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Abstract

In this paper, we work with the ordinary equation u′′ − |u|p−1u = 0 for some p > 0 and obtain
some interesting phenomena concerning blow-up, blow-up rate, existence interval, stability, instability,
zeros and critical points of solutions to those equations.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In our papers [2–7] we studied the semi-linear wave equation �u+f (u)=0 under some
conditions, and found some interesting results on blow-up, blow-up rate and the estimates
for the existence interval of solutions, but no information on the singular set. Here, we
wish to deal with particular cases in lower-dimensional wave equations. We hope that the
experiences gained here will allow us to deal with more general lower-dimensional cases
later.

Consider the stationary, one-dimensional semilinear wave equation{
u′′ − |u|p−1, u = 0,

u(0) = u0, u′(0) = u1.
(1.1)
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From some calculations one can find that for p ∈ (0, 1), Eq. (1.1) with u0 = 0 = u1
possesses infinitely many solutions, so the solutions of the above equation in general are
not unique. It is clear that these functions |u|p−1u, p�1, are locally Lipschitz; hence, by
the standard theory, the local existence of classical solutions is applicable to Eq. (1.1).

We discuss problem (1.1) in three parts: “p > 1”, “p < 1” and “the singularity and regu-
larity of solutions”.

Part A: Estimates for the existence interval of solutions of (1.1) for p > 1

In Section 2, we deal with the estimations for the existence interval of the solutions of
(1.1), in Section 3 with the blow-up rate and blow-up constant, in Section 4 with the global
existence, critical point and the asymptotic behavior, in Section 5 with the null points (zero)
and triviality, and in Section 6 with stability and instability.

1.1. Notation and fundamental lemmas

For a given function u in this work, we use the following abbreviations:

au(t) = u(t)2, Eu(0) = u2
1 − 2

p + 1
|u0|p+1, Ju(t) = au(t)

− p−1
4 .

Definition. A function g : R → R with a blow-up rate q means that g exists only in finite
time; that is, there is a finite number T ∗ such that the following are valid:

lim
t→T ∗ g(t)−1 = 0 (1.2)

and there exists a non-zero � ∈ R; with

lim
t→T ∗(T

∗ − t)qg(t) = �; (1.3)

in this case � is called the blow-up constant of g.

According to the uniqueness of the solutions to Eq. (1.1) for p > 1, we can rewrite
au(t)=a(t), Ju(t)=J (t) and Eu(t)=E(t). After some elementary calculations we obtain
the following Lemma 1.

Lemma 1. Suppose that u is the solution of (1.1); then, we have

E(t) = u′(t)2 − 2

p + 1
|u|p+1 = E(0), (1.4)

(p + 3)u′(t)2 = (p + 1)E(0) + a′′(t), (1.5)

J ′′(t) = p2 − 1

4
E(0)J (t)

p+3
p−1 , (1.6)

J ′(t)2 = J ′(0)2 − (p − 1)2

4
E(0)J (0)

2(p+1)
p−1 + (p − 1)2

4
E(0)J (t)

2(p+1)
p−1 (1.7)
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and

a′(t) = a′(0) + 2E(0)t + 2(p + 3)

p + 1

∫ t

0
|u(r)|p+1 dr . (1.8)

The following lemmas are easy to prove, so we omit the arguments.

Lemma 2. Suppose that r and s are real constants and u ∈ C2(R) satisfies

u′′ + ru′ + su�0, u�0,

u(0) = 0, u′(0) = 0;

then, u must be null, that is, u ≡ 0.

Lemma 3. If g(t) and h(t, r) are continuous with respect to their variables and the limit
limt→T

∫ g(t)

0 h(t, r) dr exists, then

lim
t→T

∫ g(t)

0
h(t, r) dr =

∫ g(T )

0
h(T , r) dr .

2. Estimates for the existence intervals

To estimate the existence interval of the solution of Eq. (1.1), we separate this section into
three parts: E(0) < 0, E(0) = 0 and E(0) > 0. Here, the existence interval T of u means
that u exists and makes sense only in the interval [0, T ) so that problem (1.1) possesses the
solution u ∈ C̄2(0, T ).

2.1. Estimates for the existence intervals under E(0)�0

We deal with two cases, E(0) < 0 and E(0) = 0, a′(0) > 0, in this subsection, but the
case E(0) = 0 and a′(0)�0 will be considered in Sections 4 and 5 later. Here we have the
following result:

Theorem 4. If T is the existence interval of the solution u to (1.1) with E(0) < 0, then T is
finite. Further, for a′(0)�0 we have the estimate

T �T ∗
1 = 2

p − 1

∫ J (0)

0

dr√
2

p+1 + E(0)r
2p+2
p−1

(2.1)

for a′(0) < 0,

T �T ∗
2 = 2

p − 1

(∫ �

0
+

∫ �

J (0)

)
dr√

2
p+1 + E(0)r

2p+2
p−1

, (2.2)
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where � = ( 2
p+1

−1
E(0)

)
p−1

2p+2 . Furthermore, if E(0) = 0 and a′(0) > 0, then

T �T ∗
3 := 4

p − 1

a(0)

a′(0)
. (2.3)

Proof. For E(0) < 0, we know that a(0) > 0; otherwise, we obtain a(0)=0, that is, u0 =0.
Then E(0) = u2

1 �0, which contradicts E(0) < 0. In this situation, we separate the proof of
this theorem into two cases: a′(0)�0 and a′(0) < 0.

(i) a′(0)�0. By (1.5) and (1.7) we find that{
a′(t)�a′(0) − (p + 1)E(0)t ∀ t �0,

a(t)�a(0) + a′(0)t − p + 1

2
E(0)t ∀ t �0,

(2.4)

J ′(t) = −p − 1

2

√
2

p + 1
+ E(0)J (t)

2p+2
p−1 �J ′(0) ∀t �0 (2.5)

and

J (t)�a(0)−
p−1

4 − p − 1

4
a(0)−

p+3
4 a′(0)t ∀t �0.

Thus there exists a finite number

T ∗
1 (u0, u1, p)� 4

p − 1

a(0)

a′(0)

such that J (T ∗
1 (u0, u1, p)) = 0 and so a(t) → ∞ as t → T ∗

1 (u0, u1, p). This means that
T �T ∗

1 (u0, u1, p). Now we estimate T ∗
1 (u0, u1, p). By (2.5) and J (T ∗

1 (u0, u1, p)) = 0 we
find that∫ J (0)

J (t)

dr√
2

p+1 + E(0)r
2p+2
p−1

= p − 1

2
t ∀t �0 (2.6)

and hence we obtain estimate (2.1).
(ii) a′(0) < 0. By (2.4), a′(0) < 0 and the convexity of a we can find a unique finite

number t0 = t0(u0, u1, p) such that{
a′(t) < 0 = a′(t0) for t ∈ (0, t0),

a′(t) > 0 for t > t0
(2.7)

anda(t0) > 0. If not, thenu(t0)=0; thus,E(0)=E(t0)=u′(t0)2 �0.Yet, this is a contradiction
to E(0) < 0. Hence, we conclude that

a(t) > 0 ∀t �0, u′(t0) = 0, E(0) = − 2

p + 1
u(t0)

p+1 and

J (t0)
2p+2
p−1 = 2

p + 1

−1

E(0)
.
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After arguments similar to step (i), there exists a T ∗
2 := T ∗

2 (u0, u1, p) such that the
existence interval T of u is bounded by T ∗

2 , that is, T �T ∗
2 . By an analogous argument,

using (2.7), (1.7) and the fact that

J (t0)
2p+2
p−1 = 2

p + 1

−1

E(0)
and J (T ∗

2 ) = 0,

we conclude that

J ′(t)2 = − (p − 1)2

4
E(0)(J (t0)

2p+2
p−1 − J (t)

2p+2
p−1 ) ∀t � t0,

J ′(t)2 = (p − 1)2

4
E(0)(J (0)

2p+2
p−1 − J (t)

2p+2
p−1 ) ∀t ∈ [0, t0],

J ′(t) = −p − 1

2

√
2

p + 1
+ E(0)J (t)

2p+2
p−1 ∀t � t0, (2.8a)

J ′(t) = p − 1

2

√
2

p + 1
+ E(0)J (t)

2p+2
p−1 ∀t ∈ [0, t0], (2.8b)

∫ J (t0)

J (t)

dr√
2

p+1 + E(0)r
2p+2
p−1

= p − 1

2
(t − t0) ∀t � t0, (2.9a)

∫ J (t0)

J (0)

dr√
2

p+1 + E(0)r
2p+2
p−1

= p − 1

2
t0 (2.9b)

and

T ∗
2 = t0 + 2

p − 1

∫ ( 2
p+1

−1
E(0)

)
p−1

2p+2

0

dr√
2

p+1 + E(0)r
2p+2
p−1

. (2.10)

This estimate (2.10) is equivalent to (2.2).
(iii) For E(0) = 0, by (1.6) and a′(0) > 0 we obtain that J ′(0) < 0, J ′′(t) = 0 and J (t) =

a(0)−
p−1

4 −1(a(0) − p−1
4 a′(0)t) ∀t �0. Thus, we conclude that

a(t) = a(0)
p+3
p−1

(
a(0) − p − 1

4
a′(0)t

)− 4
p−1 ∀t �0, (2.11)

and (2.3) is proved. �

2.2. Estimates for the existence intervals under E(0) > 0

In this subsection we consider the case E(0) > 0, and we have the following blow-up
result.
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Theorem 5. If T ∗ is the existence interval of u which solves problem (1.1) with E(0) > 0,
then T ∗ is finite. Further, in case of a′(0) > 0 we have

T ∗ �T ∗
4 (u0, u1, p) = 2

p − 1

∫ J (0)

0

dr√
2

p+1 + E(0)rq+1
. (2.12)

In the case of a′(0) = 0 we have

T ∗ �T ∗
5 (u0, u1, p) = 2

p − 1

∫ ∞

0

dr√
2

p+1 + E(0)rq+1
, (2.13)

where q = p+3
p−1 . For a′(0) < 0 and z(u0, u1, p) given by

z(u0, u1, p) =
∫ √

a(0)

0

dr√
E(0) + 2

p+1 rp+1
, (2.14)

is the zero of a. Further we have

T ∗ �T ∗
6 (u0, u1, p) := (z + T ∗

5 )(u0, u1, p). (2.15)

Proof. The case of a zero for u is deferred to Section 5.
(i) For a′(0) > 0, by (1.6) we have{

kJ ′′(t) = (kJ (t))q,

kJ (0) = ka(0)−
p−1

4 , kJ ′(0) = 1−p
4 ka(0)−

p+3
4 a′(0),

where k := (
p2−1

4 E(0))
p−1

4 and q := p+3
p−1 . Now we set

Ẽ(t) := k2J ′(t)2 − 2

q + 1
(kJ (t))q+1; (2.16)

from some calculations we see that Ẽ(t) is a constant and by using (1.8) we obtain that

Ẽ(t) = (p − 1)2

2p + 2
k2 = Ẽ(0),

(p − 1)2

2p + 2
= J ′(t)2 − 2kq−1

q + 1
J (t)q+1, (2.17)

a′(t)�a′(0) + 2E(0)t > 0 ∀t �0,

J ′(t) < 0 ∀t �0, (2.18)

J ′(t) = −p − 1

2

√
2

p + 1
+ E(0)J (t)q+1 ∀t �0 (2.19)
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and ∫ J (0)

J (t)

dr√
2

p+1 + E(0)rq+1
= p − 1

2
t ∀t �0. (2.20)

By (2.19), there exists a finite number T ∗
4 (u0, u1, p), such that J (T ∗

4 (u0, u1, p)) = 0, and
from (2.20) estimate (2.12) follows easily.

(ii) From a′(0) = 0 = u0, E(0) = u2
1 and (1.8) we obtain

a′(t) = 2E(0)t + 2q

∫ t

0
|u(r)|p+1 dr ∀t �0,

a(t) > 0 ∀t �0; (2.21)

thus, J (t) can be defined for each t > 0 and J ′(t) < 0 ∀t > 0.
Using (1.6), for each ť > 0 we conclude that

J ′(t) = −
√

J ′(ť)2 − (p − 1)2

4
E(0)(J (ť)q+1 − J (t)q+1) ∀t � ť , (2.22)

lim
ť→0

J ′(ť)2 − (p − 1)2

4
u2

1J (ť)q+1 = (p − 1)2

2(p + 1)
; (2.23)

thus after inducing (2.22) and (2.23) the estimate (2.13) follows.
(iii) For a′(0) < 0, by (2.18) we have a′(t)�0 for large t .
Suppose z is the first positive number t so that a′(t)=0; then u(z)=0. Otherwise, u′(z)=0

and E(z) = − 2
p+1 |u(z)|p+1 < 0, which contradicts the assumption E(0) = E(z) > 0. After

the time t = z, same as the procedures given in the proof of (i), using (2.20) we obtain
(2.15). �

2.3. Some properties concerning the existence interval T ∗
1 (u0, u1, p)

In principle, T ∗
1 (u0, u1, p) depends on three variables u0, u1 and p. Set

ck, p := (p + 1)u2
1

2u
p+1
0

;

then

T ∗
1 (u0, u1, p) =

√
q + 1√
p − 1

u
− p−1

2
0 ( q

√
1 − ck, p)−1

∫ q+1
√

1−ck, p

0

dr√
1 − rq+1

and limp→∞ T ∗
1 (u0, u1, p) = 0, limp→1 T ∗

1 (u0, u1, p) = ∞, where q = p+3
p−1 . For conve-

nience, we consider the case u1 = 0,

T ∗
1 (u0, 0, p) =

√
�√

2p + 2
u

− p−1
2

0

�(
p−1

2p+2 )

�(
p

p+1 )
.

Using Maple we obtain the graphs of T ∗
1 (u0, 0, p) below
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Fig. 1. Graph of T ∗
1 (u0, 0, p).
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Fig. 2. Graphs of T ∗
1 , u0 �1.
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Fig. 3. Graphs of T ∗
1 , u0 > 1.

The above graphs show the properties of T ∗
1 (u0, 0, p) (Figs. 1–3).

(1) there exists a constant u∗
0 such that T ∗

1 (u0, 0, p) is monotone decreasing in p for u0 ∈
[u∗

0, 1);
(2) there is a p0 such that T ∗

1 (u0, 0, p) is decreasing in (1, p0) and increasing in (p0, ∞)

provided u0 ∈ [0, u∗
0);
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(3) T ∗
1 (u0, 0, p) is differentiable in its variables; and

(4) for u0 > 1 the existence interval T ∗
1 (u0, 0, p) is decreasing in p.

We now show the validity of statements (3) and (4) using the monotonicity of T ∗
1 (1, 0, p)

for u0 	=0. To prove (1) and (2) we must show the existence of u∗
0 with (�/�p) T ∗

1
(u0, 0, p)�0 for 1 > u0 �u∗

0, that is,

0� p − 1

p + 1
(p + 3)

∫ 1

0
(1 − rq+1)−1/2 dr + 4

∫ 1

0
(1 − rq+1)−3/2rq+1 ln r dr

+ (p − 1)2(ln u0)

∫ 1

0
(1 − rq+1)−1/2 dr ,

thus the existence of u∗
0 can be obtained, provided

p − 1

p + 1
(p + 3)(rq+1 − 1) − 4 ln r > 0 ∀r > 1,

where q = (p + 3)/(p − 1). After some calculations it is easy to obtain the above assertion.
It is very difficult to grasp the property of the existence interval T ∗

1 := T ∗
1 (u0, u1, p),

but for fixed initial data we wish to know how the existence interval varies with p, so now
we consider the existence interval T ∗

1 (0.6, 0.2, p) and list the following tables.

p T ∗
1 (0.6, 0.2, p)

1.001 2001.5
1.004 501.42
1.008 251.42
1.012 168.08

p T ∗
1 (0.6, 0.2, p)

2 3.4135
2.5 2.7698
3 2.4659
3.6497 2.2644

After some computations we obtain

T ∗
1 =

√
2p + 2

p − 1

(
u

p+1
0 − p + 1

2
u2

1

)− p−1
2p+2

∫
q+1

√
1− p+1

2u
p+1
0

u2
1

0

dr√
1 − rq+1

.

By studying the existence interval T ∗
1 , we consider its properties with a′(0)�0 in three

cases:
Case 1: 0 < u

p+1
0 − (p + 1)u2

1/2 < 1. In this situation we find that

(i) for fixed u1,

(5) there exists a constant u∗
0 depending on u1 such that T ∗

1 (u0, u1, p) is monotone
decreasing in p for u0 �u∗

0,
(6) there is a p0 so that T ∗

1 (u0, u1, p) decreases in (1, p0) and increases in (p0, ∞)

provided u0 ∈ [0, u∗
0);

(ii) for fixed u0, the existence interval T ∗
1 (u0, u1, p) decreases in u2

1.

Case 2: u
p+1
0 − (p + 1)u2

1/2 > 1. The existence interval T ∗
1 (u0, u1, p) decreases in p.
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Case 3: u
p+1
0 − (p + 1)u2

1/2 = 1. On the surface

{(u0, u1, p) ∈ R3|up+1
0 − (p + 1)u2

1/2 = 1, p > 1},

we find that

T ∗
1 (u0, u1, p) = T ∗

1 (u0, p) =
√

2p + 2

p − 1

∫ u
−(p−1)/2
0

0

1√
1 − rq+1

dr ,

where q = (p + 3)/(p − 1) and that T ∗
1 (u0, p) is monotone decreasing in u0 and in p.

3. Blow-up rate and blow-up constant

In this section, we study the blow-up rate and blow-up constant for a, a′ and a′′ under
the conditions in Section 2. We obtained the following results.

Theorem 6. If u is the solution of problem (1.1) with one of the following properties that:

(i) E(0) < 0 or
(ii) E(0) = 0, a′(0) > 0 or

(iii) E(0) > 0,

then the blow-up rate of a is 4/(p − 1), and the blow-up constant K1 of a is
p−1
√

4(p − 1)−4(p + 1)2, that is, for m = 1, 2, 3, 4, 5, 6,

lim
t→T ∗

m

(T ∗
m − t)

4
p−1 a(t) = 2

2
p−1 (p + 1)

2
p−1 (p − 1)

− 4
p−1 . (3.1)

The blow-up rate of a′ is (p+3)/(p−1), and the blow-up constant K2 of a′ is 2
2p

p−1 (p+1)
2

p−1

(p−1)
− p+3

p−1 , that is, for m = 1, 2, 3, 4, 5, 6,

lim
t→T ∗

m

(T ∗
m − t)

p+3
p−1 a′(t) = 2

2p
p−1 (p + 1)

2
p−1 (p − 1)

− p+3
p−1 . (3.2)

The blow-up rate of a′′ is (2p +2)/(p −1), and the blow-up constant K3 of a′′ is 2
2p

p−1 (p +
1)

8
p−1 (p − 1)

− 2p+8
p−1 (p + 3), that is, m = 1, 2, 3, 4, 5, 6,

lim
t→T ∗

m

a′′(t)(T ∗
m − t)

2p+2
p−1 = 2

2p
p−1 (p + 3)(p + 1)

2
p−1 (p − 1)

− 2p+2
p−1 . (3.3)
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Proof. (i) Under this condition, E(0) < 0, a′(0)�0 by (2.1), (2.6) and Lemma 4 we obtain∫ J (t)

0

1

T ∗
1 − t

dr√
2

p+1 + E(0)r
2p+2
p−1

= p − 1

2
∀t �0, (3.4)

lim
t→T ∗

1

√
p + 1

2

J (t)

T ∗
1 − t

= p − 1

2
. (3.5)

This identity (3.5) is equivalent to (3.1) for m = 1.
For E(0) < 0, a′(0) < 0 by (2.9a,b) we also have∫ J (t)

0

dr√
2

p+1 + E(0)r
2p+2
p−1

= p − 1

2
(T ∗

2 − t) ∀t � t0. (3.6)

Through Lemma 4 and (3.6), therefore, we obtain (3.1) for m = 2.
Observing (2.5) and (2.8a,b), we find

lim
t→T ∗

m

J ′(t) = − p − 1√
2p + 2

, (3.7)

lim
t→T ∗

m

a′(t)(T ∗
m − t)

p+3
p−1 = 2

2p
p−1 (p + 1)

2
p−1 (p − 1)

− p+3
p−1 , (3.8)

lim
t→T ∗

m

u′(t)2(T ∗
m − t)

2p+2
p−1 = 2

2p
p−1 (p + 1)

2
p−1 (p − 1)

− 2p+2
p−1 (3.9)

for m = 1, 2. Using (1.5) and (3.9) for m = 1, 2, we obtain

lim
t→T ∗

m

a′′(t)(T ∗
m − t)

2p+2
p−1 = (p + 3) lim

t→T ∗
m

u′(t)2(T ∗
m − t)

2p+2
p−1 . (3.10)

Thus, (3.10) and (3.3) are equivalent.
(ii) For E(0) = 0, a′(0) > 0, by (2.11) for m = 1, 2, we obtain

a(t) = a(0)
p+3
p−1

(
p − 1

4
a′(0)

)− 4
p−1 · (T ∗

3 − t) ∀t �0. (3.11)

Therefore, estimates (3.1)–(3.3) for m = 3 follow from (3.11).
(iii) For E(0) > 0, estimates (3.1)–(3.3) for m=4, 5, 6 are similar to the above arguments

(i) in the proof of this theorem. �

Now we consider the property of the blow-up constants K1, K2 and K3. We have

K1(p) = 2
2

p−1 (p + 1)
2

p−1 (p − 1)
− 4

p−1 ,

K2(p) = 2
2p

p−1 (p + 1)
2

p−1 (p − 1)
− p+3

p−1 ,

K3(p) = 2
2p

p−1 (p + 3)(p + 1)
2

p−1 (p − 1)
− 2p+2

p−1 .

Using Maple we have the graphs of K1, K2 and K3 below (Fig. 4).
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Fig. 4. Graphs of K1(p) in thin,K2(p) in medium,K3(p) in thick.

We see that the graphs, Ki(p), i = 1, 2, 3, are all decreasing in p, and Ki(p) tends to
1, as p tends to infinity. The monotonicity of these functions can be obtained after showing
the following inequalities:

p − 1

p + 1
− 2� ln(2p + 2) − 2 ln(p − 1) ∀p > 1,

2p − 2

p + 1
+ 4 ln(p − 1)�2 ln 2 + 2 ln(p + 1) + p + 3 ∀p > 1,

(p − 1)2

p + 3
+ 2p − 2

p + 1
+ 4 ln(p − 1)�2(ln 2) + 2 ln(p + 1) + 2p + 2 ∀p > 1.

These inequalities are easy to verify, so we omit the arguments.

4. Global existence and critical point

In this section we study the following case that E(0) = 0 and a′(0) < 0.
Here, we consider the global existence of the solutions to problem (1.1) in the following

sense:

J (t) > 0, a′(t)−2 > 0, a′′(t)−2 > 0 ∀t ∈ [0, T ],
where T is the time that u exists; in other words, in any finite time u does not blow up in
C2 sense, even though u blows up in a finite time in some sense, for example, Ck or Lk for
some k�3.

By Bellman [1, p. 151] every positive proper solution of problem (1.1) has the asymptotic
form

u(t) ∼ ct−2/(p−1).

This result could be obtained and will be explained below only in the case where
E(0) = 0 and a′(0) < 0. Under the condition it is easy to see that J (t) > 0 ∀t ∈ (0, T )
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and

a(t) = a(0)
p+3
p−1 (a(0) − p − 1

4
a′(0)t)

−4
p−1 ∀t ∈ (0, T ),

a′(t)−2 = a(0)
−2p−6
p−1 a′(0)−2

(
a(0) − p − 1

4
a′(0)t

) 2p+6
p−1

> 0 ∀t ∈ (0, T ),

a′′(t)−2 = 16

(p + 3)2 a(0)
−2p−6
p−1 a′(0)−4

(
a(0)−p−1

4
a′(0)t

) 4p+4
p−1

>0 ∀t∈(0, T ).

Hence we find the limit limt→∞ a(t) = 0, limt→∞ a′(t) = 0, limt→∞ a′′(t) = 0 and

lim
t→∞ t

4
p−1 a(t) = a(0)

p+3
p−1

(
p − 1

−4
a′(0)

)− 4
p−1

, (4.1)

lim
t→∞ t

p+3
p−1 a′(t) = a(0)

p+3
p−1 a′(0)

(
p − 1

−4
a′(0)

)− p+3
p−1

, (4.2)

lim
t→∞ t

2p+2
p−1 a′′(t) = p + 3

4
a(0)

p+3
p−1 a′(0)2

(
p − 1

−4
a′(0)

)− 2p+2
p−1

. (4.3)

Theorem 7. Suppose that u is the solution of problem (1.1) with E(0) = 0 and a′(0) < 0;
then u can be defined globally and estimates (4.1)–(4.3) are valid.

5. Existence of zero and triviality

In this section, we discuss the triviality of the solution for problem (1.1) in the case where
E(0) = 0, a′(0) = 0.

Proposition. If u is the solution of problem (1.1) with p > 1, E(0) = 0 and a′(0) = 0, then
u must be null.

Proof. Under the conditions E(0)=0, a′(0)=0 using (1.5), it is easy to see that u0=0=u1;
herein, the supremum below exists

t1 := sup{� : a(t)�1 ∀t ∈ [0, �]},

and then

(p + 1)u′(t)2 = 2|u(t)|p+1 �0,

a′′(t) = (p + 3)u′(t)2 = 2
p + 3

p + 1
· |u(t)|p+1 = 2

p + 3

p + 1
a(t)

p+1
2 .
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By Lemma 2 we conclude that

a′′(t)�(p + 3)a(t), a(t) ≡ 0 ≡ u(t) in [0, t1]. �

Proceeding with these steps we obtain the assertion of this theorem.
For the case where E(0) > 0 > a′(0), we have the result.

Theorem 8. Suppose that u is the solution to problem (1.1) with E(0) > 0 > a′(0) and
z(u0, u1, p) given by

z(u0, u1, p) =
∫ √

a(0)

0

dr√
E(0) + 2

p+1 rp+1
; (5.1)

then z(u0, u1, p) is the zero of a. Further, we have

lim
t→z−(u0,u1,p)

a(t)(z(u0, u1, p) − t)−2 = E(0)2, (5.2)

lim
t→z−(u0,u1,p)

(z(u0, u1, p) − t)−1a′(t) = −2E(0)3/2, (5.3)

lim
t→z−(u0,u1,p)

a′′(t) = 2E(0). (5.4)

Proof. (1) For E(0) > 0 > a′(0), by (1.4) we obtain that

a′(t) = −2

√
E(0)a(t) + 2

p + 1
a(t)

p+3
2 , (5.5)

z(u0, u1, p) =
∫ a(0)

0

dr

2
√

E(0)r + 2
p+1 r

p+3
2

, (5.6a)

t =
∫ a(0)

a(t)

dr

2
√

E(0)r + 2
p+1 r

p+3
2

(5.6b)

and

z(u0, u1, p) =
∫ a(0)

0

dr

2
√

r

√
E(0) + 2

p+1 r
p+1

2

=
∫ √

a(0)

0

dr√
E(0) + 2

p+1 rp+1

=
(

p + 1

2

) 1
p+1

E(0)
1−p

2p+2

∫ (
p+1

2 E(0))
−1
p+1

√
a(0)

0

dr√
1 + rp+1

. (5.7)

Thus, (5.1) is proved.
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(2) From claim (5.2), by (5.6), (5.7) and Lemma 3 we obtain

z(u0, u1, p) − t =
∫ a(t)

0

dr

2
√

E(0)r + 2
p+1 r

p+3
2

=
(

p + 1

2

) 1
p+1

E(0)
1−p

2p+2

∫ (
p+1

2 E(0))
−1
p+1

√
a(t)

0

dr√
1 + rp+1

,

(z(u0, u1, p) − t)−1
∫ (

p+1
2 E(0))

−1
p+1

√
a(t)

0

dr√
1 + rp+1

= 1

(
p+1

2 )
1

p+1 E(0)
1−p

2p+2

,

1

(
p+1

2 )
1

p+1 E(0)
1−p

2p+2

= lim
t→z−(u0,u1,p)

(z(u0, u1, p) − t)−1
∫ (

p+1
2 E(0))

−1
p+1

√
a(t)

0

dr√
1 + rp+1

= lim
t→z−(u0,u1,p)

(z(u0, u1, p) − t)−1
(

p + 1

2
E(0)

) −1
p+1 √

a(t)

× lim
t→z−(u0,u1,p)

∫ 1

0

ds√
1 + ((

p+1
2 E(0))

−1
p+1

√
a(t)s)p+1

= lim
t→z−(u0,u1,p)

(z(u0, u1, p) − t)−1
(

p + 1

2
E(0)

) −1
p+1 √

a(t). (5.8)

Thus we obtain conclusion (5.2).
(3) Using (5.8) and (5.5) we obtain that

lim
t→z−(u0,u1,p)

(z(u0, u1, p) − t)−1a′(t)

= −2 lim
t→z−(u0,u1,p)

√
a(t)(z(u0, u1, p) − t)−2

(
E(0) + 2

p + 1
a(t)

p+1
2

)

= −2E(0)
3
2 .

(4) Applying (1.5), (5.2) and (5.3), we find

lim
t→z−(u0,u1,p)

a(t)(z(u0, u1, p) − t)−2a′′(t)

= p + 3

4
lim

t→z−(u0,u1,p)
(a′(t)(z(u0, u1, p) − t)−1)2

− (p + 1)E(0) lim
t→z−(u0,u1,p)

a(t)(z(u0, u1, p) − t)−2

= 2E(0)3.

Hence (5.4) is proved. �
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6. Stability and instability

We now consider the applications of the above theorems to the stability theory for the
problem{

u′′(t) = |u(t)|p−1u(t),

u(0) = �1, u
′(0) = �2.

(∗)

We say that problem (∗) is stable under condition F, if any nontrivial global solution
u ∈ C2(R+) of (∗) under the condition F satisfies

‖u‖C2 → 0 for |�1| + |�2| → 0.

According to Theorems 4–8 we have the following result.

Corollary 9. Problem (∗) with p > 1 is stable under Eu(0) = 0, �1�2 < 0 and unstable
under one of the following:

Eu(0) < 0, (i)

Eu(0) = 0 < �1�2, (ii)

Eu(0) > 0. (v)

Theorems 4–8 may be summarized in the following tables:

Energy E(0) < 0 E(0) = 0 E(0) > 0

T

(i) a′(0)�0,

T �T ∗
1 .

(ii) a′(0) < 0,

T �T ∗
2 .

(i) a′(0) > 0,

T �T ∗
3 .

(ii) a′(0) < 0,

T = ∞.

(iii) a′(0) = 0,

T = ∞, u ≡ 0.

(i) a′(0) > 0,

T �T ∗
4 .

(ii) a′(0) < 0,

T �z + T ∗
5 .

(iii) a′(0) = 0,

T �T ∗
5 .

Rn, Kn n + 4
p−1 , Kn n + 4

p−1 , Kn n + 4
p−1 , Kn

Zero Non a′(0) = 0, u ≡ 0 a′(0) < 0, z

where T := Life-span, Rn := Blow-up rate for a(n), Kn := Blow-up constant for a(n),
n = 0, 1, 2, and

T ∗
1 = 2

p − 1

∫ a(0)−(p−1)/4

0

dr√
2

p+1 + E(0)r(2p+2)/(p−1)
, T ∗

3 = 4

p − 1

a(0)

a′(0)
,

T ∗
2 = 2

p−1

(∫ �

0
+

∫ �

J (0)

)
dr√

2
p+1 + E(0)r(2p+2)/(p−1)

, � =
(

− 2

(p + 1)E(0)

) p−1
2p+2

,
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T ∗
4 = 2

p − 1

∫ a(0)−(p−1)/4

0

dr√
2

p+1 + E(0)r(2p+2)/(p−1)
= T ∗

5 ,

z(u0, u1, p) =
∫ √

a(0)

0

dr√
E(0) + 2

p+1 rp+1
, K1 = 2

2
p−1 (p + 1)

2
p−1 (p − 1)

− 4
p−1 ,

K2:=2
2p

p−1 (p+1)
2

p−1 (p − 1)
− p+3

p−1 , K3 := 2
2p

p−1 (p + 3)(p + 1)
2

p−1 (p − 1)
− 2p+2

p−1 .

Part B: Null, critical point and asymptotic behavior at infinity of solutions for Eq.
(1.1) under p < 1

Before studying the properties of solutions for the differential equation (1.1) we gather
some results in the situation where Eu(0) = 0.

(i) For u0 > 0 and u1 > 0, we have

u(t) =
(

u
1−p

2
0 + 1 − p

2

√
2

p + 1
t

) 2
1−p

and

t
2

p−1 u(t) →
(

1 − p

2

√
2

p + 1

) 2
1−p

as t → ∞.

(ii) For u0 > 0 and u1 < 0, the solutions of (1.1) can be given as

uc(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
u

1−p
2

0 − 1 − p

2

√
2

p + 1
t

) 2
1−p

, t ∈ [0, T0],
0, t ∈ [T0, T0+c],

±
(

(1−p)2

2p+2

) 1
1−p

(t−T0−c)
2

1−p , t �T0 + c,

where c is any positive real number and T0 = 2
1−p

√
p+1

2 u
1−p
0 , and also

t
2

p−1 u(t) →
(

1 − p

2

√
2

p + 1

) 2
1−p

as t → ∞.
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Fig. 5. Graph of (
1−p

2

√
2

p+1 )
2

1−p .

(iii) For u0 < 0 and u1 > 0, the solutions of (1.1) can be given as (Fig. 5).

uc(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0

⎛
⎝1 − 1 − p

2

√
2

p + 1
(−u0)

p − 1

2 t

⎞
⎠

2

1 − p

, t ∈ [0, T1],

0, t ∈ [T1, T1 + c],

±
(

(1 − p)2

2p + 2

) 1
1−p

(t − T1 − c)
2

1−p , t �T1 + c,

where c is any positive real number and T1 = 2
1−p

√
p+1

2 (−u0)
1−p, and also

t
2

p−1 |u(t)| →
(

1 − p

2

√
2

p + 1

) 2
1−p

as t → ∞.

(iv) For u0 < 0 and u1 < 0, the solutions of (1.1) can be given as

u(t) = u0

(
1 + 1 − p

2

u1

u0
t

) 2
1−p

and also

t
2

p−1 u(t) → −
(

1 − p

2

√
2

p + 1

) 2
1−p

as t → ∞.

7. Null point and asymptotic behavior at infinity of the solutions for Eq. (1.1)
under Eu(0) > 0

In this section, we discuss the case Eu(0) > 0 and obtain the following result concerning
the null point (zero) and asymptotic behavior at infinity of the solutions for Eq. (1.1):
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Theorem 10. Suppose that T ∗ is the existence interval of u of the solution of problem (1.1)
with Eu(0) > 0 and u2

0 > 0. Then for

(1) u0 > 0 and u1 < 0, there exists a constant Z0 so that T ∗ �Z0 and limt→Z−
0

u(t) = 0,

limt→Z−
0

u′(t) = −√
Eu(0) and limt→Z−

0
u′′′(t)−1 = 0. Moreover,

Z0 =
∫ u0

0

dr√
Eu(0) + 2

p+1 rp+1
, (7.1)

lim
t→Z−

0

u′′′(t)(Z0 − t)1−p = −pEu(0)
p
2 . (7.2)

(2) u0 > 0 and u1 > 0,

lim
t→∞ u(t)t

− 2
1−p =

(
1 − p

2

√
2

p + 1

) 2
1−p

. (7.3)

(3) u0 < 0 and u1 > 0, there exists a constant Z1 so that T ∗ �Z1 and limt→Z−
1

u(t) = 0,

limt→Z−
1

u′(t) = √
Eu(0) and also limt→Z−

1
u′′′(t)−1 = 0. Moreover,

Z1 =
∫ u0

0

dr√
Eu(0) + 2

p+1 rp+1
, (7.4)

lim
t→Z−

1

u′′′(t)(Z1 − t)1−p = pEu(0)
p
2 . (7.5)

(4) u0 < 0 and u1 < 0,

lim
t→∞ u(t)t

− 2
1−p = −

(
1 − p

2

√
2

p + 1

) 2
1−p

. (7.6)

Proof. (1) For u0 > 0 and u1 < 0, after some calculations we obtain

u′(t) = −
√

Eu(0) + 2

p + 1
|u|(t)p+1 � −

√
2

p + 1
|u|(t)p+1 ∀t ∈ [0, T ∗),

u(t)�
(

u
1−p

2
0 − 1 − p

2

√
2

p + 1
t

) 2
1−p

∀t ∈ [0, T ∗); (7.7)

thus there exists a constant Z0 so that T ∗ �Z0 and limt→Z0 u(t) = 0.



1044 M.-R. Li / Nonlinear Analysis 64 (2006) 1025–1056

By (7.7) and Lemma 3 we conclude that limt→Z−
0

u′(t) = −√
Eu(0) and

t =
∫ u0

u(t)

dr√
Eu(0) + 2

p+1 rp+1
∀t ∈ [0, T ∗),

Z0 = lim
t→Z0

∫ u0

u(t)

dr√
Eu(0) + 2

p+1 rp+1
=

∫ u0

0

dr√
Eu(0) + 2

p+1 rp+1
,

lim
t→Z−

0

u′′′(t)(t − Z0)
1−p = p lim

t→Z−
0

(
u(t)

t − Z0

)p−1

u′(t) = pEu(0)
p
2 .

Therefore (7.1) and (7.2) are proved.
(2) For u0 > 0 and u1 > 0 we have

u′(t) =
√

Eu(0) + 2

p + 1
u(t)p+1 �

√
2

p + 1
u(t)p+1 ∀t �0,

u(t)
1−p

2 �u
1−p

2
0 + 1 − p

2

√
2

p + 1
t ∀t �0. (7.8)

On the other hand,

u′(t)�
√

2

p + 1

(
u(t) +

(
p + 1

2
Eu(0)

) 1
p+1

) p+1
2

∀t �0,

(
u(t) + p+1

√
p + 1

2
Eu(0)

) 1−p
2

:= w(t)�w(0)
1 − p

2

√
2

p + 1
t ∀t �0. (7.9)

From (7.8) and (7.9), estimate (7.3) follows.
(3) Similar to the above arguments we can obtain results (7.4)–(7.6). �

8. Critical point and asymptotic behavior at infinity of the solutions for Eq. (1.1)
under Eu(0) < 0

In this section we discuss the case Eu(0) < 0. Similar to the above arguments proving
Theorem 10 we have the following result on critical point and asymptotic behavior at infinity
of the solutions for Eq. (1.1):

Theorem 11. Suppose that u is a solution of problem (1.1) with Eu(0) < 0. Then for

(1) u0 > 0, u1 > 0,

lim
t→∞ u(t)t

− 2
1−p =

(
1 − p

2

√
2

p + 1

) 2
1−p

:= AZ(p); (8.1)
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(2) u0 > 0, u1 < 0, there exists a constant Z2 so that limt→Z2 u′(t) = 0 and

Z2 = p+1

√
p + 1

2
(−Eu(0))

1−p
2p+2

∫ (
p+1
−2 Eu(0))

−1
p+1 u0

1

dr√
rp+1 − 1

; (8.2)

(3) u0 < 0, u1 < 0,

lim
t→∞ u(t)t

− 2
1−p = −

(
1 − p

2

√
2

p + 1

) 2
1−p

; (8.3)

(4) u0 < 0, u1 > 0, there exists a constant Z3 so that limt→Z3 u′(t) = 0 and

Z3 = p+1

√
p + 1

2
(−Eu(0))

1−p
2p+2

∫ (
p+1
−2 Eu(0))

−1
p+1 u0

1

dr√
rp+1 + 1

. (8.4)

Proof. (1) For u0 > 0 and u1 > 0, after some calculations we obtain that

u′(t)�
√

2

p + 1
u(t)p+1 ∀t �0, (8.5)

u(t)�
(

u
1−p

2
0 + 1 − p

2

√
2

p + 1
t

) 2
1−p

∀t �0, (8.6)

u′(t)�

√√√√ 2

p + 1

(
u(t) −

(
p + 1

2
|Eu(0)|

) 1
p+1

)p+1

∀t �0

and

(
u(t)− p+1

√
p+1

2
|Eu(0)|

) 1−p
2

:= w(t)�w(0)+1−p

2

√
2

p+1
t ∀t �0. (8.7)

Together with (8.6) and (8.7) we obtain (8.1).
(2) For u0 > 0, u1 < 0, we have

u′(t)� −
√

2

1 + p
u(t)

p+1
2 ,

u(t)
1−p

2 �u
1−p

2
0 − 1 − p

2

√
2

1 + p
t ,

u′(t)� −
√

2

p + 1

(
u(t) −

(
−p + 1

2
Eu(0)

) 1
p+1

) p+1
2

(8.8)
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Fig. 6. Graph of AZ(p), p ∈ [0, 0.6].

and (
u(t) − p+1

√
p + 1

2
|Eu(0)|

) 1−p
2

= w(t)�w(0) − 1 − p

2

√
2

p + 1
t ; (8.9)

thus there exists a constant Z2 so that

u(Z2) =
(

−p + 1

2
Eu(0)

) 1
p+1

(8.10)

and limt→Z2 u′(t) = 0. By (8.8), (8.10) and Lemma 3 we conclude that

t =
∫ u0

u(t)

dr√
Eu(0) + 2

p+1 rp+1
∀t ∈ [0, T ∗),

Z2 =
∫ u0

(− p+1
2 Eu(0))

1
p+1

dr√
Eu(0) + 2

p+1 rp+1
. (8.11)

Estimates (8.11) and (8.2) are equivalent.
(3) Similar to the above arguments it results in estimates (8.3) and (8.4). �

Property of AZ(p):

We have seen that AZ(p) = (
1−p

2

√
2

p+1 )
2

1−p and the graph using Maple (Figs. 6 and 7).

As the graph indicates, AZ(p) is decreasing in p, since

d

dp

(
1 − p

2

√
2

p + 1

) 2
1−p

=
√

2

1 − p

√
1

1 + p

(√
2

p + 1

1 − p

2

) 2
1−p

−1

×
(

ln

√
2

p + 1

(
1 − p

2

)
− p + 3

2(p + 1)

)

and then dAZ(p)
dp

�0 for all p ∈ (0, 1).
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Fig. 7. Graph of AZ(p), p�0.6.

Part C: Regularity of solutions to problem (1.1) with p > 1 and the blow-up
constants of u(n)

In this section, we study the blow-up behavior of u(n) and the regularity of the solution
u of the nonlinear equation (1.1) as p > 1. If u blows up at finite time T ∗, |u(t)| becomes
very large in the neighborhood of T ∗, and u(t) retains the same sign in the neighborhood
of T ∗; thus we study the above-mentioned phenomena only for the positive solutions.

9. Regularity of solution to Eq. (1.1), p ∈ N

In this section, we study the regularity of the positive solution u of the nonlinear equation
(1.1) as p ∈ N. Using (1.4) we have

u′(t)2 = E(0) + 2

p + 1
u(t)p+1, (9.1)

where E(0) = u2
1 − 2

p+1u
p+1
0 .

9.1. Regularity of solution to Eq. (1.1) with p ∈ N

Now, considering the regularity of the positive solution u of problem (1.1) with p ∈ N,
we have the following results:

Theorem 12. If u is the positive solution of problem (1.1) with the existence interval T ∗
and p ∈ N, then u ∈ Cq(0, T ∗) for any q ∈ N and

u(2n) =
[( Cn0

p+1 )]∑
i=0

Eniu
Cni , (9.2)

u(2n+1) =
[( Cn0

p+1 )]∑
i=0

EniCniu
Cni−1u′ =

[( Cn0
p+1 )]∑
i=0

Oniu
Cni−1u′ (9.3)
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for a positive integer n, where [( Cn0
p+1 )] denotes the Gaussian integer number of Cn0

p+1 ,

Cni = (n − i)(p + 1) − 2n + 1, Oni = EniCni, E00 = 1,

En0 = O(n−1)0

[(
2

p + 1
(C(n−1)0 − 1) + 1

)]

= E(n−1)0C(n−1)0

[(
2

p + 1
(C(n−1)0 − 1) + 1

)]
,

En(n−1) = O(n−1)(n−2)(C(n−1)(n−2) − 1)E(0)

= E(n−1)(n−2)C(n−1)(n−2)(C(n−1)(n−2) − 1)E(0)

and

Enk = O(n−1)(k−1)(C(n−1)(k−1) − 1)E(0) + O(n−1)k

[(
2

p + 1
(C(n−1)k − 1) + 1

)]
= E(n−1)(k−1)C(n−1)(k−1)(C(n−1)(k−1) − 1)E(0)

+ E(n−1)kC(n−1)k

[(
2

p + 1
(C(n−1)k − 1) + 1

)]
,

for a positive integer k and 0 < k < n.

Proof. Let vn be the nth derivative of u, that is, vn := u(n); then vn
0 = un, v0 = u, v1 = u′,

v2 = u′′, v2
1 = (u′)2. Now let us use mathematical induction to prove (9.2). When n = 1, we

have

v2 =
[( C10

p+1 )]∑
i=0

E1iu
C1i = E10u

C10 = v
p
0

and

C00 = (0 − 0)(p + 1) − 2 × 0 + 1 = 1, C10 = p,

E10 = E00C00

[(
2

p + 1
(C00 − 1) + 1

)]
= 1.

Suppose that n ∈ N and v2n = ∑[( Cn0
p+1 )]

i=0 Eni · v
Cni

0 . Then by (9.1) we obtain

v2n+1 =
[( Cn0

p+1 )]∑
i=0

EniCniv
Cni−1
0 v1,

v2n+2 =
[( Cn0

p+1 )]∑
i=0

EniCniv
Cni−1
0 v2 +

[( Cn0
p+1 )]∑
i=0

EniCni(Cni − 1)v
Cni−2
0 v2

1,
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v2n+2 =
[( Cn0

p+1 )]∑
i=0

Oni

[(
2

p + 1
(Cni − 1) + 1

)]
v

Cni+p−1
0

+
[( Cn0

p+1 )]∑
i=0

Oni(Cni − 1)E(0)v
Cni−2
0

=
[( Cn0

p+1 )]∑
i=0

Oni

[(
2

p + 1
(Cni − 1) + 1

)]
v

C(n+1)i

0

+
[( Cn0

p+1 )]∑
i=0

Oni(Cni − 1)E(0)v
C(n+1)(i+1)

0

= On0

[(
2

p + 1
(Cn0 − 1) + 1

)]
v

C(n+1)0
0 + On0(Cn0 − 1)E(0)v

C(n+1)1
0

+ On1

[(
2

p + 1
(Cn1 − 1) + 1

)]
v

C(n+1)1
0 + On1(Cn1 − 1)E(0)v

C(n+1)2
0

+ On2

[(
2

p + 1
(Cn2 − 1) + 1

)]
v

C(n+1)2
0 + · · ·

+ O
n[( Cn0

p+1 )](Cn[( Cn0
p+1 )] − 1)E(0)v

C
(n+1)([( Cn0

p+1 )]+1)

0 .

Hence

v2n+2 =
[( C(n+1)0

p+1 )]∑
i=0

E(n+1)i · v
C(n+1)i

0 ,

which completes the induction steps, and we obtain (9.2). Using (9.2), we obtain (9.3). �

9.2. The properties concerning u(n)

Drawing the graphs of the u(n) is not easy, so in this section we choose a special index
p = 2.

We consider only the properties of the solution u for the equation{
u′′ = u2,

u(0) = 1, u′(0) = √
2/3,

to the case E(0) = 0. The solution of the above equation can be solved explicitly

u(t) = 6

(
√

6 − t)2

and this yields the graphs of u, u′, u′′, u(3) and u(4) below (Fig. 8).
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Fig. 8. Graphs of u in thick solid lines, u′ in medium dots, u′′ in thin solid, u(3) in thin dash, and u(4) in thin dots.

With the aid of a graph with Maple we find that the nth derivative u(n) is smooth and that
the blow-up rate of u(n) is increasing in n. Here we do not give a rigorous proof; we will
illustrate this in Section 11.

10. Regularity of solution to Eq. (1.1), p ∈ Q − N

According to the preceding section we obtain that the positive solution u ∈ Cq(0, T ) of
(1.1) with p ∈ N for any q ∈ N. In this section, we reconsider Eq. (1.1) with p ∈ Q − N.

Obviously, if we obviate the possibility of u(t) = 0, we have the following results:
Except the null points of u, u(q) is differentiable for all q ∈ N. We have

Theorem 13. If u is the positive solution of problem (1.1) with E(0) > 0, a′(0)�0, p ∈
Q − N, p�1, then u ∈ Cq(0, T ) for any q ∈ N. Further, we have

u(2n)(t) =
n−1∑
i=0

Eniu
Cni (t), (10.1)

u(2n+1)(t) =
n−1∑
i=0

EniCniu
Cni−1(t)u′(t) =

n−1∑
i=0

Oniu
Cni−1(t)u′(t). (10.2)

Proof. Same as the procedures given in the proof of Theorem 12, let us prove (10.1) and
(10.2) through mathematical induction. If z is the null point (zero) of u, then

lim
t→z

ucni (t)−1 = 0

for

i >
n(p − 1) + 1

p + 1
= Cn0

p + 1

since Cni < 0, for i > Cn0
p+1 . By Theorem 5, we know that u has a null point only in the case

a′(0) < 0. Hence, we conclude that u ∈ Cq(0, T ) for any q ∈ N. �
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Fig. 9. u′′ = u2, u(0) = −1 with u′(0) = 1 in dots u′(0) = −1 in line.
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Fig. 10. u′′ = u2, u(0) = 0, u′(0) = −1.

Similarly, by the same arguments above, we also have a result as follows:

Theorem 14. If u is the positive solution of problem (1.1) with p ∈ Q−N, p�1, E(0) > 0
and a′(0) < 0, then u ∈ C[(p)]+2(0, T ), where [(p)] indicates the Gaussian integer number
of p. Further, we have

u(2n)(t) =
n−1∑
i=0

Eniu
Cni (t) for n�

[(p

2

)]
+ 1, (10.3)

u(2n+1)(t) =
n−1∑
i=0

EniCniu
Cni−1(t)u′(t)

=
n−1∑
i=0

Oniu
Cni−1(t)u′(t) for n�

[(p

2

)]
+ 1. (10.4)

Proof. Same as the proof of Theorem 13, we also obtain identities (10.3) and (10.4). By
Theorem 5, we know that u has a null point (zero) in the case a′(0) < 0. (Figs. 9 and 10). If
z(u0, u1, p) is the null point of u, then

lim
t→z−(u0,u1,p)

u−cni (t) = 0 for Cni < 0.
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Fig. 11. Graphs of u in solid, u′ in dash, u′′ in dots.

Hence, for a′(0) < 0, we should find the range of n with Cni �0 as i = n − 1, and then
u(2n) exists only in such a situation. Here

Cni = (p + 1)(n − i) − 2n + 1.

Let Cn(n−1) = (p + 1)(n − (n − 1)) − 2n + 1�0; then we obtain that n� p
2 + 1. Since n

is an integer, we have n�
[(p

2

)] + 1.
Now u(2n) exists for n�[(p

2 )] + 1 in the case of a′(0) < 0; thus we obtain that u ∈
C[(p)]+2(0.T ). �

Example 10.1. Here we wish to draw the graphs of u(n) for p ∈ Q − N, but it is not easy,
so we choose a special index p = 7

3 . We consider the properties of the solution u to the case
E(0) > 0 for the equation{

u′′ = u
7
3 ,

u(0) = −1, u′(0) = 1.

Since the solution of the above equation cannot be solved explicitly, we solve this ODE
numerically. We have the graphs of u, u′, u′′, u(3) u(4) and u(5) below.

By Theorem 4, we know that u ∈ C4(0, T ). With the help of the graph with Maple, we
find the null point of u (Fig. 11) t0 ∼ 1.4 and u(5)(t) goes to infinity as t tends to 1.4 (Fig.
12). From the graph we know that u(5)(t) does not exist at t = t0. The blow-up rate of u(n)

is increasing in n. This will be illustrated in the next section.

11. The blow-up rate and blow-up constant for u(n)

Finding out the blow-up rate and blow-up constant of u(n) of Eq. (1.1) is our main result:

Theorem 15. If u is the solution of problem (1.1) with one of the following properties:

(i) E(0) < 0 or
(ii) E(0) = 0, a′(0) > 0 or

(iii) E(0) > 0,
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Fig. 12. Graphs of u(3) in solid, u(4) in dash, u(5) in dots.

then the blow-up rate of u(2n) is 2
p−1 + 2n, and the blow-up constant of u(2n) is |En0

(
√

2(P+1)
p−1 )

2
p−1 +2n|, that is, for n ∈ N, m ∈ {1, 2, 3, 4, 5, 6},

lim
t→T ∗

m

u(2n)(t)(T ∗
m − t)

2
p−1 +2n = (±1)Cn0En0

(√
2(P + 1)

p − 1

) 2
p−1 +2n

:= K2n. (11.1)

The blow-up rate of u(2n+1) is 2
p−1 + 2n + 1, and the blow-up constant of u(2n+1) is

∣∣∣∣∣∣En0Cn0

√
2

p + 1

(√
2(P + 1)

p − 1

) 2
p−1 +2n+1

∣∣∣∣∣∣ ,

that is, for n ∈ N, m ∈ {1, 2, 3, 4, 5, 6},

lim
t→T ∗

m

u(2n+1)(t)(T ∗
m − t)

2
p−1 +2n

= (±)Cn0En0Cn0

√
2

p + 1

(√
2(P + 1)

p − 1

) 2
p−1 +2n+1

:= K2n+1, (11.2)

where

Cn0 = (p − 1)n + 1,

En0 = �n−1
i=0

[
2(p − 1)2i2 + (p − 1)i

p + 1
+ (p − 1)i + 1

]
.

Proof. Under condition (i), E(0) < 0, a′(0)�0 by (2.6) and (2.1), we obtain

∫ J (t)

0

1

T ∗
1 − t

dr√
2

p+1 + E(0)r
2p+2
p−1

= p − 1

2
∀t �0. (11.3)
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Using Lemma 3 and (2.6), we obtain limt→T ∗
1

√
p+1

2
J (t)
T ∗

1 −t
= p−1

2 ; in other words,

lim
t→T ∗

1

a(t)(T ∗
1 − t)

4
p−1 =

(√
2p + 2

p − 1

) 4
p−1

, (11.4)

and then

lim
t→T ∗

1

u(t)(T ∗
1 − t)

2
p−1 = ±

(√
2p + 2

p − 1

) 2
p−1

. (11.5)

Here Cni =p + (n− 1 − i)(p + 1)− 2(n− 1); hence, we have Cni > Cnj as i < j . From
(10.1) and (11.5), it follows that

lim
t→T ∗

1

u(2n)(t)(T ∗
1 − t)

2
p−1 ×Cn0 = (±1)Cn0En0

(√
2p + 2

p − 1

) 2
p−1 ×Cn0

.

Since 2
p−1 × Cn0 = 2

p−1 + 2n, we obtain (11.1) for m = 1.
By (2.5), (11.4) and (10.2) we find that

lim
t→T ∗

1

J ′(t) = − p − 1√
2p + 2

, (11.6)

2
√

2√
p + 1

= lim
t→T ∗

1

(a(t)(T ∗
1 − t)

4
p−1 )−

p−1
4 −1 · lim

t→T ∗
1

a′(t)(T ∗
1 − t)

4
p−1 × p+3

4 ,

lim
t→T ∗

1

u′(t)(T ∗
1 − t)

2
p−1 +1 = ±

√
2

p + 1

(√
2p + 2

p − 1

) 2
p−1 +1

(11.7)

and

lim
t→T ∗

1

u(2n+1)(t)(T ∗
1 − t)

2
p−1 Cn0+1

= lim
t→T ∗

1

n−1∑
i=0

EniCniu
Cni−1(t) · u′(t) · (T ∗

1 − t)
2

p−1 Cn0+1

= lim
t→T ∗

1

En0Cn0u
Cn0−1(t) · u′(t) · (T ∗

1 − t)
2

p−1 Cn0+1

= lim
t→T ∗

1

En0Cn0u
Cn0−1(t) · (T ∗

1 − t)
2

p−1 Cn0−1 · u′ · (T ∗
1 − t)

2
p−1 +1

= (±)Cn0En0Cn0

√
2

p + 1

(√
2p + 2

p − 1

) 2
p−1 Cn0+1

;

thus (11.2) for m = 1 is proved.
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For E(0) < 0, a′(0) < 0, by (2.9a,b) we have

∫ J (t)

0

dr

(T ∗
2 − t)

√
2

p+1 + E(0)r
2p+2
p−1

= p − 1

2
∀t � t0. (11.8)

Using Lemma 3, (11.8) and (10.1), therefore, we obtain estimate (11.1) for m = 2, and
by (2.8a,b) we obtain estimate (11.2) for m = 2. (See Appendix A.2.)

Under (ii), E(0) = 0, a′(0) > 0, we have

a(t) = a(0)
p+3
p−1

(
p − 1

4
a′(0)(T ∗

3 − t)

)− 4
p−1 ∀t �0. (11.9)

In view of (11.9) and (10.1), we obtain estimate (11.1) for m = 3. Also, we have

J ′(t) = J ′(0) ∀t �0 and lim
t→T ∗

1

a(t)−
p−1

4 −1a′(t) = −p − 1

4
a(0)−

p−1
4 −1a′(0).

By (11.9) and (10.2), estimate (11.2) for m = 3 is completely proved. �

Under (iii), the proofs of estimates (11.1) and (11.2) for m = 4, 5, 6 are similar to the
above ones; we omit the arguments. �

Theorem 16. If u is the solution of problem (1.1) with E(0) > 0 and a′(0) < 0, then we
have

lim
t→z−(u0,u1,p)

u(2n)(t)(z(u0, u1, p) − t)−Cn(n−1) = (±)Cn(n−1)En(n−1)E(0)
Cn(n−1)

2

(11.10)

and

lim
t→z−(u0,u1,p)

u(2n+1)(t)(z(u0, u1, p) − t)−Cn(n−1)+1

= En(n−1)Cn(n−1)E(0)Cn(n−1)−1 (11.11)

for n ∈ N, where z is the null point (zero) of u and

Cn(n−1) = p − 2n + 2,

En(n−1) = �n−1
i=0 (p − 2i + 2)(p − 2i + 1)E(0)n−1.
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Proof. For E(0) > 0 and a′(0) < 0, we have

lim
t→z−(u0,u1,p)

u(2n)(t)(z(u0, u1, p) − t)−Cn(n−1)

= lim
t→z−(u0,u1,p)

n−1∑
i=0

Eniu
Cni (t)(z(u0, u1, p) − t)−Cn(n−1)

= lim
t→z−(u0,u1,p)

En(n−1)u
Cn(n−1) (t)(z(u0, u1, p) − t)−Cn(n−1)

= (±1)Cn(n−1)En(n−1)E(0)
Cn(n−1)

2 .

Therefore, (11.10) is proved.
From (10.2), we obtain that

lim
t→z−(u0,u1,p)

u(2n+1)(t)(z(u0, u1, p) − t)−Cn(n−1)+1

= lim
t→z−(u0,u1,p)

n−1∑
i=0

EniCniu
Cni−1(t)u′(t)(z(u0, u1, p) − t)−Cn(n−1)+1

= lim
t→z−(u0,u1,p)

En(n−1)Cn(n−1)u
Cn(n−1)−1(t)u′(t)(z(u0, u1, p) − t)−Cn(n−1)+1

= En(n−1)Cn(n−1)E(0)
Cn(n−1) .

Thus, (11.11) is obtained. �
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