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Abstract
Purpose Using quality-of-life measures and pulse oximetry,
this study developed a two-tiered prediction algorithm with
an aim to prioritize sleep-disordered breathing patients for
polysomnography.
Methods Data from 355 patients were evaluated to obtain
their clinical information, Chinese version of Epworth
sleepiness scale, and snore outcomes survey scores against
respiratory disturbance index (RDI). In the first-tier
screening, receiver-operating characteristics were calculated
with an initial strategy of choosing optimal prediction
sensitivity. The second-tier strategy investigated the asso-
ciation between pulse oximetry data (desaturation index of
3%) against RDI to optimize prediction specificity.
Results The “SOS score of 55 and ESS score of 9” was the
optimal combination that yielded the highest sensitivity

(0.603) in the first-tier screening. The strategy can includ
94.93% possible patients (probability=0.6) with positive
predictive value of 0.997. The area under the curve (AUC)
was 0.88 (p<0.001). Desaturation index of 3% would
optimized specificity (0.966, probability=0.5) in the
second-tier screening to exclude 54% of innocent patients,
with negative predictive values of 0.93 and AUC of 0.951
(p<0.001). The two-tier screening model jointly excluded
4.8% of innocent subjects and prioritized 40% of severe
patients for polysomnography.
Conclusions The prediction model is sufficiently accurate
and feasible for large-scale population screening.
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Abbreviations
AUC area under the curve
AASM American Academy of Sleep Medicine
BMI body mass index
CESS Chinese version of Epworth Sleepiness Scale
CSOS Chinese version of Sleep Outcomes Survey
DI desaturation index
NPV negative predictive value
OSAS obstructive sleep apnea
PPV positive predictive value
PSG polysomnography
RDI respiratory disturbance index
ROC receiver-operating curve
SDB sleep-disordered breathing

Introduction

Sleep-disordered breathing (SDB) is a prevalent disorder
among the middle-aged that can seriously compromise a
patient’s quality-of-life [1, 2]. Patients of SDB may suffer
from symptoms ranging from snoring to apnea (obstructive
sleep apnea syndrome, OSAS). They have higher risks of
developing cardiovascular complications and neuro-
cognitive dysfunctions. The SDB can also raise the risk of
accidents in traffic and working places [3, 4].

Due to insufficient capacity and long waiting time for
overnight polysomnography (PSG), there have been several
attempts to develop screening approaches that will simplify
diagnostic procedures and reduce costs. Studies based on
clinical features [5–7], quality-of-life measures [7–9], and
pulse oximetry have been conducted to predict SDB, with
some extent of success [5, 10, 11]. Unfortunately, there is
little consensus as to the most reliable clinical features that
will discriminate the absence or presence of SDB [5, 6].

A simple but cost-effective screening system can help
clinicians to prioritize patients for full overnight PSG,
especially for those who need immediate surgical or
medical attention. For screening methods widely used by
researchers, the questionnaire is generally regarded as
simple and sensitive, but less specific, while the oximeter
is more sophisticated but specific [5–11]. This study
combined the merits of these two methods to design a
two-tier screening model, using a sensitive questionnaire in
the first-tier to exclude innocent subjects and the more
specific oximeter in the second-tier to identify severely
diseased subjects for early PSG. We hypothesize that a
stepwise approach with proper risk stratification strategies
can overcome the limitation of individual screening tools to
optimize effectiveness of the whole prediction algorithm.

Methods

Patients

In this retrospective study, 355 consecutive patients (aged
18–80 years) who received PSG test in the sleep clinic were
examined to evaluate their sleep status. All had a variety of
sleep-related complaints that necessitated consult and all
provided informed consent for this study. Their demo-
graphic and characteristics data were collected upon entry.

The patients were administered with the Chinese
versions of sleep outcomes survey (SOS) and Epworth
sleepiness scale (ESS) [12, 13]. All surveys were validated
and considered statistically equivalent to their original
English versions [12, 13]. Permissions to use these surveys
were secured and the ethics committee of Chang Gung
Memorial Hospital approved this study.

Sleep study

The patients all received standard overnight in-lab poly-
somnography (Nicolet, Nicolet Inc. Madison, WI) to obtain
at least 6 h of sleep data recording. We used nasal pressure
combined with oronasal thermocouples to detect airflow.
The sleep respiratory disturbance index (RDI) obtained was
used as the gold standard for data analysis. RDI was
defined as the sum of total apnea and hypopnea episodes
per hour of sleep. Apnea episode was defined as cessation
of airflow lasting longer than 10 s, whereas hypopnea was
defined as ≥30% reduction of oral and nasal flow lasting
longer than 10 s with 4% desaturation. Based on the
definition of the American Academy of Sleep Medicine
(AASM), patients with RDI >5 episodes/h had OSAS and
over 30 episodes/h were severe cases [14]. To improve the
clinical relevance of the screening algorithm, RDI of 5 and
30 episodes/h were used as cut-off points to dichotomize
variables for further analyses.

Quality-of-life measures

The Chinese version of the SOS and ESS were used for the
first-tier screening. Both of them were outcome measures to
evaluate the health impact and treatment effectiveness for
adults with SDB and had been previously translated and
validated by the authors [14, 15].

Chinese version of Snore Outcomes Survey

The SOS is a validated outcome measure that evaluates the
health impact and treatment effectiveness of adults with
SDB and snoring [15]. It contains eight items that evaluates
the duration, severity, frequency, and consequences of
problems associated with SDB on a Likert scale, each with
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five-to-six response options. The SOS total score is trans-
formed into a scale ranging from 0 (worst) to 100 (best).
The Chinese version of SOS was translated and validated
by the authors in a previous study, with good correlation to
PSG results [12]. Patients with SOS scores of 55 or less are
considered to be a loud snorer.

Chinese version of the Epworth Sleepiness Scale

The eight-item ESS is widely used for evaluating adults on
the average sleep propensity in daily life [16]. Scores for
each item range from 0 to 3 and the total Epworth score
ranges from 0 to 24 (lowest to highest sleep propensity).
The reliability, unitary structure and validity of the ESS are
supported by experimental evidences in distinguishing the
excessive daytime sleepiness of SDB from that of normal
subjects [16]. Patients with ESS scores higher than 12 are
considered to have pathologic sleepiness. Chinese version
of ESS was also translated and validated by the authors in
previous study, with good correlation to PSG results. [13]

Pulse oximetry

Pulse oximetry is frequently used in the clinical hospital
setting to measure the oxygen saturation of patients. It is a
small and sophisticated device clipped on the fingertip to
record oxygen saturation. Desaturation 2%, 3%, or 4%
mean a 2%, 3% or 4% oxygen saturation drop from
previous recording. The number of desaturation events of
2%, 3%, and 4% was recorded in selected cases overnight.
Desaturation index of 2%, 3%, and 4% was defined as the
number of the episodes of 2%, 3%, and 4% desaturation
over the hours of sleep recording.

The Pulsox-3i (Minolta Co., Ltd, Osaka, Japan) was chosen
as oxygen saturation monitoring in the second-tier screening.
Patients had Pulsox-3i monitoring and recording simultaneous-
ly with standard polysomnography. The sleep oxygen desatu-
ration events were retrieved and stored using Pulsox-3 DS-3
Data Analysis (Minolta Co., Ltd, Osaka, Japan) software.

Statistical analysis

Association between RDI and patient demographics
and survey scores

The Spearman correlation coefficient was used to examine
the association between RDI, patient demographics, and
survey scores.

First-tier screening modeling

According to the definition of AASM, RDI was dichotomized
as “non-obstructive sleep apnea syndromes (non-OSAS)” for

RDI <5 vs. “obstructive sleep apnea syndromes (OSAS)” for
RDI≧5.Multiple logistic regressionwas applied toexamine the
possibility of “having OSAS” using the variables chosen from
the demographic characters that were significantly association
withRDI, suchasgender, age,bodymass index (BMI),Chinese
version of the Snore Outcomes Survey (CSOS), and Chinese
version of the Epworth Sleepiness Scale (CESS). Using these
demographic characters against OSAS (RDI≧5), the receiver-
operating characteristic (ROC) curve was applied to determine
the diagnostic thresholds for CSOS/CESS combinations that
were more likely to differentiate “OSAS” from “non-OSAS”.

The area under curve (AUC) was calculated. CESS and
CSOS were dichotomized simultaneously at various cut
points and were entered into the estimated logistic
regression model with age, gender, and BMI, and the
patient was considered a “OSAS” case when the estimated
probability from multiple logistic regression was greater
than 0.5. As a result, the sensitivity, specificity, positive and
negative predictive values (PPV and NPV) were derived
based on different CSOS and CESS combination. The
bootstrapping technique was used for cross-validation since
it is impossible to collect more new samples to evaluate the
validation of our predictive logistic regression, and it was
also helpful to identify the cut-off point, the optimal CSOS
and CESS combination which would yield relatively higher
sensitivity of this model to include as many OSAS patients
as possible.

Second-Tier screening modeling

In the second-tier screening, the pulse oximeter was used.
Although it was easy to use and clinically available than
standard PSG, it still took the whole night to record. It was
also more sophisticated to calculate than the questionnaire.
For cost-effectiveness reasons and to achieve a power of 80%
with a significance level of 5%, we performed power analysis
based on a preliminary study which showed 85% of patients
from first-tier were correctly identified as cases. In order to
demonstrate a difference between our preliminary study
(85%) and 75% in other literature [17], at least 98 subjects
were required. So, we randomly selected 100 possible OSA
patients that were identified of having OSAS (predicted
positive for RDI≧5) in first-tier screening for pulse oximeter
examination. Binary RDI in the second-tier screening was
defined as “severe OSAS” with RDI≧30 against “non-severe
OSAS” with RDI <30. The area under the curve (AUC) of
ROC for desaturation index (DI, episodes/h) of 2% (DI2),
3% (DI3), and 4% (DI4) desaturation were calculated and
DI3 was best fitted to predict the severity of OSAS. Logistic
regression was used to evaluate the relationship between
“severe OSAS” and DI3.

The sensitivity, specificity, and PPV and NPV of DI3
were also tabulated. The optimal DI3 cut-off point
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yielded relatively higher specificity of the second-tier
screening model, without sacrificing sensitivity, to ex-
clude as many “non-severe OSAS” patients as possible.
Similarly, the bootstrapping was used in the 2-tier
screening for cross-validation.

Data management

All data were stored in Access 7.0 database (Microsoft,
Redmond, Seattle) and analyzed using the SAS software
package (SAS Institute, Cary, North Carolina). A p value
<0.05 was considered statistically significant.

Results

Study population

The initial study group consisted of 355 patients. There
were 312 (87.9%) males and 43 (12.1%) females. The mean
RDI was 38.3±29.9 episodes/h. The mean RDI was 40.21±
29.28 episodes/h for men and it was significantly higher
than females (23.31±32.19 episodes/h) with a p value
<0.001 using a two-sample t test. The distribution of RDI
was: 48 (13.5%) less than 5 episodes/h, 69 (19.4%)
between 5 and less than 15 episodes/h, 52 (14.6%) between

15 to less than 30 episodes/h, and 186 (52.4%) equal or
greater than 30 episodes/h. The demographic data and the
severity of RDI in these patients are shown in Table 1.

First-tier screening prediction

Estimated probability of OSAS

Gender, age, BMI, CESS, and CSOS were used to predict
the probability of having OSAS (RDI≥5). Multiple logistic
regression was used to predict the probability of having
OSAS (RDI≥5) in the first-tier screening and the results are
shown in Table 2. Based on this model, the probability of
having OSAS was:

bP having OSASð Þ

¼ e�5:935þ1:096Xsexþ0:064Xageþ0:264XBMIþ0:039XESS�0:062XSOS

1þ e�5:935þ1:096Xsexþ0:064Xageþ0:264XBMIþ0:039XESS�0:062XSOS

For example, a 50-year-old male with BMI of 30, CESS
score 12, and CSOS 50 would have a predicted probability
of having OSAS of 0.97

Cut-off point and model predictability

The ROC curve of the first-tier screening is shown in
Fig. 1. The sensitivity, specificity, and PPV and NPV of
different possible CSOS/CESS combinations in predicting
OSAS are shown in Table 3. The combination of “CSOS
score of 55 and CESS score of 9” was the optimal cut-off
point that yielded relatively higher sensitivity (0.603) and
specificity in this first-tier screening model.

Second-tier screening prediction

Study population

The second-tier screening study group consisted of 100
randomly selected patients after power analysis from the
predicted positive population (RDI≥5, presumably having

Table 1 Correlations between RDI and patients’ demographics

Variable Mean±SD γ (p value)a

Age (years old) 44.7±11.3 0.14 (0.008)

BMI (kg/m2) 27.4±4.1 0.309(<0.001)

CSOS 44.9±15.3 −0.362(<0.001)
CESS 10.9±5.2 0.248(<0.001)

The mean RDI is 23.31±32.19 episodes/h of female and 40.21±29.28
episodes/h of male, the p value of t statistic from two-sample t test is
less than 0.0001

CESS Chinese version of Epworth Sleepiness Scale, CSOS Chinese
version of Snore Outcomes Survey
a Spearman’s correlation coefficient

Table 2 Multiple logistic regression model to predict the probability of having OSAS (RDI≥5) in the first-tier screening

Variables Estimated β Odds ratio (OR) 95% CI for OR p valuea

Gender Male 1.096 2.99 1.05–8.55 0.041

Female 1

Age 0.064 1.07 1.03–1.11 0.001

BMI 0.264 1.30 1.15–1.47 <0.001

CESS 0.039 1.04 0.96–1.13 0.34

CSOS -0.062 0.94 0.92–0.97 <0.001

The intercept was −5.935 in this multiple logistic regression.
a Adjusted p value indicates the significance of the parameters by multiple logistic regression.
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OSAS, n=337) of the first-tier screening. There were 83
(83%) males and 17 (17%) females, with mean age of
43.3±11.5 years and BMI of 26.5±3.7. The mean RDI
was 32.2±28.4 episodes/h. Nineteen (19%) patients did
not have OSAS (RDI<5 episodes/h), while 21 (21%) had
RDI≥5 but <15 episodes/h, 18 (18%) had RDI≥15 but
<30 episodes/h, and 42 (42%) have RDI>30. The mean
DI3 of this cohort was 22.3±21.5 episodes/h.

Desaturation index

The ROC curve using DI3 against severe OSAS (RDI>30)
showed that the area under the curve (AUC) was 0.951
(standard error=0.024, Z=18.792, p<0.001). The ROC
curves using DI2 and DI4 against severe OSAS (RDI>30)
showed that the AUC was 0.942 (standard error=0.027,
Z=16.3763, p<0.001) for DI2, and similarly, the AUC was
0.942 (standard error=0.027, Z=16.3763, p<0.001) for
DI4. The DI3 was therefore chosen as the desaturation
index in this study (Fig. 2).

Probability of having severe OSAS

The logistic regression model showed that DI3 positively
related to the possibility of having severe OSAS (RDI>30;
estimated beta=0.170, p<0.001).

The probability of having severe OSAS was:

bP having severe OSASð Þ ¼ e�3:627þ0:170XDI3

1þ e�3:627þ0:170XDI3

Cut-off point and model predictability

The sensitivity, specificity, and PPV and NPV of DI3 in
predicting severe OSAS are shown in Table 4.

The DI3 of 30 optimized specificity (0.966) of the
second-tier screening model to exclude as many non-severe
OSAS patients as possible (Table 4). With NPV of 0.93
(54/58) and calculated probability of 0.5, this second-tier
screening model excluded as many patients (n=54, 54%) as
possible that did not have severe OSAS.

Fig. 1 Receiver-operating characteristic curve using gender, age,
BMI, CSOS, and CESS against OSAS (RDI≧5). (area under curve
0.88, standard error 0.026, Z 14.62, p<0.001)

Surveys’ scores Sensitivity Specificity PPV% NPV%

CESS≧9, CSOS≦40 0.381 0.833 93.60 17.39

CESS≧9, CSOS≦45 0.495 0.792 93.83 19.69

CESS≧9, CSOS≦50 0.541 0.75 93.26 20.34

CESS≧9, CSOS≦55 0.603 0.729 93.43 22.29

CESS≧10, CSOS≦40 0.358 0.917 96.49 18.26

CESS≧10, CSOS≦45 0.453 0.875 95.86 20.00

CESS≧10, CSOS≦50 0.498 0.833 95.00 20.51

CESS≧10, CSOS≦55 0.538 0.813 94.83 21.55

CESS≧11, CSOS≦40 0.326 0.917 96.15 17.53

CESS≧11, CSOS≦45 0.407 0.896 96.15 19.11

CESS≧11, CSOS≦50 0.437 0.854 95.04 19.16

CESS≧11, CSOS≦55 0.472 0.833 94.77 19.80

CESS≧12, CSOS≦40 0.296 0.958 97.85 17.56

CESS≧12, CSOS≦45 0.375 0.938 97.46 18.99

CESS≧12, CSOS≦50 0.401 0.917 96.85 19.30

CESS≧12, CSOS≦55 0.437 0.896 96.40 19.91

Table 3 Relative discriminatory
powers of CESS and CSOS

CESS Chinese version of
Epworth Sleepiness Scale,
CSOS Chinese version of Snore
Outcomes Survey
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The Upper panel of Table 5 (model predictability) shows
the predicted positive and predicted negative values from
the proposed model for the first-tier screening. It was
calculated by plugging in the parameters in the multiple
logistic regression model to obtain the estimated probability
of having OSAS (RDI≥5). If the estimated probability was
>0.5, it was considered a case, and vice versa. As a result,
the number of true positive was compared with the
estimated positive, and the number of true negative with
the estimated negative. Similarly, the predicted positive and
negative listed in the lower panel of Table 6 were based on
the proposed model for the second-tier screening model. A
calculated probability of 0.6 included as many patients
(n=337, 94.93%) as possible that had PPV 0.997 (306/307)
for the diagnosis of OSAS (Table 5).

The accuracy of the presented two-tier model is
confirmed by cross-validation using the bootstrapping
technique [18]. Given the probability of greater than 0.5,
the correct prediction rates are 0.92 (minimum–maximum,
0.88–0.96), 0.91 (minimum–maximum, 0.83–0.96) for
first- and second-tier screening models, respectively.

Discussion

SDB is a major quality-of-life issue. Patients with SDB
often show increased difficulty in concentrating, learning
new tasks, and performing repetitive tasks. Lindberg and
others [3, 4, 19] report that OSAS patients have higher risk
of occupational and traffic accidents. In order to reduce
professional liability, it is important to identify patients with
the highest risks of severe SDB as early as possible. This
study attempts to develop a cost-effective screening
approach in order to prioritize candidates for early PSG.

Combined with clinical information, standard sleep
quality-of-life measures are widely used to describe the
prevalence of snoring, observed apneas, daytime sleepiness
in the general population, and the relationships of sleep
disturbances to health [7, 20]. It is generally regarded that
questionnaires alone are not sufficient to discriminate
patients with SDB, although these may be useful in
prioritizing patients for split-night PSG. The reported
sensitivity of questionnaires varies from 72% to 96% in
predicting OSAS, but the specificity is as low as 13% to
54% [6, 9, 17]. The highest specificity of 0.77 reported
from a Berlin questionnaire has been challenged because of
underestimation using a four-channel sleep monitor as the
validated gold standard [8].

Sleepiness and snoring are two major clinical symptoms
in SDB patients. This study combines the widely circulated
measurement tools, CESS and CSOS, which cover these
two important but distinct dimensions (sleepiness and
snoring) in SDB. Compared to other studies that use only
indices or symptom scores to evaluate patients [9, 17, 20],

Fig. 2 Receiver-operating characteristic curve using DI3 (solid
line) against severe OSAS (RDI≧30; area under curve 0.951,
standard error=0.024, Z=18.792, p<0.001). For DI2 (dashed line)
and DI4 (dashed-dot line), the AUC are identical (0.942, with
standard error=0.027, Z=16.3763, p<0.001)

Table 4 Relative discriminatory powers of DI3 for severe OSAS
(RDI≧30)

DI3 (episodes/h) Sensitivity Specificity PPV% NPV%

5 0.976 0.448 75.93 97.83

10 0.976 0.655 78.43 95.92

20 0.905 0.914 81.63 96.08

30 0.571 0.966 82.98 94.34

40 0.357 0.983 84.78 94.44

50 0.075 0.994 86.67 94.55

DI3 Desaturation index 3, desaturation more than 3%/h

Table 5 Model predictability for first-tier screening

N=355 Predicted positive Predicted negative

True positive (n=307) hit 306 miss 1

True negative (n=48) false alarm 31 hit 17

Table 6 Model predictability for second-tier screening

N=100 Predicted positive Predicted negative

True positive (n=42) hit 36 miss 6

True negative (n=58) false alarm 4 hit 54
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CSOS and CESS are both well validated by our group and
show good associations to SDB severity [12, 13, 21]. The
applicability in using CSOS and CESS for community SDB
screening was tested previously [22]. With CSOS >55 and
CESS >9, a sensitivity of 0.603 and specificity of 0.729 can
be attained, which is the optimal cut-off value that provides
good positive predicted values and highest negative
prediction.

By using the regression model, the probability of having
disease can be easily calculated by this formula. For
example, a 50-year-old male with BMI of 30, CESS score
12, and CSOS 50 will have a predicted probability 0.97 of
having OSAS. Physicians then have to make clinical
judgment for the second-tier screening based on this
calculation. After the second-tier screening with similar
calculations, patients will be prioritized for further exami-
nation (PSG) if the risks of having severe disease is high as
identified by the algorithm we developed.

The AUC of the ROC curve reaches the level of 0.88,
which is compatible with the reported data of 0.55–0.83
from similar studies in literatures [7, 9, 23, 24]. With a
calculated probability of 0.6, as many patients (94.93%) as
possible can be included that probably have OSAS.
Excluded subjects (estimated RDI<5) are “least likely” to
have the disease and their chances of having even very mild
sleep respiratory disturbance is very low. Using this
algorithm, 17 patients will be exempted from PSG because
their risks of having OSAS are so low and only one (out of
355 patients) with true OSAS will be missed (Table 5).

Pulse oximetry is another frequently used tool for
screening OSAS with great economical benefit [10, 11].
The report from the Technology Assessment Task Force of
the Society of Critical Care Medicine in 1993 indicate that
pulse oximetry is a non-invasive tool to measure oxygen
saturation with a high degree of accuracy over a range of
80–100% saturation [11]. The 1995 British Thoracic
Society Report concludes that pulse oximetry criteria is
highly specific when positive (specificity 100%), but may
miss patients with hypopneic arousal without significant
oxygen desaturation (sensitivity 31%) [24]. In the second-
tier screening, the strategy is to increase the screening
specificity. Even though the differences among DI2, DI3,
and DI4 are small, the highest AUC of 0.951 indicates that
DI3 is the ideal threshold against RDI≧30.

The desaturation index of 3% used in the second-tier
screening yields a sensitivity of 0.57 and a specificity of
0.96, which are comparable to those reported by Golpe et
al. (for RDI>40.5, specificity 97%) [25]. With a calculated
probability of 0.5, 60% of patients who are not likely to
have severe OSAS can be identified, while the excluded
patients need not to be prioritized for PSG. Using this
algorithm, 36 (out of 100) patients will definitely need early
PSG because of high risks of having severe OSAS, while

four patients will be recruited for unnecessary sleep study
(Table 6).

Since neither quality-of-life measures nor pulse oximeter
is individually ideal, some authors advocate the usefulness
of pulse oximetry to establish the diagnosis of OSAS and
highlight the value of clinical scoring to improve the
sensitivity of screening tools [5]. This study sought to
optimize the prediction algorithms by developing a step-
wise, two-tiered screening model. Using CESS and CSOS,
the study can exclude 4.8% (18 out of 355, including one
false negative) of patients from PSG testing in the first-tier
screening since their risks of having OSAS is low. Using
pulse oximetry, 40% (40 out of 100, including four false
alarm) of patients can be prioritized for early PSG testing
since their risks of having severe OSAS are high. These
cost-effective data are equivalent to those reported by
Keenan et al. [26] and Gurubhagavatula et al. [23].

However, the cost-effectiveness is highly dependent on
the prevalence of OSAS in the study population. When the
two-tier model is applied to the general population, rather
than to this validation population, we expect more targeted
patients will be identified to achieve screening objectives
(excluding low-risk patients and prioritizing high-risk
patients with greater cost-effectiveness ratio).

Conclusion

In conclusion, the two-tier screening model can jointly
exclude 4.8% of innocent subjects from sleep studies and
can prioritize up to 40% of severe OSAS patients to
receive complete in-laboratory PSG with 0.603 sensitivity
for OSAS and 0.966 specificity for severe OSAS. Even
though this model may not identify other causes of sleep
disorders, the prediction algorithm is sufficiently accurate
for patients with sleep complaints. Quality-of-life and
pulse oximetry information can help clinicians to identify
patients who need early PSG diagnosis. It could also be a
cost-effective solution to assist community or occupation-
al SDB screening.
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