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Abstract

When we have only interval ranges ½xi; xi� of sample values x1, . . . ,xn, what is the interval ½V ; V � of possible values for the
variance V of these values? There are quadratic time algorithms for computing the exact lower bound V on the variance of
interval data, and for computing V under reasonable easily verifiable conditions. The problem is that in real life, we often
make additional measurements. In traditional statistics, if we have a new measurement result, we can modify the value of
variance in constant time. In contrast, previously known algorithms for processing interval data required that, once a new
data point is added, we start from the very beginning. In this paper, we describe new algorithms for statistical processing of
interval data, algorithms in which adding a data point requires only O(n) computational steps.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction: data processing in intelligent systems – from probabilities to intervals

1.1. Let us start with a big picture

Before we describe a specific problem that we solve in this paper, let us first describe how, in our view, this
problem fits into a big picture of information processing in intelligent systems. Readers who are familiar with
this big picture and/or who are only interested in our technical results can skip this subsection.

One of the main specific features of information processing in intelligent systems is that in such systems, we
often have very limited knowledge. As a result, processing of imprecise information is necessary in intelligent
systems.

A typical example is the processing of linguistic information, i.e., information represented by experts in
terms of words from a natural language. This information can be modeled, e.g., by fuzzy sets (see, e.g.,
0020-0255/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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16,25). For such modeling, when an expert states that a value is, say, small but not very small, we describe this
expert information in terms of an appropriate fuzzy set.

A particular case of such a statement is when an expert states that the actual value is between, say, 0.1 and
0.3. After such a statement, the only information about the actual (unknown) value of the desired quantity is
that it belongs to the interval [0.1,0.3] – and each interval (and, more generally, each set) can be viewed as a
particular example of a more general concept of a fuzzy set.

Since the knowledge about each quantity is represented in such a form, it is necessary to be able to develop
inference procedures for such observations. Mathematical analysis of this problem is therefore crucial for
designing intelligent systems. In this paper, we analyze an important particular case of this set-valued data.
Specifically, in this paper, we investigate the computational aspects of processing interval-valued data. Let
us now describe our problem and its motivation in more detail.

1.2. Why data processing?

In intelligent systems, there are at least two sources of information about physical quantities: measurements
and expert estimates.

In many real-life situations, we are interested in the value of a physical quantity y that is difficult or impos-
sible to measure directly and difficult for experts to estimate. Examples of such quantities are the distance to a
star and the amount of oil in a given well.

Since we cannot measure or estimate the value y of the desired physical quantity directly, a natural idea is to
measure or estimate y indirectly. Specifically, we find some easier-to-measure or easier-to-estimate quantities
x1, . . . ,xn which are related to y by a known relation y = f(x1, . . . ,xn). For example, to find the resistance R, we
measure or estimate current I and voltage V, and then use the known relation R = V/I to estimate resistance aseR ¼ eV =eI . This relation may be a simple functional transformation, or a complex algorithm (e.g., for the
amount of oil, a numerical solution to an inverse problem). It is worth mentioning that in the vast majority
of these cases, the function f(x1, . . . ,xn) that describes the dependence between physical quantities is continu-
ous. In such cases, to estimate y, we first measure or estimate the values of the quantities x1, . . . ,xn, and then
we use the results ex1; . . . ; exn of these measurements or estimates to compute an estimate ~y for y as
~y ¼ f ðex1; . . . ; exnÞ.

Comment. In this paper, for simplicity, we consider the case when the relation between xi and y is known
exactly; in practical situations, we often only know an approximate relation between xi and y.

1.3. Why interval computations? From probabilities to intervals

Neither measurements nor estimates are 100% accurate, so in reality, the actual value xi of quantity i can
differ from the result exi obtained by measurement or by estimation. Because of these measurement (estimation)
errors Dxi ¼def exi � xi, the result ~y ¼ f ðex1; . . . ; exnÞ of data processing is, in general, different from the actual value
y = f(x1, . . . ,xn) of the desired quantity y [29]. It is desirable to describe the error Dy ¼def

~y � y of the result of
data processing. To do that, we must have some information about the errors of direct measurements and/or
estimates.

What do we know about the errors Dxi related to expert estimation? Often, an expert can provide bounds xi

and xi for the estimated quantity xi. Then, the actual (unknown) value of xi belongs to the interval xi ¼ ½xi; xi�.
Often, these bounds come in the form of an unsigned error estimate Di on the expert’s estimation accuracy: for
example, an expert may say that the actual fish population in a lake is 50,000 ± 20,000. In this case,exi ¼50,000, Di = 20,000, so xi ¼ exi � Di and xi ¼ exi þ Di.

Comment. For readers who may be interested in how the above description is related to fuzzy sets, here is an
explanation. Often, in addition to (or instead of) the bounds, an expert can provide bounds that contain xi

with a certain degree of confidence (not necessarily represented by a probability). Often, we know several such
bounding intervals corresponding to different degrees of confidence. Such a nested family of intervals is also
called a fuzzy set, because it turns out to be equivalent to a more traditional definition of fuzzy set [6,16,23–25]
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(if a traditional fuzzy set is given, then different intervals from the nested family can be viewed as a-cuts cor-
responding to different levels of uncertainty a).

What do we know about the errors Dxi of direct measurements? First, the manufacturer of the measuring
instrument must supply us with an upper bound Di on the measurement error. If no such upper bound is sup-
plied, this means that no accuracy is guaranteed, and the corresponding ‘‘measuring instrument’’ is practically
useless. In this case, once we perform a measurement and get a measurement result exi , we know that the actual
(unknown) value xi of the measured quantity belongs to the interval xi ¼ ½xi; xi�, where xi ¼ exi � Di and
xi ¼ exi þ Di.

In many practical situations, we not only know the interval [�Di,Di] of possible values of the measurement
or estimation error; we also know the probability of different values Dxi within this interval. This knowledge
underlies the traditional engineering approach to estimating the error of indirect measurement, in which we
assume that we know the probability distributions for measurement errors Dxi.

In practice, we can determine the desired probabilities of different values of Dxi by comparing the results of
measuring with this instrument (or results of expert estimation) with the results of measuring the same quan-
tity by a standard (much more accurate) measuring instrument. Since the standard measuring instrument is
much more accurate than the one used, the difference between these two measurement results is practically
equal to the measurement error; thus, the empirical distribution of this difference is close to the desired prob-
ability distribution for measurement error. There are two cases, however, when this determination is not done:

• First is the case of cutting-edge measurements, e.g., measurements in fundamental science. When the Hub-
ble telescope detects the light from a distant galaxy, there is no ‘‘standard’’ (much more accurate) telescope
floating nearby that we can use to calibrate the Hubble: the Hubble telescope is the best we have.

• Second is the case of many commercial measuring instruments. In this case, in principle, every sensor can be
thoroughly calibrated, but sensor calibration is so costly – usually costing 10 times more than the sensor
itself – that manufacturers rarely do it.

In both cases, we have no information about the probabilities of the Dxi; the only information we have is
the upper bound on the measurement or estimation error. Therefore, after we performed a measurement and
got a measurement result exi , the only information that we have about the actual value xi of the measured
quantity is that it belongs to the interval xi ¼ ½exi � Di; exi þ Di�. In such situations, the only information that
we have about the actual value of y = f(x1, . . . ,xn) is that y belongs to the range y ¼ ½y; �y� of the function f over
the box x1 · � � � · xn:
y ¼ ½y; �y� ¼ ff ðx1; . . . ; xnÞjx1 2 x1; . . . ; xn 2 xng:
For continuous functions f(x1, . . . ,xn), this range is an interval. The process of computing this interval range
based on the input intervals xi is called interval computation; see, e.g., [13–15,22].

Comment. When, instead of a single interval, we have several intervals corresponding to different levels of
confidence, we must perform interval computations on each level [6,16,23–25].

1.4. Interval computations techniques: brief reminder

Historically the first method for computing the enclosure for the range is the method which is sometimes
called ‘‘straightforward’’ interval computations. This method is based on the fact that, inside the computer,
every algorithm consists of elementary operations (arithmetic operations, min, max, etc.). For each elementary
operation f(a,b), if we know the intervals a and b for a and b, we can compute the exact range f(a,b). The
corresponding formulas form the so-called interval arithmetic. For example,
½a; �a� þ ½b; �b� ¼ ½aþ b; �aþ �b�; ½a; �a� � ½b; �b� ¼ ½a� �b; �a� b�;
½a; �a� � ½b; �b� ¼ ½minða � b; a � �b; �a � b; �a � �bÞ;maxða � b; a � �b; �a � b; �a � �bÞ�:
In straightforward interval computations, we repeat the computations forming the expression for f (or,
more generally, a program for computing f) step-by-step, replacing each operation on real numbers by the
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corresponding operation on intervals. It is known that, as a result, we get an enclosure Y � y for the desired
range.

In some cases, this enclosure is exact. In more complex cases (see examples below), the enclosure has excess
width.

There exist more sophisticated techniques for producing a narrower enclosure, e.g., a centered form
method. However, for each of these techniques, there are cases when we get an excess width. The reason
for such an excess width is that, as shown in [18,32], the problem of computing the exact range is known
to be NP-hard even for polynomial functions f(x1, . . . ,xn) (actually, even for quadratic functions f).

In this paper, we analyze a specific class of interval computations problems – when the algorithm
f(x1, . . . ,xn) is one of the traditional statistical data processing algorithms such as computing the mean or a
variance of the population sample x1, . . . ,xn.

1.5. From the statistical viewpoint, this problem is a particular case of robust statistics

Interval uncertainty means that we do not know the exact probability distribution for measurement or esti-
mation error; instead, we only know that this distribution belongs to a known collection of distribution –
namely, to the collection of all probability distributions that are non-zero only in the given interval. Situations
when we only know a collection of distributions are described by robust statistics (see, e.g., 12), and our prob-
lem of estimating population variance is in line with the problems traditionally solved by robust statistics:
many known algorithms in the area of robust statistics also return a guaranteed robust estimate for the pop-
ulation mean and population variance, which holds for a collection of distributions.

One may expect that these problems have already been solved in robust statistics. However, while robust
statistics does have a lot of useful and interesting results about the guaranteed bounds on the mean for many
classes of distributions, the problem of how to actually compute guaranteed bounds on the population vari-
ance has not (as we have been able to determine) yet been solved.

Comment. In this paper, we solve a very specific problem related to a combination of interval and proba-
bilistic uncertainty. For a more general context and for other practical problems related to such a combina-
tion, see, e.g., [2–5,7,9,10,17,19–21,23,28,30,31,33,34] and references therein.

2. Error estimation for traditional statistical data processing algorithms under interval uncertainty: known results

2.1. Formulation of the problem

When we have n results x1, . . . ,xn of repeated measurement or repeated expert estimation of the same quan-
tity (at different points, or at different moments of time, or by different experts), traditional statistical approach
usually starts with computing their population mean E = (x1 + � � � + xn)/n and their (population) variance
V ¼ ðx1 � EÞ2 þ � � � þ ðxn � EÞ2

n
ð1Þ
(or, equivalently, the population standard deviation r ¼
ffiffiffiffi
V
p

); see, e.g., [29].
In this paper, we consider situations when we do not know the exact values of the quantities x1, . . . ,xn, we

only know the intervals x1, . . . ,xn of possible values of xi. In such situations, for different possible values xi 2 xi,
we get different values of E and V. The question is: what are the intervals E and V of possible values of E and V?

The practical importance of this question was emphasized, e.g., in [26,27] on the example of processing geo-
physical data.

2.2. Bounds on E

For E, the straightforward interval computations leads to the exact range:
E ¼ x1 þ � � � þ xn

n
; i:e:; E ¼ x1 þ � � � þ xn

n
; and E ¼ x1 þ � � � þ xn

n
:
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2.3. For variance, the problem is difficult

For V, straightforward interval computations lead to excess width. For example, for n = 2, we have
E = (x1 + x2)/2, hence x1 � E = (x1 � x2)/2; similarly, x2 � E = (x2 � x)1)/2. Therefore, V = ((x1 � E)2 +
(x2 � E)2)/2 = (x1 � x2)2/4. Thus, when x1 = x2 = [0, 1], the actual range of the variance is equal to
V = [0,0.25]. On the other hand, E = [0, 1], hence
ðx1 � EÞ2 þ ðx2 � EÞ2

2
¼ ½0; 1� � ½0; 0:25�:
Even more sophisticated methods of interval computations also sometimes lead to an excess width.
Reason: in the formula for the mean E, each variable only occurs once, and it is known that for such for-

mulas, straightforward interval computations lead to the exact range (see, e.g., [11]). In the expression for var-
iance, each variable xi occurs several times: explicitly, in (xi � E)2, and implicitly, in the expression for E. In
such cases, often, dependence between intermediate computation results leads to excess width in the results of
straightforward interval computations. Not surprisingly, we do get excess width when applying straightfor-
ward interval computations to formula (1).

For variance, it is known that computing V is NP-hard [8]. The very fact that computing the range of a
quadratic function is NP-hard was first proven by Vavasis [32] (see also [18]). Ref. [8] shows that this difficulty
happens even for very simple quadratic functions frequently used in data processing.

A natural question is: does the difficulty come from the requirement that the range be computed exactly? In
practice, it is often sufficient to compute, in a reasonable amount of time, a usefully accurate estimate eV for V ,
i.e., an estimate eV which is accurate with a given accuracy e > 0: jeV � V j 6 e. Alas, it can be shown (see, e.g.,
[8]), that for any e, such computations are also NP-hard.

It is worth mentioning that V can be computed exactly in exponential time O(2n): it is sufficient to try all 2n

possible combinations of values xi and xi [8].
2.4. Feasible algorithm for computing V

For computing V, there exists a feasible algorithm [8]: specifically, our algorithm is quadratic-time, i.e., it
requires O(n2) computational steps (arithmetic operations or comparisons) for n interval data points
xi ¼ ½xi; xi�.

This algorithm A is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) 6 x(2) 6 . . . 6 x(2n).
• Second, we compute E and E and select all ‘‘zones’’ [x(k),x(k+1)] that intersect with ½E;E�.
• For each of the selected zones [x(k),x(k+1)], we compute the ratio rk = Sk/Nk, where
Sk ¼def
X

i:xiPxðkþ1Þ

xi þ
X

j:�xj6xðkÞ

�xj ð2Þ
and Nk is the total number of such is and js. If rk 2 [x(k),x(k+1)], then we compute Vk = Wk/n, where
W k ¼
def

X
i:xiPxðkþ1Þ

ðxi � rkÞ2 þ
X

j:�xj6xðkÞ

ðxj � rkÞ2: ð3Þ
If Nk = 0, we take V k ¼
def

0.
• Finally, we return the smallest of the values Vk as V.

Comment. A reader may be somewhat puzzled by the fact that there is a feasible algorithm for computing
the smallest possible value V of the variance V, while the problem of computing its largest possible value V is
NP-hard.
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Such a difference could not be possible, e.g., for the mean E. Indeed, for the mean, E(�x1, . . . ,�xn) =
�E(x1, . . . ,xn). Since replacing E with �E reverses the order, the smallest possible value of E(�x1, . . . ,� xn)
corresponds to the largest possible value of E(x1, . . . ,xn): Eð�x1; . . . ;�xnÞ ¼ �Eðx1; . . . ; xnÞ. Thus, if we have
a fast algorithm for computing E, then we could apply it to the intervals �x1, . . . ,�xn and therefore, compute
E as Eðx1; . . . ; xnÞ ¼ �Eð�x1; . . . ;�xnÞ. For the variances, however, this idea will not work because
V(�x1, . . . ,�xn) = V(x1, . . . ,xn) hence V(�x1, . . . ,� xn) = V(x1, . . . ,xn).

Another explanation is that the function V(x1, . . . ,xn) is a convex function. It is known that computing a
minimum of a convex function is rather easy, but computing its maximum can be time-consuming.

2.5. Feasible algorithm for computing V

NP-hardness of computing V means, crudely speaking, that there are no general ways for solving all par-
ticular cases of this problem (i.e., computing V ) in reasonable time.

However, there are algorithms for computing V for certain common situations. For example, there exists an
efficient (O(n2)) algorithm [8] that computes V for the case when all the interval midpoints (‘‘measured or esti-
mated values’’) exi ¼ ðxi þ xiÞ=2 are definitely different from each other, in the sense that the ‘‘narrowed’’ inter-
vals ½exi � Di=n; exi þ Di=n� – where Di ¼ ðxi � xiÞ=2 is the interval’s half-width – do not intersect with each
other. This situation is common because the actual values x1, . . . ,xn are usually different, so if we measure
them with a sufficient accuracy, we get non-intersecting intervals ½exi � Di=n; exi þ Di=n�.

This algorithm A is as follows:

• First, we sort all 2n endpoints of the narrowed intervals exi � Di=n and exi þ Di=n into a sequence
x(1) 6 x(2) 6 � � � 6 x(2n). This enables us to divide the real line into 2n + 1 segments (‘‘zones’’)
[x(k),x(k+1)], where we denoted xð0Þ ¼def�1 and xð2nþ1Þ ¼defþ1.

• Second, we compute E and E and pick all ‘‘zones’’ [x(k),x(k+1)] that intersect with ½E;E�.
• For each of remaining zones [x(k),x(k+1)], for each i from 1 to n, we pick the following value of xi:

– if xðkþ1Þ < exi � Di=n, then we pick xi ¼ xi;
– if xðkÞ > exi þ Di=n, then we pick xi = xi;
– for all other i, we consider both possible values xi ¼ xi and xi = xi.
As a result, we get one or several sequences of xi. For each of these sequences, we check whether the mean E

of the selected values x1, . . . ,xn is indeed within this zone, and if it is, compute the variance by using the
formula (2).

• Finally, we return the largest of the computed variances as V .

This algorithm also works when, for some fixed K, any collection of more than K ‘‘narrowed’’ intervals does
not have a common point.

3. On-line statistical analysis: problem and results

3.1. Formulation of the problem

In practice, measurements and expert estimates can arrive one after another. It is desirable to start process-
ing them as they come, without waiting for all of them to arrive. This is also important because often, as a
result of the statistical analysis of the existing measurement results and/or expert estimates, we conclude that
we do not have enough measurements and estimates; hence, we make additional measurements or expert esti-
mates. For traditional statistical methods, this can be easily accomplished: once we know the mean E of n val-
ues x1, . . . ,xn and the corresponding variance V, and a new measurement result (or a new expert estimate) xn+1

arrives, we can compute the new values E 0 and V 0 as follows:
E0 ¼ n � E þ xnþ1

nþ 1
; M ¼ V þ E2; M 0 ¼ n �M þ x2

nþ1

nþ 1
; V 0 ¼ M 0 � ðE0Þ2;
where M ¼def x2
1 þ � � � þ x2

n=n is a (population) second moment.
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Comment. For readers who are not very familiar with formulas from mathematical statistics, here is a sim-
ple derivation of the formula M = E + V2: since ðxi � EÞ2 ¼ x2

i � 2xi � E þ E2, the average V of the squares
(xi � E)2 can be represented as follows:
V ¼ 1

n
�
Xn

i¼1

ðxi � EÞ2 ¼ 1

n
�
Xn

i¼1

x2
i �

1

n
�
Xn

i¼1

xi

 !
� E þ E2 ¼ M � 2E2 þ E2 ¼ M � E2:
In other words, if we have a new measurement result or a new expert estimate, we can modify the value of the
variance in constant time – i.e., by using the number of computational steps that does not grow with n. The
above formulas enable us to easily update the statistical characteristics once the new measurement results and/
or expert estimates are available.

Similar algorithms can be described for computing E and E:
E0 ¼ n � E þ xnþ1

nþ 1
; E0 ¼ n � E þ xnþ1

nþ 1
: ð4Þ
However, the above algorithms for computing V and V start with sorting the values xi and xi. Thus, we cannot
even start these algorithms unless we already know all the (interval) values x1, . . . ,xn before we start
computations.

So, if we have a new measurement result or a new expert estimate, and we want to recompute the bounds on
V, we must start from scratch and again apply O(n2) computational steps. Thus, if we add measurement
results/expert estimates one by one, we need O(12 + 22 + � � � + n2) = O(n3) computational steps.

A natural question is: if we simply add a new (interval) value xn+1, can we use the previous computations to
re-compute V faster? In this paper, we show that such a speed-up is indeed possible. Specifically, we will show
that it is possible to modify the algorithms in such a way that each algorithm requires only O(n) steps after a
new data point xn+1 is added. In these new algorithms, to process n measurement results and expert estimates
one after another, we need O(1 + 2 + � � � + n) = O(n2) computational steps – same as before, but now we do
not have to wait until all the measurement results and expert estimates are available.

3.2. New algorithm for computing V: main idea

This new algorithm is a modification of the above described algorithm A. Let us first describe the main
three differences between the new algorithm and the previous one.

The first difference is that, in contrast to A, we will compute the values Sk, Nk, rk, and Vk for all zones
[x(k),xk+1)], not just for the zones that intersect with ½E;E� and/or for which rk belongs to the zone. (Of course,
when we compute V, we compute only the smallest of the values Vk corresponding to the zones that intersect
with E and for which rk belongs to the zone.)

Second, instead of computing Vk by using formula (3), we use the following equivalent formula:
W k ¼ Mk � 2Sk � rk þ Nk � r2
k ; ð5Þ
where
Mk ¼def
X

i:xiPxðkþ1Þ

x2
i þ

X
j:xj6xðkÞ

x2
j : ð6Þ
Comment. The formula (5) is similar to the above-mentioned known relation V = M � E2 between the var-
iance V, the second moment M, and the mean E, and its proof is similar to the proof of that relation. Indeed,
since ðx� rkÞ2 ¼ x2 � 2x � rk þ r2

k , we can represent each of the two sums in formula (3) as three sums, corre-
sponding to the sums of x2

i and xi
2, the sum of xi and xi, and the sum of Nk identical terms r2

k . The first sum
leads to Mk, the second sum – by definition of Sk – leads to �2Sk Æ rk, and the third sum results in N k � r2

k .
The third difference is that at the end of this algorithm, we keep not only the final value V, but we also keep

all the intermediate computational results: the sequence x(i), the values E and E, and the values Sk, Nk, rk, Mk,
and Vk.
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3.3. New algorithm for computing V: description and computational complexity

Let us now describe how this new algorithm works. Suppose that we have already finished applying the
algorithm to n intervals x1, . . . ,xn, and a new interval xnþ1 ¼ ½xnþ1; xnþ1� arrives.

First, we recompute the values E and E by applying the formulas (4). This requires a constant number of
computational steps.

Then, we find the place for the new bounds xn+1 and xnþ1 in the sorted sequence x(1) 6 x(2) 6 � � � 6 x(2n).
Since the sequence x(i) is sorted, finding a place for each of the bounds within this sequence can be done
by bisection (binary search), i.e., in O(log(n)) steps (see, e.g., 1).

Each of the added bounds is either within one of the previous zone – in which case this zone splits into two
new smaller zones, or it is before or after all the previous zones – in which case a single new zone is added. In
both cases, adding one bound adds at most two new zones, so adding two bounds means that we have at most
four new zones.

To proceed, we must update the values Sk, Nk, rk, Mk, and Vk corresponding to the old zones, and compute
the values Sk, Nk, rk, Mk, and Vk corresponding to the new zones.

For each old zone [x(k),x(k+1)], the value of Sk will only change if either xn+1 P x(k+1) or xnþ1 P xðkÞ. In the
first case, we add xn+1 to Sk; in the second case, we add xnþ1 to Sk. In both cases, we add 1–Nk.

Similarly, the value of Mk will only change if we either xn+1 P x(k+1) or xnþ1 P xðkÞ. In the first case, we add
x2

nþ1 to Mk; in the second case, we add x2
nþ1 to Sk.

For each old zone k, once the values of Sk, Nk, and Mk are updated, we can compute rk and Vk in O(1)
steps, i.e., by using the number of computational steps that remains bounded by a constant when n increases
and thus, does not increase with n.

Thus, for each old zone, we need O(1) computational steps for the update.
For each new zone, explicit computation of Sk and Mk requires that we go over all n intervals, i.e., it

requires linear time O(n).
Thus, the update of all intermediate values requires a constant time O(1) for each of O(n) old zones and a

linear time O(n) for each of O(1) new zones. Therefore, the total number of computational steps needed for an
update is equal to O(1) Æ O(n) + O(n) Æ O(1) = O(n). In other words, we need linear time to update.

Finally, we compute V as the smallest of 6n values Vk; this also requires linear time. We have therefore
proven that our algorithm indeed requires linear time to update the lower bound V on the variance V.

3.4. New algorithm for computing V: numerical example

Let us illustrate the above algorithm on the example when we process the following three intervals:
x1 = [2.1,2.6], x2 = [2.0,2.1], and x3 = [2.2,2.9]. We start with the interval x1 = [2.1,2.6]. We only have a single
interval, so we only have two bounds: 2.1 and 2.6. These bounds are endpoints of the same interval, so they are
already sorted, hence x(1) = 2.1 and x(2) = 2.6. This is a degenerate case. In this case, we have only one zone
[x(1),x(2)] = [2.1,2.6]. For this zone, S1 = 0, N1 = 0, r1 = S1/N1 is undefined, M1 = 0, and V1 = 0.

Then, we add the second interval x2 = [2.0,2.1]. To get the ordering of all four bounds, we must find the
place for the two new bounds, x2 = 2.0 and x2 ¼ 2:1, in the sorted sequence x(1) = 2.1 < x(2) = 2.6. We find
the place for each of these bounds by bisection, so we get 2.0 < 2.1 = 2.1 < 2.6. No new bounds split the
old zone [2.1,2.6], so this zone remains, In addition to this old zone, we also have a new zone [2.0,2.1].

In accordance with the algorithm, let us start with re-computing the values Sk, . . . corresponding to the old
zone. The new interval x2 is completely to the left of the old zone, so its upper bound 2.1 is added to S1 and 1
to Nk. As a result, for this zone, we get S = 0 + 2.1 = 2.1 and N = 0 + 1 = 1. Hence, for this zone, r = S/
N = 2.1. Similarly, the value M changes by adding 2.12, so the new value of M is 0 + 2.12 = 4.41. Finally,
we compute
V ¼ M � 2S � r þ N � r2

n
¼ 4:41� 2 � 2:1 � 2:1þ 1 � 2:12

2
¼ 0:
For the new zone, we explicitly compute S and M. In our case, S = 2.1, N = 1, r = S/N = 2.1,
M = 2.12 = 4.41, and



3236 V. Kreinovich et al. / Information Sciences 177 (2007) 3228–3238
V ¼ 4:41� 2 � 2:1 � 2:1þ 1 � 2:12

2
¼ 0:
Let us now add the third interval x3 = [2.2,2.9]. First, we find the place for the new bounds 2.2 and 2.9 in the
sorted sequence 2.0 < 2.1 < 2.6. As a result, we get an enlarged sorted sequence 2.0 < 2.1 < 2.2 < 2.6 < 2.9. The
zone [2.0,2.1] stays, the zone [2.1,2.6] is now split into two new zones: [2.1,2.2] and [2.2,2.6], and a new zone
[2.6,2.9] has appeared.

For the old zone [2.0,2.1], since x3 = 2.2 is larger than the upper bound of this zone, we recalculate S by
adding the value 2.2 corresponding to the new interval x3, i.e., replace the old value S = 2.1 with
S = 2.1 + 2.2 = 4.3. Correspondingly, we replace the old value N = 1 with the new value N = 1 + 1 = 2.
Hence, r = S/N = 2.15. Similarly, since x3 P 2.1, the value M is changed from the old value 4.41 to the
new value 4.41 + 2.22 = 7.25. Hence,
V ¼ 7:25� 2 � 4:3 � 2:15þ 2 � 2:152

3
¼ 0:875:
For the new zone [2.1,2.2], straightforward computations describe S as S = 2.1 + 2.2 = 4.3 and N = 2, hence
r = S/N = 2.15. Here, M = 2.12 + 2.22 = 7.25, hence, similarly to the previous zone, we have V = 0.875.

For the new zone [2.2,2.6], we have S = 2.1 and N = 1, hence r = S/N = 2.1. Here, M = 2.12 = 4.41, hence
V = (4.41 � 2 Æ 2.1 Æ 2.1 + 1 Æ 4.41)/3 = 0.

Finally, for the new zone [2.6,2.9], we have S = 2.1 + 2.6 = 4.7 and N = 2, hence r = S/N = 2.35. Here,
M = 2.12 + 2.62 = 11.17, hence
V ¼ 11:17� 2 � 4:7 � 2:35þ 2 � 2:352

3
¼ 0:541666 . . .
If these three intervals are all we have, then to get the actual value of V, we consider only those zones for which
r is within this zone. Out of our four zones, only one zone has this property: [2.1,2.2]. For this zone, V = 0.875,
so this is the desired lower endpoint V.

3.5. New algorithm for computing V : main idea

Let us now describe how we can modify the above algorithm A so that it will require linear time to update
for the case when, for some fixed K, any collection of more than K ‘‘narrowed’’ intervals does not have a com-
mon point.

Let us first describe the main difference between this modification and the original algorithm.
The first difference is that, in contrast to A, we will perform the computations for all zones [x(k),xk+1)], not

just for the zones that intersect with ½E;E�. (Of course, when we compute V , we compute only the largest of the
values V corresponding to the zones that intersect with E.)

Second, at the end of this algorithm, we keep not only the final value V , but we also keep all the interme-
diate computational results: the sequence x(i), and, for each zone, all selected sequences x1, . . . ,xn and the val-
ues E and V corresponding to these sequences.

3.6. New algorithm for computing V : description and computational complexity

Let us now describe how this new algorithm works. Suppose that we have already finished applying the
algorithm to n intervals x1, . . . ,xn, and a new interval xnþ1 ¼ ½xnþ1; xnþ1� arrives.

First, we recompute the values E and E by applying formulas (4). This requires a constant number of com-
putational steps.

Then, we find the place for the new bounds xn+1 and xnþ1 in the sorted sequence x(1) 6 x(2) 6 � � � 6 x(2n).
Since the sequence x(i) is sorted, finding a place for each of the bounds within this sequence can be done
by bisection (binary search), i.e., in O(log(n)) steps (see, e.g., 1).

Similarly to the previous modified algorithm, each of the added bounds is either within a previous zone – in
which case this zone splits into two new smaller zones, or it is before or after all the previous zones – in which
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case a single new zone is added. In both cases, adding one bound adds at most two new zones, so adding two
bounds means that we have at most four new zones.

To proceed, we must update the sequences and the corresponding values E and V corresponding to the old
zones, and compute the values corresponding to the new zones.

For each old zone, and for each corresponding sequence, we must update this sequence by adding the cor-
responding value of xn+1, and then re-computing E and V. Since no more than K narrowed intervals can have
a common point, for each zone, there are no more than 2K corresponding sequences. When K is fixed, this
means that we have a constant number O(1) of such sequences. For each sequence, updating E and V can
be done (as we have already mentioned) in O(1) steps, i.e., in the number of steps that does not depend on n.

For each new zone, we need to find all the sequences and compute the corresponding values E and V. Find-
ing all the sequences requires 62K Æ n = O(n) steps, and computing E and V for each of these sequences also
requires linear time.

Thus, the update of all intermediate values requires a constant time O(1) for each of O(n) old zones and a
linear time O(n) for each of O(1) new zones. Therefore, the total number of computational steps needed for an
update is equal to O(1) Æ O(n) + O(n) Æ O(1) = O(n). In other words, we do need linear time to update.

Finally, we compute V as the largest of 6n values V; this also requires linear time. We have therefore pro-
ven that our algorithm indeed requires linear time to update the lower bound V on the variance V.
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