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Abstract

Electronic commerce (EC) is increasingly popular in today’s businesses. The business-to-consumer EC environment has
voluminous, unpredictable, and dynamically changing customer orders. A major part of the delivery system of this environment
is the dynamic vehicle routing (DVR) system. This study investigates several algorithms suitable for solving the DVR problem
in business-to-consumer (B2C) EC environment. It designs the solution process into three phases: initial-routes formation,
inter-routes improvement, and intra-route improvement. A computer program is created to demonstrate a system simulating
vehicle routing process under the online B2C environment. The simulated system collects data for system performance indexes
such as simulation time, travel distance, delivery time, and delay time. The results show that when orders are placed through
the Internet in an online B2C environment, the Nearest algorithms can be used to 9nd satisfactory routes during the 9rst phase
of a DVR delivery system. The three-phase solution process is proven to be signi9cantly better in travel distance and delivery
time than the conventional single-phase solution process.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Delivering goods to customers is a critical activity in any
business. On-time delivery relies heavily on e;ective vehi-
cle routing once the merchandise is out the supplier’s door
and on its way to the customer. The problem of vehicle rout-
ing is much more complicated in an electronic commerce
(EC) environment where the process of buying, selling,
or exchanging products, services, and information is done
through the Internet. In business-to-business (B2B) EC en-
vironment, the buyers and sellers are all business units. The
main concern is how to maintain the e<ciency of the supply
chain partnership, which coordinates the order generation,
the order taking, and the order ful9lment and distribution.
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In this environment, the buyers purchase products and ser-
vices from the sellers with or without an intermediary. The
two business partners integrate Just-in-Time (JIT) manufac-
turing and JIT inventory policy with JIT delivery. In fact, a
JIT delivery service could be provided by either a buyer’s,
a seller’s, or a third-party’s deliverer (such as FedEx, UPS,
or DHL). It is a coordinated e;ort of the deliverer and the
seller or the suppliers of the seller. It is normal that these
business partners have long-term relationships. The orders
are normally planned, repeated, and reliable.
Contrary to B2B environment, the delivery policy of

business-to-consumer (B2C) EC environment is di;erent.
The orders in online B2C environment are small in size,
instantaneous, ever changing, and placed by numerous
consumers. These customers are normally bargain seekers
and care less about loyalty to the sellers. The coordination
between the buyers and the sellers for JIT delivery is ex-
tremely di<cult, if not impossible. When a customer places
an order through the Internet, the best practice for the seller
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is to ship the goods from an adjacent distribution center or
partnering supplier. However, the availability of on-hand
inventory (or safety stock) is very limited under JIT pro-
duction setting and the goods will very likely be shipped
from a distance depot. Therefore, in the B2C environment
the need of having a quick-response vehicle dispatching
system that handles dynamic demands of consumers is
much greater than that in the B2B. This calls for an e;ec-
tive routing of delivery vehicles in order to minimize the
travel distance and the delivery time.
There are various vehicle routing algorithms in the liter-

ature. However, none of them alone is useful in the online
B2C environment. These algorithms work best only when
customer orders are planned and can be predicted by the
delivery system. This study adopts the heuristic approach
of the existing dynamic vehicle routing technique to solve
the delivery problem in the online B2C environment. The
solution process is divided into three phases. The purposes
of this study are: (1) to demonstrate a system simulating
vehicle routing process under the online B2C environment,
(2) to verify that the three-phase solution process performs
signi9cantly better than the single-phase solution process,
and (3) to identify the optimal algorithms and improvement
strategies for vehicle routing in the online B2C environ-
ment. The remaining paper is organized as follows. Section
2 reviews the existing literature on vehicle routing. Section
3 describes a three-stage dynamic vehicle routing process.
Section 4 presents the architecture of the prototype of a dy-
namic vehicle routing system. Section 5 demonstrates the
prototype system by running a simulation experiment. Dur-
ing the simulation, several route improvement strategies are
tested using combinations of di;erent existing algorithms.
The performance indexes such as travel distance, service
time, system time, and delay time are collected to analyze
the simulation scenarios. Based on the simulation results,
conclusions and recommendations about the delivery perfor-
mance of these route improvement strategies are presented
in Section 6.

2. Literature review

A review of literature reveals that the existing research
into vehicle routing [1] or traveling salesman [2] problem
focuses invariably on the JIT delivery in the B2B envi-
ronment where orders are normally planned. There is a
lacking of research for the online B2C environment be-
cause the coordination between buyers (i.e., consumers)
and sellers for JIT delivery has been deemed neither feasi-
ble nor possible in the online B2C environment. Although
we agree that the JIT inventory strategy popular in the
online B2B environment is infeasible for the online B2C
environment, it is our contention that the delivery perfor-
mance could be improved in the online B2C environment
by means of combining di;erent vehicle routing algorithms
available today. A review of relevant literature on vehicle

routing problem and algorithms is presented in Sections 2
and 3.

2.1. Vehicle routing system

The solutions of vehicle routing problem (VRP) 9nd the
vehicle routes with the lowest cost given a known route map
G=(V; A), where V ={1; : : : ; n} are the nodes of customers
and the depot, and A = {(ni; nj) : ni; nj ∈N; i �= j} are the
links between the nodes [3]. Normally, there are three re-
strictions on solving the VRP: (1) each node, except the
depot, can only be served once by only one vehicle; (2) all
vehicles return to the depot after completing the service; and
(3) all constraints have to be met. The examples of com-
mon constraints are vehicle capacity, the maximum visiting
allowance, the total travel time, and the delivery time win-
dow. Using a formal mathematical expression, the VRP may
be de9ned as [4]
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∑
ijk

cijxijk (1)
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∑
i
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1; i = 2; : : : ; n;
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∑
i; k
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∑
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xijk6 |S| − 1; ∀S ⊆ {2; : : : ; n}; k = 1; : : : ; m; (5)

yik ∈ {0; 1}; i = 1; : : : ; n; k = 1; : : : ; m; (6)

xijk ∈ {0; 1}; i; j = 1; : : : ; n; k = 1; : : : ; m; (7)

where yik stands for node i served by vehicle k; cij is the
delivery cost from nodes i to j; qi is the ordering quantity of
node i; Qk is the capacity of vehicle k; xijk =1 means vehi-
cle k drives from nodes i to j; m is the number of vehicles,
and n is the number of nodes. Eq. (1) is the objective func-
tion to minimize the total traveling cost. The constraints of
Eqs. (2)–(7) place a limit on the vehicle capacity and the
travel Mow.
Generally speaking, there are seven kinds of approaches

to solving the VRP [5,6]:

(1) Cluster-2rst route-second approach divides the orders
into several clusters and 9nds the most economic routes
to ensure that the order deliveries are not assigned to
ine<cient routes. An example of this approach is the
Sweep algorithm [7].

(2) Route-2rst cluster-second approach generates a vehi-
cle route through all customers, and then divides the



T.C. Du et al. / Omega 33 (2005) 33–45 35

route into several segments based on vehicle capaci-
ties. An example of this approach is the Space-Filling
Curves algorithm [8].

(3) Savings and insertion approach assigns one vehicle to
one order at 9rst, and then merges the vehicles if the
cost can be saved. It is a simple and e<cient approach.
The Insertion algorithm [9] used in this study belongs
to this category.

(4) Improvement and exchange approach uses a heuristic
approach to search for a better solution iteratively since
solving the travel salesman problem (TSP) and VRP
takes polynomial time. A famous example is K-OPT
Exchange that replaces K original links by new links
if the total cost is decreased. Note that the K-OPT is
the extension of 2-OPT heuristic for the TSP from Lin
[10] and 3-OPT from Lin and Kernighan [11].

(5) Mathematical programming approach 9nds the opti-
mal solution in Relaxed Formulation [12].

(6) Interactive optimization approach relies on the knowl-
edge and experience of decision-makers and revises
the system parameters through an interactive interface.

(7) Exact procedures approach can 9nd optimal solutions
for relatively smaller problems using algorithms. Ex-
amples are the Branch and Boundmethod and Dynamic
Programming.

Many di;erent constraints have been considered in VRP
and evolve the problem into di;erent forms. For example,
if the delivering time is considered, the problem becomes a
VRP with time window. If backhauling is allowed, the prob-
lem is a VRP with backhauling. The time window problems
can be further di;erentiated into a soft time window or a
hard time window, in which the soft time window means
the delivery time can be missed if one pays for the penalty.
In contrast, the late delivery service will be rejected in the
hard time window condition. For the VRP, the objective is
to minimize the total cost rather than simply the distance.

2.2. Dynamic VRP

The existing vehicle routing (VR) algorithms are best
for solving VR problems where orders are planned and re-
peated. However, in today’s information age, many orders
are placed through the Internet. This makes the VR problem
become more dynamic, thus the dynamic vehicle routing
(DVR) problem has drawn more attention. The DVR algo-
rithm allows vehicles to update services based on renewed
information [13]. The major di;erence between the VR and
the DVR algorithm is that the input data of the VR are not
changed, i.e., the parameters are predetermined, while those
of the DVR are uncertain [14]. For example, the consumers’
orders and the vehicle travel time are changed from time
to time in the DVR problem (DVRP). These input data are
known only moment before determining the vehicle routes.
Therefore, this vehicle routing problem is also called the dy-
namic, the real-time, or the on-line problem [15]. Also, the

DVRP is di;erent from the dynamic assignment problem
(DAP) [14] in the sense that the DVRP serves a sequence
of consumers while the DAP serves one consumer at a time.
Powell 9nds that solutions for the dynamic scheduling and
routing problem (DSRP) can adapt algorithms from static
VRPs [13]. The approaches are normally conducted by ei-
ther (1) re-solving the routing plan either locally (e.g., by the
Insertion Algorithm) or globally (e.g., by the Tabu Search)
when the input data is updated [16]; or (2) by using Markov
Decision Process [17] or Stochastic Programming [13] to
re-optimize the problems. However, when a problem grows,
the conventional approaches are not e<cient enough. To
provide e<cient results, some studies use neural networks
[19] while others use parallel Tabu Searchs [20].
Two main types of approaches have been adopted to solve

DVRPs [2,3,16]:

(1) Approaches that have been adapted from static VRPs,
such as re-optimization approaches and heuristic
approaches. The former type re-optimizes the solu-
tion whenever a new event occurs, while the latter
re-organizes local solutions in response to changing
events. Examples of re-optimization approaches can
be found in the work of Dial [21]. There is abun-
dant literature on using heuristic approaches to solve
static VRP-related problems. Some examples for lo-
cal improvement are the Insertion/Saving Algorithm
[2,3], the K-Opt and Or-Opt Algorithms [22–24] and
the �-Exchange Algorithm [25]. These algorithms
can be used either for generating initial solutions or
for improving route assignments. Moreover, some
meta-heuristic algorithms are used for overall im-
provement: for example, the Tabu Search Algorithm
[26,27] and the Genetic Algorithm [23,24,28]. Due
to the emerging needs, heuristic approaches are also
applied to solving DVRPs.

(2) Stochastic methods, such as the Markov Decision Pro-
cess [17] and Stochastic Programming [13]. However,
these approaches are limited in their ability to handle
large-scale problems. Some heuristic algorithms that
belong to this category can also be used, such as the
Simulated Annealing Algorithm [25] and the Noising
Method [29]. However, these approaches are also lim-
ited by the problem of high computation time.

It is noteworthy that the VRP heuristic approach was de-
rived from the TSP, which solved the problem of a sin-
gle delivery carrier [2]. This heuristic approach is normally
composed of three phases.

(1) Initial-routes formation. This phase generates initial
vehicle routes based on the matrix-like order dis-
tances. Examples include Insertion algorithms, such as
the Nearest Neighbor algorithm [30,31] and the Sav-
ings algorithm [9], the Sweep procedure [32], and the
Minimum Spanning Tree algorithm [33].
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(2) Routes improvement. The second phase improves
the initial routes proposal by exchanging or inserting
nodes or links. If such exchanging or inserting is done
between the routes, it is called “inter-route improve-
ment.” In contrast, if it is within the route, it is called
“intra-route improvement.” The algorithms can be
used for both inter-routes improvement and intra-route
improvement are K-OPT and or-OPT [2].

(3) Fine tuning. This phase revises the proposal from
inter-routes improvement by using generalized heuris-
tic algorithms, such as the Tabu Search algorithm
[26,34], the Simulated Annealing algorithm [35], the
Genetic algorithm [23,24], and the Threshold Values
Acceptance method [2].

3. Dynamic VR for JIT delivery

Since consumers can place orders through the Internet
under online B2C environment, the orders are unpredictable,
but the service response is expected to be fast. One way to
meet the consumers’ needs is to 9nd an algorithm that can
satisfy both the capacity and time-window constraints in a
timely manner. In order to 9nd feasible solutions, this study
adopts the soft-time-window policy, but the severity of the
late penalty is not taken into account.
Note that the solution to the DVRP is combinatorial

[36,37]. According to the study of Bodin and Golden [5],
this type of problem can be solved by a staged approach
such as the cluster-9rst route-second method. This study
adopts a mixed strategy that is composed of three phases:
initial-routes formation, inter-routes improvement, and
intra-route improvement.

3.1. Initial-routes formation

To 9nd the initial routes, orders are 9rst divided into
clusters and the vehicle delivery route is formed in each
cluster. Then, a new order is placed into a speci9c location
and the routes are rescheduled. The re-scheduling process
has to be punctual and Mexible. This study adopts four algo-
rithms for the initial-routes formation: First-In-First-Serve,
First-Fit-Nearest, Best-Fit-Nearest, and the Sweep pro-
cedure. First-In-First-Serve is self-explanatory. It simply
serves the orders based on the sequence of the orders
being placed. Other algorithms are illustrated below, begin-
ning with the fundamental algorithm, the Insertion/Saving
algorithm.

3.1.1. The insertion/saving algorithm with time window
This algorithm, proposed by Clarke and Wright [9], is

the most commonly used approach among the Insertion al-
gorithms. The algorithm solves the VRP problem with un-
limited vehicles but limited capacities. The algorithm links
nodes to the depot individually and merges the links with
the saving, which is calculated as the di;erence between the

new route and the original route. For example, assuming
two nodes (orders) i and j are served by two vehicles, if the
service is o;ered by one vehicle, the saving is

S(i; j) = 2d(1; i) + 2d(1; j)− [d(1; i) + d(i; j) + d(j; 1)]

= d(1; i) + d(1; j)− d(i; j); (8)

where S(i; j) is the saving, d(i; j) is the distance between
the two nodes, and node 1 stands for the depot. The Inser-
tion/Saving algorithm normally ignores the 9xed expense of
vehicles and only considers the total distance [3]. Since this
algorithm is limited to solve problems with constraints, it is
more appropriate to use it for obtaining initial solutions.

3.1.2. The Nearest algorithm with time window
The Nearest algorithm uses the Insertion/Saving approach

to assign new orders in two ways: First-Fit-Nearest and
Best-Fit-Nearest [38]. The First-Fit-Nearest algorithm as-
signs the new order to the last stop of the 9rst feasible so-
lution, while the Best-Fit-Nearest algorithm puts the new
order in the most economic route after examining all the
feasible solutions.
The implementation steps of the First-Fit-Nearest algo-

rithm are: (1) When a consumer places a new order, be-
ginning with vehicle i = 1, take the following action. (2)
Evaluate the capacities of all vehicles to 9nd the available
vehicle. If the capacities of all vehicles are full, stop; other-
wise do as follows. (3) Calculate the distance from the last
node of the available vehicles to the new order. (4) Check
the time-window constraint of the available vehicle with the
lowest cost. If the time window can be met, go to the next
step; otherwise, choose the vehicle with the second lowest
cost. If none of the vehicles can deliver the order on time,
the vehicle with the minimum delay should be chosen. (5)
Insert the new order as the last node in the chosen vehicle.
The Best-Fit-Nearest algorithm is similar to the

First-Fit-Nearest algorithm, except steps (3) and (5): (1)
When a consumer places a new order, beginning with ve-
hicle i = 1, take the following action. (2) Evaluate the
capacity of all vehicles to 9nd the available vehicle. If the
capacities are all full, stop; otherwise, do as follows. (3)
Calculate the distance from all the nodes of the available
vehicles to the new order, and 9nd the insertion point with
the lowest cost. (4) Check the time-window constraint of
the vehicle with the lowest cost. If the time window can be
met, go to the next step; otherwise, choose the vehicle with
the second lowest cost. If none of the vehicles can deliver
the order on time, the vehicle with the minimum delay will
be chosen. (5) Insert the new order to the best position in
the sequence of the chosen vehicle.

3.1.3. The Sweep procedure with time window
The Sweep procedure was initially proposed by Wren and

Holliday [7] in 1972, and was named by Gillett and Miller
[32] in 1974. The Sweep procedure divides the orders into
regions and assigns one vehicle to deliver orders in a region.
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The new order belongs to the closest vehicle. The algorithm
is as follows: (1) Starting from the depot, the service area
is divided by the number of vehicles with equal degrees of
angles in the polar coordinate. (2)When a consumer places a
new order, 9nd the region the order belongs to. (3) Evaluate
the capacity of the vehicle serving that region. If the capacity
is full, go to step 4; otherwise, go to step 6. (4) Check if
the depot has available vehicles and assign the vehicle to
the new order, then go to step 6; if no vehicle is available,
go to step 5. (5) Assign the order to the vehicles in closer
regions if they are available. If no vehicle is available, stop;
otherwise, do as follows. (6) Calculate the distance from
all nodes of the available vehicles to the new order, and
9nd the insertion point with the lowest cost. (7) Check the
time-window constraint of the vehicle with the lowest cost.
If the time window can be met, go to the next step; otherwise,
go back to step 5. If none of the vehicles can deliver the
order on time, the vehicle with the minimum delay should
be chosen. (8) Insert the new order into the best position in
the sequence of the chosen vehicle.

3.2. Inter-routes improvement

One can switch either a node or a link of a route with
another route to improve routing e<ciency. This study uses
the Insertion algorithm to demonstrate the switch of nodes
and the 2-Exchange algorithm [39] for the switch of links
between routes. The description of these two algorithms
follows.

3.2.1. The Insertion algorithm with time window
The Insertion algorithm removes one node from a route

and adds it to the other route to shorten the total travel
distance. The removed node must be an unselected order
and be inserted into another route. The algorithm is: (1)
Select a route with one order that has not been chosen, and
then carry out the following action. (2) Remove the order
node and insert it into the other route. (3) If the total travel
distance is smaller than the original distance, go to step 4;
otherwise, reverse the node back to its original position and
repeat from step 1. Stop the procedure if no improvement
can be made. (4) Evaluate the capacity of the vehicle on the
route being inserted with the removed node. If the capacity
is full, reverse the node back to its original position and
repeat from step 1; otherwise, go to step 5. (5) Check the
time-window constraint of both vehicles to see whether or
not the total delay time is smaller than the original setup. If
yes, go to the next step; otherwise, reverse the node back to
its original position and repeat from step 1. (6) Con9rm the
new routes and repeat from step 1.

3.2.2. The 2-Exchange algorithm with time window
The 2-Exchange algorithm cuts two routes into four seg-

ments, swaps the tail segments, and then reconnects them.
The algorithm can be implemented as follows: (1) Select
two routes with orders that have not been chosen. Cut the

links before the orders of both routes and do as follows. (2)
Reconnect the tail of the two segments to the other route.
Reconnect the other tail segment to the opposite route. (3) If
the total travel distance is smaller than the original distance,
go to step 4; otherwise, reverse the routes back to their orig-
inal Mows and repeat from step 1. Stop the exchange if no
improvement can be made. (4) Evaluate the capacity of both
vehicles. If either capacity is full, reverse the routes back
to their original Mows and repeat from step 1; otherwise, go
to step 5. (5) Check the time-window constraint of the two
vehicles to see whether or not the total delay time is smaller
than the original total delay time. If yes, go to the next step;
otherwise, reverse the routes back to their original Mows and
repeat from step 1. (6) Con9rm the new routes and repeat
from step 1.

3.3. Intra-route improvement

Two algorithms are chosen to improve the performance
within a route: or-OPT and 2-Swap. These algorithms are
chosen because they are simple and e;ective. Also, Potvin et
al., and Potvin and Bengio [23,24] had shown that or-OPT is
e<cient at solving the VRP with a time-window constraint.
The study of Solomon et al. [40] has also shown that or-OPT
performs better than 3-OPT in the VRP with a time-window
constraint. Similarly, the 2-Swap algorithm normally pro-
duces solutions with shorter distance by serving closer nodes
together, thus is chosen as the improvement algorithm.

3.3.1. The or-OPT algorithm with time window
The or-OPT algorithm removes a node from a route and

relocates the node to another position of the route if the
total travel distance can be shortened. The algorithm is as
follows: (1) Choose an unselected node from a route that
has not been processed and then do as follows. (2) Insert
the node into a position other than the original position. (3)
Find the position with the minimum total distance, then go
to step 4; if it cannot be found, reverse the node back to its
original position and repeat from step 1. Stop when no more
improvements can be made. (4) Check the time-window
constraint of the vehicle to see whether or not the total delay
time is smaller than the original one. If yes, go to the next
step; otherwise, reverse the node back to its original position
and repeat from step 1. (5) Con9rm the new sequence of
the route and repeat from step 1.

3.3.2. The 2-Swap algorithm with time window
The 2-Swap algorithm chooses any two nodes on a route

and swaps the nodes if the total travel distance can be short-
ened. The algorithm is as follows: (1) Choose any two un-
selected nodes from a route and do as follows. (2) Swap
these two nodes and calculate the new travel distance. (3)
Find a pair of nodes with the minimum distance, then go
to step 4; if such nodes cannot be found, reverse the nodes
back to their original positions and repeat from step 1. Stop
when no more improvements can be made. (4) Check the
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time-window constraint of the vehicle to see whether or not
the total delay time is smaller than the original one. If yes,
go to step 5; otherwise, reverse the nodes back to their orig-
inal positions and repeat from step 1. (5) Con9rm the new
sequence of the route and repeat from step 1.

4. System design and development

A dynamic VR system is developed to simulate the sys-
tem performance in online B2C environment. The system
has 9ve subsystems: the control subsystem, the vehicle sub-
system, the route list subsystem, the customer subsystem,
and the algorithm subsystem. Also, one system function,
simulation clock, is used to set timepieces of simulation for
performance measurement. Fig. 1 represents the architecture
in the object modeling technique (OMT) model [41].

(1) The Control Subsystem. The control subsystem man-
ages the operations among four other subsystems.
The operations include placing consumers’ orders,

Control 

system

Vehicle

Customer 

Route 

list 
Car_id

Initial routes 

formation 

Intra-route 

improvement

2-swap 

method 

Or-OPT 

method

Inter-routes 
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2-exchange 

method 

Insertion 

method

First fit 

nearest 

Nearest 

method

Sweep 

method

Best fit 

nearest

Simulation 

clock 

FIFS 

method 

Insertion/ 

saving method 

Fig. 1. The DVR system.

deciding service vehicles, choosing the algorithm, pro-
ceeding with route improvement, and controlling the
system clock. Other system functions are the system
clock, random number generators, event tables, and
service records. The major system events are start, end,
wait, return, service, travel, order, and rest.

(2) The Vehicle Subsystem. The vehicle subsystem in-
cludes 9ve operations: (a) set initial status, (b) set all
vehicles as idle if no orders are in the customer list, (c)
set vehicle as serve while proceeding with the delivery,
(d) set vehicle as travel after 9nishing the servicing
and check the customer list for the next service, and
(e) set vehicle as return if the delivery process is com-
pleted. Also, functions such as orders addition/deletion,
performance evaluation, customer list creation,
and vehicle routes generation are provided by this
subsystem.

(3) The Route List Subsystem. Each vehicle has its own
itinerary. The itinerary records information such as ser-
vice sequence and types of services. The travel distance
is calculated by this function.
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(4) The Customer List Subsystem. The customer list
records all the information about customers. Each
vehicle has a customer list recording the serviced
customers and the completed time.

(5) The Algorithm Subsystem. This subsystem provides
the algorithms for initial-routes formation, inter-routes
improvement, and intra-route improvement.

The consumer orders (i.e., order locations, order quanti-
ties, and order time) in this study are simulated by random
number generators using di;erent probability distributions.
When the simulation begins, the vehicles have the status
of start. Then, the simulator uses the initial-routes forma-
tion algorithm to assign orders to vehicles when orders are
placed. The vehicle travels to the order location and serves
the consumer. If no orders remain, the vehicle waits; other-
wise, the vehicle continues traveling.
The system is implemented under the following schemes.

The journey of the vehicles starts from the depot, which is
located at coordinate (50; 50). The order arrivals are gener-
ated by the Poisson distribution with a mean arrival rate of
30 orders per 60 time-units. The delivery locations are ran-
domly generated in the square of (0; 0) to (100; 100) and
the vehicles travel along the rectangular coordinate system.
That is, the largest distance between the depot and a deliv-
ery location is 100 and the largest distance is 50 in each
quadrant. The service time for each order at the customer
location is set to 10 time-units. The travel time per unit of
distance is one time-unit. The quantity of an order is ran-
domly generated between 10 and 50, i.e., the average quan-
tity per order is 30. The system will stop when the total
number of orders delivered reaches 100. Therefore, the total
quantities need to be delivered is around 3000. The system
assumes each vehicle has a quantity capacity of 200, thus
15 vehicles are utilized in the system. The number of vehi-
cles, 15, is 9xed in this experiment because our attention is
focused on the performance of di;erent algorithms instead
of optimizing the utilization of vehicles. When a new or-
der is placed, the system assigns the order to a vehicle ac-
cording to the algorithms of the initial-routes formation, the
inter-routes improvement, and the intra-route improvement.
If the remaining order quantity of a vehicle is less than 25,
the vehicle returns to the depot to replenish the order quan-
tity. The simulation clock is set to zero at the moment the
simulation begins, and all vehicles are set to the status start.
The vehicles are set to the status wait if the services are
completed. The earliest service starting time of the any time
window is the system start time, i.e., time zero. The ser-
vice completion time requested by a customer is generated
between 20 and 240. For example, an order may be placed
at time 5 and the buyer requests the delivery service to be
completed by time 100; therefore, the time window of this
order is (5; 100). Both time values of 5 and 100 are gen-
erated from the random number generator of Visual C++.
When an order is placed, the system will assign the order
to one vehicle based on one of the initial-routes formation

algorithms. Then, the inter-routes improvement algorithm
and/or the intra-route improvement algorithm are activated,
depending on our experimental settings (see next section).
The simulation program is written in Visual C++ 6.0 and
implemented on a PC platform. Minitab is used for analysis
of variance (ANOVA) at a con9dence level of 99%.

5. Experimental design and results

In order to examine the performance of di;erent DVR
improvement strategies, 9ve performance indicators are col-
lected: (1) total simulation time, (2) averaged vehicle travel
distance, (3) averaged delivery time, (4) averaged delay
time, and (5) averaged delivery time for new orders. The
simulation time records the time when all the orders are
served. Regardless of the various experimental settings, the
smaller the total simulation time the better the DVR system
performance. The smaller averaged vehicle travel distance
stands for running the delivery system at a lower cost. The
delivery time is the elapsed time from the order is placed to
the time the delivery is in the hands of the consumer. The
delay time means that the delivery cannot be completed be-
fore the ending time window of an order. Since this study
adopts the soft-time-window strategy, the delay time is ob-
tained from deducting the actual delivery completion time by
the ending time window. Alternately, the delay time may be
calculated by subtracting the width of the consumer’s time
window from the delivery time if the latter is longer. That
means, the smaller the delay time, the better the algorithm’s
performance in the online B2C delivery system. Therefore,
the satisfaction of consumers can be observed from both the
averaged delivery time and the averaged delay time.
The experiment has two initial conditions: 0 or 50 con-

sumer orders in system before algorithms start running. The
system will stop when the total number of orders deliv-
ered reaches 100. The system experiments with the com-
binations of three groups of algorithms, i.e., initial-routes
formation algorithms, inter-routes improvement algorithms,
and intra-route improvement algorithms. Both inter-routes
improvement and intra-route improvement have three set-
tings, i.e., no improvement, 2-Exchange algorithm, and In-
sertion algorithm for inter-routes improvement; and no im-
provement, or-OPT algorithm, and 2-Swap algorithm for
intra-route improvement.
Moreover, a uniform distribution is used to generate three

di;erent sets of order locations for the consumers and each
set of location is considered as a blocking factor in our de-
sign of experiment. Therefore, the experiment has two ini-
tial order settings, four initial-routes formation algorithms,
three levels of inter-routes improvement, three levels of
intra-route improvement, and three sets of delivery loca-
tions, calling for 216(=2×4×3×3×3) simulation runs in
total. For each of the two initial order settings, there are 108
simulation runs. Table 1 presents the results of simulation
having no initial orders, using four initial-routes formation
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Table 1
The simulation results without initial orders

Initial route Model Total Averaged vehicle Averaged Averaged New-order averaged
formation simulation time travel distancea delivery timeb delay timeb delivery timeb

First-In-First-Serve 1 851.5 347.0 257.7 200.9 257.7
2 591.1 220.4 173.5 117.5 173.5
3 635.4 244.6 188.5 132.0 188.5
4 516.2 188.8 153.7 99.1 153.7
5 455.7 166.7 143.8 89.3 143.8
6 477.2 170.3 140.1 86.3 140.1
7 567.3 232.4 178.3 122.3 178.3
8 520.1 199.4 156.4 100.7 156.4
9 515.1 205.3 160.0 102.5 160.0

First-Fit-Nearest 1 289.3 142.6 77.3 30.7 77.3
2 287.8 124.3 64.9 23.3 64.9
3 287.8 125.7 65.5 23.4 65.5
4 284.8 133.1 70.4 26.0 70.4
5 265.1 124.3 64.4 23.1 64.4
6 287.1 124.0 65.4 23.3 65.4
7 274.5 134.5 71.8 26.1 71.8
8 274.9 120.6 63.2 22.5 63.2
9 274.2 122.8 63.8 22.7 63.8

Best-Fit-Nearest 1 357.8 131.4 78.0 34.4 78.0
2 321.2 115.5 74.7 32.0 74.7
3 322.8 115.8 75.2 32.3 75.2
4 350.4 114.4 75.7 31.7 75.7
5 361.3 106.0 74.2 30.9 74.2
6 358.9 111.8 76.8 34.3 76.8
7 378.5 123.7 74.8 32.5 74.8
8 341.8 116.7 74.5 32.6 74.5
9 332.8 115.0 76.9 34.6 76.9

Sweep 1 460.8 176.1 108.2 61.0 108.2
2 430.6 160.0 101.2 52.7 101.2
3 430.6 160.0 102.1 52.6 102.1
4 454.8 153.6 95.5 48.8 95.5
5 406.5 140.9 91.7 44.0 91.7
6 408.7 140.5 95.0 48.4 95.0
7 411.2 158.2 99.3 52.4 99.3
8 369.8 144.7 92.2 47.5 92.2
9 382.6 149.4 94.8 47.5 94.8

aTotal distance divided by 15 vehicles.
bTotal time divided by 100 orders.

strategies and the following nine models:

(1) No inter-routes improvement; no intra-route
improvement

(2) No inter-routes improvement; or-OPT intra-route
improvement

(3) No inter-routes improvement; 2-Swap intra-route
improvement

(4) Insertion inter-routes improvement; no intra-route
improvement

(5) Insertion inter-routes improvement; or-OPT intra-route
improvement

(6) Insertion inter-routes improvement; 2-Swap intra-route
improvement

(7) 2-Exchange inter-routes improvement; no intra-route
improvement

(8) 2-Exchange inter-routes improvement; or-OPT intra-
route improvement

(9) 2-Exchange inter-routes improvement; 2-Swap intra-
route improvement.

Furthermore, Table 2 shows the results with 50 initial orders
in the system. A scrutiny of Tables 1 and 2 reveals that
most values of total simulation time and averaged delay time



T.C. Du et al. / Omega 33 (2005) 33–45 41

Table 2
The simulation results with 50 initial orders

Initial route Model Total Averaged vehicle Averaged Averaged New-order Di;erence
formation simulation travel delivery delay timeb averaged between initial

time distancea timeb delivery timec and new orders

First-In-First-Serve 1 739.1 352.0 249.5 166.3 258.3 (17.6)d

2 537.7 225.4 172.4 92.4 175.7 (6.6)
3 568.8 247.2 188.9 107.7 190.9 (4.0)
4 492.9 204.3 172.7 92.2 166.1 13.2
5 450.3 195.7 145.3 69.8 136.3 18.0
6 456.3 187.6 150.7 73.6 137.5 26.4
7 574.2 229.1 185.5 102.1 194.7 (18.4)
8 497.2 199.6 153.5 77.9 146.2 14.6
9 472.8 214.1 162.5 83.9 162.7 (0.4)

First-Fit-Nearest 1 292.8 146.9 91.7 31.1 104.6 (25.8)
2 279.3 124.1 78.3 21.0 70.1 16.4
3 289.7 127.0 79.3 22.9 75.3 8.0
4 278.4 125.4 81.0 24.8 80.0 2.0
5 258.1 111.2 73.3 17.2 66.5 13.6
6 265.1 110.3 72.9 18.1 67.5 10.8
7 281.3 141.8 89.0 28.5 99.3 (20.6)
8 280.4 125.0 78.2 20.7 70.5 15.4
9 284.3 127.3 80.0 22.5 76.5 7.0

Best-Fit-Nearest 1 330.0 132.6 92.2 28.0 77.2 30.0
2 362.5 120.8 92.0 28.4 86.2 11.6
3 351.7 121.5 90.2 28.6 84.2 12.0
4 353.9 130.9 91.6 28.3 84.2 14.8
5 372.1 114.5 89.1 26.7 82.9 12.4
6 323.4 120.1 86.0 26.3 77.9 16.2
7 323.5 125.3 89.6 27.0 77.1 25.0
8 332.3 122.0 90.4 26.6 81.8 17.2
9 321.8 117.5 87.7 26.3 79.9 15.6

Sweep 1 411.5 172.9 114.1 47.2 108.5 11.2
2 390.8 154.1 102.4 35.8 97.4 10.0
3 369.2 156.9 102.4 36.1 96.5 11.8
4 384.9 156.4 102.5 37.0 96.3 12.4
5 398.9 151.6 103.0 37.8 101.5 3.0
6 410.5 159.0 104.3 39.2 98.7 11.2
7 380.8 154.8 104.0 39.2 96.1 15.8
8 443.2 159.2 103.1 35.4 98.9 8.4
9 427.8 155.1 104.4 36.8 99.1 10.6

aTotal distance divided by 15 vehicles.
bTotal time divided by 100 orders.
cTotal time divided by 50 orders.
d = 2× (the averaged delay time of the 50 initial orders− the average delay time of the 50 new orders).

have improved by having initial orders, while most values of
averaged vehicle travel distance, averaged delivery time, and
new-order averaged delivery time exacerbated. A detailed
discussion of simulation outcomes follows.

5.1. Simulation time

The ANOVA of total simulation time shows that the inter-
action of initial-routes formation, inter-routes improvement,

and intra-route improvement is signi9cant at p¡ 0:01. This
indicates that all three sets of algorithms determine the
length of simulation time. They cannot be considered inde-
pendently of each other. As for the main factor of initial
order setting (0 or 50 initial orders), it signi9cantly a;ects
the total simulation time at p¡ 0:01 level. The results show
that when 50 orders are initially in the system, the shortest
simulation time is 258:1 s. After plotting the interaction dia-
grams, the results show that combining the First-Fit-Nearest
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algorithm and the Insertion algorithm (Models 4, 5, 6) can
produce a shorter simulation time (from 258.1 to 287.1).
Also, the First-Fit-Nearest algorithm can generate a lower
simulation time with any algorithms for intra-route improve-
ment (279.3–289.7). In contrast, the First-In-First-Serve al-
gorithm has the longest simulation time when no algorithm
is used for inter-routes improvement (739.1 and 851.5). A
combination of the Insertion algorithm and the or-OPT algo-
rithm (Model 5) produces the lowest simulation time (265.1
and 258.1).

5.2. Vehicle travel distance

The ANOVA of the averaged vehicle travel distance
shows that the interactions of (1) initial order setting,
initial-routes formation, and inter-routes improvement, and
(2) initial-routes formation, inter-routes improvement, and
intra-route improvement, are signi9cant (p¡ 0:01). There-
fore, the averaged travel distance is determined by all three
factors. The results show that the single-phase solution
process (Model 1) has much longer distance to travel than
the two-phase (Models 2, 3, 4, 7) or three-phase (Models
5, 6, 8, 9) solution process. The averaged travel distance is
shortest (106.0) when the system is initially empty and uses
Best-Fit-Nearest formation, the Insertion algorithm, and the
or-OPT algorithm (i.e., Model 2). Also, using or-OPT for
intra-route improvement (Models 2, 5, 8) in general can
generate a shorter travel distance (115.5, 106.0, 116.7) when
the Best-Fit-Nearest algorithm is used for initial-routes
formation and the initial number of orders is empty.

5.3. Averaged delivery time

The ANOVA of the averaged delivery time reveals
that the interaction of initial-routes formation, inter-routes
improvement, and intra-route improvement is signi9cant
(p¡ 0:01). Also, the main factor of initial order setting
signi9cantly a;ects the averaged delivery time at p¡ 0:01
level. By further examining the data, we found that the
single-phase solution process (Model 1) has much longer
averaged delivery time than the two-phase (Models 2, 3, 4,
7) or three-phase (Models 5, 6, 8, 9) solution process. The
averaged delivery time is the lowest (63.2) when the sys-
tem is without initial orders and uses the First-Fit-Nearest
formation, the 2-Exchange algorithm, and the or-OPT algo-
rithm (i.e., Model 8). In general, the 2-Exchange algorithm
(Models 7–9) can produce a lower averaged delivery time
when the system is initially empty, while the Insertion
algorithm (Models 4, 5, 6) can produce a lower averaged
delivery time when the system is initially 9lled with 50
orders.

5.4. Averaged delay time

The ANOVA of averaged delay time shows that the in-
teractions are signi9cant (p¡ 0:01) for (1) initial setting,

initial-routes formation, and inter-routes improvement, and
(2) initial-routes formation, inter-routes improvement, and
intra-route improvement. The results show that when 50 or-
ders are initially in the system and the Model 5 is used, the
delay time is shortest (17.2). Also, the same set of algo-
rithms that performs best in the averaged delivery time is the
best combination for the averaged delay time. That is, the
2-Exchange algorithm (Models 7–9) can produce a lower
averaged delay time when the system is initially empty,
while the Insertion algorithm (Models 4, 5, 6) can produce a
lower averaged delay time when the system is initially 9lled
with 50 orders.

5.5. Averaged delivery time for new orders

Next, we consider the averaged delivery time for new con-
sumer orders and its impact on existing consumers. From
the simulation, it can be seen that the averaged delivery time
for new orders is the same as the averaged delivery time
for all orders if no initial orders exist in the system. When
the system has 50 initial orders, the 15 vehicles are avail-
able to handle the deliveries. Any new order arriving after
the system starts will be assigned to a vehicle, according
to the algorithms. The simulation results show that the av-
eraged delivery time for the new orders may be higher or
lower, depending on the algorithms used. The last column
of Table 2 shows the di;erence of averaged delivery time
between the new 50 orders and the 50 initial orders. It shows
most of the di;erences are positive, indicating the delivery
time of new orders improves as more and more orders are
delivered. The best combination for 50 initial orders is to
use the First-Fit-Nearest algorithm for initial-routes forma-
tion, the Insertion algorithm for inter-routes improvement,
and the or-OPT algorithm for the intra-route improvement
(Model 5).
Table 3 shows the improvements from the worst combi-

nation to the best combination in either with or without ini-
tial orders in the system. The improvements are signi9cant
and range from 65% to 90% (Fig. 2).

6. Conclusions and recommendations

A computer program demonstrating the dynamic vehicle
routing system in an online B2C environment was created
to collect data such as simulation time, vehicle travel dis-
tance, delivery time, and delay time in this study. These
indexes enable us to select the best combination of exist-
ing algorithms for routing vehicles e<ciently and e;ectively
under di;erent conditions in the online B2C environment.
The result of simulation reveals that if there are no orders in
the system initially, the First-Fit-Nearest algorithm has the
smallest simulation time when it is combined with Model 5.
It can 9nd the smallest vehicle travel distance, averaged de-
livery time, averaged delay time, and new-order averaged
delivery time, when combined with Model 8.
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Table 3
Comparison of improvement between the best combination and the worst combination

Performance index Initial orders Worst combination Best combination Improvement (%)

Total simulation No 851.5 265.1 69
Yes 739.1 258.1 65

Averaged vehicle travel distance No 347 106 69
Yes 352.0 110.3 69

Averaged delivery time No 257.7 63.8 75
Yes 249.5 72.9 71

Average delay time No 200.9 22.5 89
Yes 166.3 17.2 90

New-order averaged delivery time No 257.7 63.8 75
Yes 258.3 66.5 74
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Fig. 2. The Delivery time change of existing orders caused by the
new orders.

On the other hand, if the system does have initial orders,
the best combination is the First-Fit-Nearest algorithm with
Model 5 for 9nding the smallest simulation time, averaged
delay time, and new-order averaged delivery time. Combin-
ing the First-Fit-Nearest algorithm with Model 6 yields the
smallest vehicle travel distance and averaged delivery time.
Regardless of whether or not the system has initial orders, the
worst combination is the First-In-First-Serve algorithm with
Model 1 and the single-phase solution process (Model 1)
has much longer averaged travel distance and delivery time
than the two-phase (Models 2, 3, 4, 7) or three-phase (Mod-
els 5, 6, 8, 9) solution process.
Furthermore, we can draw the following conclusions and

recommendations.

(1) The algorithm that diminishes the impact of the
delivery time caused by new orders cost (i.e., the
smallest vehicle travel distance) is a combination of
Best-Fit-Nearest for initial-routes formation, Inser-
tion for inter-routes improvement, and or-OPT for
intra-route improvement (Model 5).

(2) Customer satisfaction is highest (i.e., the smallest av-
eraged delivery time and averaged delay time) if the
First-Fit-Nearest algorithm is used for initial-routes
formation together with either or-OPT or 2-Swap for
intra-route improvement. In this case, the inter-routes

improvement algorithm should use 2-Exchange when
the system has no initial order or use Insertion when
the system has initial orders.

(3) The best algorithm to perform initial-routes formation
for new orders is First-Fit-Nearest or Best-Fit-Nearest.
The data reveal that or-OPT, 2-Swap, Insertion, and
2-Exchange do not signi9cantly improve the new
orders.

(4) Regarding the satisfaction of both existing consumers
and new consumers (the smallest averaged delivery
time, averaged delay time, and new-order averaged
delivery time), the best combination is using the
First-Fit-Nearest or Best-Fit-Nearest algorithm for
initial-routes formation; Insertion for inter-routes
improvement; and either or-OPT or 2-Swap for
intra-route improvement.

7. Managerial implications

Vehicle routing problem is a complex issue in online B2C
environment in which orders are voluminous, unpredictable,
and dynamically changing. There are various vehicle routing
algorithms in the literature. However, none of them alone
is useful in the online B2C environment. This study exam-
ines several combinations of existing algorithms suitable for
solving the dynamic vehicle routing problem and investi-
gates the strategies of combining di;erent vehicle routing
techniques for quick-response delivery in the online B2C
environment. It adopts a heuristic approach of dynamic ve-
hicle routing to solve the online B2C delivery problem in
three phases.
In the online B2C environment where orders are placed

through the Internet, one must have an e<cient trans-
portation system to support the order deliveries. We
strongly encourage the use of the First-Fit-Nearest or the
Best-Fit-Nearest algorithm for initial-routes formation. If
the system needs to recommend routes promptly, these two
algorithms can do so without the help of the intra-route
improvement and the inter-routes improvement algorithms.
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The conclusions obtained in this study can be used to
improve the service quality in B2C. For example, when the
waiting time between placing an order and receiving the
order can be signi9cantly decreased, various products and
services (such as ordering a lunch box) can be sold via
B2C service. Moreover, together with the newly developed
technologies, such as radio frequency identi9cation (RFID),
the consumer can trace his/her order precisely.
Finally, this study only included a limit number of fac-

tors inMuencing the performance of a delivery system. There
are other factors that could be considered in future studies.
These include various vehicle capacities, multiple depots, a
time-constraint penalty, both pickup and delivery services,
other heuristic algorithms, road conditions, and order infor-
mation. Furthermore, a supply chain in an online B2C en-
vironment consists of not only the delivery system but also
the upper-stream systems such as supplier network, JIT pro-
duction system, distribution centers, and other logistic ac-
tivities. These systems are not considered by this study and
should be investigated in the future.
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