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This study extends the BGM (A. Brace, D. Gatarek, & M. Musiela, 1997)
interest rate model (the London Interbank Offered Rate [LIBOR] market
model) by incorporating the stock price dynamics under the martingale
measure. As compared with traditional interest rate models, the extended
BGM model is both appropriate for pricing equity swaps and easy to cali-
brate. The general framework for pricing equity swaps is proposed and
applied to the pricing of floating-for-equity swaps with either constant or
variable notional principals. The calibration procedure and the practical
implementation are also discussed. © 2007 Wiley Periodicals, Inc. Jrl Fut
Mark 27:893–920, 2007

INTRODUCTION

An equity swap is an agreement that designates two counterparties to
periodically exchange two payment streams over a prespecified period.
One party promises to pay the return on an agreed stock market index on
an agreed notional principal, while the other promises to pay an agreed
fixed rate, a floating rate, or the return of another equity index on the
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same notional principal. The equity swap introduced by Bankers Trust in
1989, has continued to grow rapidly since its inception. Equity swaps
have integrated money and equity markets in world financial markets. For
example, equity swaps enable fund managers to transform their exposure
from some stock to interest rate payments, without the need to buy or sell
the stocks. Moreover, equity swaps can be used to engage in regulatory
and tax arbitrage (such as reducing or avoiding transfer taxes, withholding
taxes on dividends, capital gains taxes, etc.).

There are two classes of equity swaps; one with constant notional
principal and the other with variable notional principal. Equity swaps
with variable notional principal are used to create a self-financing stock
index investment. For example, a portfolio manager who wants to obtain
a portfolio’s return that precisely matches a stock index’s return may
adopt this structure. Equity swaps with fixed notional principal are
employed to simulate a stock market investment in which the investment
principal is kept constant.

This study extends the BGM (Brace, Gatarek, & Musielan, 1997)
model by incorporating stock price dynmics under the martingale meas-
ure, and then applies the resulting model to pricing floating-for-equity
swaps with either constant or variable notional principal. Although
the swaps with a constant notional principal can be priced in closed forms,
those with a variable notional principal can be priced approximately.
Unlike the Gaussian HJM model (Heath, Jarrow, & Morton, 1992) used
in previous articles, the parameters in the swap pricing formula can be
acquired from the market quantities. Because the LIBOR (London
Interbank Offered Rate) rates are positive, no pricing error arises from
the possible negative rates in the Gaussian HJM model.

Some earlier research has been conducted on the pricing of equity
swaps. Marshall, Sorensen, and Tuncker (1992) provided a pricing model
that is not an arbitrage-free valuation formula. Rich (1995) used a
forward-start forward contract approach to value basic equity swaps.
Jarrow and Turnbull (1996) provided a preference-free formula for equity-
for-fixed swaps. In a deterministic interest rate environment, Chance and
Rich (CR; 1998) contributed to the literature on equity swaps by provid-
ing the valuation formulas for several types of equity swaps within the
framework of arbitrage-free replicating portfolios. Kijima and Muromachi
(KM; 2001) provided the fixed-for-equity swap pricing models with
constant and variable notional principals in a stochastic interest rate
economy. Employing Amin and Jarrow’s (1991) cross-country model set-
ting, Wang and Liao (WL; 2003) adopted a risk-neutral valuation method
for pricing several types of cross-currency two-way equity swaps.
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Although many pricing models of the various types of equity
swaps have been presented, few articles have been written on the 
floating-for-equity type. One reason for this is that the interest rate
model used in KM (2001) and WL (2003) is the Gaussian HJM frame-
work. The HJM models the term structure of interest rates by specifying
the dynamics of instantaneous forward rates. The instantaneous forward
rates are continuously compounded rather than simply compounded.
They are not appropriate for pricing the equity-for-floating swaps with a
paid-in-arrears feature. Furthermore, the instantaneous forward rates
are not observable in the market, so recovering the parameters in the
model from the market-observed data is a difficult task. In addition,
the Gaussian HJM forward rates can become negative with a positive
probability, which may cause some pricing error.

BGM have developed a continuous time model of simple forward
LIBOR rates, which are market-observable quantities. Because the
forward LIBOR rates in the BGM model (the LIBOR market model)
are simply compounded, they are suitable for pricing the swaps with
a paid-in-arrears feature. Because forward LIBOR rates are market-
observable, the difficult task of transforming the market quantities into
the model parameters is overcome. In addition, BGM assumed that for-
ward LIBOR rates have a log-normal volatility structure that prevents the
forward LIBOR rates from becoming negative with a positive probability.

The article is organized as follows. In the second section, an arbitrage-
free extended HJM model is established.1 Under the arbitrage-free relation-
ship between the drift and the volatility terms in the extended HJM model,
an arbitrage-free extended BGM model is derived. The pricing formulas for
the floating-for-equity swaps are developed with constant and variable
notional principals in section three. The calibration procedure and some
numerical examples are presented in section four and conclusions
are drawn in section five.

THE MODEL

In this section, we first derive an arbitrage-free extended HJM model,
and then apply the arbitrage-free relationship between the drift and the
volatility terms to developing an arbitrage-free extended BGM model.
To do this, two steps must be taken as briefly described below.

First, we consider an extended HJM model under the natural meas-
ure. Then, we employ the insights of Harrison and Krep (1979) to

1We call the BGM model incorporating stock dynamics the extended BGM model and the HJM
model including stock dynamics the extended HJM model.
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characterize the conditions on the forward rate processes such that there
exists a unique equivalent martingale probability measure. Under these
conditions, the drift of the stock price process is the risk-free short
rate of interest, whereas the drift of the forward rate process is of a
special form determined by the diffusion term, called the forward rate
drift restriction. HJM have shown that the restriction on the family of the
drift processes is sufficient to guarantee the existence of a unique equiv-
alent martingale probability measure.

Second we assume that the LIBOR rates and the stock price
processes have log-normal volatility structures. Like the arbitrage-free
mechanism in the BGM model, we use the arbitrage-free relationship
between the drift and the volatility terms in the arbitrage-free extended
HJM model to determine the drift terms of the LIBOR rates as well as
the stock price processes. By this means, we obtain the arbitrage-free
extended BGM model.

Step I: Arbitrage-Free Extended HJM Model

We assume that trading takes place continuously over a time interval
[0, t], 0 � t � q. The uncertainty is described by the filtered probability
space ( , F, P, {Ft}t�[0,t]) where the filtration is generated by the inde-
pendent standard Brownian motions: 
Note that P represents the actual probability measure. We list the nota-
tions as follows.

f(t, T) � The forward interest rate contracted at time t for instanta-
neous borrowing and lending at time T with 0 � t � T � t.

P(t, T) � The time t price of a zero-coupon bond paying one dollar
at time T.

S(t) � The time t price of a stock.

r(t) � The risk-free short rate at time t.

B(t) � exp [�0

t
r (u) du], the money market account at time t with

initial value B(0) � 1.

(t, T) � P(t, T) / B(t), the relative bond price for a T-maturity zero-
coupon bond.

(t) � S(t) / B(t), the relative stock price.

We follow the conditions as shown in the HJM model and add an
additional condition to the stock price dynamics.

�S

�P

W
~
(t) � (W

~
1(t), W

~
2(t), . . . , W

~
m(t)).

�
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Condition 1. A family of forward rate processes.
For any given T � [0, t], f(t, T) follows the following process:

(1)

where { f(0, T) : T � [0, t]} is a nonrandom initial forward curve, m(t, T)
and s(t, T) � (s1(t, T), . . . , sm(t, T)) satisfy some regular conditions.2

Equation (1) is the HJM model. Through the different specifica-
tions for the volatility coefficients, the m random shocks generate signif-
icantly different qualitative characteristics of the forward rate processes.

The zero-coupon bond is defined as:

(2)

From Equations (1) and (2), HJM derived the bond price dynamics
as given by

(3)

where s*(t, T) � (s*1(t, T), . . . , s*
m(t, T)) with

(4)

and

(5)

Condition 2. Equity price dynamics.
The dynamics of the equity price is provided as follows.

(6)dS(t) � S(t)h(t)dt � S(t)z(t) � dW
�

(t).

b(t, T) � � �
T

t

 m(t, u)du �
1
2

��s*(t, T)��2.

si*(t, T) � �
T

t

 si(t, u)du for i � 1, 2, p , m,

 � P(t, T)s*(t, T) � dW
�

(t),   0 � t � T � t.

dP(t, T) � P(t, T)[r(t) � b(t, T)]dt

P(t, T) � exp c� �
T

t
 f(t, u)du d .

df(t,  T) � m(t,  T)dt � s(t,  T) � dW
�

(t),  0 � t � T � t.

2m : {(t, s)} : 0 � t � s � T} 	 � S R is jointly measurable, adapted and

si : {(t, s) : 0 � t � s � T } 	 � S R are jointly measurable, adopted, and

�
T

0

0si(u, T) 0du � 
˚a.e. P for i � 1, 2, . . . , m.

�
T

0

0m(u, T) 0du � � 
 a.e. P.
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where h(t) and z(t) � (z1(t), z2(t), . . . , zm(t)) satisfy some regular
conditions.3

For greater flexibility, the number of random shocks, m, is not pre-
cisely designated, but rather depends on the simplicity and accuracy
required by the user. For example, we may use four random shocks, i.e,
m � 4, to capture all of the factors causing the shift of the entire forward
rate curve and the movement of the stock price process. The first two
random shocks can be interpreted, respectively, as the short-term and
long-term factors causing the shift of different maturity ranges on the
term structure. The third random shock can be regarded as the factor
causing the unanticipated movement of the stock price. The correlation
between the forward rates and the stock price is affected by the fourth
random shock.

Condition 3. Existence of the market price of risk.
For any given T1, T2, . . . , Tm�1 � [0, t] with T1 � T2 � . . . � Tm�1,

assume that there exist maturity invariant solutions.
ui(#, T1, T2, . . . , Tm�1) � ui(#) : � [0, T1] ¡ R, i � 1, 2, . . . , m

to the equations of the market price of risk:

(7)

where {ui(t)}i�1,2,…,m satisty the following regular restrictions:

(8.1)

(8.2) EP c expa a
m

i�1
�

T1

0

ui(u)d W
�

i(u) �
1
2a

m

i�1
�

T1

0

u2
i (u)dub d � 1,

 �
T1

0

u2
i (u)du � �˚a.e. P for i � 1, 2, p , m,

� D s1*(t, T1) p sm*(t, T1)
o ∞ o

s1*(t, Tm�1) p sm*(t, Tm�1)
�z1(t) p �zm(t)

T Du1(t)
o
o

um(t)

T � 0D b(t, T1)
o

b(t, Tm�1)
h(t) � r(t)

T
�

3zi : [0, t] S R is deterministic for i � 1, 2 m. h : [0, t] S R is adapted, jointly measure, and
satisfied

E c �
T

0

`h(u) 0 2duR � �.

, . . . ,
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(8.3)

(8.4)

Equation (7) is the market price of risk equation and {ui(#)}i�1,2,…,m

are the market prices of risks associated with the random shocks
{

~
Wi(#)}i�1, 2,…,m, respectively. Unlike HJM, we directly assume that

{ui(#)}i�1, 2,…,m are not dependent on the maturities of the chosen bonds
without an additional condition setting. By adding one more regular
restriction in Condition 3, i.e., Equation (8.4), and following the proof
as given by HJM,4 we can show that Condition 3 holds if, and only if,
there exists an equivalent martingale measure Q. According to the first
fundamental theorem of asset pricing, the market admits no arbitrage
opportunity.

Condition 4. Uniqueness of the equivalent Martingale measure.
For any given T1, T2, . . . , Tm�1 � [0, t] with T1 � T2 � . . . � Tm�1,

assume that the diffusion terms matrix

is nonsingular.
Condition 4 guarantees that the equations of the market price of

risk have a unique solution, {ui(#)}i�1, 2,…,m. HJM have shown that
Condition 4 holds if, and only if, the martingale measure is unique. The
second fundamental theorem of asset pricing tells us that if the martin-
gale measure is unique, then the market is complete.

≥
s1*(t, T1) p sm*(t, T1)

o ∞ o
s1*(t, Tm�1) p sm*(t, Tm�1)

�z1(t) p �zm(t)

¥

 �
1
2a

m

i�1
�

T1

0

(ui(u) � zi(u))2du)] � 1.

 EP c expa a
m

i�1
�

T1

0

(ui(u) � zi(u))dW
�

i(u)

 �
1
2a

m

i�1
�

T1

0

(u2
i (u) � si(u, T))2du)] � 1 for T � 5T1, T2, p , Tm�16,

 EP c expa a
m

i�1
�

T1

0

(ui(u) � si(u, T))dW
�

i(u)

4It is the proof of Proposition 1 as given by HJM. We may regard the volatility functions zi(u) of
the stock price process as the volatility functions of the additional bond price process for 
i � 1, 2, …, m and then follow the same steps of the proof as given in HJM.

s*i (u, �)
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With the above conditions, we can define the Martingale measure Q
with the following Radon-Nikodym derivatives:

(9)

According to Girsanov’s theorem, {W1(t), W2(t), . . . , Wm(t)} are m inde-
pendent standard Brownian motions under the probability space (�, F, Q)
and defined as follows:

(10)

Under the Conditions 3 and 4, we have the following equation

(11)

Differentiating Equation (11) with respect to T, we obtain the forward
rate drift restriction for no-arbitrage:

(12)

Taking Equation (12) into Equation (1), we obtain the forward rate
dynamics under the martingale measure.

We conclude the above results with Proposition 1:

Proposition 1. The dynamics under the Martingale measure.
Under the Martingale measure Q, the dynamics of forward rates,

bond prices, and stock prices are as follows:

(13)

(14)

(15)

wheres(t, T) � (s1(t, T), . . . ,sm(t, T)),s*(t, T) � (s*1 (t, T), . . . ,s*m(t, T))
and s*i (t, T) � �T

t si(t, u)du for i � 1, 2, . . . , m for all T � [0, t].
It is worth emphasizing that even if we incorporate the stock price

dynamics into the HJM interest rate model, the forward rate drift restric-
tion for no-arbitrage remains unchanged. Therefore, we can use this fact
to derive the arbitrage-free extended BGM model and then apply it to
pricing equity swaps.

 dS(t) � S(t)r(t) � S(t)z(t) � dW(t),

 df(t, T) � s(t, T) � s*(t, T)dt � s(t, T) � dW(t),

dP(t, T) � P(t, T)r(t) dt � P(t, T)s*(t, T) � dW(t),

m(t, T) � �a
m

i�1
si(t, T)(ui(t) � si*(t, T)).

b(t, T) � a
m

i�1
si*(t, T)ui(t) � 0 5T � [0, t].

Wi(t) � W
�

i
(t) � �

T

0

ui(u)du, for i � 1, 2, . . . , m.

dQ

dP
� exp c a

m

i�1
�

T

0

ui(t)dW
�

i(t) �
1
2a

m

i�1
�

T

0

u2
i (t)dt d .
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Step II : The Arbitrage-Free Extended BGM Model

It is important to note that, hereafter, we model the term structure of
interest rates by specifying the forward LIBOR rate dynamics rather than
the instantaneous forward rate dynamics, although we still use the nota-
tions, economic environment and forward rate drift restriction for 
no-arbitrage in the above subsection to derive the extended BGM model
under the Martingale measure.

Fix some d � 0 and T � [0, t], define the forward LIBOR rate
process {L(t, T); 0 � t � T} as

(16)

Assumption 1. A family of LIBOR rate processes.
We assume that L(t, T) has a log-normal volatility structure and its

stochastic process is given by

(17)

where g(#, T): [0, t] S Rm is deterministic, bounded, and piecewise
continuous volatility functions and mL(t, T) : [0, T] S R is some drift
function.

Assumption 2. The equity price dynamics.
The dynamics of the equity price is as follows:

(18)

where mS(t) : [0, t] S R is some drift function and the volatility vector
function z(t) : [0, t] S Rm satisfies some regular conditions as given by
Condition 2.

It is important to emphasize that the drift terms of the LIBOR rates
and the stock price processes are not yet determined. The specific forms
of their drift terms must make the economy arbitrage-free. We will use
the arbitrage-free relationship between the drift and volatility terms in
Proposition 1 to determine the drift terms in Equations (17) and (18).

First, we determine mL(t, T) in the LIBOR rate process. Assume that
Y(t) � �T�d

T    f(t, u) du and L(t, T) � (1�d) (exp(Y(t)) � 1). Making use of
Itô’s lemma, we have

(19)dL(t, T) �
1
d

exp a �
T�d

T

f(t, u) dub edY(t) �
1
2

dY(t) � dY(t) f

dS(t) � S(t)mS(t) � S(t)z(t) � dW(t).

dL(t, T) � mL(t, T)dt � L(t, T)g(t, T) � dW(t)

1 � dL(t,  T) � exp a�
T�d

T

f(t,  u) dub.
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and

(20)

Combining Equations (19) and (20), we have

(21)

Equation (21) indicates the relationship between the drift and the diffu-
sion terms of the LIBOR rate process under the martingale measure. We
can use this relationship to determine mL(t, T).

In Assumption 1, we have assumed that the LIBOR rate’s volatility
structure is log-normal, and thus

(22)

Substituting Equation (22) for the drift term in Equation (21), we have

(23)� L(t, T)g(t, T) � dW(t).

dL(t, T) � L(t, T)g(t, T) � s*(t, T � d) dt

1
d

(1 � dL(t, T))(s*(t, T � d) � s*(t, T)) � L(t, T)g(t, T).

 � 
1
d

(1 � dL(t, T))(s*(t, T � d) � s*(t, T)) � dW(t).

 � 
1
d

(1 � dL(t, T))(s*(t, T � d) � s*(t, T)) � s*(t, T � d) dt

 � 
1
d

(1 � dL(t, T))(s*(t, T � d) � s*(t, T)) � dW(t)

 � 
1
d

(1 � dL(t, T))(7s*(t, T � d) 7 2 � s*(t, T) � s*(t, T � d)) dt

 � 
1
d
 exp a �

T�d

T

f(t, u) dub5(s*(t, T � d) � s*(t, T)) � dW(t)6

 � 
1
2

 7s*(t, T � d) � s*(t, T) 7 26  dt

 dL(t, T) �
1
d
 exp a �

T�d

T

f(t, u)dub e 1
2

(7s*(t, T � d) 7 2 � 7s*(t, T) 7 2

 � (s*(t, T � d) � s*(t, T)) � dW(t).

dY(t) �
1
2

(7s*(t, T � d) 7 2 � 7s*(t, T) 7 2) dt
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The bond volatility vector, s*(t, T), is not yet specified in the
model. To make use of the arbitrage-free structure in HJM, we must
specify s*(t, T). By the recurrent relationship of Equation (22), the
bond volatility process, s*(t, T) for any given T � [0, t], can be repre-
sented as follows:

(24)

where denotes the greatest integer that is less than d�1(T � t).
Thus, under the Martingale measure, the LIBOR rate dynamics is

where s*(t, T � d) is defined by Equation (24).
Additionally we take advantage of the drift-volatility relationship of

the stock price process in Proposition 1 to determine the drift function
mS(t) under the martingale measure. Due to the identical volatility struc-
ture in Proposition 1 and Assumption 2, we have

mS(t) � r(t).

Thus, under the Martingale measure, the stock price process is

dS(t) � S(t)r(t) � S(t)z(t) # dW(t).

Proposition 2. The extended LIBOR market model under the Martingale
measure.

Under the Martingale measure, the LIBOR rates and the stock price
processes are as follows:

(25)

(26)

where t � [0, T], T � [0, t] and s*(t, T � d) is defined in Equation (24).
Unlike the forward rates in the HJM model, the forward LIBOR

rates are market-observable. Therefore, the volatility g(t, T), T � [0, t],
can be obtained from the quoted prices of interest rate derivatives actively
traded in the market and s*(t, T), T � [0, t], can be calculated from
Equation (24).

 dL(t,  T) � L(t, T)g(t,  T) � s*(t, T � d) dt � L(t, T)g(t, T) � dW(t),

 dS(t) � S(t)r(t) � S(t)z(t) � dW(t),

dL(t, T) � L(t, T)g(t, T) � s*(t, T � d) dt � L(t, T)g(t, T) � dW(t),

:d�1(T � t);

s*(t, T) � • a
:d�1(T�t); 

k�1

dL(t, T � kd)g(t, T � kd)

1 � dL(t, T�kd)
t � [0, T � d] & T � d � 0,

0 otherwise.
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By changing the Martingale measure Q to the forward Martingale
measure, denoted by QT�d

5, the above processes result as follows:

Proposition 3. The extended LIBOR market model under the forward
Martingale measure.6

Under the forward measure QT�d,

(27)

(28)

where t � [0, T] T � [0, t] and s*(t, T � d) is defined in Equation (24).
L(t, T) can be expressed as (P(t, T) � P(t, T � d))�P(t, T � d) where

(P(t, T) � P(t, T � d)) represents the price of a tradable asset. When
any tradable asset’s price is expressed with respect to the numéraire
P(t, T � d), it has to be a Martingale under the measure QT�d. Therefore,
L(t, T) is a Martingale under the measure QT�d.

With Propositions 2 and 3, we can price equity swaps, especially
those which are floating-for-equity swaps. The pricing formulas are to be
developed in the next section.

PRICING EQUITY SWAPS

In this section, we use the model derived in the previous section to first
price the floating-for-equity swap using the constant notional principal, and
then the variable notional principal. The procedure for deriving the two
instruments serves to illustrate the techniques for derivatives pricing under
the extended LIBOR market model. Although former can actually be priced
in a closed form, only an approximate formula can be derived for the latter.
The accuracy of the approximate formula will be examined in Appendix C.

Pricing Floating-for-Equity Swaps With a
Constant Notional Principal

A floating-for-equity swap with a constant notional principal (FESC)
is defined as follows: The contract starts at time t0 with the reset dates
t0 � t1 � . . . � tn�1 and the payment dates t1 � t2 � . . . � tn. In accor-
dance with practice, we define d� tk�1 � tk, k � 0, 1, . . . , n � 1. During
the tenor of the swap, the notional principal of the contract is fixed, and
is assumed to be $1. At each payment data tk, for k � 1, . . . , n, one party pays
the return on the underlying equity, S(tk)�S(tk�1) � 1, to the counterparty

1
d

1
d

dL(t, T) � L(t, T)g(t, T) � dWT�d(t),

dS(t) � S(t)[r(t) � z(t) � s*(t, T � d)] dt � S(t)z(t) � dWT�d(t),

5QT�d is the forward Martingale measure with respect to the numéraire P(t, T � d).
6See Shreve (2004) for details on the changing-numéraire mechanism.



Equity Swaps 905

Journal of Futures Markets DOI: 10.1002/fut

and receives from the counterparty a floating payment, d(L(tk�1, tk�1) � K),
where L(t, tk�1) is signified by the simply compounded forward LIBOR rate
for the period [tk�1, tk] observed at time t and L(tk�1, tk�1) is thus explained
accordingly, whereas K is a spread in basis points. For the party who pays
the floating rate and receives the equity return, the cash flow stream is
given as follows:

At time t1 : [S(t1)�S(t0) � 1] � d[L(t0, t0) � K]

At time t2 : [S(t2)�S(t1) � 1] � d[L(t1, t1)�K]

o o

At time tn : [S(tn)�S(tn�1) � 1] � d[L(tn�1, tn�1) � K]

The pricing formula of an FESC is presented in the following theo-
rem, and the proof is provided in Appendix A.

Theorem 1. The pricing formula of an FESC.
Under the extended BGM model, the price of an FESC at time s, 
t0 � s � t1, is given by

(29)

Equation (29) is the FESC pricing formula that should be imple-
mented in the market because it provides the theoretical foundation
under the BGM model. If the floating rates are replaced with a fixed rate,
i.e., L(t, tk�1) � R �t � [s, tk � 1] for k � 1, 2, . . . , n, K � 0 and d � 17,
then the pricing formula of the FESC degenerates to the fixed-for-equity
swap pricing formula given by KM (2001). Equation (29) thus provides
an FESC pricing model that is more general than the KM model.

By adjusting the spread K, the initial price of the FESC can be set to
zero and trading becomes a fair game. This fair rate K may be called the
FESC swap rate and is provided by:

(30)

The fair equity swap rate K is determined only through the current term
structure of interest rates and is not related to the equity price process;

K �

1 � da
n

k�1
L(t0, tk�1)P(t0, tk) � P(t0, tn)

da
n

k�1
P(t0, tk)

 � P(s, tn) � dKa
n

k�1
P(s, tk).

 FESC �
S(s)
S(t0)

� da
n

k�2
L(s, tk�1)P(s, tk) � dL(t0, t0)P(s, t1)

7The fixed year fraction d � 1 is given by KM (2001).
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this economic conclusion is identical to CR (1998) and KM (2001) in
the case of constant notional principal. However, the determinants of the
FESC swap rate K are quite different from those within the HJM model.
The K in Equation (30) is determined by the forward LIBOR rates,
which are market-observable, whereas those under the HJM model are
market-nonobservable instantaneous forward rates.

Pricing Floating-for-Equity Swaps With Variable
Notional Principal

The cash flow stream of a floating-for-equity swap with variable notional
principal (FESV) is given as follows:

At time t1 : {$1}{[S(t1)�S(t0) � 1] � d[L(t0, t0) � K]}

At time t2 : {S(t1)�S(t0)}{[S(t2)�S(t1) � 1] � d[L(t1, t1) � K]}

At time t3 : {S(t2)�S(t0)}{[S(t3)�S(t2) � 1] � d[L(t2, t2) � K]}

o o

At time tn : {S(tn�1)�S(t0)}{[S(tn)�S(tn�1) � 1] � d[L(tn�1, tn�1) � K]}

The approximate pricing formula of a FESV is presented in
Theorem 2 and the proof is given in Appendix B.

Theorem 2. The approximate pricing formula of an FESV.
Under the extended LIBOR market model, the approximate price of

an FESV at time s, t0 � s � t1, is given by

(31)

where f(s; tk�1, tk) and r(s; tk�1, tk) are defined by

r(s; tk�1, tk) � expa �
tk�1

s

g(u, tk�1) � (z(u) � ss(u, tk�1))
 
dub,

f(s; tk�1, tk) � expa �
tk�1

s

(z(u) � ss(u, tk�1)) � (ss(u, tk�1) � ss(u, tk))
 
dub,

 �(1 � dL(t0, t0) � dK)P(s, t1),

 �dL(s, tk�1)
P(s, tk)

P(s, tk�1)
 f(s; tk�1, tk)r(s; tk�1, tk)R f

FESV �
S(s)
S(t0)

en � a
n

k�2
B(1 � dK)

P(s, tk)

P(s, tk�1)
f(s; tk�1, tk)
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and (u, #) is approximated by Equation (B4) in Appendix B. The accu-
racy of this approximation is reported in Appendix C.

There are two correlation terms, f(s; tk�1, tk) and r(s; tk�1, tk), in the
pricing formula. It is easy to observe from the proof in Appendix B that
f(s; tk�1, tk) implicitly represents the correlation between the discount
factor and the return from the variable principal during the period
[t0, tk�1] for k � 2, 3, . . . , n. Similarly, the correlation between the
LIBOR rate L(t, tk�1) and the stock price process is specified implicitly
through r(s; tk�1, tk), for k � 2, 3, . . . , n, and these correlations arise due
to the floating interest rate payments. Despite the fact that the economic
conclusion is similar to that of KM (2001), the determinants of our cor-
relations differ from theirs.

If the floating rates become a constant rate, i.e., L(t, tk�1) � R �t �

[s, tk�1] for k � 1, 2, . . . , n, the spread K � 0 and d� 1 (in conformance
with that of KM (2001)), then Equation (31) degenerates to the pricing
formula of the fixed-for-equity swap with variable notional principal
presented by KM (2001).

The fair equity swap rate with variable notional principal at the
contract initiation is as follows:

(32)

where

Unlike the case of the FESC, the stock price process also has an impact
on K via f(t0; tk�1, tk) and r(t0; tk�1, tk) because the final payoff is com-
pounded by the percentage change in the stock price due to the variable
notional principal. In addition, the advantage of the extended BGM
model is that the LIBOR rates are market-observable. We can directly
observe the initial LIBOR rates from the market. Compared with
the Gaussian HJM case, as given in KM (2001) and others, our model
makes it easier to calibrate the parameters associated with the model and
to calculate the correlation terms, f(s; tk�1, tk) and r(s; tk�1, tk) for
k � 2, 3, . . . , n.

As mentioned above, the extended LIBOR model has a log-normal
volatility structure, thereby leading to the positive LIBOR rates, which

A � n � a
n

k�1

P(t0, tk)

P(t0, tk�1)
f(t0; tk�1, tk)[1 � dL(t0, tk�1)r(t0; tk�1, tk)]

K �
A

da
n

k�1

P(t0, tk)

P(t0, tk�1)
f(t0; tk�1, tk)

ss
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avoid the pricing error arising from the negative rate with a positive prob-
ability in the Gaussian HJM model.

CALIBRATION AND NUMERICAL EXAMPLES

The rates described in the LIBOR market model are the forward LIBOR
rates underlying the caps and floors that are actively traded in financial
markets. The market data can be employed to calibrate the parameters
in the model. In this section, we first present the calibration procedure
and then provide some numerical examples for Theorem 2.

We use the mechanism presented by Rebonato (1999) to engage in
a simultaneous calibration of the extended LIBOR market model accord-
ing to the percentage volatilities and to the correlation matrix of the
underlying forward LIBOR rates and the stock index. We assume that
there are n � 1 forward LIBOR rates in a m-factors framework. The
steps to calibrate the parameters are given as follows.

First, following the work of Brigo and Mercurio (2001), we assume
that L(t, #) has a piecewise-constant instantaneous total volatility struc-
ture that depends solely on the time-to-maturity. The elements in Table I,
which specify the instantaneous total volatility applied to each period for
each rate, can be calculated from the market data. A detailed computa-
tional process is also presented in Hull (2003). In addition, we also
assume that the stock index has a piecewise-constant instantaneous total
volatility structure. The elements in Table II can be calculated from the
on-the-run option prices in the market. However, because the duration
of stock options is usually shorter than one year, the market-obtainable
elements in Table II are not usually sufficient for pricing equity swaps.
This problem may be resolved by using the implied (or historical) volatility
of the underlying stock index, while assuming that the term structure of
the volatility is flat, i.e., z(t) � z for t � (t0, tn].

TABLE I

Instantaneous Volatilities of L(t, #)

Instant. Total Vol. Time t � (t0, t1] (t1, t2] (t2, t3] p (tn�2, tn�1]

Fwd Rate: L(t, t1) 1,1 Dead Dead p Dead
L(t, t2) 2,1 2,2 Dead p Dead
o p p p p p
L(t, tn�1) n�1,1 n�1,2 n�1,3

p
n�1,n�1yyyy

yy

y
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Next, we use the historical price data of the forward LIBOR rates
and the underlying stock index to derive a full-rank n 	 n instantaneous-
correlation matrix . Thus,  is a positive-definite and symmetric matrix
and can be written as

 � H � H�,

where H is a real orthogonal matrix and � is a diagonal matrix. Let A �
H�1/2 and thus, AA� � , so that we can find a suitable m-rank (m �� n)
matrix B, such that B � BB� is a m-rank correlation matrix and can be
used to mimic the market correlation matrix .

The advantage of this is that we may replace the n-dimensional orig-
inal Brownian motion dW(t) with BdZ(t) where dZ(t) is an m-dimensional
Brownian motion. In other words, we change the market correlation
structure

dW(t)dW(t)� � dt

to a modeled correlation structure

BdZ(t)(BdZ(t))� � BdZ(t)dZ(t)�B� � BB� dt � Bdt.

The remaining problem is how to choose a suitable matrix B.
Rebonato (1999) proposed the following form for ith row of B:

for i � 1, 2, . . . , n. By finding a that solves the following optimization
problem

and substituting into B, we obtain a suitable matrix such that
is an approximate correlation matrix for .B(� B̂B̂�)

B̂û

min
u
a
n

i, j�1
0B

i, j � i, j 0 2,

û

bi,k � e cos ui,kwk�1
j�1 sin ui, j if k � 1, 2, . . . , m � 1,

wk�1
j�1 sin ui,j if k � m,

TABLE II

Instantaneous Volatilities of the Stock Index

Instant. Total Vol. Time t � (t0, t1] (t1, t2] (t2, t3] p (tn�1, tn]

Fwd Rate: S(t ) z1 z2 z3
p zn
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can be used to distribute the instantaneous total volatility to each
Brownian motion without changing the amount of the instantaneous
total volatility. That is,

where i � 1, 2, . . . , n�1 and t � (tj�1, tj], for each j � 1, 2, . . . , n.
Under the assumption that the instantaneous total volatility struc-

tures are piecewise-constant, the above procedure represents a general
calibration method without a constraint on choosing the number of fac-
tors. Via the distributing matrix , the individual instantaneous volatility
applied to each Brownian motion, can be derived for each process. With
these data calibrated from the market correlation matrix and volatilities,
we can employ a Monte Carlo simulation to price any associated interest
rate derivatives. Besides, the data can also be used to calculate the price of
the FESC and the FESV derived in Theorems 1 and 2.

Based on the actual market data as shown in Tables C2–C4 in
Appendix C and the calibration procedure described above, we present
some numerical examples for Theorem 2 in Table III. Compared with the

B̂

z(B̂(n, 1), B̂(n, 2), p , B̂(n, m)) � (z1(t), z2(t), p , zm(t))

yi,j(B̂(n, 1),  B̂(i, 2), p , B̂(i, m)) � (g1(t, ti), g2(t, ti), p , gm(t, ti))

B̂

TABLE III

The 5-Year and 10-Year FESV Prices

Date 3/31/06 12/30/05 9/30/05 6/30/05

5-year Thm 2 �0.0077 �0.0078 �0.0079 �0.0081
MC �0.0075 �0.0073 �0.0082 �0.0084
(s.e.) (0.0021) (0.0021) (0.0021) (0.0021)

10-year Thm 2 �0.0156 �0.0161 �0.0162 �0.0166
MC �0.0142 �0.0165 �0.0151 �0.0158
(s.e.) (0.0031) (0.0031) (0.0031) (0.0031)

Date 3/31/05 12/31/04 9/30/04 6/30/04

5-year Thm 2 �0.0080 �0.0086 �0.0093 �0.0091
MC �0.0077 �0.0090 �0.0086 �0.0085
(s.e.) (0.0021) (0.0021) (0.0021) (0.0021)

10-year Thm 2 �0.0163 �0.0178 �0.0192 �0.0178
MC �0.0167 �0.0176 �0.0183 �0.0175
(s.e.) (0.0031) (0.0032) (0.0031) (0.0031)

Note. The prices of the 5-year and 10-year FESV reset annually are presented in this table. They are priced to
different quarterly dates over the past 2 years. The flat volatility of S&P500 is assumed to be 20%. The spread
K � 15bp. The simulation is based on 50,000 paths.
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Monte Carlo simulation, the accuracy of the approximate pricing formula
in Theorem 2 obtained by using the most recent 2-year data, is good.

CONCLUSION

This study advances a general model, the extended BGM model, for pric-
ing equity swaps and applies this model to price floating-for-equity swaps
with either constant or variable notional principals. We have derived the
extended BGM model under the Martingale measure by assuming that
both LIBOR rates and stock price processes follow a log-normal volatility
structure and have imposed the drift restriction for no-arbitrage in the
extended HJM model.

Because the forward LIBOR rates have a log-normal volatility struc-
ture, the rates are positive. Because the LIBOR rate is market-observable
and its related derivatives, such as caps and swaptions, are widely traded
in the market, we can inverse these market quantities to calibrate the
parameters associated with the extended BGM model. Moreover,
because the LIBOR rates are simply compounded, the extended BGM
model is suitable for pricing swaps with a paid-in-arrears feature.

With the above-mentioned advantages, the extended LIBOR market
model is a general model for pricing swaps, especially floating-for-equity
types. The pricing formula of the floating-for-equity swaps, with either
constant or variable notional principals, has been presented and analyzed.
We have also discussed the calibration of model parameters. The extended
LIBOR market model may also be employed to price other types of swaps,
such as two-way equity swaps and capped-equity swaps. These will be
examined in future research.

APPENDIX A

Proof of Theorem 1

Applying the martingale pricing method, the price of the FESC at time s,
t0 � s � t1, is the sum of the discounted value of the expected future
cash flows, i.e.,

VFESC � a
n

k�1
B(s)EQ §a S(tk)

S(tk�1)
� (1 � d(L(tk�1, tk�1) � K))b

B(tk)
† Fs¥
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Using the law of iterated expectation and the changing-numéraire
mechanism, the elements of the first two summations are derived as
follows:

and

B(s)EQ £ 1
B(tk)

3 Fs≥ � P(s, tk).

 � P(s, tk�1), for k � 2, . . . , n.

B(s)EQ § S(tk)

S(tk�1)

B(tk)
 †Fs¥ � B(s)EQ £ 1

S(tk�1)
EQ £S(tk)

B(tk)
 3 Ftk�1

≥ †Fs≥

 �a
n

k�2
dB(s)EQ £L(tk�1, tk�1)

B(tk)
†Fs≥.

 �(1 � dK)a
n

k�2
B(s)EQ £ 1

B(tk)
†Fs≥

 � a
n

k�2
B(s)EQ § S(tk)

S(tk�1)

B(tk)
† Fs¥

 � 
S(s)
S(t0)

� (1 � d(L(t0, t0) � K))P(s, t1)

 �a
n

k�2
B(s)EQ § c S(tk)

S(tk�1)
� (1 � d(L(tk�1, tk�1) � K)) d

B(tk)
†Fs¥

 � B(s)EQ § c S(t1)

S(t0)
� (1 � d(L(t0, t0) � K)) d

B(t1)
†Fs¥
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Because {L(t, tk�1): 0 � t � tk�1} is a Martingale under , the elements
in the third summation are derived as follows:

Arranging the above results, the pricing formula of the FESC is

Q.E.D.

APPENDIX B

Proof of Theorem 2

Similar to the proof of Theorem 1, we also adopt the Martingale pricing
method to price the FESV. The price of the FESV at time s, t0 � s � t1, is
the sum of the discounted value of the expected future cash flows, i.e.,

 � 
S(s)
S(t0)

� (1 � dL(t0, t0) � dK)P(s, t1) �
1

S(t0) a
n

k�2
B(s)EQaS(tk)

B(tk)
`Fsb

� a
n

k�2
B(s)EQ §S(tk�1)

S(t0)
B S(tk)

S(tk�1)
� ( 1 � dL(tk�1, tk�1) � dKR

B(tk)
3 Fs¥

 � B(s)EQ § c S(t1)

S(t0)
� (1 � dL(t0, t0) � dK) d

B(t1)
†Fs¥

VFESV � a
n

k�1
B(s)EQ §S(tk�1)

S(t0)
B S(tk)

S(tk�1)
� ( 1 � dL(tk�1, tk�1) � dKR

B(tk)
∞Fs¥

 � P(s, tn) � dKa
n

k�1
P(s, tk).

S(s)
S(t0)

 � da
n

k�2
L(s, tk�1)P(s, tk) � dL(t0, t0)P(s, t1)

 � P(s, tk)L(s, tk�1).

B(s)EQ £L(tk�1, tk�1)

B(tk)
† Fs≥ � P(s, tk)EQtk°L(tk�1, tk�1) †Fs¢

Qtk

x

(I)
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(B1)

We solve, respectively, parts I, II, and III as given below.

Then, part II in Equation (B1) is derived as follows:

(B2)

To find the expectation in Equation (B2), define 
and . Under the measure , both and

are Martingales with the following dynamics:

Defining Z(t) � X(t)Y(t) and using Itô’s lemma to Z(t), we have

(B3) �[z(t) � s*(t, tk) � 2s*(t, tk�1)] � dWtk�1
(t).

dZ(t)
Z(t)

 � [z(t) � s*(t, tk�1)] � [s*(t, tk�1) � s*(t, tk)]
 
dt

dY(t)
Y(t)

 � [s*(t, tk�1) � s*(t, tk)] � dWtk�1
(t).

dX(t)
X(t)

 � [z(t) � s*(t, tk�1)] � dWtk�1
(t),

5Y(t)6t�[0, tk�1]

5X(t)6t�[0,tk�1]
Qtk�1

P(t, tk )
P(t, tk�1 ) � Y(t)

S(t )
p(t, tk�1 ) � X(t)

 � EQtk�1a S(tk�1)

P(tk�1, tk�1)

P(tk�1, tk)

P(tk�1, tk�1)
`FsbP(s, tk�1).

 � EQ tk�1aS(tk�1)P(tk�1, tk) `FsbP(s, tk�1)

 � B(s)EQ aS(tk�1)P(tk�1, tk)

B(tk�1)
`Fsb

 II � B(s)EQaS(tk�1)

B(tk)
`Fsb

 � S(s).

 I � B(s)EQaS(tk)

B(tk)
`Fsb

�
d

S(t0) a
n

k�2
B(s)EQ

 aS(t
k�1

)L(t
k�1

,t
k�1

)

B(tk)
`Fsb.

�
(1 � dK)

S(t0) a
n

k�2
B(s)EQaS(tk�1)

B(tk)
`Fsby

y
(III)

(II)
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According to the definition of the bond volatility process {s*(t, T)}t�[s,T]

in Equation (24), {s*(t, T)}t�[s,T] is not deterministic. Thus, the stochas-
tic differential Equation (B3) is not solvable and the distribution of
Z(tk�1) is unknown. However, given any fixed initial time s, we can
approximate s*(t, T) by s(t, T), which is defined by

(B4)

where 0 � s � t � T. It means that the calendar time of the process
{L(t, T)}t�[s,T] in (B4) is frozen at its initial time s and thus the process 
{ s(t, T)}t�[s,T] becomes deterministic. This is the Wiener chaos order 0
approximation which BGM (1997) used to price swaptions. The accuracy
of (B4) is examined in Appendix C.

Substituting s(t, T) for s(t, T), Equation (B3) can be rewritten as:

(B5)

In this method, the drift and volatility terms in (B5) are deterministic, so
we can solve equation (B5) and find the approximate distribution of
Z(tk�1).

Solving the stochastic differential equation (B5) and substituting its
solution into the expectation in (B2), we get part II as follows:

where

Observing Equation (B2), f(s; tk�1, tk) implicitly represents the correlation
between the discount factor and the return from the variable principal
during the period [t0, tk�1].

� exp a �
tk�1

s

(z(u) � ss(u, tk�1)) � (ss(u, tk�1) � ss(u, tk))
 
dub.

f(s; tk�1, tk)

 � S(s) 
P(s, tk)

P(s, tk�1)
 f(s; tk�1, tk),

II � Z(s)exp a �
tk�1

s

[z(u) � ss(u, tk�1)] � [ss(u, tk�1) � ss(u, tk)]dubP(s, tk�1)

 �[z(t) � ss(t, tk) � 2ss(t, tk�1)] � dWt k�1
(t).

dZ(t)
Z(t)

 � [z(t) � ss(t, tk�1)] � [ss(t, tk�1) � ss(t, tk)]
 
dt

s

s

�ss(t, T) � c a
[d�1(T�t)]

k�1

dL(s, T � kd)g(t, T � kd)

1 � dL(s, T�kd)
t � [0, T � d] & T � d � 0,

0 otherwise.

s
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Finally, we derive part III in Equation (B1) as follows:

(B6)

Under , the dynamics of L(t, tk�1) is

Using Girsanov’s theorem, the dynamics of L(t, tk�1) under is as
follows:

Defining f(t � Z(t)L(t, tk�1) and using Itô’s lemma, we have

(B7)

Similarly, the drift and volatility terms in (B7) are stochastic and we can-
not solve the distribution of f(tk�1). By substituting s(u, #), defined in
Equation (B4), for s*(u, #), (B7) can be rewritten as

s

 � (z(t) � s*(t, tk) � 2s*(t, tk�1) � g(t, tk�1)) � dWtk�1
(t).

 � (z(t) � s*(t, tk�1)) � (s*(t, tk�1) � s*(t, tk))
 
dt

 � g(t, tk�1) � (z(t) � s*(t, tk�1))
 
dt

 � [z(t) � s*(t, tk) � 2s*(t, tk�1) � g(t, tk�1)] � dWtk�1
(t)

 � (z(t) � s*(t,tk�1)) � (s*(t, tk�1) � s*(t, tk))] dt

 � g(t, tk�1) � (z(t) � s*(t, tk) � 2s*(t, tk�1))

df(t)

f(t)
 � [g(t, tk�1) � (s*(t, tk) � s*(t, tk�1))

 � L(t, tk�1)g(t, tk�1) � dWtk�1
(t).

dL(t, tk�1) � L(t, tk�1)g(t, tk�1) � (s*(t, tk) � s*(t, tk�1))
 
dt

Qtk�1

dL(t, tk�1) � L(t, tk�1)g(t, tk�1) � dWtk
(t).

Qtk

 � EQtk�1aZ(tk�1)L(tk�1, tk�1) `FsbP(s, tk�1).

 � EQ tk�1a S(tk�1)

P(tk�1, tk�1)
 

P(tk�1, tk)

P(tk�1, tk�1)
 L(tk�1, tk�1) `FsbP(s, tk�1)

 � EQ tk�1aS(tk�1)L(tk�1, tk�1)P(tk�1, tk) `FsbP(s, tk�1)

III � B(s)EQ aS(tk�1)L(tk�1, tk�1)

B(tk)
`Fsb
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(B8)

Now, the drift and volatility terms in Equation (B8) are deterministic and
the approximate distribution of f(tk�1) can be solved.

After solving f(tk�1) in Equation (B8) and taking it into the expecta-
tion of Equation (B6), we get part III as follows:

where r(s; tk�1, tk) is defined by

With the above results, the price of the FESV is given by

Q.E.D.

APPENDIX C

Examining the Accuracy of the Approximation 
in Equation (B4)

Because the quotient dL(t, ti)�(1 � dL(t, ti)) has low variance under the
forward measure , the calendar time of the process L(t, #) in
Equation (B4) could be frozen at its initial time. This argument first
appears in Brace et al. (1997). It was developed further in Brace, Dun, and
Barton (1998) and formalized by Brace and Womersley (2000). The
approximation also appears in Schlögl (2002). Here, we use Monte Carlo
simulation to examine the accuracy of the approximation.

Tables C2–4 are drawn from the DataStream database. Via the cali-
bration procedure described in the Calibration and Numerical Examples

Qti�1

 � (1 � dL(t0, t0) � dK)P(s, t1).

 � dL(s, tk�1)
P(s, tk)

P(s, tk�1)
f (s; tk�1, tk)r(s; tk�1, tk)R r

 
S(s)
S(t0)

en � a
n

k�2
c (1 � dK)

P(s, tk)

P(s, tk�1)
f (s; tk�1, tk)

r(s; tk�1, tk) � exp a �
tk�1

s
g(u, tk�1) � (z(u) � ss(u, tk�1))

 
dub.

III � S(s)
P(s, tk)

P(s, tk�1)
L(s, tk�1)f (s; tk�1, tk)r(s; tk�1, tk),

 � (z(t) � ss(t, tk) � 2ss(t, tk�1) � g(t, tk�1)) � dWtk�1
(t).

 � (z(t) � ss(t, tk�1)) � (ss(t, tk�1) � ss(t, tk))
 
dt

df(t)

f(t)
 � g(t, tk�1) � (z(t) � ss(t, tk�1))

 
dt
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section 2 to calibrate the model parameters from the market data in
Tables C2–C4, we employ Monte Carlo simulation to simulate the sto-
chastic process of the LIBOR rates in two cases. Case 1 is implemented
without the approximation assumption, i.e. L(t, #) in Equation (B4) is not
frozen at its initial time. On the other hand, Case 2 is implemented with
the approximation assumption.

Table C1 presents the result. By observing Table C1, the percentage of
relative error becomes larger as the maturity of the LIBOR rate gets longer.
Moreover, the percentage of relative error grows larger if the term structure
of the volatility becomes larger. Based on the simulation result, the approx-
imation technique seems robust over the past 2 years. Even on the date
September 30, 2004, when the LIBOR rates were most volatile, the
percentage relative error of the realized LIBOR rate, L(9, 9), is only
3.5487% (the largest percentage relative error), which is still acceptable.

We have justified the approximation by Monte Carlo simulation. The
result supports the accuracy of the approximate formula in Theorem 2.

TABLE C1

The Percentage Relative Errors

% 3/31/06 12/30/05 9/30/05 6/30/05 3/31/05 12/31/04 9/30/04 6/30/04

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0013 0.0022 0.0036 0.0045 0.0044 0.0131 0.0344 0.0458
3 0.0101 0.0179 0.0240 0.0331 0.0278 0.0861 0.1902 0.1368
4 0.0337 0.0616 0.0750 0.1074 0.0827 0.2463 0.4850 0.2729
5 0.0700 0.1274 0.1498 0.2138 0.1785 0.4346 0.7617 0.3956
6 0.1516 0.2747 0.3122 0.4389 0.3212 0.8289 1.3732 0.6574
7 0.2697 0.4875 0.5363 0.7498 0.5234 1.3061 2.0273 0.8942
8 0.4270 0.7702 0.8208 1.1347 0.7816 1.8231 2.7688 1.1984
9 0.6377 1.1370 1.1875 1.6200 1.0998 2.4021 3.5487 1.5072

Note. If the LIBOR rates in Case 1 are viewed as the benchmark, the percentage of relative errors of the rates in Case 2
caused by the approximation assumption, are presented in Table III. Each result is based on 100,000 sample paths.

TABLE C2

Cap Volatilities Quoted in the U.S. Market

% 3/31/06 12/30/05 9/30/05 6/30/05 3/31/05 12/31/04 9/30/04 6/30/04

1 9.93 11.3 13.93 14.39 13.92 19.38 25.53 35.01
2 13.6 15.62 17.31 19.18 18.31 24.56 31.1 31.7
3 15.21 17.81 19.13 21.35 19.81 26.44 31.86 28.84
4 16.06 18.96 19.89 22.33 20.23 26.53 31.1 26.97
5 16.56 19.48 20.31 22.72 20.24 26.08 29.79 25.4
7 17.01 19.97 20.46 22.6 19.82 24.81 27.58 22.92
10 16.98 19.8 19.85 21.58 18.76 22.19 24.37 20.21

Note. The quoted volatilities of the caps in the U.S. market over the past 2 years are presented quarterly in this table. The
data for years 6, 8, and 9 can be obtained by an interpolation technique.
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TABLE C4

Forward LIBOR Rate Correlation

1 2 3 4 5 6 7 8 9 Stock

1 1 0.9821 0.9637 0.8911 0.8365 0.8264 0.7375 0.6668 0.5901 0.7265
2 0.9821 1 0.9933 0.9309 0.8922 0.9072 0.8392 0.7761 0.7087 0.6456
3 0.9637 0.9933 1 0.9425 0.9109 0.9373 0.879 0.8235 0.7605 0.6136
4 0.8911 0.9309 0.9425 1 0.7578 0.9116 0.8668 0.8206 0.7549 0.5279
5 0.8365 0.8922 0.9109 0.7578 1 0.9117 0.8841 0.8471 0.8179 0.4718
6 0.8264 0.9072 0.9373 0.9116 0.9117 1 0.9771 0.9505 0.9162 0.3927
7 0.7375 0.8392 0.879 0.8668 0.8841 0.9771 1 0.9721 0.9556 0.284
8 0.6668 0.7761 0.8235 0.8206 0.8471 0.9505 0.9721 1 0.9576 0.1916
9 0.5901 0.7087 0.7605 0.7549 0.8179 0.9162 0.9556 0.9576 1 0.122
Stock 0.7265 0.6456 0.6136 0.5279 0.4718 0.3927 0.284 0.1916 0.122 1

Note. One-year data (April 1, 2005 through March 31, 2006) are used to calculate this correlation matrix.

TABLE C3

Initial Forward LIBOR Rates and Initial S&P500 Index

% 3/31/06 12/30/05 9/30/05 6/30/05 3/31/05 12/31/04 9/30/04 6/30/04

S&P500 1294.83 1248.29 1228.81 1191.33 1180.59 1211.92 1114.58 1140.84
0 5.478 4.976 4.562 3.970 3.917 3.162 2.505 2.491
1 5.456 5.075 4.899 4.207 4.804 3.946 3.602 4.088
2 5.449 5.007 4.809 4.317 5.017 4.269 4.196 4.905
3 5.532 5.064 4.868 4.408 5.155 4.631 4.644 5.427
4 5.627 5.118 4.926 4.536 5.288 4.989 4.999 5.805
5 5.651 5.118 5.022 4.630 5.387 5.269 5.308 6.109
6 5.658 5.143 5.053 4.710 5.544 5.469 5.581 6.311
7 5.698 5.168 5.117 4.874 5.587 5.730 5.764 6.417
8 5.738 5.313 5.242 4.946 5.689 5.866 5.945 6.580
9 5.851 5.300 5.325 5.069 5.843 6.072 6.096 6.708
10 5.831 5.382 5.410 5.118 5.772 6.092 6.188 6.745

Note. The forward LIBOR rates and S&P500 index in the U.S. market over the past 2 years are represented quarterly in
this table. The rates are obtained from the associated bond prices derived from the zero curves obtained from the
DataStream database.
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