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Abstract 

This paper considers the two-stage bicriteria flow shop scheduling problem with the objective of minimizing the total 
flow time subject to obtaining the optimal makespan. In view of the NP-hard nature of the problem, two Genetic Algorithms 
(GA) based approaches are proposed to solve the problem. The effectiveness of the proposed GA based approaches is 
demonstrated by comparing their performance with the only known heuristic for the problem. The computational 
experiments show that the proposed GA based approaches are effective in solving the problem and recommend that the 
proposed GA based approaches are useful for solving the multi-machine, multi-criteria scheduling problems. 
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1. Introduction 

Scheduling problems in general are concerned 
with finding the sequence in which a set of jobs are 
processed by one or more facilities to minimize a 
desired performance measure(s) or objective(s). A 
variety of scheduling problems considering various 
performance measures such as average flow time, 
maximum completion time, maximum tardiness, etc., 
have been addressed in the literature (see, e.g., 
Tzafestas and Triantafyllakis [38]). Most of the 
scheduling research has been confined to optimizing 
a single criterion. However, scheduling decisions 
quite often involve consideration of more than one 
criterion and hence require dominant schedules 
(Ruiz-Diaz and French [32]). Furthermore, combin- 
ing various objectives may significantly reduce the 
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scheduling cost. Despite their importance, not much 
attention has focussed on multi-criteria scheduling 
research, more specifically in the domain of multi- 
machine scheduling. 

The bicriteria scheduling problems, which deal 
with two criteria CI and C 2, are generally divided 
into two classes. In the first class, the problem 
involves minimizing one criterion (C 2) subject to the 
constraint that the criterion C I has to be optimized. 
Criteria C~ and C 2 are defined as primary criterion 
and secondary criterion, respectively. In the second 
class of problems, both the criteria (C~ and C 2) are 
considered equally important and the problem in- 
volves finding efficient (non-dominated) schedules. 

In the first class of problems, the pioneering work 
can be attributed to Smith [37] who considered the 
single-machine problem with maximum tardiness as 
the primary criterion and mean flow time as the 
secondary criterion. Extensions of Smith's work with 
the consideration of different primary and secondary 
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criterion have been studied (Bianco and Ricciardelli 
[4], Chand and Schneeberger [7], Chen and Bulfin 
[8], Emmons [16], Heck and Roberts [21], Miyazaki 
[27] and Shanthikumar [36]). 

In the second class of problems, Van Wassenhove 
and Gelders [40] extended the problem solved by 
Smith [37], and developed an algorithm which pro- 
vides all efficient solutions for the criteria of mean 
flow time and maximum tardiness. Several exten- 
sions of the single-machine scheduling problem with 
consideration of different criteria have been reported 
(Bagchi [2], Barnes and Vanston [3], Cenna and 
Tabucanon [6], Chen and Bulfin [8], Nelson et al. 
[28], Sen and Gupta [33], Van Wassenhove and 
Baker [39], and Vickson [42]). A detailed survey of 
different approaches developed for the single ma- 
chine bicriteria and multi-criteria scheduling prob- 
lems' can be found in Dileepan and Sen [15] and 
Ruiz-Diaz and French [32]. 

As mentioned earlier, not much attention focussed 
on the multi-machine, multi-criteria scheduling prob- 
lems. Chen and Bulfin [9] presented a thorough study 
on the complexity analysis of the multi-machine, 
multi-criteria problem. Daniels [12] considered the 
flow shop problem with maximum completion time 
and maximum tardiness as two equally important 
criteria. A constructive algorithm was developed for 
the problem to generate efficient schedules. Rajen- 
dran [31] developed a branch and bound approach 
for the two-stage flow shop problem with makespan 
as the primary criterion and total flow time as the 
secondary criterion. He also presented two heuristics 
for the same problem which iteratively improve the 
schedule obtained from Johnson's rule. 

Ruiz-Diaz and French [32] state that the main 
reasons for the little attention focussed on multi- 
criteria scheduling research are: (i) extreme complex- 
ity of the problems and (ii) the lack of availability of 
general approaches. Genetic Algorithms (GA), which 
are developed based on the mechanism of evolution, 
demonstrated their potential for solving hard in- 
tractable optimization problems. Also, genetic algo- 
rithms are general in terms of applicability and are 
proven to be efficient and adaptive even in case of 
complex constrained optimization problems. There- 
fore, application of genetic algorithms may well be 
suitable to handle the complexity of the multi-criteria 
scheduling problems. 

This paper develops two genetic algorithms based 
approaches for the two-machine bicriteria flowshop 
problem with the objective of minimizing the total 
flowtime subject to the condition that the makespan 
of the schedule is minimum. The rest of the paper is 
organized as follows. Section 2 describes the two- 
stage bicriteria flowshop problem. The basic steps of 
the genetic algorithms are reviewed in Section 3 
where various components of genetic algorithms are 
briefly discussed. The procedure and effectiveness of 
the proposed GA based approaches are discussed in 
Section 4 where results of computational experi- 
ments are also presented. Finally, Section 5 con- 
cludes the paper with some fruitful directions for 
future research. 

2. The two-machine bicriteria flowshop problem 

Following the standard three field notation for 
scheduling problems, we will represent the two-stage 
bicriteria flowshop problem as F2 1 I ECi/Cmax prob- 
lem where the t e r m  ~Cil /Cma x implies that the ob- 
jective is to minimize total flow time subject to the 
condition that the makespan (also called maximum 
completion time) is minimum. Let the processing 
times of job j at two machines be represented by aj 
and bj, where j = 1, 2 . . . . .  n. It is assumed that each 
job j is first processed by machine 1 and then by 
machine 2. Before discussing the complexity of the 
above problem, it is useful to note that the two-mac- 
hine flowshop problem with makespan objective 
(F2 I I Cmax) can be solved optimally using Johnson's 
algorithm (1954). 

While the F211Cma ~ problem is polynomially 
solvable, the F 2 l l E C  i problem is known to be 
NP-hard in the strong sense. Using this result, Chen 
and Bulfin [9] have shown that the F2II~Ci/Cma x 
problem is NP-hard in the strong sense. In view of 
this, Rajendran [31] proposed a branch and bound 
algorithm as well as two heuristic algorithms to 
solve the above problem. The branch and bound 
algorithm proposed by Rajendran is computationally 
expensive and hence cannot be used for solving 
large-size problems. However, his heuristic algo- 
rithms can be used to initialize the GA based ap- 
proaches. The steps of Rajendran's heuristic 1 used 
in our investigations are as follows: 
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Algorithm Rajendran: 
Step 1. Let o '={o'(1) ,  or(2) . . . . .  o-(n)} be the 

schedule obtained by using Johnson's rule. Let the 
job k be the value of u that yields C(o ')  given by 
the equation above. Let F represent its total flow- 
time found by summing the completion time of each 
job at machine 2. Enter Step 2. 

Step 2(a). For each sequence position r not equal 
to k -  1, k, or n, calculate the following: 

Dot(r) = a~(r) + b~(r) - a~(r+ 1) - bet(r+ 1) 
D~(r) = 2 a c t ( r )  + b~r(r) - 2 a c t ( r +  1) - -  bet(r+ l)- 

Step 2(b). Set 
D~(k-l)  = D~(k) = D~(,) = - 1. 
Step 2(c). Rank order the jobs in descending order 

of D ( j )  values above, breaking the ties using the 
D ' ( j )  values. Let the list thus obtained be or= 
{~-(1), rr(2) . . . . .  rr(n)}. Set j = 1 and enter Step 3. 

Step 3. Find q such that o '(q) = rr(j) .  If 

q - I  q - I  

max Y'~ a~r(i ) + a~(j+ ,) - Y'~ b~r(i); 
i=l i=l 

E act(i) -- aa(j+ 1) - -  b~(i) 
i=l 

> Eb,}, 

go to Step 5, otherwise enter Step 4. 
Step 4. Interchange jobs in the q-th and (q + 1)st 

sequence positions. Find the total flow time, F' ,  of 
the schedule thus obtained. If F'>~ F, proceed to 
Step 5, otherwise, let the new schedule obtained be 
cr, F = F'  and return to Step 2. 

Step 5. If j < n, set j = j + 1 and return to Step 3; 
otherwise stop. The current schedule and its total 
flowtime constitute an approximate solution to the 
problem. 

In this paper, one of the objectives is to explore 
the possibility of devising a genetic algorithm based 
solution procedure for a broad range of multi-mac- 
hine multi-criteria scheduling problems. Hence we 
considered the application of the genetic algorithms 
to solve the F21 I ECi/Cmax problem in order to gain 
an insight into the application of GA based ap- 
proaches to the solution of multi-criteria scheduling 
problems. 

3. Genetic algorithms 

Genetic algorithms are probabilistic search tech- 
niques (Holland [22]), developed based on the mech- 
anism of evolution (i.e., natural selection). The prob- 
abilistic search procedure in GA, combined with 
reproduction and recombination, mimics the process 
of evolution. In GA the solution space is generally 
represented by a population of structures, where each 
structure, in general, is a possible solution to the 
problem. From the concept of genetics that better 
parents produce better offspring, new structures 
(offspring) are generated by applying simple genetic 
operators such as crossover, mutation, and inversion, 
to the potential (parent) structures selected from the 
existing population. The members with higher fitness 
values in the current population will have higher 
probability of being selected as parents, which is 
similar to Darwin's concept of survival o f  the fittest. 
In every generation, the existing population of parent 
solutions is replaced with the newly generated popu- 
lation of offspring solutions. This procedure is re- 
peated to perform an adaptive search for an optimal 
or near optimal solution. 

Since their introduction, genetic algorithms have 
been applied to a wide variety of combinatorial 
optimization problems (see, e.g. Goldberg [18]) in- 
cluding the well known Travelling Salesman Prob- 
lem (Goldberg and Lingle [17]) and the Scheduling 
Problem (Biegal and Davem [5]; Chen et al. [10]; 
Neppalli et al. [29]; Vempati et al. [41]). 

3.1. Basic procedure of  genetic algorithms 

The following outline is the basic procedure of 
GA, where the notation POPSIZE is the size of the 
population, Pc is the probability of crossover, Pm is 
the probability of mutation, MAX_ GENER is the 
maximum number of generations, S(t)  is the popula- 
tion in the t-th generation; si(t) is the i-th member 
in S(t); f ( s i ( t ) )  is the fimess value of si(t), and 
SUMFIT(t) is the sum of f ( s i ( t ) )  for all si(t)  ~ S(t). 

Step 1. Generate the initial population S( t )  of size 
equal to POPSIZE, where t = 0. 
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Step 2. Calculate the fitness value, f(si(t)) ,  for 
each member of S(t), and the selection probability 
for each si(t), where the selection probability is 
defined as 

P( si(t)) = {f( si( t ) ) /SUMFIT(  t)}. 

Step 3. Select a pair of members (parents) that 
will be used for reproduction via the selection proba- 
bility. Apply genetic operators (cross over and muta- 
tion) to the parents based on the probability of cross 
over (Pc) and probability of mutation (Pro) to gener- 
ate two new offspring. 

Step 4. Insert the generated offspring into a new 
population, S(t + 1), for generation t + 1. If the size 
of the new population is equal to POPSIZE, then go 
to Step 5, else go to Step 3. 

Step 5. Check for termination. If current genera- 
tion,,t + 1, is equal to MAX_GENER, or the popu- 
lation is converged, then stop, else go to Step 2. 

According to the above outline, several compo- 
nents have to be determined before implementing 
GA. These components include initial population, 
selection probability, genetic operators, termination 
criteria, and parameters. In general these components 
affect the performance of GA and are problem de- 
pendent. Therefore, analyzing these components is 
vital for enhancing the performance of GA for the 
candidate problem. In the remaining subsections, we 
analyze the above components of GA in order to 
evolve an optimized approach for solving the candi- 
date problem. 

3.2. Initial population 

The performance of GA is influenced by the 
seeding of initial population (Grefenstette [20]). In 
this research, we analyzed the effect of initial popu- 
lation by comparing three different procedures: (i) a 
complete random initial population (referred as RIP), 
(ii) 50% of the population generated by mutating 
Johnson's sequence (which is the optimal sequence 
for makespan criterion) and the other 50% of the 
population generated randomly (referred to as JIP), 
and (iii) 50% of the population generated by mutat- 
ing Rajendran's heuristic solution (which is the only 
heuristic solution for the present bicriteria problem) 
and 50% of the population generated randomly (re- 

ferred to as HIP). It should be noted that by using 
RIP, the feasibility of the final solution (regarding 
obtaining the optimal makespan) is not guarenteed. 
In this application we used a method called Elitist 
Strategy which saves the best solution (the solutions 
with minimum makespan and least total flow time) 
in every generation. Hence, the feasibility of the 
final solution (regarding obtaining the optimal 
makespan) in both JIP and HIP procedures is guar- 
enteed since the initial population of GA is initial- 
ized with a feasible (Johnson's or Rajendran's) solu- 
tion. The reason for considering RIP in the compara- 
tive analysis is to investigate the effectiveness of this 
procedure compared to JIP and HIP since in JIP and 
HIP there exists a possibility for over-domination of 
heuristic solutions in the initial generations. So, we 
implemented RIP in order to justify heuristic initial- 
ization. Whenever the solution obtained by RIP is 
infeasible (without the optimal makespan) we used 
Johnson's sequence as the final solution for compar- 
ative analysis. It should be noted that in very few 
cases among the total test problems, infeasible solu- 
tions were obtained using RIP even though its per- 
formance did not dominate the performance of JIP or 
HIP (a detailed analysis is presented in the next 
section). 

From the comparative analysis it was found that 
the performance of HIP dominates the performance 
of JIP and RIP in both the GA based approaches. 
Hence, we extended the analysis to investigate the 
effect of different fraction of heuristic solutions in 
the initial population. We considered five different 
procedures for generating the initial population with 
different fractions of heuristic solutions. In the first 
procedure, Rajendran's heuristic solution is included 
in the complete random initial population. In the 
other four procedures different fractions (25%, 50%, 
75% and 100%) of the initial population are gener- 
ated by mutating Rajendran's heuristic solution with 
the rest of the fraction of initial population generated 
randomly. 

3.3. Selection probability 

According to the basic concepts of GA, the selec- 
tion probability of a member in the population should 
reflect the member's effectiveness (performance 



360 V.R. Neppalli et aL / European Journal of  Operational Research 95 (1996) 356-373 

measure) in solving the problem. The method used in 
the above (basic) procedure of GA is a general 
method for calculating the selection probability. 
However, an appropriate scaling of the fitness of the 
members of the population may control the bias 
towards exploration and exploitation of the genetic 
search (Goldberg [18]). In this research, we consider 
three general scaling mechanisms, Linear, Sigma 
Truncation, and Power Law. 

In the linear scaling procedure, the raw fitness is 
scaled by using the equation 

f ' = a * f + b ,  

where f '  is the scaled fitness value, f is the raw 
fitness value and a and b are constants. The values 
of a and b are determined in such a way that the 
average of the scaled fitness is equal to the average 
of the raw fitness. This scaling procedure increases 
the fitness values of the members whose fitness 
values are larger than the average fitness value of the 
population and decreases the fitness of the members 
whose fitness values are smaller than the average 
fitness value of the population. Linear scaling mech- 
anism is quite efficient, however, in some cases the 
procedure yields negative fitness values. Therefore, 
in order to avoid the occurrence of negative fitness 
values, using the similar concept, we increased or 
decreased the raw fitness of a member in proportion 
to its deviation from the average fitness of the 
population. If  the raw fitness of a member is less 
than the average fitness of the population, then its 
scaled fitness will be reduced by a fraction propor- 
tional to its deviation from average fitness of the 
population. Similarly, if the raw fitness of a member 
is greater than the average fitness, then its scaled 
fitness is increased proportionately. 

In the sigma truncation scaling procedure, along 
with the average fitness of the population, standard 
deviation of the fitness values is also considered to 
eliminate certain bad members of the population. 
The fitness of each member is scaled as follows: 

f ' = f - -  ( a - C o ' ) ,  

where f '  is the scaled fitness value, f is the raw 
fitness value, ct is the average fitness, C is the 
truncation factor, and o- is the standard deviation of 
the population. In the above equation, the negative 
scaled fitness is set to zero. In this scaling mecha- 

nism the enhancement of the fitness value above and 
below average fitness is dependent on the standard 
deviation of the population. 

In the power factor (law) scaling procedure the 
raw fitness value is scaled using the equation 

f ,  = fkfac, 

where f '  is the scaled fitness value, f is the raw 
fitness value, and kfac is the power factor. The value 
of kfac is chosen between 1 and 3. It is evident that 
the scaling procedure enhances the raw fitness by 
having the power factor kfac > 1. 

3.4. Genetic operators 

There are three basic operators used in GA: 
crossover, mutation, and inversion. Among these 
three, crossover and mutation are the commonly used 
operators. Cleveland and Smith [11], analyzed sev- 
eral crossover operators for scheduling problems, 
and based on their analysis we used Goldberg's 
PMX operator as the crossover operator in this appli- 
cation. For a detailed description of the PMX opera- 
tor refer to [11]. Also, we used a random swap 
operator (which randomly chooses two positions in a 
schedule and swaps the jobs in these two positions) 
as the mutation operator. 

3.5. Termination criteria 

Generally, in most of the GA applications, the 
termination criterion is based on the number of 
generations. However, problems such as premature 
convergence may be avoided by having the termina- 
tion criteria based on the convergence of the popula- 
tion. Measures were proposed [20] to evaluate the 
convergence of the population which can be suitably 
adapted in the termination criterion. In this approach, 
by using the termination criteria based on conver- 
gence, beneficial aspects are investigated. Specifi- 
cally the following termination criteria are com- 
pared: 

Criterion 1: Number of generations. If  the number 
of generations exceeds 200, terminate the search. 

Criterion 2: Hypermutation. If  there is no improve- 
ment in the best solution so far for the last 25 
generations, then increase the probability of mutation 
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(hypermutation), and continue the search with the 
number of generations, i.e. 200, as the termination 
criterion. In this termination criterion the purpose of 
increasing the probability is to diversify the popula- 
tion of GA. 

Criterion 3: Entropy of the population. The entropy 
measure proposed in [20] can be used to estimate the 
convergence of the population. Hence we can use a 
threshold value of the entropy measure below which 
the population of GA will be diversified by increas- 
ing the mutation rate. The entropy measure of the 
population is measured using the following equation: 

Entropy = ~ H ( i ) l n ,  
j= l  

where 

H ( i )  -- ~ * POPSIZE 
j =  1 Log n 7n i j  

× Log(½nij *POPSIZE)).  

Here, n~j is the number of times job i is preceded by 
job j in the total population. When the population 
converges, the entropy value approaches zero. A 
threshold value for the entropy measure is used as 
the criterion for increasing the mutation rate in order 
to diversify the population. Hence, if the population 
entropy is less than the threshold value, the probabil- 
ity of mutation is increased to 0.9. Thus, in every 
generation the population is subjected to entropy 
evaluation and the mutation rate is increased if the 
entropy falls below the threshold value. 

3.6. Parameters 

Determination of the values of the parameters of 
GA is a complex process. In most of the applications 
the parameter values of GA are tuned based on some 
trial examples. There are two approaches proposed in 
the literature for the design of parameters of genetic 
algorithms (DeJong [ 14] and Grefenstette [ 19]) along 
with an extensive study on the effect of different 
parameters on the performance of GA (Schaffer [35]). 
In this research, due to the complexity of the specific 
application of GA, we analyzed the effect of popula- 
tion size, crossover rate, mutation rate and empically 

determined the population size, probability of 
crossover and mutation to be 1.00, 0.90, and 0.10, 
respectively, with several trial runs with a number of 
combinations of the parameter values. In all the 
above empharical comparisons we used the Elitist 
Strategy which saves the best solution of the current 
population to the population of the next generation. 
Also, the number of generations is fixed at 200 and 
the performance of the approaches using different 
combinations of parameter values are evaluated in 
terms of the CPU time requirements and the quality 
of solutions. 

4. The GA based approaches 

In applying the genetic algorithms to bicriteria 
scheduling problems like the F211ECi/Cm~x prob- 
lem, we consider two approaches. In the first ap- 
proach, the concept of Vector Evaluated GA pro- 
posed by Schaffer [34] is adapted (which will be 
referred to as Vector Evaluated Approach). In this 
approach, the concept is based on combining fittest 
solutions of different criteria to produce efficient 
solutions. By having sub-populations, one for each 
criterion (makespan and total flow time), fittest solu- 
tions of the two criteria are combined to obtain 
efficient solutions. In the second approach, a linear 
combination of the two criteria is considered (which 
will be referred to as Weighted Criteria Approach). 
The weighted sum of makespan and total flow time 
is used as the fitness for each structure in the GA 
population. It is evident that both the above ap- 
proaches are general in terms of their applicability. 
With reasonable modifications, both the approaches 
can easily deal with other multi-criteria scheduling 
problems. 

4.1. Vector evaluated approach 

Genetic algorithms search with a population of 
solutions rather than a single solution, which enables 
them to accomplish structured recombination. Using 
the advantage of the recombination procedure, by 
combining solutions of different criteria, Schaffer 
[34] proposed an approach for the class of multi- 
criteria optimization problems. In his procedure, the 
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traditional genetic algorithms are extended by selec- 
tion of a sub-population for each criterion, and solu- 
tions that are better for different criteria are selected 
and combined using genetic operators to evolve effi- 
cient solutions. 

In solving the F2[l~_,Ci//Cma x problem with the 
Vector Evaluated approach, the fitness value of a 
solution in the population is a vector representing 
both makespan and total flow time. A sub-population 
(with half the size of the population) for each crite- 
rion is generated by selecting the best solutions for 
the criterion from the current population. Solutions 
with good fitness values in each sub-population are 
selected and recombined in each generation to evolve 
the solutions which minimize the total flow time 
subject to the constraint that makespan must be 
optimized. 

Based on the above structure, the step in the basic 
procedure of GA for calculating the fitness value and 
selection probability for each member in the popula- 
tion, Step 2, has to be modified for the Vector 
Evaluate Approach as follows: 

Step 2. Calculate the fitness value and selection 
probability for each member of S(t). 

Step 2(a). Calculate u( si( t)) and v( si( t)) for each 
member of S(t), where U(Si(t)) and v ( s i ( t ) )  are the 

total flow time and the makespan of the member 
si( t), respectively. 

Step 2(b). Generate the sub-population for each of 
the criteria by filling the sub-population (SPI(t) for 
total flow time and SP2(t) for makespan) with the 
best members of the current population S(t), POP- 
SIZE/2,  for each criterion. Note that a member with 
good total flow time and makespan can be assigned 
to both SPI(t)  and SP2(t). 

Step 2(c). Find the maximum u(si(t)), MaxF, in 
SPI(t)  given by 

MaxF = MAX{u(s i ( t ) ) ,  si(t) ~ SPI( t)}. 

Calculate the fitness value and selection probability 
for each member in SPI(t)  with fitness value defined 
as  

{MaxF - u(si( t))} 

and selection probability 

M a x F -  u( si( t) ) 
p(s,(t)) = S U M V  ' 

where 

POPSIZE/2 

SUMF= ]~ {MaxF - u(si( t))}. 
i=1 

Step 2(d). Find the maximum v(si(t)), MaxC, in 
SP2(t) given by 

MaxC = MAX{v(  si( t) ), si( t ) ~ SP2(t)}. 

Calculate the fitness value and selection probability 
for each member in SP2(t) with fitness value defined 
as  

{MaxC - v( si( t) )} 

and selection probability 

MaxC - v(s i ( t ) )  
PkSi~'tI) = SUMC ' 

where 

POPSIZE/2 

SUMC= Y'. { M a x C - v ( s i ( t ) )  }. 
i ~ l  

Note that in performing the third step, select a 
pair of parents via the selection probability, all the 
members in SPI(t)  and SP2(t) are considered to- 
gether. Furthermore, to guarantee the feasibility of 
the final solution, a method called the Elitist Strat- 
egy is used, which preserves the best member (i.e., 
the member with optimal makespan and lowest total 
flow time) in every generation. (See Fig. 1.) 

4.1.1. Computational results for the vector evaluated 
approach 

In this section, we investigate the effect of initial 
population, scaling mechanism, and termination cri- 
terion on the effectiveness of the GA based approach 
in solving the F21 ]~,Ci/Cma x problem. For each of 
the above components of GA, different procedures 
were compared. In order to perform a reasonable 
comparative analysis of different procedures, the fol- 
lowing three performance measures were used 
throughout this application: 1) the Average Rank 
(referred to as ARank) of the procedure among the 
test procedures, 2) the number of times the procedure 
provides the best result among the tested procedures 
(represented by X), and 3) the Average Relative 
Deviation (ARD), which is the average of the devia- 
tions of the solution quality from the best known 
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solutions for the tested problems. Further details on 
the above performance measures can be found in 
[26]. 

The average rank of approach i is determined by 
the equation 

nprobs 

ARanki = ~_, Rij,  
j=l  

where  nprobs  is the n u m b e r  o f  tes ted p r o b l e m s  and 

Rij  is the rank o f  the approach  i for  the tes ted 

p rob lem j .  

The Average Relative Deviation (ARD) of ap- 
proach i is computed by using the following equa- 
tion: 

nprobs Fi j __ Fj* 

A R D i =  ~ - - * 1 0 0 ,  
j =  1 Fj* 

where Fij is the flow time provided by approach i 
for problem j and Fj* is the best flow time obtained 
for problem j among the comparing approaches. 

The processing times of the two-machine flow- 
shop problems were generated from a uniform distri- 

Table 1 
Effect of initial population (Vector Evaluated Approach) 

n No. of RIP 
Problems AR~k X ARD 

JIP HIP 

AR~k X ARD AR~k X ARD 

10 50 1.39 42 0.22 
15 50 1.84 26 0.98 
20 50 2.11 18 1.52 
25 50 2.56 6 3.32 
30 50 2.55 4 3.14 
40 50 2.44 4 2.10 
50 50 2.52 1 2.66 
60 50 2.56 1 6.80 
70 50 2.64 2 5.06 
80 50 2.64 1 4.26 
Total 500 2.32 105 3.01 

1.40 41 0.17 1.35 43 0.07 
2.12 18 0.40 1.86 24 0.25 
2.20 12 0.60 1.64 29 0.10 
2.00 13 0.55 1.44 33 0.12 
2.18 6 0.68 1.27 40 0.08 
2.18 7 0.99 1.31 40 0.21 
2.25 4 1.17 1.12 45 0.07 
2.30 4 1.59 1.14 45 0.10 
2.28 1 1.70 1.08 47 0.11 
2.30 2 1.75 1.06 47 0.03 
2,14 108 0.98 1.32 393 0.12 
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Table 2 
Effect of  fraction of heuristic solutions in the initial population (Vector Evaluated Approach) 

n No. of  Percentage of the population generated using mutated Rajendran's heuristic solution 

problems (Ranom + Raj. Sol.) Pop. 25% Pop. 50% Pop. 75% Pop. 100% Pop. 

ARank X ARP ARank X ARP ARank X ARP ARank X ARP ARank X ARP 

10 50 1.08 47 0.03 1.02 49 0.01 1.12 46 0.05 1.14 45 0.04 1.10 46 0.05 
15 50 1.68 27 0.18 1.76 23 0.19 1.64 29 0.23 1.68 31 0.21 1.52 31 0.12 
20 50 2.42 15 0.27 2.28 17 0.23 2.34 18 0.25 2.62 14 0.36 2.90 9 0.41 
25 50 3.22 9 0.55 2.38 20 0.30 2.88 11 0.36 2.80 11 0.39 2.74 7 0.32 
30 50 2.94 13 0.52 2.68 13 0.28 2.90 10 0.4 2.74 8 0.38 3.06 11 0.44 
40 50 2.86 13 0.41 2.86 12 0.40 3.04 11 0.42 3.04 7 0.37 2.78 11 0.43 
50 50 3.10 13 0.53 2.72 13 0.28 3.26 6 0.42 2.86 11 0.35 3.00 7 0.38 
60 50 3.46 9 0.67 3.08 10 0.53 2.98 6 0.48 2.68 16 0.37 2.66 10 0.43 
70 50 3.64 5 0.85 2.58 15 0.44 2.94 10 0.51 2.84 12 0.51 2.92 9 0.50 
80 50 3.40 6 0.78 2.56 15 0.38 2.42 16 0.31 3.26 9 0.57 3.28 5 0.56 
Total 500 2.78 157 0.48 2.39 187 0.30 2.55 163 0.34 2.57 164 0.36 2.60 146 0.36 

bution in the range (1, 30). In the following compar- 
isons the termination criterion is based on the maxi- 
mum number of generations (MAX_ GENER = 200). 

The effect of initial population on the Vector 
Evaluated Approach was analyzed by comparing the 
three different procedures for generating initial popu- 
lation: RIP, JIP, and HIP. Table 1 presents the 
comparisons of the three approaches, RIP, JIP and 
HIP. Colunm 1 represents the problem size n (num- 
ber of jobs) and column 2 represents the number of 
tested problems. From the results in Table 1, it is 
evident that the seeding of the initial population does 

affect the performance of the GA based approach. 
These results also show that HIP is superior to JIP as 
well as RIP, especially when the number of jobs 
increases. 

As an extension to the conclusions from Table 1, 
we analyzed the effect of different fractions of 
heuristic solutions in the initial population. As men- 
tioned earlier we compared five different procedures 
and the results are presented in Table 2. It is clearly 
evident that as the fraction of heuristic solutions is 
increased above 25%, the performance of GA is 
deteriorating when the average relative performance 

Table 3 
Effect of  scaling mechanisms (Vector Evaluated Approach) 

n No. of  No scaling linear scaling 

problems Arank X ARD Arank X 

Sigma truncation Power law 

ARD Arank X ARD Arank X ARD 

10 50 1.30 37 0.18 1.16 42 0.04 
15 50 1.78 21 0.30 1.60 30 0.22 
20 50 2.14 19 0.36 2.06 16 0.28 
25 50 2.36 11 0.54 2.04 16 0.28 
30 50 2.52 13 0.70 2.08 15 0.42 
40 50 2.88 5 0.78 1.94 17 0.36 
50 50 2.74 4 0.78 2.02 18 0.42 
60 50 2.92 2 0.98 1.88 19 0.37 
70 50 2.96 2 1.10 1.92 19 0.40 
80 50 3.02 2 1.36 1.84 19 0.38 
Total 500 2.46 116 0.72 1.85 211 0.32 

1.34 37 0.16 1.20 
2.42 12 0.74 1.60 
2.80 10 1.16 1,70 
3.20 5 1.56 1.76 
3.34 7 1.68 1.88 
3.30 7 1.56 1.78 
3.36 6 2.02 1,78 
3.40 3 2.01 1,66 
3.48 4 2.44 1.64 
3.50 4 2.30 1.64 
3.01 95 1.56 1.66 

42 0.06 
28 0.12 
25 0.18 
28 0.32 
18 0.26 
22 0.22 
22 0.22 
27 0.20 
25 0.15 
25 0.28 

262 0.20 
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Table 4 
Effect of termination (Vector Evaluated Approach) 

365 

n No. of Termination 1 Termination 2 Termination 3 

Problems ARank X ARD ARank X ARD ARank X ARD 

10 50 1.30 41 0.12 1.25 42 0.10 1.05 49 0.02 
15 50 1.97 20 0.25 1.85 22 0.20 1.22 45 0.06 
20 50 2.17 13 0.28 1.96 18 0.24 1.27 43 0.05 
25 50 2.34 11 0.38 2.12 15 0.27 1.42 39 0.02 
30 50 2.30 6 0.40 2.20 10 0.40 1.34 40 0.04 
40 50 2.06 18 0.20 1.92 22 0.16 1.86 24 0.10 
50 50 2.11 17 0.36 1.89 23 0.28 1.78 24 0.12 
60 50 2.05 20 0.24 1.95 24 0.22 1.85 25 0.22 
70 50 2.13 18 0.28 2.06 20 0.28 1.81 30 0.08 
80 50 2.27 12 0.52 2.25 12 0.50 1.48 38 0.10 
Total 500 2.08 176 0.30 1.94 208 0,26 1,55 356 0.09 

is considered. The results in Table 2 support the 
point that including heuristic solutions in large frac- 
tions in the initial population may cause the loss of 
diversity (especially for the makespan criterion) since 
a sub-population is maintained for each criterion. 

Based on the conclusions of Tables 1 and 2, we 
continue analyzing the effect of different scaling 
procedures by using the procedure HIP to generate 
the initial population. Table 3 presents the effect of 
the three scaling mechanisms: linear, sigma trunca- 
tion, and power law, on the performance of the 

vector evaluated GA based approach. It is evident 
that both linear and power law scaling mechanisms 
dominate no scaling and sigma truncation scaling 
mechanisms. Power law scaling mechanism slightly 
dominates linear scaling with its minimum average 
relative deviation for each problem size. Further- 
more, the power law scaling mechanism provided the 
best result for more than 50% of the total tested 
problems. Note that the termination criterion used in 
the comparisons of Table 3 is based on the maxi- 
mum number of generations. 

Table 5 
Effect of different sizes (SPI and SP2) of sub-populations for Cma x and total flow time criteria (Vector Evaluate Approach) 

n No. of Different sizes of sub-populations for Cma x and total flow time criteria 

Prob- S P I = 2 0 & S P 2 = 8 0  S P l = 4 0 & S P 2 = 6 0  S P I = 5 0 & S P 2 = 5 0  S P l = 6 0 & S P 2 = 4 0  S P I = 8 0 & S P 2 = 2 0  
lems 

ARank X ARP ARank X ARP ARank X ARP ARank X ARP ARank X ARP 

10 50 1.02 49 0.01 1.04 48 0.02 1.06 48 0.02 1.06 47 0.03 1.22 41 0.20 
15 50 1.38 36 0.07 1.40 34 0.09 1.44 36 0.06 1.52 33 0.17 1.92 27 0.39 
20 50 2.16 23 0.19 2.02 19 0.17 2.06 19 0. t7 2.02 25 0.18 2.22 19 0.38 
25 50 3.18 7 0.30 2.58 14 0.23 2.66 9 0.36 2.70 13 0.30 2.48 17 0.34 
30 50 3.16 8 0.38 3.04 7 0 . 3 1  2.72 12 0.45 3.06 4 0.36 2.54 20 0.40 
40 50 3.60 3 0.41 3.54 4 0.37 2.74 11 0 . 3 1  2.78 7 0.34 2.08 26 0.34 
50 50 3.92 I 0.59 3.08 5 0.44 2.82 9 0.37 3.00 6 0.43 2.12 29 0.35 
60 50 4.06 3 0.80 3.12 6 0.53 3.22 3 0.49 2.80 4 0.45 1.68 35 0.22 
70 50 4.12 0 0.93 3.42 2 0.75 3.00 5 0.56 2.94 3 0.53 1.52 40 0.14 
80 50 4.48 0 1.00 3.16 5 0.62 3.02 5 0.54 2.62 5 0.47 1.72 35 0.19 
Total 500 3.11 130 0.47 2.64 144 0.35 2.47 157 0.33 2.45 147 0.32 1.95 289 0.29 
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Following the analysis of scaling mechanisms, we 
investigate the effect of different termination criteria 
on the performance of the vector evaluated GA 
based approach. Table 4 presents the computational 
results for comparison of termination criteria 1, 2 
and 3 under the condition that HIP was used to 
generate the initial population and power law scaling 
mechanism was used. The comparisons show that the 
termination criteria 2 and 3 are useful when the GA 
prematurely converges, however the performance en- 
hancements will be influenced by the maximum 
number of generations allowed for genetic search. 
This can be illustrated by the ARD of termination 
criterion 1 which ranged from 0.12 to 0.52. By 
considering all three performance measures, termina- 
tion criterion 3 clearly is better than both criterion 1 
and 2. 

In the above analysis we investigated the effect of 
initial population, different fractions of heuristic so- 
lutions in the initial population, scaling mechanisms 
and termination criteria and we used two sub-popula- 
tions of equal size for implementing the VEA. Since 
one of the obejctives of this application is to investi- 
gate the applicability of GA based approaches to a 
broad range of multi-criteria scheduling problems, 
we extended the above analysis to evaluate the effect 
of different sub-population sizes for different criteria. 
In Table 5 we present the computational results of 
YEA by varying the size of SPl( t )  and SP2(t) (the 
total population size is fixed at 100). In these analy- 
ses we implemented VEA with 25% of the initial 

population generated using Rajendran's heuristic so- 
lution, power law scaling and termination criterion 
based on entropy measure. 

The results in Table 5 indicate that having a large 
sub-population size for the makespan criterion is 
beneficial. Out of the 500 test problems the approach 
with (SP1 = 80 & SP2 = 20) provided better results 
in 289 problems. Since the fraction of the initial 
population is generated using heuristic solutions with 
a bias towards having optimal makespan (feasibility 
of the solution), the above results are justified. How- 
ever, from Table 5, it is evident that the approach 
with (SP1 = 40 & SP2 -- 60) dominates the approach 
(SP1 = 80 & SP2 = 20) in terms of average relative 
performance when the problem size is less than 50, 
even though the overall performance of the VEA 
approach with (SP1 = 80 & SP2 = 20) dominates the 
rest of the procedures. 

To evaluate the effectiveness of the above ap- 
proach, we compared the GA based approach with 
Rajendran's heuristic, which is the only heuristic for 
the F 2 [ l ~ , C i / C m a  x problem. Based on the recom- 
mendation from the above analysis on the effects of 
initial population, fraction of heuristic solutions in 
the initial population, scaling mechanisms, termina- 
tion criteria, and different sizes of sub-populations 
for the two criteria, we implemented the GA based 
approach with the following components: 1) 25% of 
the initial population generated by mutating Rajen- 
dran's heuristic solution, 2) the power law scaling 
mechanism, 3) a termination criterion based on the 

Table 6 
Performance of GA based (Vector Evaluated) Approach (compared with Rajendran's heuristic) 

S. No. n No. of 
Problems 

Vector Evaluated Approach 

Even Better Average 
rel. pref. 

CPU 
(see) 

1 10 50 6 44 2.99 8.59 
2 15 50 2 47 2.97 11.04 
3 20 50 0 50 4.54 13.48 
4 25 50 0 50 4.34 15.52 
5 30 50 0 50 4.76 18.84 
6 40 50 0 50 4.98 25.58 
7 50 50 0 50 5.50 33.90 
8 60 50 0 50 6.54 43.58 
9 70 50 0 50 8.70 55.22 

10 80 50 0 50 9.86 72.18 
Toml 500 8 491 



V.R. Neppalli et al. / European Journal of Operational Research 95 (1996) 356-373 367 

entropy measure of the population, and 4) the sizes 
of the sub-populations (SP1 and SP2) are 80 and 20 
respectively. The computational results are presented 
in Table 6. These results show that the performance 
of the GA based approach is consistently better than 
Rajendran's heuristic. The relative improvement pro- 
vided by the GA based approach ranged from 2.99% 
to 9.86%, and the performance improved with prob- 
lem size. Out of the tested 500 problems the VEA 
provided better results in 491 problems. 

4.2. Weighted criteria approach 

In solving multi-objective optimization problems, 
one of the popular approaches is to convert the 
multi-criteria into a single objective using a weighted 
sum of the criteria, and then solving the problem as a 
single criterion problem. The weight assigning aspect 
of this approach is vital and usually projects the 
relative importance of each criteria. In applying this 
approach to the candidate bicriteria problem, a 
weighted objective function, 

f =  ½n * Cma x "1- TOTFLOW, 

was defined (where n is the number of jobs and Cma x 
and TOTFLOW represents the makespan and total 
flow time of a schedule, respectively). By using 

l , 7n Cma x and TOTFLOW in the weighted objective 
function the procedure attempts to assign equal im- 
portance to both the criteria. 

Similar to the previous GA based approach, Step 
2 in the basic procedure of GA has to be modified 
for the current approach as follows. (See Fig. 2.) 

Step 2". Calculate the fitness value and selection 
probability for each member of S(t). 

Step 2(a). Calculate u( si( t)) and v( si( t )) for each 
member of S(t), where u(si(t)) and v(si(t)) are the 
total flow time (TOTFLOW) and the makespan 
(Cma ,)  of the member si(t), respectively.Let 

f (  si( t)  ) = n * v (  si( t )  ) + u(  si( t)  ).  

Step 2(b). Find the maximum f(si(t)) ,  MAXFIT, 
in S(t) given by 

MAXFIT = MAX{u(si( t)) ,  si(t)  ~ SPI( t)}. 

Calculate the fitness value and selection probability 
for each member in S(t) with fitness value defined 
as 

{MAXFIT -- f (  si( t))} 

and the selection probability 

MAX_FIT - f (  s i ( t )  ) 
p(  si( t) ) = SUMFIT 

Generation (t 

Cmax F Z -  
_ _ 

;eneradon (t+ 1) 
Selection Probabilit~ ] 

v 

" 2 u 

I 

m m 

i 
I 

m 

m 

m 

-i 
Assign Selection 
Probability 

w 

m 

m 

m 

T 
Select two members 

crossover 
mutation 

m 

Fig. 2. 



368 V.R. Neppalli et a l . /  European Journal o f  Operational Research 95 (1996) 356-373 

Table 7 
Effect of  initial population (Weighted Criteria Approach) 

n No. of  RIP JIP HIP 

problems ARank X ARD ARank X ARD ARank X ARD 

10 50 1.22 45 0.22 1.20 44 0.14 1.11 48 0.03 
15 50 2.12 19 0.82 2.00 22 0.30 1.65 31 0.15 
20 50 2.30 8 2.89 2.28 9 0.74 1.41 35 0.12 
25 50 2.38 1 2.20 2.42 8 1.12 1.20 43 0.16 
30 50 2.48 2 2.20 2.36 3 1.33 1.16 45 0.15 
40 50 2.45 5 3.78 2.40 2 2.17 1.14 43 0.08 
50 50 2.40 3 3.14 2.55 0 2.56 1.06 47 0.02 
60 50 2.54 1 4.62 2.44 0 3.32 1.02 49 0.01 
70 50 2.42 2 3.34 2.42 4 3.29 1.16 45 0.12 
80 50 2.54 2 4.52 2.40 0 3.30 1.16 48 0.01 
Total 500 2.28 88 2.78 2.24 92 1.81 1.20 434 0.09 

where 

POPSIZE 

SUMFIT = E {MAXFIT-f(s,(t))}. 
i=1 

We now investigate the effects of the factors on 
the performance of the Weighted Criteria GA based 
approach and determine the conditions which will 
provide good performance of the approach on the 
candidate bicriteria problem. The performance of the 
GA based approach is then evaluated by comparing 
the results obtained with Rajendran's heuristic. 

4.2.1. Computational results for the Weighted Crite- 
ria Approach 

Similar to the analysis on the previous approach, 
the three methods for generating the initial popula- 
tion, RIP, JIP, and HIP, were used to estimate the 
effect of initial population on the performance of the 
proposed Weighted Criteria Approach. The computa- 
tional results are presented in Table 7. Similar to the 
results in the Vector Evaluated Approach, the results 
in Table 5 indicate that the initial population gener- 
ated using heuristic solutions does improve the per- 
formance of current GA based approach, and HIP 

Table 8 
Effect of  fraction of heuristic solutions in the initial population (Weighted Criteria Approach) 

n No. of  Percentage of the population generated using the mutated Rajendran's heuristic solution 

prob- RIP with Raj. sol. 25% Pop. 50% Pop. 75% Pop. 100% Pop. 
lems 

ARank X ARP ARank X ARP ARank X ARP ARank X ARP ARank X ARP 

10 50 1.10 45 0.05 1.10 46 0.07 1.18 42 0.08 1.16 43 0.10 1.20 43 0.08 
15 50 1.66 27 0.20 1.72 25 0.20 1.94 21 0.33 1.66 29 0.20 1.68 28 0.21 
20 50 2.16 20 0.24 2.16 24 0.24 2.14 20 0.20 2.06 22 0.19 2.48 20 0.27 
25 50 2.68 13 0.21 2.88 8 0.38 2.44 16 0.20 2.58 15 0.29 2.56 16 0.23 
30 50 3.02 I 1 0.33 2.76 9 0.28 2.70 12 0.31 2.66 13 0.28 2.86 13 0.34 
40 50 2.76 12 0.24 2.86 10 0.27 3.08 7 0.44 2.86 16 0.43 2.82 11 0.34 
50 50 3.02 9 0.32 3.26 9 0.39 3.10 10 0.42 2.58 12 0.30 2.94 10 0.35 
60 50 3.12 12 0.49 3.10 8 0.46 2.88 10 0.46 2.80 13 0.36 2.82 8 0.43 
70 50 2.62 15 0.32 3.00 9 0.39 3.14 7 0.44 3.08 10 0.43 2.98 10 0.36 
80 50 2.94 11 0.53 2.48 16 0.36 3.14 9 0.50 3.42 5 0.53 2.96 9 0.43 
Total 500 2.51 175 0.29 2.54 164 0.30 2.57 154 0.34 2.49 178 0.31 2.53 168 0.30 
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Table 9 
Effect of scaling mechanisms (Weighted Criteria Approach) 
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No. of  No scaling Linear scaling Sigma truncation Power law 

problems ARank X ARP ARank X ARP ARank X ARP ARank X ARP 

10 50 1.06 47 0.03 1.18 44 0.15 1.18 42 0.08 1.10 45 0.03 
15 50 1.44 34 0.08 1.52 29 0.16 2.72 5 0.86 1.48 31 0.12 
20 50 1.74 22 0.18 1.72 25 0.22 3.32 2 1.50 1.86 20 0.26 
25 50 1.98 18 0.44 1.68 25 0.14 3.66 0 2.12 1.94 15 0.30 
30 50 1.98 16 0.48 1.80 21 0.26 3.82 0 2.98 2.06 15 0.36 
40 50 2.02 16 0.30 1.72 28 0.30 3.86 0 2.65 2.22 7 0.34 
50 50 2.38 5 0.52 1.68 28 0.20 3.98 0 3.26 1.96 17 0.35 
60 50 2.26 9 0.60 1.48 33 0.15 3.94 0 3.78 2.20 8 0.62 
70 50 2.30 6 0.80 1.44 35 0.18 4.00 0 0.48 2.26 9 0.80 
80 50 2.48 6 0.85 1.36 37 0.10 4.00 0 5.45 2.16 7 0.70 
Total 500 1.92 179 0.42 1.56 305 0.18 3.45 49 2.75 1.92 175 0.38 

clearly dominates both RIP and JIP. Note that similar 
to Table 1, in the analysis of Table 7 the approach is 
implemented with no scaling mechanism and termi- 
nation criteria based on the maximum number of 
generations. 

Following the conclusions from the analysis on 
the initial population as done for the previous ap- 
proach, we extended the analysis for estimating the 
effect of different fractions of the heuristic solution 
in the initial solution on the performance of the 
WCA. We used five different procedures (similar to 
the procedures used in VEA) and the computational 
results are presented in Table 8. The computational 
results indicate that the procedure in which Rajen- 
dran's heuristic solution is included in the random 
initial population seems to perform better than the 

rest of the procedures. Even though the procedure 
(when 75% of the initial population is generated 
using the mutated Rajendran's heuristic solution) is 
comparable, the overall performance of the earlier 
procedure is consistent throughout the entire problem 
sizes. Based on the above analysis we generated the 
initial population randomly and included Rajendran's 
heuristic solution. 

In view of its best desirable effect of the initial 
population we used the procedure HIP to generate 
the initial population and continued the analysis on 
scaling mechanisms and termination criteria. Table 9 
presents the computational results of the three scal- 
ing mechanisms. The results in Table 9 show that the 
linear scaling procedure dominates the rest of the 
procedures, which is different from the conclusion 

Table 10 
Effect of termination (Weighted Criteria Approach) 

No. of  Termination 1 
Problems ARank X ARP 

Termination 2 Termination 3 

ARank X ARP ArgRank X ARP 

10 50 1.21 45 0.14 
15 50 1.75 27 0.18 
20 50 1.90 21 0.20 
25 50 2.14 15 0.24 
30 50 2.10 17 0.26 
40 50 2.06 16 0.22 
50 50 2.15 16 0.32 
60 50 2.11 18 0.34 
70 50 2.18 18 0.36 
80 50 2.22 12 0.38 
Total 500 1.98 205 0.26 

1.13 47 0.06 1.08 49 0.01 
1.53 32 0.18 1.34 40 0.06 
1.88 23 0.26 1.70 30 0.08 
1.99 14 0.18 1.87 26 0.12 
2.08 14 0.26 1.82 27 0.14 
1.87 22 0.18 2.02 21 0.22 
1.89 18 0.26 1.86 25 0.17 
2.05 19 0.32 1.84 28 0.18 
1.94 21 0.30 1.82 28 0.17 
2.17 15 0.36 1.60 34 0.12 
1.85 228 0.23 1.71 308 0.15 
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Table 11 
Effect of different weights for Cma x and total flow time (Weighted Criteria Approach) 

n No. of  Different weight factors for Cma x (C) and total flow time (F )  criteria 

prob- C(40%) & F(60%) C(40%) & F(60%) C(50%) & F(50%) C(60%) & F(40%) C(80%) & F(20%) 
lems 

ARank X ARP ARank X ARP ARank X ARP ARank X ARP ARank X ARP 

10 50 1.08 47 0.03 1.08 47 0.05 1.02 49 0.02 1.10 47 0.04 1.06 47 0.03 
15 50 1.68 29 0,14 1.52 30 0.11 1.44 34 0.09 1.70 29 0.16 1.58 30 0.24 
20 50 3.02 9 0.41 1.98 21 0.22 2.62 13 0.32 2.04 20 0.24 2.26 23 0.31 
25 50 3.20 7 0.50 2.44 12 0.34 2.48 15 0.29 2.96 11 0.34 2.84 9 0.51 
30 50 3.62 5 0.61 2.78 9 0.34 2.82 13 0.29 2.68 13 0.36 2.68 11 0.34 
40 50 3.50 6 0.40 2.80 12 0.38 2.58 15 0.40 2.68 10 0.33 3.06 8 0.54 
50 50 3.36 10 0.50 2.88 7 0.38 2.54 12 0.46 2.68 13 0.58 3.12 9 0.50 
60 50 3.56 9 0.51 2.68 13 0.34 2.86 12 0.38 2.92 7 0.46 2.90 10 0.44 
70 50 3.64 9 0.59 3.00 6 0.43 2.68 10 0.32 2.96 11 0.38 2.64 15 0.3 
80 50 3.46 8 0.59 3.24 8 0.44 2.66 11 0.30 2.92 11 0.46 2.58 13 0.31 
Total 500 3.01 139 0.43 2.44 165 0.30 2.37 184 0.29 2.46 172 0.33 2.47 175 0.35 

reached for the Vector Evaluated Approach. 
Table 10 presents the computational results com- 

paring the three termination criteria on the Weighted 
Criteria Approach, which show that the termination 
criterion based on entropy measure is superior to the 
other two termination criteria. Note that the analysis 
in this table is conducted by using the linear scaling 
mechanism in all three approaches. 

The above analysis was performed in an attempt 
to provide equal priority (weightage) to both criteria 
in computing the fitness value of a solution. In the 
following analysis (similar to the analysis performed 

for VEA by varying the sub-populations) we esti- 
mated the effect of having different weight factors 
for the two criteria. We modified the objective func- 
tion to 

Wl * 1 2 n  * Cma x + w 2 * F ,  

in order to incorporate the weight factors (wl and 
w z) for the two criteria. We varied the weights of the 
two criteria and the results are presented in Table 11. 
From the results it is evident that no single procedure 
significantly dominates the rest of the procedures. 
Based on the results, providing equal priority to each 

Table 12 
Performance of GA based Weighted Criteria Approach (compared with Rajendran's heuristic) 

S. No. n No. of  
problems 

Weighted Criteria Approach 

Even Better Average 
rel. perf. 

CPU 
(sec) 

1 10 50 6 43 2.98 8.15 
2 15 50 4 48 3.22 10.28 
3 20 50 0 50 4.55 12.86 
4 25 50 0 50 4.24 15.10 
5 30 50 0 50 4.60 17.92 
6 40 50 0 50 4.60 23.94 
7 50 50 0 50 5.08 32.32 
8 60 50 0 50 6.02 43.08 
9 70 50 0 50 8.12 55.92 

10 80 50 0 50 9.35 77.70 
"ro~l 500 10 491 
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Table 13 
Relative performance of VEA and WCA based algorithms 
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S. No. n No. of VEA Even WCA WCA/VEA 
problems better better aver. tel. 

performance 

1 10 50 1 41 8 - 0.17 
2 15 50 5 26 19 - 0.25 
3 20 50 26 10 14 0.01 
4 25 50 32 4 14 0.12 
5 30 50 38 0 12 0.18 
6 40 50 39 0 11 0.39 
7 50 50 40 0 10 0.45 
8 60 50 43 0 7 0.57 
9 70 50 47 0 3 0.62 

10 80 50 43 0 7 0.56 
Toml 500 314 81 105 

of the criteria ( W  1 = 1.0 and w 2 = 1.0) seems to be 
promising. 

The effectiveness of the Weighted Criteria Ap- 
proach is then evaluated by comparing its perfor- 
mance with Rajendran's heuristic. Based on the above 
analysis, we have implemented the weighted criteria 
GA approach with: 1) random initial population with 
Rajendran's heuristic solution, 2) linear scaling 
mechanism, 3) termination criterion using entropy, 
and 4) equal priority for each criterion (where the 
weight factors are w I = 1.0 and w 2 = 1.0). Table 12 
presents the comparative results of the GA based 
heuristic (WCA) with Rajendran's heuristic. The im- 
provement provided by the GA based approach over 
Rajendran's heuristic ranged from 2.98% to 8.96%. 
Out of the 500 test problems, the WCA based GA 
approach provided better results in 490 problems, 
which clearly shows the effectiveness of the ap- 
proach. 

4.3. Comparison of Vector Evaluated Approach and 
Weighted Criteria Approach 

The above computational results show that both 
the Vector Evaluated Approach (VEA) and Weighted 
Criteria Approach (WCA) are effective in solving 
the two-stage bicriteria flowshop problem. However, 
one of the two approaches may be better than the 
other. For this purpose we used the VEA and WCA 
based GA algorithms to solve the same set of prob- 
lems. In doing so, we have implemented the VEA 
and WCA based GA algorithms with parameter val- 

ues found most favorable in our empirical investiga- 
tions. Thus, for VEA, we implemented the GA based 
approach with the following components: 1) 25% of 
the initial population generated using Rajendran's 
heuristic solution, 2) power law scaling mechanism, 
3) termination criterion based on the entropy mea- 
sure, and 4) sub-population sizes (SP1 = 80 and 
SP2 = 20). Similarly, for WCA, we implemented the 
weighted criteria GA approach with: 1) random ini- 
tial population with Rajendran's heuristic solution, 2) 
linear scaling mechanism, 3) termination criteria 
based on entropy, and 4) weight factors (w~ = 1.0 
and w 2 = 1.0) for two criteria. Table 13 presents the 
results, where the columns are similar to those in 
Table 12. 

From the results in Table 13, it is evident that the 
Vector Evaluated Approach is slightly better than the 
Weighted Criteria Approach. Even though the results 
favor the VEA over the WCA, the difference in 
performance is not significant, especially when the 
average relative performances of both the approaches 
with respect to Rajendran's heuristic is considered. 
Hence, either of the two approaches can be used to 
measure the fitness of a solution in the population 
without affecting the performance of the GA based 
approach. 

5. Conclusions 

Genetic algorithms, within their general frame- 
work, have proven to be efficient in single-criterion 
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optimization problems. Extending the traditional 
concepts of GA, this paper has shown the potential 
of two GA based approaches for solving the two-stage 
bicriteria flow shop problem. Computational experi- 
ence demonstrates that the proposed GA based ap- 
proaches are quite effective in solving two-stage 
bicriteria flowshop problems. On a more global level, 
this paper has shown the manner in which various 
parameters of the GA based approach can be adapted 
to effectively solve several bicriteria scheduling 
problems. Even though the paper concentrated on 
two-machine flowshop problems, the discussion has 
been broad enough to be applied to any bicriteria 
scheduling problem. 

Several research projects are worthy of further 
investigation. We believe that the performance of the 
two approaches can be improved by incorporating 
problem specific knowledge in terms of perturbation 
operators. The proposed approaches can be easily 
extended to other bicriteria problems when the two 
criteria are not equally important. However, it may 
not be as easy to extend the approaches for bicriteria 
problems with equally important criteria. A research 
project to modify the approaches for such bicriteria 
problems may provide a good tool for solving goal 
integer programming problems and multi-criteria op- 
timization problems. 
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