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Abstract

The theoretical aspects of statistical inference with imprecise data, with focus on random sets, are considered. On the setting of
coarse data analysis imprecision and randomness in observed data are exhibited, and the relationship between probability and other
types of uncertainty, such as belief functions and possibility measures, is analyzed. Coarsening schemes are viewed as models for
perception-based information gathering processes in which random fuzzy sets appear naturally. As an implication, fuzzy statistics
is statistics with fuzzy data. That is, fuzzy sets are a new type of data and as such, complementary to statistical analysis in the sense
that they enlarge the domain of applications of statistical science.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of fuzzy sets has reached 40 years. While its applications in technology seem widely endorsed, discussions
within the probability and statistics communities remain to some extent. This is exemplified by the recent paper (with
discussions) by Singpurwalla and Booker (2004) in which probability theory is viewed as a calculus for uncertainty
of outcomes whereas fuzzy set theory as a calculus for imprecision. Note that recently there are some emphases on
the need of using fuzzy sets in classical statistics (e.g. Geyer and Meeden, 2005), namely in providing new exact
confidence intervals for parameters in the case of discrete variables.

In gathering information for decision-making, we often face both randomness and imprecision. The typical situation
in statistics is coarse data analysis (e.g., Little and Rubin, 1987; Heitjan and Rubin, 1991; Gill et al., 1997) in which
the random variable of interest X is not directly observable, but instead, we observe a random set S containing X with
probability one.

The coexistence of randomness and fuzziness appear when probability values cannot be evaluated precisely such as
in situations where we can only assess uncertainty linguistically, e.g. as low, medium or high probability. The concern
about meaning and interpretation of such probabilistic expressions is exemplified by works such as Wallsten (1986)
and Mosteller and Youtz (1990).

The theory of fuzzy sets is invented precisely to provide mathematical tools for modeling fuzzy concepts in our
natural language. While fuzziness is described as a new type of uncertainty, namely the vagueness in the linguistic data,
its associated uncertainty known as possibility (Zadeh, 1978) seems unconventional within the statistics community.
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In parallel, another type of non-additive set functions used to describe uncertainty, known as belief functions (Dempster,
1967; Shafer, 1976), was not so welcome into the statistics community (see the objection of Lindley, 1982). On the
other hand, the foundations of fuzzy set theory were criticized by Elkan (1993). Fortunately, these two main attacks
to non-additive set functions (as uncertainty measures) and to the notion of fuzziness were countered on theoretical
grounds e.g. in Goodman et al. (1990), Nguyen et al. (1996) and Gehrke et al. (1997). Thus, the situation is settled!
Now fuzzy sets are a new type of data and as such they should get attention of statisticians, just like random sets,
since, as G. Watson put it “Modern statistics must be defined as the applications of computers and mathematics to
data analysis. It must grow as new types of data are considered and as computing technology advances” (Foreword to
G. Matheron’s book, 1975).

Now to view fuzzy sets as statistical data (observations), one needs to place random fuzzy sets as bona fide random
elements. The mathematical theory of random fuzzy sets has been the subject of research since the 80’s by many
researchers, see e.g. the book by Li et al. (2002). As Fréchet (1948) pointed out, nature and technology present
various forms of random patterns, and hence probability theory should consider random elements as mathematical
objects rigorously defined. We do have such general definition of random elements as measurable mappings on abstract
measurable spaces. As random sets are special cases of random fuzzy sets, we start with the rigorous theory of random
sets on locally compact, Hausdorff and second countable spaces, such as Rd (Matheron, 1975), and consider fuzzy
sets on Rd which form a metric space (e.g. Diamond and Kloeden, 1994), so that we are entirely within the standard
framework of probability theory on metric spaces.

In the following, we are going to elaborate on some of the above aspects using random sets as a special case of
random fuzzy sets in the context of coarse data analysis in order to assess the state-of-the-art of fuzziness in probability
and statistics.

2. Random sets and related uncertainty measures

2.1. Probability and belief functions

Using the framework of coarse data in statistics, we are going to show that non-additive uncertainties such as belief
functions and possibility measures are derived formally from probability in a pessimistic and optimistic points of view,
respectively. The setting of coarse data analysis is this. Let X be a random element of interest, defined on a probability
space (�,A, P ), and taking values in a set U (equipped with some �-field U). When performing the experiment or
observing X, we cannot observe the values of X, but instead, we can locate each value of X in some set S. The most
general model for this type of observations is to view S as a random set, defined also on (�,A, P ), with values in the
power set 2U of U such that P(X ∈ S) = 1, i.e. X is an almost sure (a.s.) selector of S, or the other way around, S is a
coarsening of X.

Let A ∈ U, since X is not observable, we cannot assess whether A occurs or not. However, we can put bounds on
P(X ∈ A). Clearly, if our observable S is contained in A, then A occurs, so that our lower bound on the “likelihood”
of occurrence of A could be P(S ⊆ A). Clearly, since X is an a.s. selector of S, we have that P(S ⊆ A)�P(X ∈ A).
Let F(A) = P(S ⊆ A). The set function F (here defined on the �-field U ) could be taken as a quantitative measure of
belief (in the occurrences of events, from a pessimistic view point). The axiomatization of this set function is known
as the Demspter–Shafer theory of belief functions (or theory of evidence), Dempster (1967) and Shafer (1976). This
non-additive set function thus just measures a weak form of uncertainty in the random occurrences of event when
knowledge is only partial. The axiomatic theory is aimed at providing a setting in which no randomness is around, such
as subjective evaluations of things. In the case where U is a finite set, the belief function F, as defined above in terms
of random sets, satisfies the following:

(i) F : 2U → [0, 1], F(∅) = 0, F(U) = 1;
(ii) F is monotone of infinite order, i.e. for any n�2, and A1, A2, . . . , An, subsets of U.

F

(
n⋃

i=1

Ai

)
�

∑
∅�=I⊂{1,2,...,n}

(−1)|I |+1F

(⋂
i∈I

Ai

)
,

where |I | denotes the cardinality of the set I.
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These properties are characteristic for determining distributions of non-empty random sets on finite spaces. But belief
functions are in general subjective, i.e. assigned by “experts” reflecting their own views on uncertainty. As such, the
above axioms should be considered for arbitrary spaces, finite or not. Note that the lower probability F(.) induced by a
random set is always monotone of infinite order on arbitrary spaces. When U is uncountable, e.g. U = Rd , non-atomic
probability measures should be defined on proper subclass of subsets of U since 2U is too big. This is mainly due
to the �-additivity requirement for probability measures. Now, belief functions are free of this constraint, being even
not finitely additive! As such, they could be defined on 2U , just like the finite case. After all, for any subset of U,
measurable or not, subjective assignments of beliefs to it by experts are possible! We recall here a couple of interesting
constructions of belief functions on arbitrary spaces.

Let U be an arbitrary set and f : U → [0, 1] such that supx∈U f (x) = 1. Let T : 2U → [0, 1] be

T (A) = sup{f (x) : x ∈ A}.
Then F(A) = 1 − T (Ac) is a belief function. This is so since T is maxitive, i.e., T (A ∪ B) = max(T (A), T (B)). As
such, T is alternating of infinite order (see Lemma 1 below for ease of reference) and hence F is monotone of infinite
order. Note that this result is useful for modeling distributions of random sets via their capacity functionals.

Lemma 2.1. Let C be a class of subsets of some set �, containing ∅ and stable under finite intersections and unions.
Let T : C → [0, +∞) be maxitive, i.e., for all A, B ∈ C

T (A ∪ B) = max{T (A), T (B)}.
Then T is alternating of infinite order.

Proof. Clearly T is monotone increasing on C. Note that for any A1, . . . , An in C, n�2,

T

(
n⋃

i=1

Ai

)
= max {T (Ai) , i = 1, 2, . . . , n} .

We need to show that

T

(
n⋂

i=1

Ai

)
�

∑
∅�=I⊆{1,2,...,n}

(−1)|I |+1T

(⋃
i∈I

Ai

)
. (1)

Without loss of generalities, we may assume that

0��n = T (An) ��n−1 = T (An−1) � · · · ��1 = T (A1) .

For k ∈ {1, 2, . . . , n}, let J (k) = {I ⊆ {1, 2, . . . , n} : |I | = k}. For I ∈ J (k), let m(I) = min{i : i ∈ I }, and for
i = 1, 2, . . . , n − k + 1, let

Ji(k) = {I ∈ J (k) : m(I) = i}.
Then we have

T

⎛
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⎞
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for every I ∈ Ji(k), i = 1, 2, . . . , n − k + 1. Also,
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(

n − i

k − 1

)
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for every i = 1, 2, . . . , n − k + 1. Thus
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and therefore∑
∅�=I⊆{1,2,...,n}
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= �n = T (An)�T

(
n⋂
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by observing that for any i = 1, 2, . . . , n − 1,

n−i∑
k=0

(
n − i

k

)
(−1)k = (1 − 1)n−i = 0. �

Belief functions can be induced by probability measures as follows: (i) Let (U,U) be an arbitrary measurable space,
� be a probability measure on U and F : 2U → [0, 1] be the inner measure of �, i.e. for B ⊆ U ,

F(B) = sup{�(A) : A ∈ U, A ⊆ B}.
Then, F is a belief function on U. Clearly, F(∅) = 0 and F(U) = 1. For completeness, we reproduce the results of
Fagin and Halpern (1991), see also Halpern (2003) and Walley (1991).

Lemma 2.2. For each B ⊆ U , sup{�(A) : A ∈ U, A ⊆ B} is attained.

Proof. For each n�1, let An ∈ U, An ⊆ B such that

�(An)�F(B) − 1/n,

where F(B) = sup{�(A) : A ∈ U, A ⊆ B}. Let A = ⋃
n�1An. Then A ∈ U and A ⊆ B. Thus,

F(B)��(A)�� (An) �F(B) − 1/n.

Since n is arbitrary, it follows that F(B) = �(A). �

Lemma 2.3. For any n�1, let B1, B2, . . . , Bn in 2U and A1, A2, . . . , An in U with Ai ⊆ Bi , F(Bi) = �(Ai),
i = 1, 2, . . . , n. Then F

(⋂n
i=1 Bi

) = �
(⋂n

i=1 Ai

)
.

Proof. By Lemma 2, there is a C ∈ U, C ⊆ ⋂n
i=1 Bi such that F

(⋂n
i=1 Bi

) = �(C). Thus, it suffices to show
that �(C) = �

(⋂n
i=1 Ai

)
. Without loss of generality, we can assume that

⋂n
i=1Ai ⊆ C (otherwise, replace C by

C ∪ (⋂n
i=1Ai

)
by noting that C ∪ (⋂n

i=1Ai

) ⊆ ⋂n
i=1Bi and
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so that �
(
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)) = F
(⋂n
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)
.

Let D = C\⋂n
i=1Ai = ⋃n

i=1

(
C ∩ Ac

i

)
. Now, for each i ∈ {1, 2, . . . , n}, D ⊆ C ⊆ Bi with D ∪ Ai ⊆ Bi implying

that �(D ∪ Ai) = F(Bi) = �(Ai), so that �(D ∩ Ac
i ) = 0.

Since D ⊆ ⋃n
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c
i , we have
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Corollary 2.1. F is infinitely monotone.

Proof. Forn�2, letB1, B2, . . . , Bn in 2U . By Lemma 2, letA1, A2, . . . , An inU such thatAi ⊆ Bi and� (Ai)=F (Bi),
i = 1, 2, . . . , n. We have, since

⋃n
i=1 Ai ∈ U and

⋃n
i=1Ai ⊆ ⋃n

i=1 Bi ,

F

(
n⋃

i=1

Bi

)
��

(
n⋃

i=1

Ai

)
=

∑
∅�=I⊆{1,2,...,n}

(−1)|I |+1�

(⋂
i∈I

Ai

) ∑
∅�=I⊆{1,2,...,n}

(−1)|I |+1F

(⋂
i∈I

Bi

)

by Lemma 3. �

(ii) Let U be a finite set and P be a probability measure defined on 2U . It can be checked that the Mobius inverse of
the set function F(A) = P 2(A) is a probability density function on 2U so that F is a belief function. More generally,
for any integer k�1, the set function P k : 2U → [0, 1], defined as P k(A) = [P(A)]k , is a belief function. Indeed, it
suffices to observe that P k is of the form

Qk(A) =
∑
B⊆A

f (B),

where f : 2U → [0, 1] is a probability density (on 2U ). Using the multinomial theorem

(x1 + x2 + · · · + xn)
k =

∑ k!
k1!k2! . . . kn! · x

k1
1 x

k2
2 . . . xkn

n ,

where the summation extends over all non-negative integral solutions k1, k2, . . . , kn of k1 + k2 + · · · + kn = k, it is
easy to verify that the following f will do:

f (A) =
⎧⎨
⎩

0 if A = ∅ or |A| > k,∑
na �=0 | ∑

na=k

∏
a∈A

k!∏
na ! [P(a)]na

by noting that P k(A) = [∑a∈AP (a)]k .

2.2. Probability and possibility measures

Now in our framework of coarse data analysis, for A ∈ A, if S ∩ A �= ∅, then it is possible that A occurs. A
quantitative measure for possibility could be taken to be T (A) = P(S ∩ A �= ∅). In particular, for singleton sets,
T (u) = P(u ∈ S) is the covering function of S, just like in Survey Sampling (see e.g. Nguyen, 2004) which can
be interpreted as the possibility for u to happen. This is what Zadeh (1978) called a possibility distribution, see also
Dubois and Prade (1988). The axioms for possibility measures, as proposed by Zadeh, are these. A possibility measure
on a set U is a map T : 2U → [0, 1] such that T (∅) = 0, T (U) = 1 and for any family of subsets (Ai, i ∈ I ) of
U, T

(⋃
i∈I

) = supi∈I T (Ai). As such, for any A, T (A) = supu∈A T (u). In coarse data analysis or survey sampling,
given a covering function � on a finite population U, i.e. � : U → [0, 1], among all probability sampling plans (finite
random sets on U) having � as their common inclusion probability function, there exists precisely one random set S
(a coarsening scheme) having � as its covering function and such that

P(S ∩ A �= ∅) = sup
u∈A

P (u ∈ S).

Indeed, let � : (�,A, P ) → [0, 1] be a random variable, uniformly distributed. Consider the randomized level-set
map:

S : � → 2U , S(�) = {u ∈ U : �(u)��(�)}.
Then, S is a random set on U with P(u ∈ S) = P(� : �(�)��(u)) = �(u), and

P(S ∩ A �= ∅) = P

(
� : �(�)� max

u∈A
�(u)

)
= max

u∈U
�(u).
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Thus, possibility measures are closely related to probability. In fact, as opposed to belief functions, possibility is
an optimistic view on uncertainty. In the context of coarse data analysis, since X is an a.s. selector of S, we have
P(X ∈ A)�P(S ∩ A �= ∅), i.e. possibility is always larger than probability. See also Goodman (1982), Dubois and
Prade (1987) and Miranda et al. (2004).

3. Fuzzy sets in statistics

3.1. Membership functions

The so-called intelligent technologies aim at duplicating remarkable human strategies in decision-making or control.
If we look at look-up tables in the field of fuzzy control, or at reports on, say, risk assessments of scenarios, we see rules
containing linguistic labels, e.g. rules of the form “if the obstacle is ‘near’ and the wind is ‘strong’ then ‘slow’ down”,
assessments of probabilities of occurrences of events as ‘high’, ‘medium’, ‘low’, and predicting rates of interest as
‘low’, ‘moderate’, ‘high’.

These are perception-based information (Zadeh, 2002). These linguistic terms clearly form a fuzzy partition of
some measurement space of interest. For example, ‘high’, ‘medium’ and ‘low’ probabilities form a fuzzy partition of
[0, 1]. They are in fact precisely coarsening schemes of a more general form, namely forming fuzzy partitions of the
measurement spaces. Being unable with naked eyes to measure with accuracy, humans use coarsenings instead, in order
to extract useful information. As Zadeh put it, humans use linguistic variables.

Our thesis is that humans use coarsenings as their perception-based information gathering processes. Thus, fuzzy sets
appear in so many important applications in science and technology. Putting models on observed data is a practice in
statistics. The statistical models on fuzzy data are random fuzzy sets extending random sets (for recent texts in Random
sets, see Molchanov, 2005; Nguyen, 2006). While fuzzy set theory (and its associated logics) is an appropriate analytic
tool for modeling fuzzy concepts in human perception-based data, the debate in the statistical community seems to
center on the practical question: How to obtain membership functions for fuzzy sets? Of course, a more fundamental
question is: What is the difference between degrees of membership and probabilities?

At this present stage, this fundamental question has been, to some extent, answered satisfactorily. Degrees of mem-
bership have a clear semantic as so stated! They provide a quantitative concept of fuzziness for applications. As such,
it is clear why degrees of memberships should not be confused with probabilities! The practical question is somewhat
similar to statistics. Membership functions are obtained from available information. Thus, they can be given either by
experts, as in Bayesian statistics, or by empirical investigations.

The connection between random sets and fuzzy sets (e.g., Goodman and Nguyen, 2000) has been used as a way
to obtain membership functions of fuzzy concepts: if � is a membership function on a space U, then � is written as
�(u) = P(u ∈ S) for some random set on U. A more general formula is proposed by Orlowski (1994) by replacing
the probability measure P by a fuzzy measure � (e.g. Nguyen and Walker, 2000) and S by a multi-valued mapping.
Orlowski’s formula is intended to provide a way to mimic experts’ assignments of degrees of membership. To obtain
� we need data, just like in machine learning, either under supervised or unsupervised learning, i.e. carrying out the
problem of identification of fuzzy measures. This is also essential in multi-criteria decision-making (e.g. Grabisch
et al., 1994), especially for ranking alternatives based upon interacting criteria where Choquet integrals with respect to
fuzzy measures seem to be appropriate aggregation operators generalizing linear operators such as expected utilities.

As mentioned in the introduction, recently, statisticians started asking whether fuzzy set theory is useful for classical
statistics such as confidence interval (or set) estimation of population parameters. In this context, membership functions
arise naturally from testing procedures. The crucial point is this. In view of the duality between tests and confidence
intervals, the randomized test for a discrete variable should correspond to a fuzzy confidence interval whose membership
function is precisely the test function. For details, see Geyer and Meeden (2005).

3.2. Random sets in probability density estimation

As pointed out earlier, the theory of statistics with fuzzy data should be based upon a rigorous theory of random
fuzzy sets where the space of fuzzy sets forms a metric space. Random fuzzy sets are random elements with values
in a such metric space. In this direction, it is obvious that the use of �-level sets of membership functions is essential.
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This is exemplied by the analogy with a basic estimation problem in classical statistics, namely the non-parametric
estimation of a probability density function.

Let X be a random vector with values in Rd , with unknown density f. We desire to estimate f from a random sample
X1, X2, . . . , Xn drawn from X. The �-level sets of f is, for � > 0,

A�(f ) = A� = {x ∈ Rd : f (x)��}.
We outline here the problem of density estimation via the estimation of level sets. This is an alternative approach to

kernel method and orthogonal functions in non-parametric density estimation when qualitative information about the
density (such as its shape, geometric properties of its contour clusters) is available rather than analytic information.

Let f : Rd → R+ be the unknown probability density of a random vector X of interest. Then f can be written in
terms of its �-level sets as

f (x) =
∫ +∞

0
A�(x) d�

for all x ∈ Rd , where A�(x) = IA�(x) denotes the indicator function of the set A�. Thus, if each A� is estimated by a
random set A�,n (measurable with respect to the sample X1, . . . , Xn), then it is natural to consider the plug-in estimator

fn(x) =
∫ +∞

0
A�,n(x) d�

for f (x). Note that here A�,n is a random set of more general nature than finite random sets.
The point is this. In order to estimate the density f, we are led to set estimation and random sets, as set estimators,

arise naturally.
It is interesting to note that the excess mass approach (Hartigan, 1987, see also Polonik, 1995) to level-set estimation

bears some resemblance with maximum likelihood principle in statistics. Indeed, for a fixed level �, the target parameter
is the set A�. The qualitative information about f leads to the statistical model: A� ∈ C, where C is a specified class of
subsets of Rd , e.g. closed convex subsets, ellipsoids.

We are in the standard framework of statistical estimation theory: the parameter space is C, so that estimators of A�
should be random sets with values in C. Due to the nature of the target parameters A�, it is possible to find a general
principle to suggest estimators for it.

Let dF denote the probability law of X on Rd (i.e. the Stieltjes measure associated with f), and again, � denotes the
Lebesgue measure on Rd .

Clearly, (dF − ��)(A�) is the “excess mass” of the set A� at level �. Thus, we can consider the signed measure
dF − �� = E� on B

(
Rd

)
, with E�(A) as the excess mass of A at level �. Writing A = AA� ∪ AAc

�, we see that

E�(A)�E�(A�)

for all A ∈ B
(
Rd

)
, i.e., the level set A� has largest excess mass, at level �, among all Borel sets. This suggests a way

to estimate A� using the empirical counter-part of the signed measure dF − ��.
Let dFn denote the empirical measure associated with the sample X1, X2, . . . , Xn, i.e.,

dFn = 1

n

n∑
j=1

�Xj

with �x being the Dirac measure at x ∈ Rd . Then the empirical excess mass, at level �, of A ∈ B
(
Rd

)
is

E�,n(A) = (dFn − ��) (A).

Thus, it is natural to hope that “good” estimators An,� of A� can be obtained by maximizing E�,n(A) over A ∈ C. Note
that this optimization problem needs special attention: the variable is neither a vector, nor a function, but a set. This
type of optimization of set-functions occurs in many areas of applied mathematics such as shape optimization. For a
variational calculus of set-functions which seems appropriate for optimization of set-functions, see e.g. Nguyen and
Kreinovich (1999).
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As a routine in statistical practice, desirable properties of the above random set estimator A�,n need to be assessed.
In particular, for large sample statistics, consistency and limiting distribution problems need to be examined. This can
be carried out by considering statistical convergence in distribution of sequences of random sets (see e.g. Molchanov,
2005; Nguyen, 2006).

The literature on fuzzy statistics contains of course all aspects of statistical inference in which fuzziness is involved
under one form or another. For example, in hypothesis testing, the hypotheses could be imprecise, due to the nature of
the problem, e.g. expressed in linguistic forms. Here is a sample of works on fuzzy statistics: Bandemer and Näther
(1992), Buckley (2004), Gil and Lopez-Diaz (1998), Kruse and Meyer (1987), Kruse et al. (1999), Nguyen and Wu
(2000, 2006) and Montenegro et al. (2001, 2004).

4. Some statistics with imprecise data

4.1. Coarse data analysis

We choose to discuss here some statistical aspects of statistics with set-valued observations (random sets) because, in
our view, they should form the basis for statistics with fuzzy set-valued observations. The analysis is useful for coarse
data analysis in standard statistics as well. A framework for set-valued observations in the finite case was laid out by
Schreiber (2000) whose extension to the compact, metric spaces was recently established in Feng and Feng (2004).

Coarse data are a typical situation where the observations are sets rather than points in a sample space. By coarse
data we mean rough data or data with low quality. This happens, for example, when the available data are imprecise,
say, due to imperfection of the data acquiring procedure (e.g., inaccuracy of the measuring instruments). In such
cases, rather than trying to ascribe unique values to the observations, it might be more preferable to represent the
outcomes of the random experiment as subsets containing the “true” observation values. Familiar examples of coarse
data are missing data, censored or grouped data in biostatistics. A general framework for set-valued observations
was proposed using random sets. Specifically, let X be the random variable of interest. The observation process is
modeled by a random set S on the range of X. Each unobservable outcome Xj , j = 1, 2, . . . , n, is in the observed
random set outcomes Sj , j = 1, 2, . . . , n, which is an i.i.d. sample from S. Thus, X is an almost sure selector of S.
The statistical inference problem about X, say, estimating the probability density functions of X, will be based upon
the random set data Sj , j = 1, 2, . . . , n. The point is this. In order to study the above estimation problem, we need
a rigorous theory of random sets, especially their distributions. See e.g. Wagner (1977) for a survey on measurable
selections.

The practical situation in coarse data analysis is this. Being unable to observe with accuracy the values of a random
sample X1, X2, . . . , Xn from X, the statistician tries to locate these observations in random sets Sj , j = 1, 2, . . . , n.
There are of course various ways for doing so. Each way represents a coarsening of the data. The observed ran-
dom sets Sj are viewed as a random sample from a coarsening S which is a random set. A random set S is called
a coarsening of X if S contains X almost surely (i.e. with probability one), i.e. X is an almost sure selector of S.
Note that here X is given first, and S is a random set model for X. Thus, selector or coarsening depends on which is
given first!

A useful model for coarsening is the CAR model (Heitjan and Rubin, 1991; Gill et al., 1997), where CAR stands
for coarsening at random. Here is an example. Let U ⊆ R be the range of X, and {A1, A2, . . . , Ak} be a (measurable)
partition of U. Consider the coarsening scheme

S : (�,A, P ) → {A1, A2, . . . , Ak} .

Suppose the unknown probability density function of X is of a parametric form, i.e., f (x|	), 	 ∈ �. Then the likelihood
function based on the random set sample Sj , j = 1, 2, . . . , n, is

L (	 |S1, S2, . . . , Sn ) =
n∏

j=1

∫
Sj

f (x|	) dx.

Thus, the maximum likelihood estimator of 	 can be computed using only the observed S1, S2, . . . , Sn. However,
the investigation of large sample properties of the estimator requires also distributional aspects of the random set
model S.
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4.2. A statistical framework

Coarse data analysis can be viewed as a special procedure in perception-based information gathering process by
humans. This type of data is used in the field of artificial intelligence to imitate remarkable human intelligent behavior,
say, in decision making and control. The search for the source of how humans gather the information in their environ-
ments is of course useful in many applications, such as robotics. For example, being unable with naked eyes to measure
accurately the distance to some referential location, humans try to extract useful information by considering some
simple schemes over the range of the measurements, such as a partition of it. In other words, when we cannot measure
exactly the values of some variable of interest X, we coarsen it, e.g. use some random set S such that P(X ∈ S) = 1 to
extract information about X.

Consider the standard problem of statistics, namely the estimation of the unknown probability law �0 of a ran-
dom variable X with values in U. But unlike the conventional situation, the data is an i.i.d. sample of random sets
S1, S2, . . . , Sn, drawn from a random S, rather than an i.i.d. sample from X. The relation between X and S is that X ∈ S

almost surely, i.e. X is an a.s. measurable selection (or selector) of S. This clearly extends the structure of standard data
analysis in statistics. By the strong law of large numbers, the distribution function F of S is estimated consistently by
the empirical distribution function

Fn(A) = 1

n
|{Si : Si ⊆ A}|

we are led to describe the statistical model in terms of F. Let P denote the set of all probability measures on U (finite
here). The parameter space is some subset P ⊆ P containing �0, where before having additional information to narrow
down P,P is simply the set of probability laws of all possible selectors of copies of S. We would like to specify further
the set P. Now observe that since X is a selector of S (the observed sets S1, S2, . . . , Sn contain unobserved values
X1, X2, . . . , Xn), we have that F ��0. Indeed, let (�,A, P ) be a probability space on which are defined both S and
X. Let D ∈ A such that P(D′) = 0 and X(�) ∈ S(�) for all � ∈ D. Then,

F(A) = P(� : S(�) ⊆ A) = P((� : S(�) ⊆ A) ∩ D)�P(� : X(�) ∈ A) = �0(A).

Thus �0 ∈ C(F ) = {� ∈ P : F ��}. Borrowing a name from game theory, C(F ) is called the core of F or of S. Note
that the core of F is the same as the core of the capacity functional T (A) = 1 − F (Ac) of the random set S, where Ac

denotes the set-complement of A, i.e. C(F ) = C(T ) = {� ∈ P : ��T }. The structure of the core C(F ) is very nice,
and the question is whether P = C(F )? This amounts to check the converse of the above fact, namely, given F on 2U

(or equivalently its associated probability measure dF on the power set of 2U ), and � ∈ P with F ��, can we find a
probability space (�,A, P ) and S : � → 2U , X : � → U such that P(X ∈ S) = 1 and PS−1 = dF, PX−1 = �? i.e.
is � selectionable with respect to F?

The above converse problem is the problem of existence of a measurable selection with given image measure. Let
us say a few words about the selection problem in this specific setting.

Let S be a set-valued function, defined on some set �, with values as subsets of a set U (arbitrary). Recall that a
selection of S is a function X : S → U such that X(�) ∈ S(�), for all � ∈ �. The existence of a selection is the
axiom of choice. In our case, there is more mathematical structure involved, namely, a probability space (�,A, P )

and U together with some �-field B on it. We seek selections which are A − B-measurable as well as “almost sure
selections” in the sense that the selection X of S is measurable and X ∈ S except on a P-null set of �.

Now, from the given structure (U, �), (2U , F ) with F ��, we consider the probability space(
2U × [0, 1], dF ⊗ dx

)
and the random set S : 2U × [0, 1] → 2U defined by S(A, t) = A for all t ∈ [0, 1]. The random set S has F as its
distribution function. The solution to the converse problem consists of showing that the condition F �� is sufficient
for the existence of a random variable

X : 2U × [0, 1] → U

such that (dF ⊗ dx)(X ∈ S) = 1 and � is the probability law of X on U, i.e. X is a selector of S.
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Without going further into technical details at this stage, let us mention that, the result is expected since the frame-
work has the flavor of an old selection problem, called the marriage problem started out with Hall (1935) as a
problem of choosing distinct representatives elements for a class of subsets of some set. The marriage problem
is this. Consider two finite sets B (boys) and G (girls), of same cardinality, say. Each boy b ∈ B is acquainted
with a set of girls S(b), so that S : B → 2G. Suppose we are interested in the question “under what condi-
tions is it possible for each boy to marry one of his acquaintances?”. This is a selection problem of a particular
type, namely an injective (one-to-one) selection. Specifically, we seek conditions under which there exists a function
X : B → G with X(b) being the girl in S(b) who is chosen by b for marriage. Clearly, if b1 �= b2 then X (b1)

�= X (b2)!
Suppose S (b1) = {g1} , S (b2) = {g2} , S(b3) = {g1, g2} then it is not possible for these boys {b1, b2, b3} to marry

their acquaintances. Thus, the necessary condition for the marriage problem is that any k boys should know, collectively,
at least k girls, i.e.,

|A|�
∣∣∣∣∣
⋃
b∈A

S(b)

∣∣∣∣∣ (2)

for all A ⊆ B.
The remarkable result of Hall is that (2) is also sufficient.
The “analogy” of the marriage problem with the selection problem in coarse data analysis can be seen as follows.

Let U be a finite set (take B = G = U ). Let � be the counting probability measure on 2U , i.e. A ⊆ U , �(A) = |A|/|U |.
Let S be a (non-empty) random set U, defined on the probability space

(
U, 2U , �

)
. Let X : U → U be the map

X(u) = u, for all u ∈ U , so that PX = �. Clearly X is an a.s. selector of S if for all u ∈ U , u ∈ S(u). But then
X is also an a.s. of the random set S′ : U → 2U\{∅} where S′(u) = {v ∈ U : u ∈ S(v)}. This implies that for
all u, v ∈ U , u ∈ S(v) ⇔ v ∈ S′(u). The necessary and sufficient condition of Hall’s theorem takes the form, for
all A ⊆ U ,

|A|�
∣∣∣∣∣
⋃
u∈A

S′(u)

∣∣∣∣∣ = |{u ∈ U : S(u) ∩ A �= ∅}|

is equivalent to �(A)��(S ∩ A �= ∅) i.e. PX(A)�TS(A).
The fact that the core of T (or F) consists precisely of probability laws of all a.s. selectors of a non-empty random

set S (i.e. the core of T is the parameter space for statistical inference) can be proved probabilistically in a fairly general
setting, using the concept of ordered coupling of random closed sets on topological spaces (Norberg, 1992). In the
following, we investigate the finite case in which we describe elements of the core of T as allocations of the probability
density function of S.

But first, since here F is monotone of infinite order (equivalently, T is alternating of infinite order), C(F ) �= ∅. In
fact, this follows from a more general result of Shapley (1971) for convex games on U. In our context of random sets,
i.e. when F is a distribution function (and hence monotone of infinite order), we can show that C(F ) �= ∅ by simply
constructing a � ∈ P such that ��F , as follows.

Let f be the distribution function of F, i.e.,

f (A) =
∑
B⊆A

(−1)|A\B|F(B).

For a fixed ∅ �= A ⊆ U , define

gA : U → R

by

gA(u) =

⎧⎪⎪⎨
⎪⎪⎩

∑
u∈B⊆A

f (B)

|B| for u ∈ A,

∑
u∈B

f (B)

|B\(A ∩ B)| for u /∈ A.
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Then gA(·)�0 and∑
u∈U

gA(u) =
∑
u∈A

gA(u) +
∑
u/∈A

gA(u).

But ∑
u∈A

gA(u) =
∑
u∈A

∑
u∈B⊆A

f (B)

|B| =
∑
B⊆A

f (B)

|B|
∑
u∈B

1 =
∑
B⊆A

f (B)

and ∑
u/∈A

gA(u) =
∑
B�A

f (B)

|B\A ∩ B|
∑

u∈B\A∩B

1 =
∑
B�A

f (B).

Thus, ∑
u∈U

gA(u) =
∑
B⊆

f (B) = 1.

Hence gA(·) is a probability density on U. Let �A denote the probability measure on U associated with gA, then for
B ⊆ U , we have

�A(B) =
∑
u∈B

gA(u) =
∑

u∈A∩B

gA(u) +
∑

u∈A′∩B

gA(u) =
∑

u∈A∩B

∑
u∈D⊆A

f (D)

|D| +
∑

u∈D∩A′

∑
u∈D∩A′ �=∅

f (D)

|D ∩ A′|
�

∑
D⊆A∩B

f (D) +
∑

D∩A′ �=∅
f (D).

Thus, �A is a probability measure in P such that �A �F , i.e. �A ∈ C(F ). Moreover, the above construction of �A

exhibits the fact that, in particular, �A(A) = F(A), so that for each A ⊆ U ,

F(A) = inf{�(A) : � ∈ C(F )}
i.e., F is the lower envelop of its core C(F ).

The above construction leads to a detailed description of C(F ). For ∅ �= A ⊆ U , and u ∈ A, let the �(u, A) be
non-negative numbers such that

∑
u∈A�(u, A) = f (A). For example, take �(u, A) = f (A)/|A| but there are many

other choices. Such an � is called an allocation of F density. It can be checked that the probability measure ��(A) =∑
u∈A g�(u)�F(A), and if ��F then � = �� for some allocation �.
Let P denote the class of all probability measures on U. The core of T, denoted by C(T ), is C(T )={P ∈ P : P �T },

where P �T means for all A ⊆ U , P(A)�T (A) with set-valued observations is this. Consider the situation in coarse
data analysis. The random variable X with values in U is unobservable. Instead, a coarsening S of X is observable. X
is an almost sure selector of S which is a (non-empty) random set on U with unknown capacity functional T. The true
(unknown) probability law of X is an element of C(T ) which plays the role of a “parameter space”. However, C(T ) is
unknown. It can be consistently estimated from a random sample S1, S2, . . . , Sn drawn from S. Indeed, let Tn denote
the empirical capacity functional based on S1, S2, . . . , Sn, i.e.,

Tn(A) = 1

n
#
{
1�j �n : Sj ∩ A �= ∅} .

Then by the strong law of large numbers, Tn(A) → T (A), with probability 1, as n → +∞. Moreover, the empirical
probability dFn based on the unobservable X1, X2, . . . , Xn from X belongs to C (Tn) almost surely. As such, inference
about the true probability law of X can be based upon the approximation of C(T ) by C (Tn), for n sufficiently large.

4.3. Some techniques inspired from game theory

We proceed to investigate the structure of the core of a capacity functional T, denoted by C(T ), or equivalently, the
core of its associated distribution function F (of a non-empty random set on the finite set U), denoted by C(F ), where
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C(F ) = {P ∈ P : F �P }. In the following f always denoted the Möbius transform of F, which is a probability density
on 2U with f (∅) = 0.

Given f, there is a natural way to construct densities on U. These are allocations.

Definition 4.1. Let f be a density on 2U with f (∅) = 0. An allocation of f is a function � : U × (2U\{∅}) → [0, 1]
such that for all A ⊆ U ,

∑
u∈A �(u, A) = f (A).

Each allocation � gives rise to a density g� on U, namely g�(u) = ∑
u∈A �(u, A) where the sum is over all sets A

containing u. Indeed, g�(·)�0, and∑
u∈U

g�(u) =
∑
u∈U

∑
u∈A

�(u, A) =
∑
A⊆U

∑
u∈A

�(u, A) =
∑
A⊆U

f (A) = 1.

Example 1. Let p(·) : U → [0, 1] be a density such that p(u) �= 0, for all u ∈ U . We write P(A) = ∑
u∈Ap(u) for

A ⊆ U . Then clearly

�(u, A) = f (A)

P (A)
p(u)

is an allocation. In particular, if p(·) is the uniform probability density on U, i.e., p(u) = 1/|U |, for all u ∈ U , then

�(u, A) = f (A)

|A| .

Example 2. Let {U1, U2, . . . , Un} be a partition of U with Ui �= ∅, i = 1, 2, . . . , k. Let P be a probability measure on
U and p(·) its associated density on U, i.e. p(·) : U → [0, 1], p(u) = P({u}).

Let f : 2U → [0, 1] be

f (A) =
{

P(Ui) if A = Ui,

0 if A is not one of the Ui’s.

Then f is a density on 2U with f (∅) = 0. Let

�(u, A) =
{

p(u) if u ∈ A = Ui,

0 otherwise.

Then clearly � is an allocation of f.

Example 3. Let U with |U | = n and f be a density on 2U with f (∅) = 0. Let U = {u1, u2, . . . , un} be an ordering
of the set U. Let �(u, A) = f (A) if u = uj ∈ A with j = max {i : ui ∈ A}, and zero otherwise. The associated density
g� is

g� (ui) =
∑
ui∈A

�(u, A)
∑

ui∈A⊆{u1,u2,...,ui }
f (A) = F ({u1, u2, . . . , ui}) − F ({u1, u2, . . . , ui−1})

for i = 1, 2, . . . , n (if i = 1, then F ({u1, . . . , ui−1}) = F(∅) = 0) where F is the corresponding distribution function
with density f, i.e. F(A) = ∑

B⊆Af (B).

Let U with |U | = n, and P be the set of all probability measures on U. Since each P ∈ P is uniquely determined by
its density p, we identify P with a vector p = (p1, p2, . . . , pn), where pi = P ({ui}). Thus, we identify P with the unit
simplex Sn of Rn, where

Sn =
{

p = (p1, p2, . . . , pn) ∈ [0, 1]n,
n∑

i=1

pi = 1

}
.
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In the following, F denotes a distribution function (of a non-empty random set) on 2U with density f on 2U . The
capacity functional T is dual to F as T (A) = 1 − F(Ac). The cores of F and of T are the same (in fact, for arbitrary
spaces U):

{P ∈ P : P �T } = core of T = {P ∈ P : F �P } = core of F ,

denoted as C(F ).
It can be checked that C(F ), by identification, is a compact convex subset of the simplex Sn (|U | = n).
There are n! different orderings of the elements of a set U with |U | = n. Specifically, let 
 denote the set of all

permutations of {1, 2, . . . , n}. For � ∈ 
, the elements of U are indexed as
{
u�(1), u�(2), . . . , u�(n)

}
. For each �, we

associate a density g� on U as follows:

g�
(
u�(1)

) = F
({

u�(1)

})
and for i�2,

g�
(
u�(i)

) = F
({

u�(1), u�(2), . . . , u�(i)

}) − F
({

u�(1), . . . , u�(i−1)

})
.

For example, to simplify notations, take �(i) = i, for all i = 1, . . . , n, we write U = {u1, u2, . . . , un}, and dropping �
from our writing (but not from our mind!). The associated probability measure P is defined as P(A) = ∑

u∈A g(U),
A ⊆ U , then F(A)�P(A) when A = U . Suppose A �= U . Since U\A = Ac �= ∅, let j = min {i : ui ∈ Ac}. For
B = {

u1, u2, . . . , uj

}
, we have A ∩ B = {

u1, u2, . . . , uj−1
}
, A ∪ B = A ∪ {

uj

}
. Since F is monotone of order 2, we

have F(A ∪ B)�F(A) + F(B) − F(A ∩ B), i.e.

F
(
A ∪ {

uj

})
�F(A) + F

({
u1, u2, . . . , uj

}) − F
({

u1, u2, . . . , uj−1
})

,

or g
(
uj

)
�F

(
A ∪ {

uj

}) − F(A). But g
(
uj

) = P
({

uj

}) = P
(
A ∪ {

uj

}) − P(A), so that

F(A) − P(A)�F
(
A ∪ {

uj

}) − P
(
A ∪ {

uj

})
.

On the right-hand side of the above inequality, viewing A ∪ {
uj

}
as another set A′, and using the same argument,

we have

F
(
A ∪ {

uj

}) − P
(
A ∪ {

uj

}) = F(A′) − P(A′)�F (A ∪ {uk}) − P (A ∪ {uk}) ,

where uk �= uj . Continuing this process, we arrive at

F(A) − P(A)�F
(
A ∪ {

uj

}) − P
(
A ∪ {

uj

})
�F

(
A ∪ {

uj , uk

}) − P
(
A ∪ {

uj , uk

})
� · · · �F(U) − P(U) = 1 − 1 = 0,

i.e., for all A ⊆ U , F(A)�P(A), so that P ∈ C(F ).
For each permutation � of {1, 2, . . . , n}, we obtain an element of C(F ) as above, denoted as P�. There are n! (not

necessarily distinct) P� (see Miranda et al., 2003, for the case of 2-alternating capacities). These elements of C(F )

are very special. For example, as indicated in Example 3, they all come from allocations, namely, for every �, allocate
f (A) to the element of A with highest rank. Secondly, we have, for all A ⊆ U ,

F(A) = inf{P(A) : P ∈ C(F )},
and the infimum is attained for some P�(A). Indeed, by definition of C(F ),

F(A)� inf{P(A) : P ∈ C(F )}.
Now for given A, choose � so that A = {u1, u2, . . . , uk}, say. Then

P�(A) =
k∑

i=1

[
F ({u1, . . . , ui}) − F ({u1, . . . , ui−1})

] = F ({u1, . . . , uk}) = F(A).

Thus, F(A)� inf{P(A) : P ∈ C(F )}.
But the most important fact about these P� is that they are the only extreme points of C(F ) (when C(F ) is identified

as a convex subset of the simplex Sn in Rn), a remarkable result of Shapley (1971). We state Shapley’s result in the
following special form:
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Theorem 4.1 (Shapley, 1971). Let F be the distribution function of some non-empty random set U with |U | = n. Then
C(F) is a compact convex polyhedron with at most n! extreme points which are precisely the P�’s.

With Shapley’s theorem, we are now in position to describe the structure of C(F ).

Theorem 4.2. C(F) consists of probability measures coming from allocations.

Proof. Let A denote the subset of P consisting of all probability measures P� on U coming from allocations � (of the
Möbius inverse f of F). Let � be an allocation of f. Then, for all A ⊆ U ,

F(A) =
∑
B⊆A

f (B) =
∑
B⊆A

∑
u∈B

�(u, B)�
∑
u∈A

∑
u ∈ B�(u, B) = P�(A).

Thus, A ⊆ C(F ).
Conversely, by Shapley’s theorem, C(F ) has the P�’s as extreme points, and thus C(F ) is the set of convex com-

binations of these extreme points. But the P�’s are elements of A so that, since A is clearly convex, A contains all
convex combinations of its elements, in particular, convex combinations of these P�’s, which is C(F ). �

Example 4 (Shapley value). As a set function, a distribution function F can be viewed as a coalitional game. The
Shapley value of the game F is the center of gravity of the extreme points P� of C(F ), i.e. it is a probability measure
� on U (|U | = n) whose density on U is given by

h(u) = 1

n!
∑
�∈


g�(u),

where g� are densities defined, in terms of F as

g�
(
u�(i)

) = F
({

u�(1), u�(2), . . . , u�(i)

}) − F
({

u�(1), . . . , u�(i−1)

})
,

u ∈ U , i = 1, 2, . . . , n (for �(1), F(∅) = 0, so that g�
(
u�(1)

) = F
({

u�(1)

})
.

As an element of C(F ), � comes from some allocation �. To see this, we need to write h(·) in terms of the Möbius
transform f of F.

Using the relation F(A)=∑
B⊆A f (B), a direct computation leads to: for all u ∈ U , h(u)=∑

u∈A f (A)/|A| where,
as understood, the sum is over A. Thus, the Shapley value � comes from the allocation

�(u, A) = f (A)

|A| .

It is interesting to observe that the Shapley value �, viewing as a point �=(
�1, �2, . . . , �n

)
in the simplex Sn, maximizes

the function H : Sn → R,

H(p) =
∑

∅�=A⊆U

f (A) log

[∏
u∈A

p(u)

]1/|A|

where p = (p1, p2, . . . , pn) ∈ Sn and pi = p (ui), i = 1, 2, . . . , n.

Example 5 (Allocations for the CAR model). Recall the CAR model in coarse data analysis. Let X be a random variable,
defined on a probability space (�,A, Pr) with values in the finite set U with |U |=n. Recall again that a coarsening of
X is a non-empty random set S with values in 2U\{∅} such that X is an almost sure selector of S, i.e. Pr(X ∈ S)=1. Let
f be the density on 2U of S. The random set S is called a coarsening at random (CAR) of X if its distribution is related
to the probability law P of X in some special way. The existence of CAR is proved in Gill et al. (1997). Specifically,
there exist CAR probabilities �(A), A ⊆ U , and a density g(·) on U such that∑

u∈A

�(A) = 1 for all u ∈ U , (3)
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where the sum is over A, and

f (A) = Pg(A)�(A) for all u ∈ U , (4)

where, as usual, Pg(A) = ∑
u∈A g(u). Define

�(u, A) =
{

g(u)
f (A)

Pg(A)
if Pg(A) �= 0,

0 if Pg(A) = 0.

In view of (3), we see that �(·, ·) is an allocation. Now, if g(u) = 0, then
∑

i∈A�(u, A) = 0, and if g(u) �= 0, then
Pg(A) �= 0 for any A � u, thus,

∑
u∈A

�(u, a) =
∑
u∈A

g(u)
f (A)

Pg(A)
= g(u)

∑
u∈A

�(A) = g(u),

in view of (4). Thus the CAR model of X, i.e. Pg , comes from the above �(·, ·) allocation (and hence belongs to C(F )!
where F is the distribution function with density f on 2U ).

Note that, like the Shapley value, the CAR solution Pg , viewed as a point in the simplex Sn, maximizes the following
entropy function:

G : Sn → R,

G(p) =
∑

∅�=A⊆U

f (A) log

[
P(A)

|A|
]

,

where P(A)=∑
u∈A P (u), p=(p1, p2, . . . , pn) ∈ Sn, pi =P(ui), i=1, 2, . . . , n, where the sum is over A containing

u, and f is the Möbius inverse of F.

5. Concluding remarks

In the context of coarse data analysis, random sets appear to be a natural mathematical model for set-valued obser-
vations. As bonafide random elements taking values in separable metric spaces, the theory of random sets generalizes
multivariate statistical analysis in a rigorous fashion. Extending Matheron’s hit-or-miss topology on the hyperspace of
closed sets (of Hausdorff, locally compact, second countable spaces) to an appropriate topology on the function space
of upper semi continuous membership functions (of fuzzy sets), the theory of random fuzzy sets is firmly established
within standard probability theory in which statistical inference can be derived along the lines of standard statistical
theory. On the application side, taking into account random fuzzy sets, as imprecise data, both in terms of occurrences
as well as meaning interpretations, is a realistic approach to contemporary emerging problems. The research in this
direction will enlarge the domain of applicability of statistical science.
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