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Blow-up of solutions for some non-linear wave
equations of Kirchhoff type with some dissipation
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Abstract

The initial boundary value problem for non-linear wave equations of Kirchhoff type with dissipation
in a bounded domain is considered. We prove the blow-up of solutions for the strong dissipative term
−�ut and the linear dissipative term ut by the energy method and give some estimates for the life
span of solutions. We also show the nonexistence of global solutions with positive initial energy for
non-linear dissipative term by Vitillaro’s argument.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider the initial boundary value problem for the following non-linear wave equa-
tions of Kirchhoff type:

utt − M(‖�u(t)‖2
2)�u(t) + g(ut (t)) = f (u(t)) in � × [0, ∞), (1.1)

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ �, (1.2)

u(x, t) = 0, x ∈ ��, t > 0, (1.3)
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where � ⊂ RN , N �1, is a bounded domain with boundary �� so that Divergence theorem
can be applied, � ≡ ∑N

j=1 �2/�x2
j is the Laplace operator, f is a non-linear function, M

is a non-negative locally Lipschitz function, and g(ut ) is the strong dissipative term −�ut

or the linear dissipative term ut or the non-linear dissipative term |ut |m−2ut with m > 2.
We denote ‖ · ‖p to be Lp-norm, p�2.

Let u be a solution of (1.1); we define the energy by

E(t) = 1

2
‖ut (t)‖2

2 + 1

2
M(‖�u(t)‖2

2) −
∫
�

F(u(t)) dx, t �0, (1.4)

where

M(s) =
∫ s

0
M(r) dr and F(s) =

∫ s

0
f (r) dr.

When M ≡ 1, for the case of no dissipation (i.e. g(ut ) ≡ 0), there is a large literature on
global nonexistence and blow-up for solutions with E(0) < 0 [1,3,5,7,8]. The interaction
between the damping term and the source has been considered by Levine [7–9] for the
cases of g(ut ) = −�ut and g(ut ) = ut . He showed that solutions with E(0) < 0 blow-up
in finite time. On the other hand, for semi-linear wave equations with nonlinear dissipative
terms: utt − �u + |ut |�−2ut = |u|�−2u, Georgiev and Todorova [2] proved that solutions
with large initial data continue to exist globally if ��� > 2 and blow-up in finite time
if 2 < � < ��(2N − 2/N − 2) (if N �3) with sufficiently negative initial energy (i.e.
E(0)> − 1). This result was generalized by Levine and Serrin [11], and then by Levine
et al. [10]. Vitillaro [18] combined the arguments in [2,11] to extend these results to positive
initial energy.

When M is not a constant function, Eq. (1.1) without the damping and source terms is
often called the Kirchhoff-type wave equation; it was first introduced by Kirchhoff [6] in
order to study the nonlinear vibrations of an elastic string. The nonexistence of the global
solutions of quasi-linear equations with damping terms was investigated by many authors
[4,13–16]. The works of Ono [14–16] deal with Eq. (1.1) in two cases with f (u)=|u|p−2u,
p > 2. In the first case, for g(ut ) = −�ut or ut , he considered M(s) = a + bs�, where
a�0, b�0, a + b > 0, � > 0, and s�0. He showed that the local solutions blow up at finite
time with E(0)�0 by applying the concavity method. Moreover, he combined the so-called
potential well method and concavity method to show blow-up properties with E(0) > 0.
While in the second case, for g(ut )=|ut |m−2ut , m > 2, he treated M(s)=bs�, where b > 0,
��1, and s�0. He proved that the local solution is not global when p > max(2� + 2, m)

and E(0) < 0.
In this paper, we shall consider the more general problem by replacing M(s) = a + bs�

and f (u)=|u|p−2u with general M(s) and f (u) under some restrictions for g(ut )=−�ut

or ut . We use a direct method [12] to obtain the blow-up properties of local solutions
for (1.1)–(1.3), and then we extend the result of [15,16] in this case. We also derive the
estimates of upper bound of the blow-up time T. On the other hand, for g(ut ) = |ut |m−2ut

and f (u)=|u|p−2u, we apply the argument of [18] to show the blow-up of local solutions for
(1.1)–(1.3) with ‖�u0‖2 > �1 and E(0) < E1, where �1 and E1 will be specified in Remark
4.1. In this way, we can extend the result of [18] to nonconstant M(s) and the result of [14]
to general M(s) and to the condition that E(0)�0. The estimates of upper bound of the
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blow-up time are also given. The content of this paper is organized as follows. In Section 2,
some local existence is given from [14–16]. Section 3 is divided into two subsections. In
Section 3.1, we discuss the blow-up properties of (1.1) for g(ut ) = −�ut . The main result
is given in Theorem 3.4 which contains the estimates of upper bound of the blow-up time.
The analogous result (Theorem 3.7) of (1.1) for g(ut )=ut is also obtained in Section 3.2. In
Section 4, the nonexistence of global solutions, for g(ut )= |ut |m−2ut and f (u)= |u|p−2u,
is given in Theorem 4.3. A special case is also considered and the main result is established
in Theorem 4.5.

Let us begin by stating the following two lemmas [12], which will be used later.

Lemma 1.1. Let � > 0 and B(t) ∈ C2(0, ∞) be a nonnegative function satisfying

B ′′(t) − 4(� + 1)B ′(t) + 4(� + 1)B(t)�0. (1.5)

If

B ′(0) > r2B(0) + K0, (1.6)

then

B ′(t) > K0

for t > 0, where K0 is a constant, r2 = 2(� + 1) − 2
√

(� + 1)� is the smallest root of the
equation

r2 − 4(� + 1)r + 4(� + 1) = 0.

Proof. See [12]. �

Lemma 1.2. If J (t) is a nonincreasing function on [t0, ∞), t0 �0 and satisfies the differ-
ential inequality

J ′(t)2 �a + bJ (t)2+1/�, f or t � t0, (1.7)

where a > 0, b ∈ R, then there exists a finite time T ∗ such that

lim
t→T ∗− J (t) = 0

and the upper bound of T ∗ is estimated, respectively, by the following cases:

(i) If b < 0 and J (t0) < min{1,
√

a/ − b} then

T ∗ � t0 + 1√−b
ln

√
a

−b√
a

−b
− J (t0)

.

(ii) If b = 0, then

T ∗ � t0 + J (t0)

J ′(t0)
.
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(iii) If b > 0, then

T ∗ � J (t0)√
a

or

T ∗ � t0 + 2(3�+1)/2� �c√
a
{1 − [1 + cJ (t0)]−1/2�},

where c = (a/b)2+1/�.

Proof. See [12]. �

2. Local existence

We first state local existence results established in [14–16].

Theorem 2.1. Let the initial data (u0, u1) belong to (H 1
0 (�) ∩ H 2(�)) × L2(�), and let

f (u) be a nonlinear function such that f (0) = 0 and

|f (u) − f (v)|�c(|u|p−2 + |v|p−2)|u − v|,
for u, v ∈ R, and some constant c and

p� 2N − 4

N − 4
(p < ∞ if N �4).

Then, there exists a T =T (‖$u0‖2, ‖u1‖2) > 0 such that problem (1.1) with g(ut )=−�ut

admits a unique local solution u in the class

C0([0, T ); H 1
0 (�) ∩ H 2(�)) ∩ C1([0, T ); L2(�)),

and

ut ∈ L2(0, T ; H 1
0 (�)).

Moreover, at least one of the following statements is valid:

(i) T = ∞,
(ii) ‖$u(t)‖2

2 + ‖ut (t)‖2
2 → ∞ as t → T −.

Theorem 2.2. Let the initial data (u0, u1) belong to (H 1
0 (�) ∩ H 2(�)) × H 1

0 (�) and
u0 �= 0, and let f (u) be a nonlinear function such that f (0) = 0 and

|f (u) − f (v)|�c(|u|p−2 + |v|p−2)|u − v|,
for u, v ∈ R, and some constant c and

p� 2N − 4

N − 4
(p < ∞ if N �4).
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Then, there exists a T = T (‖$u0‖2, ‖∇u1‖2) > 0 such that problem (1.1) with g(ut ) = ut

admits a unique local solution u in the class

C0([0, T ); (H 1
0 (�) ∩ H 2(�)) ∩ C1([0, T ); H 1

0 (�)) ∩ C2([0, T ); L2(�)).

Moreover, at least one of the following statements is valid:

(i) T = ∞,
(ii) ‖$u(t)‖2

2 + ‖∇ut (t)‖2
2 → ∞ as t → T −,

(iii) ‖∇u(t)‖2 → 0 as t → T −.

Theorem 2.3. Let the initial data (u0, u1) belong to (H 1
0 (�) ∩ H 2(�)) × H 1

0 (�) and
u0 �= 0, and let

f (u) = |u|p−2u, where p� 2N − 6

N − 4
(p < ∞ if N �4).

Then, there exists a T = T (‖$u0‖2, ‖∇u1‖2) > 0 such that problem (1.1) with g(ut ) =
|ut |m−2ut for m > 2 admits a unique local solution u in the class W1 ∩ W2 and ut ∈ Lm

((0, T ) × �), where

W1 = C0
w([0, T ); (H 1

0 (�) ∩ H 2(�)) ∩ C1
w([0, T ); H 1

0 (�)),

W2 = C0([0, T ); H 1
0 (�)) ∩ C1([0, T ); L2(�)),

here the subscript “w” means the weak continuity with respect to t [17].
Moreover, at least one of the following statements is valid:

(i) T = ∞,
(ii) ‖$u(t)‖2

2 + ‖∇ut (t)‖2
2 → ∞ as t → T −,

(iii) ‖∇u(t)‖2 → 0 as t → T −.

3. Blow-up property for g(ut ) = ut or −�ut

In this section, we will study blow-up phenomena of two problems, where g(ut ) = ut

in Section 3.1 and g(ut ) = −�ut in Section 3.2. In the sequel, for the sake of simplicity
we will omit the dependence on t, when the meaning is clear. In order to state our results,
we make the following assumptions:

(A1) there exists a positive constant � > 0 such that

sf (s)�(2 + 4�)F (s) for all s ∈ R,

and

(2� + 1)M(s)�M(s)s for all s�0.

It is clear that f (u)=|u|p−2u, p�2�+2 and M(s)=a+bs�, where a�0, b�0, a+b > 0,
� > 0, s�0 satisfies (A1) with �/2���(p − 2)/4.
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3.1. g(ut ) = ut

In this subsection we consider Eq. (1.1) with g(ut ) = ut :

utt − M(‖�u‖2
2)
u + ut = f (u). (3.1)

Definition. A solution u of (3.1), (1.2), (1.3) is called blow-up if there exists a finite time
T ∗ such that

lim
t→T ∗−

∫
�

u2 dx = ∞.

From (1.4), the definition of E(t), we see that

Lemma 3.1. E(t) is a nonincreasing function on [0, T ) and

E(t) = E(0) −
∫ t

0

∫
�

g(ut (x))ut (x) dx dt. (3.2)

Proof. By differentiating (1.4) and using (1.1), we obtain

dE(t)

dt
= −

∫
�

g(ut (x))ut (x) dx.

Thus, Lemma 3.1 follows at once.
Now, let u be a solution of (3.1) and define

a(t) =
∫
�

u2 dx +
∫ t

0

∫
�

u2 dx dt, t �0. (3.3)

Lemma 3.2. Assume that (A1) holds; we have

a′′(t) − 4(� + 1)

∫
�

u2
t dx�(−4 − 8�)E(0) + (4 + 8�)

∫ t

0
‖ut‖2

2 dt. (3.4)

Proof. From (3.3), we have

a′(t) = 2
∫
�

uut dx + ‖u‖2
2. (3.5)

By (3.1) and Divergence theorem, we obtain

a′′(t) = 2
∫
�

u2
t dx + 2M(‖�u‖2

2)

∫
�

u
u dx + 2
∫
�

f (u)u dx

= 2
∫
�

u2
t dx − 2M(‖�u‖2

2)

∫
�

|�u|2 dx + 2
∫
�

f (u)u dx. (3.6)



S.T. Wu, L.Y. Tsai / Nonlinear Analysis 65 (2006) 243–264 249

By (1.4) and (3.2), we have from (3.6)

a′′(t) − 4(� + 1)

∫
�

u2
t dx

�(−4 − 8�)E(0) + (4 + 8�)

∫ t

0
‖ut‖2

2 ds +
∫
�

2(f (u)u − (2 + 4�)F (u)) dx

+
[
(2 + 4�)M(‖�u‖2

2) − 2M(‖�u‖2
2)

∫
�

|�u|2 dx

]
.

Therefore from (A1), we obtain (3.4).
Now, we consider three different cases on the sign of the initial energy E(0).

(1) If E(0) < 0, then from (3.4), we have

a′(t)�a′(0) − 4(1 + 2�)E(0)t, t �0.

Thus we obtain a′(t) > ‖u0‖2
2 for t > t∗, where

t∗ = max

{
a′(0) − ‖u0‖2

2

4(1 + 2�)E(0)
, 0

}
. (3.7)

(2) If E(0) = 0, then a′′(t)�0 for t �0.
Furthermore, if a′(0) > ‖u0‖2

2, then a′(t) > ‖u0‖2
2, t �0.

(3) For the case that E(0) > 0, we first note that

2
∫ t

0

∫
�

uut dx dt =
∫ t

0

d

dt

∫
�

u2 dx dt

=
∫
�

u2 dx −
∫
�

u2
0 dx. (3.8)

By Hölder inequality and Young’s inequality, we have from (3.8)∫
�

u2 dx�
∫
�

u2
0 dx +

∫ t

0
‖u‖2

2 dt +
∫ t

0
‖ut‖2

2 dt. (3.9)

By Hölder inequality, Young’s inequality again and (3.9), we obtain from (3.5)

a′(t)�a(t) +
∫
�

u2
0 dx +

∫
�

u2
t dx +

∫ t

0
‖ut‖2

2 dt. (3.10)

Hence by (3.4), (3.10), we obtain

a′′(t) − 4(� + 1)a′(t) + 4(� + 1)a(t) + K1 �0,

where

K1 = (4 + 8�)E(0) + 4(� + 1)‖u0‖2
2.

Let

b(t) = a(t) + K1

4(1 + �)
, t > 0.
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Then b(t) satisfies (1.5). By (1.6), we see that if

a′(0) > r2

[
a(0) + K1

4(1 + �)

]
+ ‖u0‖2

2, (3.11)

then a′(t) > ‖u0‖2
2, t > 0.

Consequently, we have

Lemma 3.3. Assume that (A1) holds and that either one of the following statements is
satisfied:

(i) E(0) < 0,
(ii) E(0) = 0 and a′(0) > ‖u0‖2

2,
(iii) E(0) > 0 and (3.11) holds,

then a′(t) > ‖u0‖2
2 for t > t0, where t0 = t∗ is given by (3.7) in case (i) and t0 = 0 in

cases (ii) and (iii).

Now, we will find the estimate for the life span of a(t).
Let

J (t) = (a(t) + (T1 − t)‖u0‖2
2)

−� for t ∈ [0, T1], (3.12)

where T1 > 0 is a certain constant which will be specified later.
Then we have,

J ′(t) = −�J (t)1+1/�(a′(t) − ‖u0‖2
2)

and

J ′′(t) = −�J (t)1+2/�V (t), (3.13)

where

V (t) = a′′(t)(a(t) + (T1 − t)‖u0‖2
2) − (1 + �)(a′(t) − ‖u0‖2

2)
2. (3.14)

For simplicity of calculation, we denote

P =
∫
�

u2 dx,

Q =
∫ t

0
‖u‖2

2 dt,

R =
∫
�

u2
t dx,

S =
∫ t

0
‖ut‖2

2 dt.
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From (3.5), (3.8), and Hölder inequality, we obtain

a′(t) = 2
∫
�

utu dx +
∫
�

u2
0 dx + 2

∫ t

0

∫
�

uut dx dt

�2(
√

RP +√
QS) +

∫
�

u2
0 dx. (3.15)

By (3.4), we have

a′′(t)�(−4 − 8�)E(0) + 4(1 + �)(R + S). (3.16)

Thus, from (3.15), (3.16), we obtain

V (t)�[(−4 − 8�)E(0) + 4(1 + �)(R + S)](a(t) + (T1 − t)‖u0‖2
2)

− 4(1 + �)(
√

RP +√
QS)2.

And by (3.12) and (3.3), we have

V (t)�(−4 − 8�)E(0)J (t)−1/� + 4(1 + �)(R + S)(T1 − t)‖u0‖2
2

+ 4(1 + �)[(R + S)(P + Q) − (
√

RP +√
QS)2].

By Schwarz inequality, the last term in the above inequality is nonnegative. Hence we have

V (t)�(−4 − 8�)E(0)J (t)−1/�, t � t0. (3.17)

Therefore by (3.13) and (3.17), we obtain

J ′′(t)��(4 + 8�)E(0)J (t)1+1/�, t � t0. (3.18)

Note that by Lemma 3.3, J ′(t) < 0 for t > t0. Multiplying (3.18) by J ′(t) and integrating
from t0 to t , we obtain

J ′(t)2 �� + �J (t)2+1/� for t � t0,

where

� = �2J (t0)
2+2/�[(a′(t0) − ‖u0‖2

2)
2 − 8E(0)J (t0)

−1/�] (3.19)

and

� = 8�2E(0). (3.20)

We observe that

� > 0 iff E(0) <
(a′(t0) − ‖u0‖2

2)
2

8(a(t0) + (T1 − t0)‖u0‖2
2)

.

Then by Lemma 1.2, there exists a finite time T ∗ such that limt→T ∗− J (t)=0 and the upper
bound of T ∗ is estimated, respectively, according to the sign of E(0). This will imply that

lim
t→T ∗−

{∫
�

u2 dx +
∫ t

0

∫
�

u2 dx dt

}
= ∞. (3.21)
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Theorem 3.4. Assume that (A1) and (A2) hold and that either one of the following state-
ments is satisfied:

(i) E(0) < 0,
(ii) E(0) = 0 and a′(0) > ‖u0‖2

2,

(iii) 0 < E(0) <
(a′(t0)−‖u0‖2

2)
2

8(a(t0)+(T1−t0)‖u0‖2
2)

and (3.11) holds,

then the solution u blows up at finite time T ∗ in the sense of (3.21).

In case (i),

T ∗ � t0 − J (t0)

J ′(t0)
. (3.22)

Furthermore, if J (t0) < min{1,
√

�/ − �}, we have

T ∗ � t0 + 1√−�
ln

√
�

−�√
�

−�
− J (t0)

. (3.23)

In case (ii),

T ∗ � t0 − J (t0)

J ′(t0)
(3.24)

or

T ∗ � t0 + J (t0)√
�

. (3.25)

In case (iii),

T ∗ � J (t0)√
�

(3.26)

or

T ∗ � t0 + 2(3�+1)/2� �c√
�
{1 − [1 + cJ (t0)]−1/2�}, (3.27)

where c = (�/�)2+1/�; here � and � are in (3.19), (3.20).
Note that in case (i), t0 = t∗ is given in (3.7) and t0 = 0 in case (ii) and (iii).

Remark 3.5. The choice of T1 in (3.12) is possible under some conditions. We shall discuss
it as follows:

(i) For the case E(0) = 0.
First, we note that the condition a′(0) > ‖u0‖2

2 implies
∫
� u0u1 dx > 0.
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(1) If 2�
∫
� u0u1 dx − ‖u0‖2

2 > 0, by (3.24), we choose

T1 � − J (0)

J ′(0)
.

This is equivalent to

T1 � ‖u0‖2
2

2�
∫
� u0u1 dx − ‖u0‖2

2

.

In particular, we choose T1 as

T1 = ‖u0‖2
2

2�
∫
� u0u1 dx − ‖u0‖2

2

.

We then obtain

T ∗ � ‖u0‖2
2

2�
∫
� u0u1 dx − ‖u0‖2

2

.

(2) If 2�
∫
� u0u1 dx − ‖u0‖2

2 �0, by (3.25), we choose

T1 � J (t0)√
�

. (3.28)

By Hölder inequality, Young’s inequality, and from (3.28), we obtain

‖u0‖2
2 + T1‖u0‖2

2 ��(‖u0‖2
2 + ‖u1‖2

2)T1,

then

T1 � ‖u0‖2
2

‖u1‖2
2

, if 0 < ��1

or

T1 � ‖u0‖2
2

(� − 1)‖u0‖2
2 + ‖u1‖2

2

, if 1 < �.

In particular, we have

T ∗ �T1 = ‖u0‖2
2

‖u1‖2
2

, if 0 < ��1

or

T ∗ �T1 = ‖u0‖2
2

(� − 1)‖u0‖2
2 + ‖u1‖2

2

, if 1 < �.

(ii) For the case E(0) < 0,
(1) If

∫
� u0u1 dx > 0, then a′(t) > ‖u0‖2

2 and t∗ = 0. Thus T1 can be chosen as in (i).
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(2) If
∫
� u0u1 dx�0, then t∗ =a′(0)−‖u0‖2

2/4(1+2�)E(0). Thus, by (3.22), we choose
T1 � t∗ − J (t∗)/J ′(t∗).

(iii) For the case E(0) > 0,
(1) If ‖u0‖2

2 < � and if

E(0) < min{�1, �2},
where

�1 = (1 + �)(a′(0) − r2a(0) − (r2 + 1)‖u0‖2
2)

r2(1 + 2�)

�2 = 4
(∫

� u0u1 dx
)2 − 1

8‖u0‖2
2

· � − ‖u0‖2
2

�
,

then we choose T1 to satisfy

‖u0‖2
2

� − ‖u0‖2
2

�T1 �
4
(∫

� u0u1 dx
)2 − 8E(0)‖u0‖2

2 − 1

8E(0)‖u0‖2
2

,

so that

� = �2J (0)2+2/�[(a′(0) − ‖u0‖2
2)

2 − 8E(0)J (0)−1/�]
�1.

In particular, choosing T1 = ‖u0‖2
2/� − ‖u0‖2

2 and by (3.26), we obtain

T ∗ �

‖u0‖2
2

� − ‖u0‖2
2√

4
(∫

� u0u1 dx
)2 − 8E(0)

�‖u0‖2
2

� − ‖u0‖2
2

.

(2) If ‖u0‖2
2 �� with ��1 and if

E(0) < min{�3, �4},
where

�3 = (1 + �)(a′(0) − r2a(0) − (r2 + 1)‖u0‖2
2)

r2(1 + 2�)
,

�4 = (
∫
� u0u1 dx)2(‖u0‖2

2 + ‖u1‖2
2 − �)

2(2‖u0‖2
2 + ‖u1‖2

2 − �)‖u0‖2
2

,

then we choose

T1 = ‖u0‖2
2

‖u0‖2
2 + ‖u1‖2

2 − �
,
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so that � > 0. By (3.26), we have

T ∗ �

‖u0‖2
2(2‖u0‖2

2 + ‖u1‖2
2 − �)

‖u0‖2
2 + ‖u1‖2

2 − �

�

√
4
(∫

� u0u1 dx
)2 − 8E(0)

‖u0‖2
2(2‖u0‖2

2 + ‖u1‖2
2 − �)

‖u0‖2
2 + ‖u1‖2

2 − �

.

If ‖u0‖2
2 �� with � > 1 and if

E(0) < min{	1, 	2},
where

	1 = (1 + �)(a′(0) − r2a(0) − (r2 + 1)‖u0‖2
2)

r2(1 + 2�)
,

	2 = (
∫
� u0u1 dx)2(�(‖u0‖2

2 + ‖u1‖2
2 − 1))

2(‖u0‖2
2 + �(‖u0‖2

2 + ‖u1‖2
2 − 1))‖u0‖2

2

,

then we choose

T1 = ‖u0‖2
2

�(‖u0‖2
2 + ‖u1‖2

2 − 1)
,

so that � > 0. By (3.26), we have

T ∗ �

‖u0‖2
2(‖u0‖2

2 + �(‖u0‖2
2 + ‖u1‖2

2 − 1))

�(‖u0‖2
2 + ‖u1‖2

2 − 1)

�

√
4
(∫

� u0u1 dx
)2 − 8E(0)

‖u0‖2
2(‖u0‖2

2 + �(‖u0‖2
2 + ‖u1‖2

2 − 1))

�(‖u0‖2
2 + ‖u1‖2

2 − 1)

.

Example 3.6. We consider the problem

utt − M(‖∇u‖2
2)�u + ut = f (u),

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ �,

u(x, t) = 0, x ∈ ��, t > 0,

where M(s) = 1 + s, f (u) = u3, � = (0, 1), u1(x) = d and

u0(x) =

⎧⎪⎨
⎪⎩

0 if 0�x < 1
4 ,

3.36 if 1
4 �x < 1

2 ,

0.2(1 − x) if 1
2 �x�1.

Then we have

E(0) = d2

2
− 7.9559025.
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Thus

0 < d �dc ⇐⇒ E(0)�0,

where

dc = √
15.911805 ≈ 3.988960391.

We also have the following datum:

� = 1
2 , a(0) = 2.8241, a′(0) = 1.73d + 2.8241.

Then by Remark 3.5, the upper bound for the blow-up time in each case is obtained.

(1) For 0 < d �3.264855491, we have

T ∗(d)� 2.8241

d2 .

(2) 3.264855491 < d �dc, we have

T ∗(d)� 2.8241

0.865d − 2.8241
.

(3) dc < d < 4.0036, we have

T ∗(d)� 5.6482�5√
2.9929d2 − 22.5928E(0)�5

,

where �5 = 1 + 2.8241
2.3241+d2 .

3.2. g(ut ) = −
ut

In this subsection we consider Eq. (1.1) with g(ut ) = −
ut :

utt − M(‖�u‖2
2)
u − 
ut = f (u). (3.29)

Definition. A solution u of (3.29), (1.2), (1.3) is called blow-up if there exists a finite time
T ∗ such that

lim
t→T ∗−

∫
�

|∇u|2 dx = ∞.

Let

a(t) =
∫
�

u2 dx +
∫ t

0

∫
�

|�u|2 dx dt, t �0

and

J (t) = [a(t) + (T1 − t)‖�u0‖2
2]−�, t ∈ [0, T1],

instead of (3.3) and (3.12).
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By the similar way as above, we have the following results.

Theorem 3.7. Assume that (A1) holds and that either one of the following statements is
satisfied:

(i) E(0) < 0,
(ii) E(0) = 0 and a′(0) > ‖�u0‖2

2,

(iii) 0 < E(0) <
(a′(t0)−‖�u0‖2

2)
2

8(a(t)+(T1−t0)‖�u0‖2
2)

and 2
∫
� u0u1 dx > r2[a(0) + K2

4(1+�)
],

where K2 = (4 + 8�)E(0) + 4(� + 1)‖∇u0‖2
2.

Then there exists a finite time T ∗ such that the solution u of (3.29), (1.2), (1.3) has the
following:

lim
t→T ∗−

{∫
�

u2 dx +
∫ t

0

∫
�

|∇u|2 dx dt

}
= ∞.

Thus,

lim
t→T ∗−

∫
�

|∇u|2 dx = ∞.

Example 3.8. We consider the problem

utt − M(‖∇u‖2
2)�u − �ut = f (u),

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ �,

u(x, t) = 0, x ∈ ��, t > 0,

where M(s) = 1 + s, f (u) = u3, u0(x) = 20 sin 
x/5, u1(x) = d > 0 and � = (0, 5). Then
we have

E(0) = d2

2
+ 20
2 + 400
4 − 75000.

Thus

0 < d �dc ⇐⇒ E(0)�0,

where

dc =
√

150000 − (40 + 800
2)
2 ≈ 267.73.

We also have the following datum:

� = 1
2 , a(0) = 1000, a′(0) = 400d



+ 40
2.

Then applying Remark 3.5, the upper bound for the blow-up time is obtained.
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(1) For 0 < d �6.201255336, we have

T ∗(d)� 200

�2d2
,

here � is the Sobolev constant satisfying ‖u‖2 ��‖ux‖2, for u ∈ H 1
0 (0, 5).

(2) For 6.201255336 < d �dc, we have

T ∗(d)� 1000


200d − 40
4 .

(3) For dc < d < 299.82, we have

T ∗(d)� 100
√
100d2 − 10E(0)
2

.

4. Blow-up property for g(ut ) = |ut |m−2ut and f (u) = |u|p−2u, p > m > 2

In this section, when 2 < m < p�2N/(N − 2) (N < ∞, if N = 1, 2), we consider the
problem with g(ut ) = |ut |m−2ut , f (u) = |u|p−2u:

utt − M(‖�u‖2
2)
u + |ut |m−2ut = |u|p−2u (4.1)

under the following hypothesis:
(A2) M is a nonnegative locally Lipschitz function satisfying

M(s)�m0 > 0 for all s�0, (4.2)

and there exists m1 �1 such that

m1M(s)�M(s)s for all s�0. (4.3)

It is clear that M(s) = a + bs�, a > 0, b�0, � > 0, s�0 satisfies assumption (A2) that
we made on M .

Remark 4.1. By (4.2), we have

E(t)� 1
2 m0‖�u‖2

2 − 1
p
‖u‖p

p, t �0. (4.4)

By Poincaré inequality,

E(t)�G(‖�u‖2), t �0, (4.5)

where

G(�) = 1

2
m0�

2 − B
p
1

p
�p,

here B1 is the optimal constant of Sobolev imbedding H 1
0 (�) ↪→ Lp(�) given by B−1

1 =
inf{‖�u‖2 : u ∈ H 1

0 (�), ‖u‖p = 1}.
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Note that G(�) has the maximum at �1 = ( m0
B

p
1
)1/(p−2), and the maximum value is

E1 = G(�1) = m
p/(p−2)
0

(
1

2
− 1

p

)
B

−2p/(p−2)
1 . (4.6)

Lemma 4.2. Assume 2 < m < p�2N/(N − 2) (N < ∞, if N = 1, 2) and E(0) < E1.

(i) If ‖�u0‖2 < �1, then ‖�u(t)‖2 < �1, t �0.
(ii) If ‖�u0‖2 > �1, then there exists �2 > �1, such that ‖�u(t)‖2 ��2, t �0 and there exists

�3 > B1�1 such that ‖u(t)‖p ��3, t �0.

Proof. From the definition of G(�), we see that G(�) is increasing in (0, �1) and decreasing
in (�1, ∞), and G(�) → −∞ as � → ∞.

Since E(0) < E1, so there exists �′
2, �2 with �′

2 < �1 < �2 such that G(�′
2) =

G(�2) = E(0).
(i) when ‖�u0‖2 < �1, from (4.5), we have

G(‖�u0‖2)�E(0) = G(�′
2).

It implies ‖�u0‖2 < �′
2.

We claim that ‖�u(t)‖2 ��′
2. If not, then there exists t0 > 0 such that ‖�u(t0)‖2 > �′

2.
Case (a) if �′

2 < ‖�u(t0)‖2 < �2, then G(‖�u(t0)‖2) > E(0)�E(t0). It contradicts (4.5).
Case (b) if ‖�u(t0)‖2 ��2, then by continuity of ‖�u(t)‖2, there exists 0 < t1 < t0 such that
�′

2 < ‖�u(t1)‖2 < �2, then G(‖�u(t1)‖2) > E(0)�E(t1). This implies a contradiction.
(ii) when ‖�u0‖2 > �1, we deduce as before that ‖�u0‖2 > �1 implies ‖�u(t)‖2 ��2,

for t �0.
Hence, from (4.2), (4.4), (4.5) and Lemma 3.1, we have

1

p

∫
�

|u|p dx� 1

2
m0

∫
�

|�u|2 dx − E(0) + 1

2

∫
�

u2
t dx

� 1

2
m0

∫
�

|�u|2 dx − E(0)

� 1

2
m0�

2
2 − G(�2)

= B
p
1

p
�p

2 .

This implies ‖u‖p �B1�2 > B1�1, t �0. Set �3 = B1�2, then there exists �3 > B1�1 and

‖u(t)‖p ��3, t �0. �

Theorem 4.3. If (A3) holds, p > max(2m1, m), then the local solutions of problems (4.1),
(1.2), (1.3) blow up at a finite time T with ‖�u0‖2 > �1 and E(0) < E1, where 0 < T �
L(0)1−�

c10(�−1)
, here L(0)=(E1−E(0))1−�+2�1

∫
� u0u1 dx, 0 < � < 1/m−1/p, �=1/(1−�), �1

is a small positive constant given in the proof, and c10 is given in (4.24).
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Proof. Let

H(t) = E1 − E(t), t �0. (4.7)

By (3.2), we have

H ′(t) = −E′(t) =
∫
�

|ut |m dx�0. (4.8)

Thus, we obtain

H(t)�H(0) = E1 − E(0) > 0, t > 0. (4.9)

Let

a(t) =
∫
�

u2 dx + 2m1E1t
2, t ∈ [0, T0], (4.10)

where T0 will be specified later.
By differentiating (4.10) twice, to obtain

a′(t) = 2
∫
�

uut dx + 4m1E1t, t ∈ [0, T0]

and

a′′(t) = 2
∫
�

u2
t dx + 2

∫
�

uutt dx + 4m1E1, t ∈ [0, T0]. (4.11)

By using (4.1) and (4.3), we obtain

a′′(t)�2
∫
�

u2
t dx − 2m1M(‖�u‖2

2) − 2
∫
�

|ut |m−2utu dx

+ 2
∫
�

|u|p dx + 4m1E1.

From (3.2), (4.4) and (4.7), we obtain

a′′(t)�2(1 + 2m1)

∫
�

u2
t dx + 4m1H(t) + c0‖u‖p

p − 2
∫
�

|ut |m−2utu dx, (4.12)

where c0 = (2p − 4m1)/p > 0.
By observing that∣∣∣∣

∫
�

|ut |m−2utu dx

∣∣∣∣ �‖ut‖m−1
m ‖u‖m

�c1‖u‖1−(p/m)
p ‖u‖(p/m)

p ‖ut‖m−1
m , (4.13)

where c1 = (vol(�))(p−m)/mp.
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Note that from (4.7)

H(t) = E1 −
[

1

2
‖ut‖2

2 + 1

2
M(‖�u‖2

2) − 1

p
‖u‖p

p

]
.

By (4.2), we have

H(t)�E1 − 1

2
m0‖�u‖2

2 + 1

p
‖u‖p

p.

Thus, by using Lemma 4.2 (ii), we have

H(t)�E1 − 1

2
m0�

2
1 + 1

p
‖u‖p

p.

And by (4.6), (4.9), we obtain

0 < H(0)�H(t)� 1

p
‖u‖p

p, for t ∈ [0, T0]. (4.14)

Note that by (4.14) and using Hölder inequality, we have from (4.13)∣∣∣∣
∫
�

|ut |m−2utu dx

∣∣∣∣ �c2‖u‖p/m
p H(t)1/p−1/m‖ut‖m−1

m .

By Young′s inequality and (4.8), we obtain∣∣∣∣
∫
�

|ut |m−2utu dx

∣∣∣∣ �c2(�
m‖u‖p

p + �−m′H ′(t))H(t)−�, (4.15)

where � = 1/m − 1/p > 0, � > 0, m′ = m/m − 1, c2 = c1 · p1/p−1/m.
Letting 0 < � < � and by (4.14), (4.15), we have∣∣∣∣

∫
�

|ut |m−2utu dx

∣∣∣∣ �c2(�
mH(0)−�‖u‖p

p + �−m′H(0)�−�H(t)−�H ′(t)). (4.16)

Now, we define

L(t) = H(t)1−� + �1a
′(t), t ∈ [0, T0], (4.17)

where �1 is a positive constant to be specified later.
From (4.17),

L′(t) = (1 − �)H(t)−�H ′(t) + �1a
′′(t), t ∈ [0, T0].

By (4.12), we obtain

L′(t)�(1 − �)H(t)−�H ′(t) + 2�1(1 + 2m1)‖ut‖2
2 + 4�1m1H(t)

+ �1co‖u‖p
p − 2�1

∫
�

|ut |m−2utu dx.
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And by (4.15), we have

L′(t)�(1 − � − 2�1c2�
−m′H(0)�−�)H(t)−�H ′(t) + �1(c0 − 2c2�

mH(0)−�)

× ‖u‖p
p + 2�1(1 + 2m1)‖ut‖2

2 + 4m1�1H(t). (4.18)

Now, choosing � > 0 small such that c0 − 2c2�mH(0)−� � 1
2c0, and letting 0 < �1 < (1 −

�)/2c−1
2 �m′H(0)�−�.

Then (4.18) becomes

L′(t)� 1
2 c0�1‖u‖p

p + 2�1(1 + 2m1)‖ut‖2
2 + 4m1�1H(t)

�c3�1(‖u‖p
p + ‖ut‖2

2 + H(t)), (4.19)

here c3 = min{c0/2, 2(1 + 2m1), 4m1}. Thus L(t) is a nondecreasing function on [0, T0].
Letting �1 be small enough in (4.17), then we have L(0) > 0. Hence

L(t) > 0, for t ∈ [0, T0].
Now set � = 1/(1 − �). Since � < � < 1, it is evident that 1 < � < 1/(1 − �).

Choosing �1 > 0 small enough such that �1t < (�3/B1�1)
p/�, for t ∈ [0, T0], and using

Lemma 4.2(ii), we obtain from (4.17)

L(t)�H(t)1−� + 2�1

∫
�

utu dx + 4m1E1

(B1�1)
p/�

‖u‖p/�
p , for t ∈ [0, T0].

By Young’s and Hölder inequality, it follows that

L(t)� �2�−1

[
H(t) +

(
2�1

∫
�

utu dx + c4‖u‖p/�
p

)�
]

�2�−1[H(t) + 2�−1(2���
1‖ut‖�

2‖u‖�
2 + c�

4‖u‖p
p)]

�c5[H(t) + ‖u‖p
p + ‖ut‖�

2‖u‖�
2], (4.20)

where c4 = 4m1E1/(B1�1)
p
� , c5 = max{2�−1, 23�−2��

1, 22(�−1)c�
4}.

On the other hand, for p > 2, using Hölder inequality we have

‖ut‖�
2‖u‖�

2 �c6‖ut‖�
2‖u‖�

p,

here c6 = (vol(�))�(p−2)/2p.
And by Young’s inequality, we obtain

‖ut‖�
2‖u‖�

2 �c7(‖u‖��1
p + ‖ut‖��2

2 ), (4.21)

where 1/�1+1/�2=1, c7=c7(c6, �1, �2) > 0. In particular, we take��2=2, i.e.�2=2(1−�).
Therefore, for � small enough, the numbers �1 and �2 are close to 2.
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Now choose � ∈ (0, min(�, 1
2 − 1

p
)). Then, by (4.14), we obtain

‖u‖��1
p =

[(
1

pH(0)

)1/p

‖u‖p

]��1(
1

pH(0)

)−��1/p

�c8‖u‖p
p, (4.22)

because

��1 = 2

1 − 2�
< p,

where c8 = (1/pH(0))1−��1/p.
Consequently, by (4.20)–(4.22), we have

L(t)� �c9[H(t) + ‖u‖p
p + ‖ut‖2

2]. (4.23)

Here c9 = c9(c5, c7, c8) > 0. From (4.19), (4.23), we obtain

L′(t)�c10L(t)�, � > 1, (4.24)

here c10 = c3�1/c9.
A simple integration of (4.24) over (0,t) then yields

L(t)�(L(0)1−� − c10(� − 1)t)−1/�−1. (4.25)

Since L(0) > 0, (4.25) shows that L becomes infinite in a finite time T �T ∗ =
L(0)1−�/c10(� − 1).

Remark 4.4. (1) T0 can be chosen so that T0 �T ∗ in (4.10).
(2) When M = 1, the result is just the same as Vitillaro [18].
(3) If the condition M(s)�m0 > 0, for all s�0 in (A2) does not hold, another type of

M(s) can be considered. For example,

M(s) = bs�, b > 0, ��1, s�0,

then there exists m1 �1 such that

m1M(s)�M(s)s, for all s�0.

Consider the following problem:

utt − b‖�u‖2�
2 
u + |ut |m−2ut = |u|p−2u, in � × [0, ∞), (4.26)

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ �, (4.27)

u(x, t) = 0, x ∈ ��, t > 0. (4.28)

The nonexistence of global solution of (4.26)–(4.28) can be shown by using the same
arguments as in Theorem 4.3.
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Theorem 4.5. If p > max(2m1, m, 2�+2), then there is no global solution of (4.26)–(4.28)
with ‖�u0‖2 > �1 and E(0) < E1, where

�1 =
(

b

B
p
1

)1/(p−2�−2)

, E1 = bp/(p−2�−2)

(
1

2(� + 1)
− 1

p

)
B

−2p�−2/p−2�−2
1 ,

here B1 is the optimal constant of Sobolev imbedding H 1
0 (�) ↪→ Lp(�).
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