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Abstract

Conventionally, contribution rates for defined-benefit pension plans have been set with reference to funding levels without making
allowance for current market interest rates: for example, on one-year bonds where rates of return on fund assets are not independe
from one year to the next. We consider how to make use of market information to reduce contribution rate volatility. The purpose
of this paper is to provide a model for determining an appropriate contribution rate for defined benefit pension plans under a model
where interest rates are stochastic and rates of return are random.

We extend previous work in two ways. First, we introduce a model for short-term interest rates, which can be used to help control
contribution-rate volatility. Second, we model three assets rather than the usual one (cash, bonds and equities) to allow compariso
of different asset strategies. We develop formulae for unconditional means and variances. We then discuss how variability can be
controlled most efficiently by setting contribution rates with reference to current funding levels and interest rates.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A variety of factors that influence the volatility of the funding level and the contribution rate of a define-benefit (DB)
pension plan including: the amortization straté@girns, 1994; Dufresne, 1989; Bowers et al., 19%8) amortization
period(Dufresne, 1988, 1989; Haberman, 1994; Cairns, 1994; Cairns and Parker fi&@¥gncy of valuatiofCairns,

1994; Haberman, 1993And the delay periofBalzer and Benjamin, 1980; Zimbidis and Haberman, 1988 main
purpose of this paper is to develop further the approach to setting contribution rates as a means of reducing the varianc
of the funding level and contribution rate under DB plans. The choice of spread period for surplus and deficit is one
of the most important ways of control of the stability of the pension plan (see, for exabyfiesne, 1988, 1989;
Haberman, 1994; Cairns and Parker, 1997 this paper, we aim to extend the spread period contribution model and
take advantage of the current market information about interest rates to reduce further the variance of the funding leve
and contribution rate.
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A pension plan’s trustees are responsible for choosing long-term investment advice and the actuary is normall
required to advise the trustees and/or the employers. Thus, actuaries are essential for advising trustees on a vari
of possible investment strategies and for making sensible comments and suggestions on the implementation of tl
distribution of assets for each plan in order to match its anticipated liabilities. The aggregate investment return rat
of the pension fund has been investigated on a model with independent and identically distributed (i.i.d.) return:
(Dufresne, 1988, 1989an AR time-series modéMandl and Mazurova, 1996; Haberman, 1994; Cairns and Parker,
1997) and an MA time-series mod@Haberman, 1997; &lard, 1999)The plausible term structure of AR and MA
time series models was considered@iyang (200Q) These aggregate-return models take the investment strategy as
given exogenously and model the returns on the fund as a univariate times series. In an attempt to make the approc
to investments more realistic we explicitly allow for several assets in the portfolio. Thus, instead of using an aggregat
return rate of the pension plan, we consider a more general investment model where the pension plan’s return is
combination of numbers of the return on the individual assets.

In this paper we extend previous work to include three assets rather than just one: cash, long bonds and equitie
Their returns are underpinned in a coherent way by a model for the one-year, risk-free interest rate and with appropria
correlations between different asset classes. Segtawscribes the basic details of the model and proposes a simple
method for setting the contribution rate which accounts for both the current funding level (as normal) and current
interest rates (new). With this model we are able to derive formulae for unconditional (that is long-run) means anc
variances of the funding level and for the contribution rate. In Se&jeve discuss how the contribution strategy can
be used to control most effectively variability in the funding level and in the contribution rate itself. Here we reintroduce
and extend the concept of efficient contribution strategies.

In Sectiord, we build a super efficient region which minimizes the variance of contribution rate based upon specific
funding constraints and discuss the optimal investment and contribution strategies.

2. A discrete-time model pension plan

We assume that we have three assets: a one-year bond (cash); a long-dated bond; and an equity asset. The log-re
on cash between times- 1 andrz is y(z — 1). The log-return rate on the bondsis{r), and the log-return on the equity
is 8e(7). Thus, investments of 1 at time- 1 will grow to e—1), &bl or &), respectively. We will further assume
that y(r) follows the AR(1) process

() =y + ot — 1) = y) + 0, Z,(2) 2.1)

where theZ ,(r) are independent and identically distributed (i.i.d.) standard normal random variables. This is similar to
a discrete-time version of théasicek (1977)model. Excess returns on the equity asgetly) = de(f) — y(t — 1), are
assumed to be i.i.d. and normally distributed with a mean greater than zero (that is, a positive risk premium). Similarly
the excess returns on a long-dated batgly) = dp(r) — y(r — 1), are also assumed to be i.i.d. and normally distributed
with mean greater than zero. Thus,

Ap(t) = 8p(t) — y(t — 1) = Ap + oby Zy(t) + obZp(t) (2.2)
Ag(t) = 8elt) — ¥(t — 1) = Ae + 0ey Zy(1) + 0enZe(t) + 0eZsel(t) (2.3)

where theZs(r), Z,(r) and Zp(r) are N(0, 1) random variables that are independent of one another and i.i.d. through
time. Bothoe, andoy,, will normally be negative since if the short-term interest ra{e), goes up, then the prices of
long-term bonds or equities typically go down and vice versa.cpizg(r) term allows us to use, in effect, a two-factor
interest-rate model since it allows for a degree of independence from one-year bonds.

Since we are considering a one-year bond, the return frert up tor is known at time — 1 whereas the return on
equities and bonds are only known at tim& his explains the use ofr — 1) for the return on the one-year bond for
t — 1torrather thany(z). In contrast, the unknownp(r) and A¢(z) are used to reflect the unknown elements of returns
on the long-dated bonds and equities. In particular, bond prices at iepend upon the new one-year rate of interest
atz, y(t), through their dependence eg, Z,(t). The extent to which unanticipated returns on equiti€g(1)) reflect
unanticipated changes irfr) appears in the parametey;, with further equity specific risk being reflected through
andZe(z). Further correlation with long bonds is reflected through the pararagier
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Suppose we invest a proportign of the pension fund in equitiep; in long-term bonds and the remaining assets
in one-year bonds. We will assume that the return on the fund frerfh to ¢ can be written as

14i(r) = exply(r — 1) + p1Ae(r) + p24n(?) + p(p1, p2)] (2.4)

where p(p1, p2) = (1/2)p1vee+ (1/2)p2von — (1/2)(p3vee + 2p1p2veb + P3vbb), vee = VarAe(t), vop = VarAp(r)
andvep = Cov(Ae(t), Ap(?)).

Now we can remark that this formula forli(¢) gives an approximation to the return on a buy-and-hold strategy.
However, we can give the formula fori(r) a stronger justification. First, let us assume that the market operates
in continuous time, and that the market is complete in the usual sense of derivative pricing. Then we can show (see
Appendix B) that 1+ i(r) as given for anyp1 and p2 can be replicated given 1 at time- 1 provided we follow a
suitable hedging strategy. The functiefp1, p2) is a second-order adjustment which ensures that the model is arbitrage
free, and we can remark further thapif = 1 andp, = 0 or if p1 = 0 andp, = 1 thenp(p1, p2) = 0, which implies
that 1+ i(r) = exp[y(r — 1) + Ae(r)] and expp(r — 1) + Ap(r)], respectively.

We use the following additional notation which assumes that we have a stable membership in the pension plan with
no salary increases (or we use the total salary roll as the unit of currency):

F(r)isthe fund size at C(r) the contribution rate at B the benefit outgo at the start of each year (assumed constant);
iy the actuarial valuation interest rate; AL the actuarial liability (assumed constant); NC the normal contribution rate
consistent with AL and.

Stability of the membership with no salary increases means that the actuarial liability does not change over time.
Consistency between NC and AL thus means that

= AL =(1+iy)(AL +NC—-B) = NC=B-dAL (2.5)

wheredy, = 1 — vy anduvy = (1 +iy) L.
Annual contributionsC(¢), are allowed to depend not just upon the current funding level (as is normal) but also on
the current level of interest rates. The particular form we use is

/

e — el

(2.6)
whereks, k2 andy’ are the key control factors. kb = 0 then we revert to the classical case (see, for exar@aiens
and Parker, 1997; Haberman, 1994, 199 a continuous-time model with() constant and only one asset class,
Cairns (2000proved that this contribution strategy using the spread method is superior (mathematically optimal) to
other approaches (such as the amortization of losses method used in North America).

The purpose of introducing thie term is to allow adjustment for future expected returns. For examphey)if
is currently high then we might feel that contributions could be lower than would otherwise be the case because of
higher expected returns than normal in the next few years. We will see later if this term allows us to reduce vari-
ability.

Given C(r) we have the usual dynamics f6Y¢):

F(r) = L+ i) F(t — 1)+ C(r — 1) — B]

We now take into account the earlier expression for({r)) and work backwards recursively to get (see, for example,
Cairns and Parker, 1997

Lemma 2.1.

F(t) = (0 — k2) > (1 — ka)* exp(Sy(t.s) + Sp(t. 5))
s=0

ko Y (1 — ka)* exp(Sy(t. s) — y(t — 1—5) + Sp(t. 5))
s=0

where 6y = (k1 — dy)AL provided k1 has been chosen so that this sum converges.
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Within this expression, first,

H‘l ol j=s=1(1 — st g,
S =3 (-1 —J)—(s+1)y+2 . ‘1’; 220+ Y IR0
j=0 j=s+2
= 5,60)—-yt-1)=
andfors > 1

¢j_s(1 - ¢S)Uy

A

5,09 (-1 —s)—sy(rs—l)—sy+z( LA
Jj=s+1

(The latter equality is, of course, zero if we def@;szl() = 0 whens = 0.) Second,

Sp(t,s) =Y prdelt — j)+ D p2An(t — j) + (s + 1)o(p1, p2)
j=0 Jj=0

N N )
=(@+Daotar Zyt—j)+a2d Zelt — j)+ a3y Zo(t — j)
j=0 j=0 J=0
whereag = p14e + p24p + p(p1, p2); @1 = p10ey + P20by; 02 = p10e aNdaz = p10eh+ p20b.
Theorem 2.2. The unconditional expected values and the variances of the fund size and contribution rate are as

follows:

E[F(t)] = (bv — k2)¥1 + ko'

@ E[C(f)] = NC + ky(AL — E[F(1)]) + ko(e" e > T1/A0E7/1=0%) _ 1)
where
W = Z(l — k1)’ exp((s + 1)(y + o) + (1/2)Vi(s))
5s=0
v, = ¢’ Z(l — k1)’ exp((s+ 1)y + @) —y+ (1/2)Va(s))
s=0
and

Vi(s) = Var(S,y(1, s) + Sp(t, 5)); Va(s) = Var(Sy(t, s — 1) + Sp(t, s)).
Thus, E[F(t)] and E[C(t)] are both linear functions of kp but nonlinear functions of k1.
(b) Var[F(1)] = hak3 + hika + ho (2.7)
Var[C(r)] = azk3 + aikz + ag (2.8)
where

ho=Y_ (1—k) ™ Ci(rs) + € Y (1 — k1) T Car,5) — 26" > (1 — ka) T Calr: 5)

r,s=0 r,5=0 r,5=0

o o
hi= =20, > (1—k) ™ Ca(r5) + 20, Y (1 — k1) T Cafr. 5)
r,s=0 r,s=0

o
ha =03 (1— k1) ™ Ca(r 5)
r,s=0



H.-C. Huang, A.J.G. Cairns / Insurance: Mathematics and Economics 38 (2006) 113—131 117

Table 1
Values for ALGy) (Eq.(2.9)) for different values of,, with the corresponding normal contribution rates NE(Eq. (2.5))
iy AL(iy) NC(iv)
0.02 644.87 27.36
0.03 579.73 23.11
0.04 525.39 19.79
0.05 479.66 17.16
0.06 440.85 15.05
o0 o
ao = kho + € Var(e ") + 2k Y (1 - k1) Ca(r) — 2k1€™ Y (1 — k1) Cs(r)
r=0 r=0
o
a; = k%hl — 2k1€” 6y Z(l — k1) Cy(r)
r=0
ap = k%hz
and

C1(r, 5) = Cov(eh et g8 E:s)h+5p(ts)y
Ca(r, 5) = Cov(eW Ny =1=n)+5p(wr) g8y (t)+5p(t.5)y
C3(r, s) = Cov(e ) =y=1=+5p(wr) | @8y(t.5)=y(1=1=5)+5p(t.5))
Ca(r) = Cov(e" N+ gm0y
Cs(r) = Cov(eHEN 1 =1-n+5p(r) g3y
For a proof of this result and more detailed formulae for these functiongmeendix A In these expressions note

thatyr1, Yo, ho, h1, ho, ag, a1, az are all functions ok, but not ofk,.
For the actuarial liability we will assume a simple model (a€airns and Parker, 199Where:

there is one member at each of ages 25-64;
each year one new member aged 25 joins the plan;
no deaths or other decrements before age 65;

on retirement at age 65 each member receives a bendito#i0 which accrues uniformly over the 40 years of
service.

Thus, the accrued or past-service liability, when the valuation rate of interigstss

64 40 .
1- 1
AL =AL(iy) = Y (x = 25)(1+ i) %= [ 40— ( i ) thv (2.9)
x=25 v v
where
1
Vy = 1 T iv .

Sample values for AL(;) are given inTable 1
3. Optimal strategies for the contribution rate

In this section, we will discuss how to make the best use of current market interest rates to control variability. We
have previously specified in E2.6)how current interest rates can be used in a simple fashion to adjust the contribution
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Fig. 1. Contour plot of Varf'(¢)] (dotted lines, contours at the levels VF = 2000, 4000, 6000, 8000, 16,000, and 32,000) ar@dMadlid lines,
contours at the levels VC = 400, 500, 600, 800, and 900) for diffedrerindk; with p; = 0.4 (equities) andp, = 0.3 (bonds). Also plotted
areko (k1) (long dashed line) ané (k1) (dot-dashed line). Parameter values are 0.03, Ae = 0.02, Ap = 0.01, ¢ = 0.7, 0e = 0.12, oy =
—0.05, 0y = —0.03, 0, = 0.03, gep = 0.02, 0 = 0.03, y = 0.0309 and, = 0.02.

rate through the terrkp(e” ~>®) — 1). The question of how to make best use of current interest rates then comes down
to choosing the best value fés.
Now we can note that, giveky, the variances of botlr'(r) and C(¢) are quadratic irkz (Egs.(2.7) and (2.8) It
follows that the values
—h1
kor =kor(k1) = —
2 = kay(ki) 2y

—ai
koe = k2c(kl) = gz

minimise, respectively, the variances®fr) andC(r).

In Fig. 1, we plot contours for Vaif ()] and Var|C ()] over arange of values f@s andk; in the case wherg; = 0.4
andp, = 0.3. By superimposing one set of contours on the other we are able to compare simultaneously thekegffect of
andk, on the two variances. First suppose that= 0 (the old method for determining(z)). The minimum value for
Var[C(#)] is a little over 500 wheti; is around 0.16. Minimising ovét,; as well clearly delivers substantial reductions
in the variances. For example, if the objective is to minimize &&)], then by thek; approach (minimize Va€(z)]
overk; with k> = 0) we have Varf(¢)] ~ 24,000 and Vaf'(z)] ~ 500. By thek, approach (minimize Va€[(¢)] over
k1 andkz), we have Varf'(r)] ~ 12,000 (a reduction of about 50%) and \@&¢f)] ~ 400 (a reduction of about 20%)
whenki = 0.17 andk, = 250.

Depending on what the plan objectives and constraints are, we will have different stratediesfark,. One
example might be the imposition of a constraint that ¥dr]] is less than 6000. Frorhig. 1, we see that this im-
poses a constraint th&j must exceed about 0.2 (and then only witerlies between 500 and 600). Then, given
kq it is always optimal to choosk, between the lines fakz r(k1) andka. (k1) (since there is always a value in this
interval which can reduce both variances compared with valuds oftside). A second example might specify
the value ofky (for example, an amortization factor based on the average future working lifetime) with minimisa-
tion overk, only. Then it will always be efficient to choose a valuekgafbetweenk, (k1) andkz(k1). Any value
outside this range can be improved upon (that is bothG@)] and Var[F ()] can be reduced) by changirig to
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a suitable point betweekp (k1) andk2r(k1). We define the region between the lineg and ko, as theefficient
region.

To be more precise, for a fixed value/af, we definek; = min(kzy, 2ko) andk§ = min(ka., 2ko ). Var[F(r)] and
Var[C(t)] are quadratic functions df, achieving their minima at; s andkz., respectively by definition.

If ko > ko, choose anyo € [koc, k3]. Since 0< k2 < ko, we have

Var[F(1)]k,=0 > Var[F(1)];, = Var[F(t)lk,,
and sinceky, < ky < 2k, we have
Var[C(t)]k,=0 = Var[C()] 2k, > Var[C(0)];, = Var[C(n)lk,, -

Hencek, = k» achieves a simultaneous reduction in both ¥4r]] and Var[C(¢)] from their values ak, = 0 in the
case ofy > kac.

If ka. > k27, choose any; € [kzy, k$]. Since 0< k2 < ka., we have

Var[C(1)]i,=0 = Var[C(0)];, = Var[C(1)]x,.

500

k2
300

100

e ;\320'00 16000

0.1 0.2

0.5

VF
30000 50000

10000

Fig. 2. (a) (Top) Contour plot of Vaf(¢)] (dotted lines) and Var](r)] (solid lines) for different, andk, whenp; = 0.4 andp, = 0.3. Also plotted
arek; (long dashed line) ankb. (short dashed line). (b) (Bottom) Values of VA(I')] whenk, = 0 (VF, solid line),k> = k5 (VF*, dot-dashed
line), andky = k2 (k1) (VF', dotted line), all corresponding to the first graph. Parameter vajuesd.03, Ag = 0.02, Ap = 0.01, ¢ = 0.7, 0 =
0.12, oy, = —0.05, 0y = —0.03, 0, = 0.03, gep = 0.02, op = 0.03, y’ = 0.0309 andy = 0.02.
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and sinceky s < k < 2kaf, we have
Var[F(n)]i,=0 = Var[F(1)]ax,, > Var[F(1)]z, = Var[F()]k, -

Hencek, = k» achieves a simultaneous reduction in both ¥4r]] and VarC(z)] from their values ak, = 0 in the
case ofko. > koy.

If koe = kay, thenks = ko = ks is the best strategy for reducing both \&(f)] and Var|C(r)], simultaneously.

These ideas are illustrated g. 2 In the top graph (a), we have plottég. andk3. Givenky, any value ofk;
betweenky. andk3 will reduce both VaF(r) and VaC(¢) relative tok, = 0. However, in some cases; (< 0.24)
VarF(t) can be reduced further by increasitigfrom &3 to k2 (Fig. 2, bottom (b)).

Corresponding té-ig. 2@) and (b) gives us the graphs of VA([)] whenk, = 0, the minimum VarF ()] subject
to Var[C(¢)] < Var[C(r)]x,=o0 and the minimum unconstrained V&if)]. We see fronFig. 2b) that VF* (VarF(r) at
k*) is not much different from VF(VarF(r) atkos) and that it can give us the rate of minimum \&(f)] subject to
Var[C(t)] < Var[C(#)]x,=0. We can note that this small difference allows us achieve a significant reduction G(Nair|
for only a small deterioration in VaF(T)] when we move fronkz ¢ (k1) to k5 (k1). More generally, within this efficient
region (O< k2 < k3) we then can choose optimal values&erk», p1 andp, according to different objective functions
and constraints.

Optimal k, Optimal k;
(b)
o o
(=] (=]
o o
3 3
(=] (=]
(=] (=]
o = o -
o o
o o
o o
o - o -
2 4
N -
> >
o o
o o
(=] (=]
[es] [¢3]
o o
§_ §— 185
180
o o
(= (=
o o
< < 200
o o o}
o o
=] =] 0
[sY} [sY)

I I 1 T 1 I I I T I T 1 Ll 1
p2=0.2 p2=0.3 P2=0.4 Pp2=0.5 p2=0.6 P2=0.7 P2=0.8 p2=0.2 p2=0.3 P2=0.4 Pp2=05 P2=06 P2=0.7 P2=0.8
p1=0.8 p1 =0.7 pi1=0.6 p1=0.5 p1=0.4 p1=0.3 p1=0.2 p1=0.8 p1=0.7 pi1=0.6 pi1=0.5 p1=0.4 p1=0.3 p1=0.2

Strategy Strategy

Fig. 3. Contour plots for the optimal values bf (left-hand plot (a)) and3 (right-hand plot (b)) for the problemuinimise VarC(t) subject to
VarF(t) = Vy and for specified asset strategips,(p2). p1 is the proportion in equities angb is the proportion in bonds:1 + p2 = 1. Parameter
values arey = 0.03, Ae = 0.02, Ap, = 0.01, ¢ = 0.7, 0¢ = 0.12, 0y, = —0.05, 0y = —0.03, 0, = 0.03, 0ep = 0.02, o = 0.03, y’ = 0.0309 and
iy = 0.04.
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4. Optimal investment and contribution strategies

In this section we will consider optimization when there are specific objectives and constraints put in place. In the
previous discussion we were concerned only with minimisation of the VarianEépbr C(z). As the basis for what
follows we will start by investigating the problem:

minimize overky andk, : Var[C(r)], subjectto VarF(s)] = V¢

and for specified values ¢f; (equities) ancp, (bonds).

In Fig. 3, we have plotted contours for the optimal valuescpfleft-hand plot) andc, (right-hand plot). In this
plot we have restricted ourselves to asset strategies wherep, = 1 (thatis, zero investment in cash). For example,
when we require Var(r) = Vy = 8000 with p; = 0.4 andp, = 0.6, the optimal value fok; is about 0.13, and the
optimal value fork; is about 190.

In Fig. 4, we show what the consequences are of using these optimal valugsafiodk, for the chosen values of
V¢, p1 and py. For these inputs we have calculated the values of(&)], E[C(r)] and E[F(z)]. Contours for each
of these variables are shown kig. 4. First, (solid lines) we can see that @(})] decreases as we move from left
to right. This reflects the fact that we are investing more in bonds and less in equities. For the same reason, howeve
E[C(r)]is increasing from left to right, since bonds are low return as well as low risk. The impact of this is less marked
on E[F(¢)], which at first is surprising. However, we can see frbig. 3thatk; is closely linked to the constrained
value ofV,: the lowest values of Vaf ()] can only be achieved by amortizing surplus or deficit as quickly as possible
(that is, by havingk; close to 1). The same high valueskafmean thatE[ F(¢)] will be close to the actuarial liability
AL = 525 (Table 1 for iy = 0.04).

Example 1. Suppose the objective function is to minimize \@&{I")] with the constraint that Vaf{(7)] is less than

8000. FromFig. 3we can see thai must greater than around 0.1 (that is, the amortization period should be less than
about 11 years). If the required Var(T)] can not be more than 200, théig. 4indicates that the investment strategy
cannot allocate more than 45% to equities. If we further requireBp@(7)] can not be more than 4, then we become
restricted to an approximately triangular regiorFig. 4. This region indicates that we must invest between 38 and
45% in equities and; should be between 0.13 and 0.25.

V_
6000 8000 10000 12000 14000

4000

2000

T
p2=0.5
p1=0.5

strategy

Fig. 4. Contours for Vax(#)] (solid lines),E[C(t)] (dot-dashed lines) and[ F ()] (long-dashed lines) as a function¥f, p1 andp, and assuming
that the optimal values fdr; andk; are being used for eaclvf, p1, p2). Parameter values ase= 0.03, Ae = 0.02, A, = 0.01, ¢ = 0.7, 0e =
0.12, o, = —0.05, 0y = —0.03, 0, = 0.03, ep = 0.02, op = 0.03, y’ = 0.0309 andy = 0.04.
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Example 2. If we wish to obtain an optimal Va€[(T)] under the control thatt[C(T)] is between 0 and 4,
Var[F(T)] is less than 8000, and[F(T)] is more than 600, the available region filg. 4 would be shaped ap-
proximately like a trapezium, with the an equity holding of between 38 and 67%, and witth' (7gi[between
3800 and 8000. The minimum Vai{r)] would be about 160 at the top right corner of this trapezium (where
Var[F(T)] = 8000 andE[C(T)] = 4). Our optimal strategy then is to invest 38% in equities and the rest in bonds,
and to sek; = 0.13 (equivalent withy, = 0.04 to an amortization period of about 8 years). This gives, as remarked
above, VarF(7T)] = 8000 andE[C(T)] = 4. If, instead, we wish to restrict Var[T)] to be not more than 300 and
Var[F(T)] to 8000 and seek for the smallgsfC(T')], we will obtain an optimaE[C(T)] ~ 1.5. Our optimal strategy

is to invest 56% in equities and 44% in bonds with the amortization period near to 5 year$(18) and Varf'(T)]

= 8000.

Example 3. If our constraint is that the amortization period must not be more than 7 years (that is, we kgduire
be larger than 0.16), anB[C(T)] is less than 4, in order to minimize V&{T)], our optimal strategy will be to invest
about 40% in equities and the rest in bonds with the optimal(Y@r]] equal to about 180.

5. Conclusions

In this paper we have investigated a model for defined-benefit pension plans which incorporates a Vasicek type «
model for the short-term interest rate and three assets: cash, bonds and equities. We have proposed a simple met
for adjusting the contribution rate to account for the current level of interest rates as well as the usual adjustment fc
the current funding level. Using this model we have derived formulae for the unconditional moments of the funding
level and the contribution rate.

A number of illustrative examples have been given which demonstrate that the new adjustment to the contributiol
rate, taking account of current interest rates, does improve stability significantly, particularly where there is a strong
degree of persistence in interest rates. The approach therefore indicates that the standard approach to liability valuati
using an artificial valuation interest rate can be improved upon by making an adjustment for market conditions. Wha
we have not done here is to look at direct methods for valuing liabilities using the current term-structure of interes
rates. This is a topic for further investigation.

We have developed further the notion of efficient regions for various subsets of the control parameigrs,
and (p1, p2) depending on different constraints and objectives. These are regions that we can move into to reduce th
variances of bothF (r) andC(z).
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Appendix A. Proof of Theorem 2.2

(a)(i) Recall that

F(t) = (0 — k2) Y (1= k1)* exp(Sy(t, 5) + Sp(t. 5))
s=0

o0
koY (1 k)* exp(Sy(t. s) — y(t — 1— ) + Sp(t. 5)) - (A.1)
5s=0
For notational convenience write
X5 = exp(Sy(t, s) + Sp(t, 5))
and

Y = exp(Sy(t, s) — y(t — 1 —5) + Sp(t, ).
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Then

E[F()] = (0 — k2) Y (1 — ka)* E[X,] + k2e" > (1 — ka)* E[¥{]

5=0 5=0
with

E[X] = exp [(s + 1)y + ag) + ;Vl(s)]

E[Y,] = exp {(s +1D)+a)—y+ iVs(s)}
where

Vi(s) = Var(S, (, s) + Sp(z, 5))
Va(s) = Var(Sy(, s) — y(t — 1 —s) + Sp(z, 5))
(a)(ii) Next recall that
C(t) = NC + k(AL — F(7)) + ko(e” @ — 1), (A.2)
Hence,
E[C(1)] = NC + k1(AL — E[F(#)]) + ko(E[e” ¥ — 1)
= NC + k1(AL — E[F(1)]) + ko(E[e” ¥+ O) _ 1)

where
02¢s
vy(s) = Covly(r). y(r — )] = 7 = 72
(b)(() From Eqg.(A.1) we also have
Var[F(1)] = (6y — k2 > (L — ki) ™ Car, 5) + 2(0v — kolka€” D (1 — ka) **Calr 5)
r,s=0 r,s=0

o0
+k36 )" (1 - ka) T Ca(r 5)

rs=0
where
Ci(r, s) = Cov(X,, Xj)
Co(r, s) = Cov(Y,, X;)
C3(r, 5) = Cov(Y;, Yy);

Expressions foiIC1, C2 and C3 are given below. Finally we separate out terms involviagand k% to get
Var[F(t)] = ho + hiks + h2k§ as in the statement of the theorem.
(b)(ii) From (A.2) we can deduce that

Var[C(1)] = k3Var[F(1)] — 2k1koe” Cov[F(r), e Y] + k3e? Var[e )]
= k2(ho + h1ko 4 hok3) — 2k1ko€”

x ((ev — k2) fj(l — k1)°Ca(s) + kae” fj(l - kl)fczs(s)) + k3 Var[e )]

s=0 s=0
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where

Ca(s) = Cov[X,, e
Cs(s) = CovlY;, e¥]

Rearranging this we get
Var[C(r)] = ao + atka + azk3

where
ap = k2ho

oo
ay = k¥h — 21”6, > (1 — k1)*Ca(s)
s=0

o0 o
az = Kiha + 2k1€ Y (1 —k1)'Ca(s) — 216" > (1 — k1)*Cs(s) + k3e?" Var[e )]
s=0 s=0

To calculate these moments more explicitly we need to work ouvtkeand theC;’s.
C]_(I", S) — COV(eS'y(t,r)+Sp(t,r)’ e‘S‘)-(t,s)—&-.S'p(t,S))
— E[eSy(t,r)+Sp(l,r)+S/\v(t,,\‘)+Sp(l,s)] _ E[eS),(t,r)+Sp(t,r)] % E[eSy(t,s)%»Sp(t,s)]

= exp(¢ + s + 2)(v + @0) + 3Wi(r, ) — exp(¢ + 1)(v + o)
+3V1(r)) exp(6 + 1)y + o) + 5 Va(s))

Calr.5) = Cov (907 DH%H(en), ght)509)
— E[eSy(t,r—l)-i-Sp(t,r)+Sy(t.,s)+Sp(t,s)] _ E[eS)v(t,r—1)+Sp(t,r)] x E[eS)-(t,s)-s—Sp(t,s)]
= exp( + s + 2)(y + @0) — y + 3 Wa(r; 5)) — exp(¢ + 1)(y + @0) — y
+3V2(r) exp(6 + 1)y + @0) + 3Va(s))
Ca(r, s) = Cov(e%v(hr—l)+5p(t,r)’ eSy(t!S_l)"FSp(t’S))
— E[eSy(”V*1)+Sp(ts”)+Sy(l»571)+sp(t,5)] _ E[eSy(f,rleSp(l‘r)] x E[eS)'(taX*]-)JFSp(fsS)]
= exp( + s + 2)(y + @0) — 2y + 3 Wa(r, 5)) — exp(€ + 1)(y + o) — ¥
+3V2() exp(6s + 1) + o) — v + 5V2(s)

C4(r) — Cov(eg>‘(’*r)+sp("’), e—y(t)) — E[eSy(t,r)+Sp(t.r)—y(t)] _ E[eSy(t,r)-i-Sp(t,r)] x E[e—y(t)]
= exp(¢ + 1)y + o) — y + 3 Wa(r: 5)) — exp(¢ + 1) + o) + 3 Va(r)) expl=y + 37,(0))
C5(r) — COV(eS‘y(t,r—l)—i-Sp(t,r)’ e—y(t)) — E[eSy(t,r—1)+Sp(t,r)—y(t)] _ E[eSy(t,r—l)-',-Sp(t,r)] x E[e—y(t)]
= exp(¢ + 1)y + @0) — 2y + 3Ws(r, 5)) — xp(€ + 1) + @) — y + 3 V2(r)) exp(-y + 37,(0))
where
Va(s) = Var(S,(t, s) + Sp(, 5))
Va(s) = Var(Sy(t, s — 1) + Sp(t, 5))
Wa(r, s) = Var(S,(z, r) + Sy(t, s) + Sp(t, r) + Sp(t, 5))
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Wa(r, s) = Var(Sy(t, r — 1)+ Sy (z, s) + Sp(t, r) + Sp(t, 5))
Wa(r, s) = Var(Sy(t, r — 1)+ Sy(r, s — 1) + Sp(r, ) + Sp(t, 8))
Wa(s) = Var(Sy(z, s) + Sp(t, s) — y(1))
Ws(s) = Var(Sy(t, s — 1) + Sp(t, 5) — y(1))

These formulae for th€, exploit the normality ofy(¢), Sy(z, r), etc.
We now derive each of these five functions:

2a1<fy( (194"
1-¢
2 02

s+1\2 ¢
>+(1 T

)

Va(s) = Var(Sy(z, s) + Sp(t, 5)) = (a2 + a3)(s +1)+ al(s +1)+

o} 20(1—¢*)  ¢*(1—¢?) 1—¢"*Y)oy
y _ Y
+(1—¢)2<s 1= | 1-¢2 )+< 1—¢
If s =0, thenVa(s) = &2 + a3 + 3.

Suppose > 1. Then:

—¢?

VZ(S) Var(Sy(t N 1)+ Sp(t S)) = (0‘2 + 0!3)(5‘ + 1) + Oll(S + 1) T 0110';) <S _ ¢(i-:$s)>

¢2

ol 20(1—¢%) . ¢*(1—¢%) »
+(1—}¢)2<s_ 1-¢  1-¢2 >+(1 A

For Wa(r, s), if r = s thenWy(r, s) = 4Va(s).
Suppose > r. Let

Q1(r, s) = Sy(t, r) + Sy(t, 5) + Sp(t, r) + Spl(t, s)
Then
01(r, s) = Sy(t, r) + Sy(t, 5) + Sp(t, r) + Sp(z, s)

_ ar+l
= 201Z,(t) + Z (W + 2a1> Zy(t—j)+ (W +Ot1) Zy(t—r—1)

n Z <(¢’_’_1(1 — ¢ +1-¢))o,

1_— b +(¥1> Zy(t - J)

j=r+2

(¢v r(l ¢r+1) +1— ¢v+1)ayz
1-9¢
X /@I — L) 4 ¢i (L — ¢ty
+ > ( 1%

wt—s—1)

o—y> 20— )+ 202 Zelt — J)

j=s+2 Jj=0

taz Y Zelt—j) 4203 Zn(t— j)+az Y Zo(t— j)

j=r+1 j=0 j=r+1
Thus:
Wa(r, s) = Var(Q1(r, s)) = (az + a3)(4 +s4+3r)+ 4o 1r+1)

| Buoy  ¢(1—¢) 4o’ 20(L—¢') (L — %)
R g )+(1—¢)2<’_ 1-¢ 142 )
2(1_¢r+1)0y

+( 1-¢

2
+a1) —i—a%(s—r—l)
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2010, PA—¢ ) 2PA— ¢
+1_¢(s—r—1+ - — T )

o’
2 (s—r—1+2(1—2¢

1 ¢(1 ¢ 1)>
T gp L
2 201 _ +2(s—r—1) 2.2 s—r __ s+1\2
r+1 22y @ (1— ¢ ) 9oy (1+¢ 2¢°77)
taep ((1 R s pp. ) 1-¢2  (1-9p

Suppose > r. Then:

21— ¢/ )0)

02(r, 8) = Sy(t, r — 1)+ S, (¢, 8) + Sp(t, r) + Sp(t, 5) = 201 Z (1) + Z < 1-¢

+ 20(1> Zy(t—J)

lrl r 1— jo.\ sr+ll r s+1 v
+Z<(¢ as) ¢) M) 20 s OTIAZN I,

S (L= @) + YL — g+
> ( 16

) Zy(t = j)+ 202y Ze(t — J)

Jj=s+2 j=0

oz Y Zelt—j)+203)  Zn(t— j)+az Y Zo(t— j)

j=r+1 j=0 j=r+1

Walr, s) = Var(Qa(r. )) = (o3 + a2)(d + s + 3r) + 4ad(r + 1) + 81“_105 ( _ 4’(;: $>)

4o} ( -9, ¢>2<1—¢2r))
Fa—y 1-¢ 1-¢2
10y

1-9¢

+af(s—r)+

(s i -2a?¢))

0‘2, ﬁ(j 1’57r) 2(] 2(s7r))
Y 1 r 2r ¢ ¢

(¢é r+1(1 ¢r)+1 ¢H_1)Uy 6)2’ s—r+1 s+1y2 ¢2
( 1-¢ ) Tasept T A e

(s —r+2(1-2¢")

Suppose = r. Then:

Qa(r. s) = Sy(t.s — 1)+ Sy(t. 5) + 2Sp(t. 5) = 201 Z, (1) + Z (2(11¢¢)Uy n 2a1> 20— )
j=1
(p(1—9")+ 1~ qﬁ“rl)o‘
< 1—¢ })Z.v(f—s—l)
00 ¢]—s+1(1_¢s+1) + ¢j_s(1_¢s) . s . 5 |
+ j;rz ( 1 ¢ ay> Zy(t — j) + 202 FZO Ze(t — j) + 203 jgo Zo(t — j)

Wa(r, s) = Var(Qa(r, 5)) = (a3 + a3)(4 + 4s) + do2(s + 1) + 80!_105 (S B ¢(11_— f)>
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2 S S S S 2
4oy (S_2¢(1—¢)+¢2(1—¢2))+((¢(1—¢)+1—¢+1)oy)

Az ep 1=¢ 1= =4
2
_ s+1\2
Tasgptte- )<1 pe)

Suppose > 5. Then:
Qa(r.s) = Sy(t.r — 1) + Sy(t. s) + Sp(t. 1) + Sp(t. 5)

1 s 10‘
=21 Z,(t) + Z (W + 20(1) Zy(t— )+ (W + a1> Zy(t — s51)

s—1 s+1
+ Z ((W Qoo ¢/)y+al>zy(t—j)

j=s+2 1-¢
J=r(1 — ¢" J—s=1(1 — pst1 .
n Z <¢ ( ¢)"’]t¢¢ ( ¢ ) >Zy(t_j)+2azzze(t_j)
j=rt1 =0

+az Z ze(r—1)+2aszzb(r—»+as Z Zo(t = J)

Jj=s+1 Jj=s+1
Wa(r, s) = Var(Q2(r, s)) = (a2 + a3)(4 +r+3s) + 4a1(s + 1)+ Eia_lo(; (s - ¢(i-:q¢:3)>

(140;)2 (s - 2¢(11__¢¢S) + ¢2(11__ ;25)) (2(1 1 fs::)ay + a1> i +ad(r—s—1)
+ Zla_ladf <r o1t @-zpry?d I(_pr;_l))
+ (1(—7y2¢)2 (r —s—1+2(1- 2¢X+1)W)
+ (1‘_’}1)2 ((1 _apiy a2y Ifz(zz Sl))) s i e 2wy g i,z)
S”ppgz‘é S)O_Tsh(etns) + Sp(t, 0) + Sp(t, 8) = 201 Z,(r) + Z ((11_:1’2" + a1> Z,(t - j)

1— s+1 > ]_S_ll— s+1

Tt 3 Zelt — ) + 2070t + 033 Zolt — )

j=1 j=1
Wa(r, s) = Var(Qa(r, s)) = (a3 + aB)(s + 4) + 4o + ofs + 2010y (s (-9 ))

1-¢ 1-¢
2 s 2 2s s+1 2
Gy 2¢(1_¢) ¢ (1_¢ ) (1_¢ )U)r
*(1—@2(“ 1—¢ | 1-¢? >+<1—¢>
2 2
%y 12 @
Tamert T Vam e
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Now consideWs(r, s) Suppose > r. Then:
Q03(r, s) = Sy(t, r = 1)+ S8,(t, s — 1) + Sp(t, r) + Sp(t, s)

+1
— 201 Z,(1) + Z <W + 2a1> Zy(t— )

N Z <(¢f "(1-¢")+1-¢')oy

126 +0t1> Zy(t = j)

j=r+1

j=0

Jj=s+1

+az Z Ze(f_])+2a3zzb(t_])+a3 Z Zo(t = J)

j=r+1 j=r+1
Wa(r, s) = Var(Qa(r, s)) = (o + ag)(4 +5+3r) + 430+ 1)+ Baso, (r _A-¢ )>

1-¢ 1—¢
4o} 20(1—¢")  ¢*(1-9¢*)\

Aoy ( 19 | 1_¢2 ) oals =)

2106_10(; (s -r+(1- 2¢r)¢(11__¢;_r)>

o2 o1 — ) ¢?(1 — ¢26)
Y r r 2r
+m (s—r—|—2(1—2¢ )ﬁ+(1—4¢ + 4¢ )¢2)
02 ¢2
1 S—r -2 2
R e A i v

Suppose = s. Then:
Wa(r, 5) = 4Va(s)
If r=s5=0, W3(r, 5) = 401% + 4(0(% + a%).
Suppose = 0. Then:
03(r, s) = Sy(t, s — 1) + Sp(t, 0) + Sp(z, )

s—1

0a(rs) = 5,5~ 1)+ 550,00+ 550,9) =2z, + Y (H 129

rw) 2
=R '

N Z (‘f” A-¢ )ay> Zy(t—J) + 202Ze(0) + a2 Y Zelt—J) + 203 Z0(1) + 03 Y Zlt — j)

Jj=s+1 j=1 j=1
Wa(r, s) = Var(Qa(r, 5)) = (@5 + a3)(s + 4) + 4o + ofs + 20{10(; < Mi:f))
oy 2¢(1—¢) | ¢*(L—¢*) i ¢?
Yy _ y 2
A g2 ( 19 | 142 )*(1 PR

YOy =y+ > ¢loyZy(t - j)

Jj=0
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Consider:

Qa(s) = Sy(t, 5) + Sp(t. 8) = y(1) = sy + (s + Do + (21 — 0,) Z, (1)

O' ' _ 45+l

j—s—1¢1 _ 4s+1 . u :
+ Z <¢j(1¢)(,y _¢ng) Zy(;_j)+aZZZe(t— j)+assz(l—j)

j=s+2 1-¢ j=0 =0

PA-¢*) , o (S_ 20(1 - ") ¢2(1—¢2S>)

Wa(s) = Var(Qa(s)) = (a1 — 0y)? + o2s + 1=g O T A= g 1= T 1og

o P97 | 200, (s_¢(1_¢x)> _ 2 <¢(1—¢s>_¢2(1—¢2~‘)>
1T 1o 1-¢ 1-¢\ 1-9¢ 1— g2
L-—¢"Noy 11 >2 ‘72 w2 9

+ P A= —
(B552 ) + gm0
¢2s+4 205 .

T 1@ ~ )2 72 @ tad)s+1)

Consider, fors > 0:
05(s) = Sy(t. s — 1)+ Sp(t. s) — y(1) = (s — L)y + (s + Lero + (o2 — 0y) Zy (1)
1- . © J=s5(1 — ¢° .
+ Z <( ¢ )O—y ¢'I0'y + 05]_) Zy(t — J) =+ J;l <¢1(_¢¢)O'y — ¢'/O'y> Zy(t — J)

N N
+ta2) Zelt— ) +as) Zolt - j)
j=0 =0

Ws(s) = Var(Qs(s)) = (a1 — 0,)? + ads +

P2(L—9¢%) ,  of 20(1—¢%) 21— ¢?)
1—¢2 ”—V+(1—¢)2(S_ 1-¢ 1 142 )

pA—9) 20y $(1-9) 207 (p(1—¢") 21— %)
— 2010y (s — )— -
1-¢ " 1-¢ 1-¢ 1-¢\ 1-¢ 1—¢2
(1 ¢')? po2 8 2 - o (B radst)
Ta- ¢)2 1- ¢)2 % 1-¢2 1- 1- ¢2 2hs
If s =0, then:
0s(s) = Sp(t, 0) — y(t + 1)
2
Ws(s) = Var(Sp(t, 0) — y(t)) = (1 — 0y)? + o2 1 f 2T o5+ a3

Appendix B. Asset returns

In this appendix we will demonstrate that the asset returns for a mixed investment strategy involving the one-year
cash account, bonds and equities can reasonably be given ®.8qWe will do this by discussing a continuous-time
model that runs in the background, even though decisions in the pensions model are only made on an annual basis.
this end we will introduce the following notation. L&{(x) represent the value affor: — 1 < u < ¢, of an investment
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of Lattimer — 1inasset, fori = 0, 1, 2, 3. Any coupon or dividend income on the assets are assumed to be reinvested
in the same asset meaning that the total return pra§;éssrepresents the price oftaudeable asset.

Asset 0 is the zero-coupon bond maturing at tinso thatSo(u) = P(u, 1)/ P(t — 1, ) and P(s, T) is the usual
notation for the price at of a zero-coupon bond maturing At Asset 1 is the equity account, so that, in line with
Section2 we haveSi(r) = exp[y(t — 1) + Ae(7)]. Asset 2 is the bond account, witfy(r) = exp[y(t — 1) + Ap(?)].

Asset 3 is an additional asset which cannot be replicated using assets 0-2. We know that such assets exist since
have three independent sources of risk and the minimum requirement, then, for a market to be complete is that the
are four tradeable assets.

We will assume in our background model that the market is complete, implying that any derivative paymnsant at
be replicated over the interval- 1 tor usingSo(u) to S3(u).

We now recall the Fundamental Theorem of Asset Pricing that asserts

(a) The market is arbitrage-free if and only if there exists a martingale me@sure
(b) The market is complete if and only if there exist&@gue martingale measur@.

Instead of using the instantaneous cash account as the numeraire we \Sgll)s&Ve thus seek a measugeunder
which the prices of all tradeable assets discountesigy) are martingales. If such@ exists then the assumption of
completeness made above ensures that all claintaatbe replicated and therefore have a well-defined value 4t

We construct our model as follows. L&(r) = Si(1)/So(7) be the discounted asset prices usip@) as the numeraire.
Let Z, y(1), Zb(r) and Ze(r) be i.i.d. standard normal random variables under a me@uﬂmlvalent to the real-world
measureP In our construction of the model we will assume that the prices of all tradeable assets discousgédl by
underQ are martingales. Specifically we assume that

$1(t) = exp[Ae(t)]
Sa(1) = exp[Ap(1)]
where
Ag(t) = UEyZv(t) + Uebe(t) + UeZe(t) - 2Uee
Ap(t) = by Zy(t) + obZp(t) — Fvbb
Vee = O'gy + O'gb + ag
and
Uph = ogy + og.

Clearly E 5[ Si(1)|y(t — )] = 1.
Now consider a derivative security that pays at time

V(1) = exppy(r — 1) + p14e(t) + p24u(t) + p(p1, p2)]
where
1 1 1,2 2
o(p1, p2) = 5P1Vee+ 5P2vbb — 5(PTvee+ 2p1p2veb + P5Ubb)
and
Veb = OeyOby + OelOb-
It is straightforward to show that
V(1)
So(t)

Earlier in this appendix we assumed, with the help of an additional asset, that the market was complete. It follow:
that the derivative paying/(s) ats can be replicated using the four ass&6:), ..., S3(«) and that the value of this

(-1 =1
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derivative is 1 at time — 1. In other words a return of

1+i(r) = exply(t — 1) + p14e(t) + p24u(t) + p(p1, p2)]

at timer can be described aga@r return att on an initial investment of 1 at time— 1 in relation to 100% investments
in equities, bonds or cash.

As a final remark, if we assume that, in continuous tifi€y) andS(«) have constant volatilities and instantaneous
covariance for — 1 < u < ¢ then the replicating strategy for#i(r) above maintains constant proportionspafin
equmes,p2 in bonds and } p1 — p2 in the zero-coupon bond maturingzaf his follows from the observation that
V(u) = [V(t)|]-‘ ] x Sl(u)PlSZ(u)l’2 We can note also that this does not require the use of the third risky asset
S3(u) WhICh was required for completeness of the larger market.
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