� t

ebðtÞðs�tÞ � 1
bðtÞ rðtÞ þ ebðtÞðs�tÞ � 1

b2ðtÞ
� s� t

bðtÞ

 !
aðtÞ þ

Xi�1

j¼1

ebðtÞðs�sj�1Þ � ebðtÞðs�sjÞ

b2ðtÞ
� sj � sj�1

bðtÞ

 !
wjðsjtÞ

(

þ ebðtÞðs�si�1Þ � 1
b2ðtÞ

� s� si�1

bðtÞ

 !
wiðsjtÞ

)
: �
To shorten the mathematical formulas in (4), the following notations are introduced. Let
arðs; bðtÞÞ ,
1

s� t
ebðtÞðs�tÞ � 1

bðtÞ

� �
;

aaðs;bðtÞÞ ,
1

s� t
ebðtÞðs�tÞ � 1

b2ðtÞ
� s� t

bðtÞ

 !
;

ajðs; bðtÞÞ ,
1

s� t
ebðtÞðs�sj�1Þ � ebðtÞðs�sjÞ

b2ðtÞ
� sj � sj�1

bðtÞ

 !
;

�aiðs; bðtÞÞ ,
1

s� t
ebðtÞðs�si�1Þ � 1

b2ðtÞ
� s� si�1

bðtÞ

 !
:

ð9Þ
This work involves finding the impulse perturbation wðsjtÞ that minimizes estimation errors. It leads to the following optimization problem.

Problem 1
min
XM

i¼1

�2
i

subject to RðsjtÞ 6 RðsjtÞ þ �i; 8s 2 @i; i ¼ 1;2; . . . ;M;

RðsjtÞP RðsjtÞ � �i; 8s 2 @i; i ¼ 1;2; . . . ;M;

aðtÞ 6 aðtÞ 6 �aðtÞ;
bðtÞ 6 bðtÞ 6 �bðtÞ;
rðtÞ 6 rðtÞ 6 �rðtÞ;
wiðsjtÞ 6 wiðsjtÞ 6 �wiðsjtÞ; 8s 2 @i; i ¼ 1;2; . . . ;M;

�i P 0; i ¼ 1;2; . . . ;M:

ð10Þ
Substituting (9) into Problem 1 leads to the following nonlinear programming problem.

Problem 2
min
XM

i¼1

�2
i

subject to Ri 6 arðs;bðtÞÞrðtÞ þ aaðs;bðtÞÞaðtÞ þ
Xi�1

j¼1

ajðs;bðtÞÞwjðsjtÞ þ �aiðs; bðtÞÞwiðsjtÞ þ �i; 8s 2 @i; i ¼ 1;2; . . . ;M;

Ri P arðs;bðtÞÞrðtÞ þ aaðs;bðtÞÞaðtÞ þ
Xi�1

j¼1

ajðs; bðtÞÞwjðsjtÞ þ �aiðs;bðtÞÞwiðsjtÞ � �i; 8s 2 @i; i ¼ 1;2; . . . ;M;

aðtÞ 6 aðtÞ 6 �aðtÞ;
bðtÞ 6 bðtÞ 6 �bðtÞ;
rðtÞ 6 rðtÞ 6 �rðtÞ;
wiðsjtÞ 6 wiðsjtÞ 6 �wiðsjtÞ; 8s 2 @i; i ¼ 1;2; . . . ;M;

�i P 0; i ¼ 1;2; . . . ;M:

ð11Þ
Moreover, to be consistent with the theory of finance, some additional objectives are considered [19]:

Objective I. To ensure that the spot rate is instantaneously risk-free, i.e.,
lim
T!t

RðTjtÞ ¼ f ðtjtÞ ¼ rðtÞ;
the spot rate rðtÞ should be as close as possible to the observed Treasury yield R1 having the shortest term to maturity.
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Objective II. To ensure that the spot forward rate tends to the long run mean, the mean reversion ratio, � a
b, should be as close as possible

to the yield RM having the largest term to maturity.
Objective III. To provide a better fit to the empirical data, the perturbations acting on the forward interest rate curve should be as small
as possible(stability).

It should be noted that in practice a moderately large simulation time is enough for characterizing the mean-reverting property of the
Objective II (e.g. 53 weeks is considered in the numerical implementation of Ref. [19]) and the mean reversion is relatively fast, i.e. b is not
too close to zero.

To specify the above objectives, the following notations are introduced:
c1 , ðR1 � rðtÞÞ2; c2 , RM þ
a
b

� �2

; c3 ,
XM

i¼1

w2
i ðsjtÞ; ð12Þ
where c1 is a measure of the distance of the yield of shortest observed maturity from the spot rate at the current time, c2 is the measure of
the distance of the yield of the largest observed maturity to the mean reversion ratio, and c3 is the sum of the perturbation squares.

Applying (12) to Problem 2 generates the following problem.

Problem 3
min c1 þ c2 þ c3 þ h
XM

i¼1

�2
i

subject to Ri 6 arðs;bðtÞÞrðtÞ þ aaðs;bðtÞÞaðtÞ þ
Xi�1

j¼1

ajðs;bðtÞÞwjðsjtÞ þ �aiðs; bðtÞÞwiðsjtÞ þ �i; 8s 2 @i; i ¼ 1;2; . . . ;M;

Ri P arðs;bðtÞÞrðtÞ þ aaðs;bðtÞÞaðtÞ þ
Xi�1

j¼1

ajðs; bðtÞÞwjðsjtÞ þ �aiðs;bðtÞÞwiðsjtÞ � �i; 8s 2 @i; i ¼ 1;2; . . . ;M;

aðtÞ 6 aðtÞ 6 �aðtÞ;
bðtÞ 6 bðtÞ 6 �bðtÞ;
rðtÞ 6 rðtÞ 6 �rðtÞ;
wiðsjtÞ 6 wiðsjtÞ 6 �wiðsjtÞ; i ¼ 1;2; . . . ;M;

�i P 0; i ¼ 1;2; . . . ;M;
where h is a penalty coefficient of the model. It should be noted that Problem 3 is an ill-posed semi-infinite programming problem with finite
variables, a; b; r; wi; �i; i ¼ 1;2; . . . ;M, and infinitely many constraints. The numerical implementation for ill-posed semi-infinite program-
ming problems has been recently discussed in [34].
3. An algorithm

In this work a cutting plane based algorithm is considered to effectively deal with the infinite number of constraints in Problem 3
[14,16,17]. Following the basic concept of the cutting plane approach, we can easily design an iterative algorithm which adds one or more
constraints at a time for consideration until an optimal solution is identified. To be more specific, at the kth iteration, given subsets

Nk
i ¼ si

1; si
2; . . . ; si

pk
i

� �
and @k

i ¼ ui
1;u

i
2; . . . ;ui

qk
i

� �
of @i, where pk

i ; qk
i P 1; i ¼ 1;2; . . . ;M, we consider the following finite optimization

problem:
Program SDk
min /ða; b; r;w; �Þ ¼ c1 þ c2 þ c3 þ h
XM

i¼1

�2
i

subject to Ri 6 ar si
s;bðtÞ

� �
rðtÞ þ aa si

s;bðtÞ
� �

aðtÞ þ
Xi�1

j¼1

aj si
s; bðtÞ

� �
wj si

sjt
� �

þ �ai si
s;bðtÞ

� �
wi si

sjt
� �

þ �i; s ¼ 1;2; . . . ; pk
i ; i ¼ 1;2; . . . ;M;

Ri P ar ui
l; bðtÞ

� �
rðtÞ þ aa ui

l;bðtÞ
� �

aðtÞ þ
Xi�1

j¼1

aj ui
l;bðtÞ

� �
wj ui

ljt
� �

þ �ai ui
l; bðtÞ

� �
wi ui

ljt
� �

� �i; l ¼ 1;2; . . . ; qk
i ; i ¼ 1; . . . ;M;

aðtÞ 6 aðtÞ 6 �aðtÞ;
bðtÞ 6 bðtÞ 6 �bðtÞ;
rðtÞ 6 rðtÞ 6 �rðtÞ;
wiðsjtÞ 6 wiðsjtÞ 6 �wiðsjtÞ; i ¼ 1;2; . . . ;M;

�i P 0; i ¼ 1;2; . . . ;M;
where � ¼ ð�1; �2; . . . ; �MÞ. Let Fk be the feasible region of Program SDk. Suppose that ðak;bk; rk;wk; �kÞ is an optimal solution of SDk. We define
the ‘‘constraint violation functions” as follows:
gkþ1
i ðsÞ , Ri � arðs; bkðtÞÞrkðtÞ � aaðs; bkðtÞÞakðtÞ �

Xi�1

j¼1

ajðs;bkðtÞÞwk
j ðsjtÞ � �aiðs;bkðtÞÞwk

i ðsjtÞ � �k
i ; s 2 @i; i ¼ 1;2; . . . ;M; ð13Þ
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and
vkþ1
i ðuÞ , arðu;bkðtÞÞrkðtÞ þ aaðu;bkðtÞÞakðtÞ þ

Xi�1

j¼1

ajðu;bkðtÞÞwk
j ðujtÞ þ �aiðu; bkðtÞÞwk

i ðujtÞ � �k
i � Ri; u 2 @i; i ¼ 1;2; . . . ;M: ð14Þ
Since Ri; ar; aa; aj; �ai are continuous over the compact set @i; i ¼ 1;2; . . . ;M, the function gkþ1
i ðsÞ achieves its maximum over

@i; i ¼ 1;2; . . . ;M. A similar argument holds for the function vkþ1
i ðuÞ; i ¼ 1;2; . . . ;M. Let si

pk
i
þ1

and ui
qk

i
þ1

be such maximizers,
i ¼ 1;2; . . . ;M, and consider the values of gkþ1

i ðsi
pk

i
þ1
Þ and vkþ1

i ðui
qk

i
þ1
Þ; i ¼ 1;2; . . . ;M. If the values are less than or equal to zero, then

ðak;bk; rk;wk; �kÞ becomes a feasible solution of Problem 3, and hence ðak;bk; rk;wk; �kÞ is optimal for Problem 3 (because the feasible region
Fk of Program SDk is no smaller than the feasible region of Problem 3). Otherwise, we know that at least si

pk
i
þ1

R Nk
i or

ui
qk

i
þ1

R @k
i ; i ¼ 1;2; . . . ;M. This background provides a foundation for us to outline a cutting plane algorithm for solving Problem 3.

CPSD algorithm

Initialization
Set k ¼ pk

i ¼ qk
i ¼ 1; i ¼ 1;2; . . . ;M; choose any si

1; ui
1 2 @i; i ¼ 1;2; . . . ;M; set N1

i ¼ si
1

	 

and @1

i ¼ ui
1

	 

; i ¼ 1;2; . . . ;M.

Step 1. Solve SDk and obtain an optimal solution ðak; bk; rk;wk; �kÞ.
Step 2. Find a maximizer si

pk
i
þ1

of gkþ1
i ðsÞ over @i and a maximizer ui

qk
i
þ1

of vkþ1
i ðuÞ over @i; i ¼ 1;2; . . . ;M.

Step 3. If gkþ1
i si

pk
i
þ1

� �
6 0 and vkþ1

i ui
qk

i
þ1

� �
6 0; i ¼ 1;2; . . . ;M, then stop with ðak; bk; rk;wk; �kÞ being an optimal solution of Problem 3.

Otherwise, go to Step 4.

Step 4. If gkþ1
i si

pk
i
þ1

� �
> 0, then set Nkþ1

i  Nk
i

S
si

pk
i
þ1

� �
; pkþ1

i  pk
i þ 1. Otherwise, set Nkþ1

i  Nk
i ; pkþ1

i  pk
i ; i ¼ 1;2; . . . ;M.

Step 5. If vkþ1
i ui

qk
i
þ1

� �
> 0, then set @kþ1

i  @k
i

S
ui

qk
i
þ1

� �
; qkþ1

i  qk
i þ 1. Otherwise, set @kþ1

i  @k
i ; qkþ1

i  qk
i ; i ¼ 1;2; . . . ;M.

Step 6. Set k kþ 1 go to Step 1.

When Problem 3 has at least one feasible solution, it can be shown without much difficulty that the CPSD algorithm either terminates in
a finite number of iterations with an optimal solution or generates a sequence of points fðak; bk; rk;wk; �kÞ; k ¼ 1;2; . . .g, which converges to
an optimal solution ða�; b�; r�;w�; ��Þ, under some appropriate assumptions. However, for the above cutting plane algorithm, one major
computation bottleneck lies in Step 2 of finding maximizers. Ideas for relaxing the requirement of finding global maximizers for different
settings can be found in [15,13,35]. But the required computational work could still be a bottleneck. Here we propose a simple and yet very
effective relaxation scheme which chooses points at which the infinite constraints are violated to a degree rather than the violation being
maximized. The proposed algorithm is stated as follows.

Relaxed CPSD algorithm

Let d > 0 be a prescribed small number.
Initialization
Set k ¼ pk

i ¼ qk
i ¼ 1; i ¼ 1;2; . . . ;M; choose any si

1; ui
1 2 @i; i ¼ 1;2; . . . ;M; set N1

i ¼ si
1

	 

and @1

i ¼ ui
1

	 

; i ¼ 1;2; . . . ;M.

Step 1. Solve SDk and obtain an optimal solution ðak; bk; rk;wk; �kÞ. Define gkþ1
i ðsÞ and vkþ1

i ðuÞ; i ¼ 1;2; � � � ;M, according to (13) and (14),
respectively.

Step 2. Find any si
pk

i
þ1
2 @i such that gkþ1

i si
pk

i
þ1

� �
> d, and ui

qk
i
þ1
2 @i such that vkþ1

i ui
qk

i
þ1

� �
> d; i ¼ 1;2; . . . ;M.

Step 3. If such si
pk

i
þ1

and ui
qk

i
þ1

do not exist, then output ðak; bk; rk;wk; �kÞ as a solution. Otherwise, go to Step 4.

Step 4. If such si
pk

i
þ1

exists, then set Nkþ1
i  Nk

i

S
si

pk
i
þ1

� �
; pkþ1

i  pk
i þ 1. Otherwise, set Nkþ1

i  Nk
i ; pkþ1

i  pk
i ; i ¼ 1;2; . . . ;M.

Step 5. If such ui
qk

i
þ1

exists, then set @kþ1
i  @k

i

S
ui

qk
i
þ1

� �
; qkþ1

i  qk
i þ 1. Otherwise, set @kþ1

i  @k
i ; qkþ1

i  qk
i ; i ¼ 1;2; . . . ;M.

Step 6. Set k kþ 1; go to Step 1.

Note that in Step 2, since no maximizer is required, the computational work can be greatly reduced. Also note that when d is chosen to
be sufficiently small, if the relaxed algorithm terminates in a finite number of iterations in Step 3, then an optimal solution is indeed ob-
tained, assuming that the original Problem 3 is feasible. We now construct a convergence proof for the relaxed CPSD algorithm.

Theorem 3. Given any d > 0, assume that there is a scalar Q > 0 such that kða; b; r;w; �Þk 6 d for each feasible solution ða; b; r;w; �Þ of SD1

(Bounded Feasible Domain Assumption), then the relaxed CPSD algorithm terminates in a finite number of iterations.

Proof. If the relaxed CPSD algorithm does not terminate in a finite number of iterations, then the algorithm generates an infinite sequence
fðak; bk; rk;wk; �kÞg1k¼1. We have
gkþ1
i si

pk
i
þ1

� �
> d; i ¼ 1;2; . . . ;M; k ¼ 1;2; . . . ; ð15Þ
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and
vkþ1
i ui

qk
i
þ1

� �
> d; i ¼ 1;2; . . . ;M; k ¼ 1;2; . . . ; ð16Þ
where si
pk

i
þ1

and ui
qk

i
þ1

are generated by the relaxed CPSD algorithm.

Due to the Bounded Feasible Domain Assumption and the compactness of @i; i ¼ 1;2; . . . ;M, there exists a subsequence fðakj ; bkj ; rkj ;

wkj ; �kj Þg of fðak; bk; rk;wk; �kÞg such that limj!1ðakj ; bkj ; rkj ;wkj ; �kj Þ ¼ ða�; b�; r�;w�; ��Þ; limj!1si

p
kj
i
þ1
¼ s�, and limj!1ui

q
kj
i
þ1
¼ u�. Conse-

quently, by (15) and (16), we have
Ri � arðs�; b�ðtÞÞr�ðtÞ � aaðs�;b�ðtÞÞa�ðtÞ �
Xi�1

j¼1

ajðs�; b�ðtÞÞw�j ðs�jtÞ � �aiðs�;b�ðtÞÞw�i ðs�jtÞ � ��i P d; i ¼ 1;2; . . . ;M;
and
arðu�;b�ðtÞÞr�ðtÞ þ aaðu�;b�ðtÞÞa�ðtÞ þ
Xi�1

j¼1

ajðu�;b�ðtÞÞw�j ðu�jtÞ þ �aiðu�;b�ðtÞÞw�i ðu�jtÞ � ��i � Ri P d; i ¼ 1;2; . . . ;M:
However, for each si
pk

i
and ui

qk
i
; i ¼ 1;2; . . . ;M; k ¼ 1;2; . . . ;
Ri � ar si
pk

i
;blðtÞ

� �
rlðtÞ � aa si

pk
i
;blðtÞ

� �
alðtÞ �

Xi�1

j¼1

aj si
pk

i
;blðtÞ

� �
wl

j si
pk

i
jt

� �
� �ai si

pk
i
;blðtÞ

� �
wl

i si
pk

i
jt

� �
� �l

i 6 0; i ¼ 1;2; . . . ;M; 8l P k;
and
ar ui
qk

i
; blðtÞ

� �
rlðtÞ þ aa ui

qk
i
;blðtÞ

� �
alðtÞ þ

Xi�1

j¼1

aj ui
qk

i
;blðtÞ

� �
wl

j ui
qk

i
jt

� �
þ �ai ui

qk
i
;blðtÞ

� �
wl

i ui
qk

i
jt

� �
� �l

i � Ri 6 0; i ¼ 1;2; . . . ;M; 8l P k:
Therefore, for any fixed k, as the subsequence fðakj ;bkj ; rkj ;wkj ; �kj Þg ! ða�;b�; r�;w�; ��Þ, we see that
Ri � ar si
pk

i
;b�ðtÞ

� �
r�ðtÞ � aa si

pk
i
;b�ðtÞ

� �
a�ðtÞ �

Xi�1

j¼1

aj si
pk

i
; b�ðtÞ

� �
w�j si

pk
i
jt

� �
� �ai si

pk
i
; b�ðtÞ

� �
w�i si

pk
i
jt

� �
� ��i 6 0; i ¼ 1;2; . . . ;M;
and
ar ui
qk

i
; b�ðtÞ

� �
r�ðtÞ þ aa ui

qk
i
;b�ðtÞ

� �
a�ðtÞ þ

Xi�1

j¼1

aj ui
qk

i
;b�ðtÞ

� �
w�j ui

qk
i
jt

� �
þ �ai ui

qk
i
;b�ðtÞ

� �
w�i ui

qk
i
jt

� �
� ��i � Ri 6 0; i ¼ 1;2; . . . ;M:
Since the above expression is true for all k, we have
Ri � arðs�; b�ðtÞÞr�ðtÞ � aaðs�;b�ðtÞÞa�ðtÞ �
Xi�1

j¼1

ajðs�; b�ðtÞÞw�j ðs�jtÞ � �aiðs�;b�ðtÞÞw�i ðs�jtÞ � ��i 6 0; i ¼ 1;2; . . . ;M;
and
arðu�;b�ðtÞÞr�ðtÞ þ aaðu�;b�ðtÞÞa�ðtÞ þ
Xi�1

j¼1

ajðu�;b�ðtÞÞw�j ðu�jtÞ þ �aiðu�;b�ðtÞÞw�i ðu�jtÞ � ��i � Ri 6 0; i ¼ 1;2; . . . ;M;
which contradicts the facts that
Ri � arðs�; b�ðtÞÞr�ðtÞ � aaðs�;b�ðtÞÞa�ðtÞ �
Xi�1

j¼1

ajðs�; b�ðtÞÞw�j ðs�jtÞ � �aiðs�;b�ðtÞÞw�i ðs�jtÞ � ��i P d; i ¼ 1;2; . . . ;M;
and
arðu�;b�ðtÞÞr�ðtÞ þ aaðu�;b�ðtÞÞa�ðtÞ þ
Xi�1

j¼1

ajðu�;b�ðtÞÞw�j ðu�jtÞ þ �aiðu�;b�ðtÞÞw�i ðu�jtÞ � ��i � Ri P d; i ¼ 1;2; . . . ;M:
The theorem is proved. h
4. Numerical results

In this section, the features of the proposed method are tested using a set of real data and compared with the smoothing spline method
[2], the cubic smoothing spline method [27], and the maximum smoothing spline method [20]. The numerical experiments are performed
on the Intel Pentium 4 3.0 GHz under the Windows XP Professional SP2 operating system. The data USFR011C Currency from 2005-10-18 to
2006-04-28 (81 Weekly) is employed for analysis. The data providers are Bloomberg Financial Markets. The US represent US dollar, FR
means the forward interest rate and 011 is the data number. This data is a single Treasury yield curve observed on 2005-10-18 with matu-
rities ranging from 0 to 81 weeks. Since the long data length chosen would be time-consuming in the implementation, only 81 observation
periods are considered in our numerical experiments. Moreover, in our implementation, the parameter b is pre-assigned for simplifying the



Table 1
The initial values and bounds of the parameters of the Vasicek-type forward interest rate model.

Initial value Lower bound Upper bound

rðtÞ 0 0 1
a 0 0 1
b Shown in Table 2 �1 0
wðsjtÞ 0 �1 1

Table 2
The numerical results for different b, assuming h ¼ 105.

b �max �mean rðtÞ aðtÞ Rmax

�0.01 0.002502 0.000650 0.000110 0.0083 0.045393
�0.1 0.002018 0.000634 0.000676 0.1275 0.045522
�0.5 0.002019 0.000628 0.002842 0.1757 0.045524
�1 0.002019 0.000628 0.005869 0.1978 0.045482
�2 0.002021 0.000629 0.012781 0.2396 0.045395
�25 0.002342 0.000705 0.036659 1.1712 0.043806
�50 0.003087 0.000856 0.03765 2.1082 0.042938
�100 0.004038 0.001123 0.0376 4.1583 0.042253

Table 3
The numerical results for different h, assuming b ¼ �0:5.

h �max �mean rðtÞ aðtÞ Rmax

1 0.018076 0.0037728 0.0078197 0.05245 0.05767

102 0.011395 0.0017305 0.0066032 0.06214 0.05099

103 0.008794 0.0014077 0.0060641 0.06924 0.04839

104 0.005429 0.0011596 0.0049584 0.09912 0.04503

106 0.002019 0.0006285 0.0028426 0.17573 0.04552

107 0.001777 0.0004588 0.0023745 0.19137 0.04596

108 0.001596 0.0003749 0.0025354 0.17296 0.04610

Table 4
The numerical results for Objectives I–III with different b, assuming h ¼ 105.

b c1 c2 c3
�a
b

�0.01 0.000856031 0.00119716 25.732494 0.011000
�0.1 0.001363382 1.51361348 19.724271 1.275890
�0.5 0.001208078 0.09355596 19.827829 0.351469
�1 0.001006818 0.02319035 19.946171 0.197883
�2 0.000616005 0.00551062 20.195738 0.119833
�25 0.000000886 0.00000155 35.794091 0.046847
�50 0.000000003 0.00001180 55.821307 0.042164
�100 0.000000000 0.00001613 82.162230 0.041582

Table 5
The numerical results for Objectives I–III with different h, assuming b ¼ �0:5.

h c1 c2 c3
�a
b

1 0.00088804 0.00352836 0.00029404 0.105

102 0.00096080 0.00619183 0.00905942 0.12428818

103 0.00099451 0.00862762 0.07173936 0.13848499

104 0.00106547 0.02330265 0.65305515 0.19825206

106 0.00120807 0.09355597 19.82782998 0.35146920

107 0.00124083 0.11365750 79.90312096 0.38273128

108 0.00122952 0.09018912 387.11581104 0.34591505

Table 6
The yield curve variance for different methods.

The yield curve variance

Smoothing spline 8.86e�006
Cubic smoothing spline 8.89e�006
Maximum smoothing spline method 9.14e�006
Deterministic approach 4.97e�006
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Fig. 1. Yield curves for different values of b.
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Fig. 2. Yield curves for different values of h.
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Fig. 3. The comparison of the yield curves for different spline methods and the deterministic approach, assuming h ¼ 105 and b ¼ �100.
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constraints in Problem 3. The initial values and bounds of the parameters of the Vasicek-type forward interest rate model are listed in
Table 1. The numerical results for different b with fixed h ¼ 105 are shown in Tables 2 and 4. Tables 3 and 5 show the numerical results
for different h with fixed b ¼ �0:5. In Tables 2 and 3, Rmax denotes the maximum value of forward rate yield function, �max denotes the max-
imum error of the estimated value, i.e., �max ,maxi¼1;2;...;M�i, and �mean denotes the mean error of the estimate value, i.e., �mean ,

1
M

PM
i¼1�i.

Table 6 compares the yield curve variance for the smoothing spline method, the cubic smoothing spline method, the maximum smoothing
spline method, and our approach. The result illustrates that our approach generates the yield function with smaller oscillation. Moreover,
Fig. 1a–h show the estimates of yield curves for different values of b with fixed h ¼ 105. Fig. 2a–g shows the estimates of yield curves for
different values of h with fixed b ¼ �0:5. Fig. 3a–c shows the compares of the yield curves for different spline methods and the approach
used in this paper, assuming b ¼ �100 and h ¼ 105. It should be noted that when b is chosen to be large enough, the value of the mean
reversion value will tend to a certain value. Moreover, when h is chosen to be large enough, the resulting forward interest rate and yield
functions are highly smooth.
5. Conclusions

The Vasicek-type forward interest rate model with impulse perturbation has been studied. The concept of deterministic perturbation is
adopted to deal with the random behavior of interest rate variation. It shows that the solution of the Vasicek-type forward interest rate
model can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed
for solving the resulting optimization problem. In each iteration, we solve a finite optimization problem and add one or more constraints.
The proposed algorithm chooses a point at which the infinite constraints are violated to a degree rather than the violation being maxi-
mized. Compared to some commonly used spline fitting methods, our approach generates the yield functions with minimal fitting errors
and small oscillations.
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