Journal of Statistical Planning and

Approximate confidence sets for a stationary $\operatorname{AR}(p)$ process

Ruby C. Weng ${ }^{\mathrm{a}, *}$, Michael Woodroofe ${ }^{\mathrm{b}}$
${ }^{a}$ National Chengchi University, Taipei 11623, Taiwan
${ }^{\mathrm{b}}$ University of Michigan, Ann Arbor, MI 48109-1027, USA

Received 14 May 2004; received in revised form 14 November 2004; accepted 14 November 2004
Available online 9 January 2005

Abstract

Approximate confidence intervals are derived for the autoregressive parameters of a stationary, Gaussian auto-regressive process of arbitrary order and shown to be asymptotically correct to order $o(1 / n)$, where n is the sample size. Simulation studies are included for small and moderate sample sizes for the case of two auto-regressive parameters, and these indicate excellent approximation for sample sizes as small as $n=10,20$. The convergence is in the very weak sense, and the derivation differs from most existing work through its direct focus on Studentized estimation error and its use of Stein's identity.

© 2005 Elsevier B.V. All rights reserved.
Keywords: Asymptotic expansions; Asymptotic confidence levels; Stationary autoregressive process; Very weak expansions

1. Introduction

In 1943 Mann and Wald wrote two pioneering papers. In Mann and Wald (1943a) they introduced stochastic order relations which have since become an integral part of large sample theory. In Mann and Wald (1943b) they gave a careful proof of the consistency and asymptotic normality of the maximum likelihood estimator from a stationary autoregressive process, a topic which is now an integral part of advanced courses on time series-for example, Brockwell and Davis (1991, pp. 258-262). Here we continue the line begun in

[^0]Mann and Wald (1943b) by obtaining asymptotic expansions for the distribution of the maximum likelihood estimator suitably normalized.

Consider a stationary autoregressive process of order p,

$$
y_{t}=\theta_{1} y_{t-1}+\cdots+\theta_{p} y_{t-p}+\sigma e_{t}, \quad t=0, \pm 1, \ldots
$$

where e_{t} are independent standard normal random variables and $\theta_{1}, \ldots, \theta_{p} \in \mathfrak{R}$ and $\sigma^{2}>0$ are unknown parameters. We suppose throughout that the process is causal. Thus, let Ω be all $\omega=\left(\omega_{1}, \ldots, \omega_{p}\right)^{\prime}$ for which the polynomial $1-\left(\omega_{1} z+\cdots+\omega_{p} z^{p}\right)$ does not vanish for complex $|z| \leqslant 1$, and suppose that $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)^{\prime} \in \Omega$. It is well known that the maximum likelihood estimators may be severely biased in the $\operatorname{AR}(p)$ models. See, for example, Coad and Woodroofe (1998). The purpose of this paper is to derive an asymptotic expansion for the distribution of the maximum likelihood estimator, suitably renormalized, up to terms that are small compared to $1 / n$, where n is the sample size. Our findings are similar to those of Tanaka (1984), who derived Edgeworth expansions for ARMA models, but there are several important differences. The normalization used here is different, employing a random matrix instead of \sqrt{n}. See (3), below. This normalization leads to a simple expansion. It is possible to describe the expansion solely in terms of the mean and covariance matrix of the renormalized estimation error, and this simplifies the formation of confidence sets. Further, the derivation here follows work in Woodroofe and Coad $(1997,2002)$ on sequentially designed experiments and is entirely different from Tanaka (1984). On the other hand, Tanaka's model is more general.

The nature of the expansions and their derivations is presented in Sections 2 and 3, and the expansions are illustrated by an example in Section 4 . Sections 5 and 6 contain details of the proofs. Some discussions are made in Section 7.

2. Preliminaries

The Likelihood Function. To fix ideas, suppose that y_{1}, \ldots, y_{p+n} are observed, and let

$$
X_{n}=\left(\begin{array}{cccc}
y_{p} & \cdot & \cdot & y_{1} \\
y_{p+1} & \cdot & \cdot & y_{2} \\
\cdot & \cdot & \cdot & \cdot \\
y_{p+n-1} & \cdot & \cdot & y_{n}
\end{array}\right)
$$

$e_{k, n}=\left[e_{k+1}, \ldots, e_{k+n}\right]^{\prime}$, and $y_{k, n}=\left[y_{k+1}, \ldots, y_{k+n}\right]^{\prime}$, where ' denotes transpose. Then the model may be written as

$$
\begin{aligned}
& y_{p, n}=X_{n} \theta+\sigma e_{p, n}, \\
& y_{0, p} \sim N_{p}\left(0, \sigma^{2} G_{\theta}\right),
\end{aligned}
$$

the normal distribution with mean 0 and covariance matrix $\sigma^{2} G_{\theta}=E_{\sigma, \theta}\left(y_{0, p} y_{0, p}^{\prime}\right)$. So, the log-likelihood function given $\left(y_{1}, \ldots, y_{p+n}\right)^{\prime}$ is

$$
\ell_{n}\left(\sigma^{2}, \theta\right)=\ell_{0}\left(\sigma^{2}, \theta\right)-\frac{1}{2 \sigma^{2}}\left\|y_{p, n}-X_{n} \theta\right\|^{2}-\frac{1}{2} n \log \left(\sigma^{2}\right)
$$

where

$$
\ell_{0}\left(\sigma^{2}, \theta\right)=-\frac{1}{2} \log \left(\operatorname{det} G_{\theta}\right)-\frac{1}{2 \sigma^{2}} y_{0, p}^{\prime} G_{\theta}^{-1} y_{0, p}-\frac{1}{2} p \log \left(\sigma^{2}\right)
$$

depends only on the first p observations. Further,

$$
\begin{aligned}
& \nabla \ell_{n}\left(\sigma^{2}, \theta\right)=\frac{1}{\sigma^{2}} X_{n}^{\prime}\left(y_{p, n}-X_{n} \theta\right)+\nabla \ell_{0}\left(\sigma^{2}, \theta\right), \\
& \nabla^{2} \ell_{n}\left(\sigma^{2}, \theta\right)=-\frac{1}{\sigma^{2}} X_{n}^{\prime} X_{n}+\nabla^{2} \ell_{0}\left(\sigma^{2}, \theta\right),
\end{aligned}
$$

where ∇ denotes differentiation with respect to θ. It is easily seen (and follows from Lemma 5.2 below) that the maximum likelihood estimators, $\hat{\theta}_{n}$ and $\hat{\sigma}_{n}^{2}$ say, exist w.p. 1 and satisfy the likelihood equation. So,

$$
\hat{\theta}_{n}=\left(X_{n}^{\prime} X_{n}\right)^{-1}\left[X_{n}^{\prime} y_{p, n}+\hat{\sigma}_{n}^{2} \nabla \ell_{0}\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right)\right]
$$

and

$$
\begin{equation*}
\hat{\sigma}_{n}^{2}=\frac{\left\|y_{p, n}-X_{n} \hat{\theta}_{n}\right\|^{2}+y_{0, p}^{\prime} G_{\hat{\theta}_{n}}^{-1} y_{0, p}}{n+p} . \tag{1}
\end{equation*}
$$

Writing $\ell_{n}\left(\sigma^{2}, \theta\right)=\ell_{n}\left(\sigma^{2}, \theta \mid y_{0, n+p}\right)$ to emphasize the dependence on y_{1}, \ldots, y_{n+p}, it is easily seen that $\ell_{n}\left(\sigma^{2}, \theta \mid c y_{0, n+p}\right)=\ell_{n}\left(c^{-2} \sigma^{2}, \theta \mid y_{0, n+p}\right)-(n+p) \log (c)$ for all $c>0$. So, $\hat{\theta}_{n}$ is invariant under scale transformations and $\hat{\sigma}_{n}$ is equivariant, i.e. $\hat{\theta}_{n}\left(c y_{0, n+p}\right)=\hat{\theta}_{n}\left(y_{0, n+p}\right)$ and $\hat{\sigma}_{n}^{2}\left(c y_{0, n+p}\right)=c^{2} \hat{\sigma}_{n}^{2}\left(y_{0, n+p}\right)$ for all $c>0$. The least squares estimators are denoted by $\tilde{\theta}_{n}$ and $\tilde{\sigma}_{n}^{2}$, so that

$$
\begin{aligned}
& \tilde{\theta}_{n}=\left(X_{n}^{\prime} X_{n}\right)^{-1} X_{n}^{\prime} y_{p, n} \\
& \tilde{\sigma}_{n}^{2}=\frac{\left\|y_{p, n}-X_{n} \tilde{\theta}_{n}\right\|^{2}}{n-p}
\end{aligned}
$$

for $n>p$. These are similarly invariant and equivariant.
Very weak expansions: Let $\hat{\mathscr{I}}_{n}$ denote the information matrix, $\hat{\mathscr{I}}_{n}=-\nabla^{2} \ell_{n}\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right)$. Then $\hat{\mathscr{I}}_{n}$ is invariant too, and $\hat{\mathscr{I}}_{n}$ is non-negative definite $w . p .1$. Let $B_{n}=B_{n}\left(y_{0, n+p}\right)$ be a scale equivariant $p \times p$ matrix for which

$$
\begin{equation*}
B_{n} B_{n}^{\prime}=\hat{\sigma}_{n}^{2} \hat{\mathscr{S}}_{n}=X_{n}^{\prime} X_{n}-\hat{\sigma}_{n}^{2} \nabla^{2} \ell_{0}\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right) . \tag{2}
\end{equation*}
$$

There are many possible choices for B_{n}. The main requirements are (2) and (12) below. Let T_{n} be the studentized estimation error

$$
\begin{equation*}
T_{n}=\frac{1}{\tilde{\sigma}_{n}} B_{n}^{\prime}\left(\theta-\hat{\theta}_{n}\right) . \tag{3}
\end{equation*}
$$

A main result provides an asymptotic expansion for the distribution of T_{n} from which improved confidence intervals may be found. The derivation proceeds by first considering the related quantity

$$
\begin{equation*}
Z_{n}=\frac{1}{\sigma} B_{n}^{\prime}\left(\theta-\hat{\theta}_{n}\right) . \tag{4}
\end{equation*}
$$

The distributions of T_{n} and Z_{n} do not depend on σ. So, there is no loss of generality in supposing that $\sigma=1$ when studying them; and σ is omitted from the notation in the sequel, so that E_{θ} is written for $E_{1, \theta}, \ell_{n}(\theta)$ for $\ell_{n}(1, \theta)$, etc. It is shown that to order $\mathrm{o}(1 / n), Z_{n}$ is normal with a mean $\mu_{n}(\theta)$ and a covariance matrix $\Sigma_{n}(\theta)$ that are approaching 0 and the identity matrix. Further, there are estimators $\hat{\mu}_{n}$ and $\hat{\Gamma}_{n}$ for which $Z_{n}^{*}:=$ $\hat{\Gamma}_{n}^{-1}\left(Z_{n}-\hat{\mu}_{n}\right)$ is asymptotically standard normal to order o $(1 / n)$, and the distribution of $T_{n}^{*}:=\hat{\Gamma}_{n}^{-1}\left(T_{n}-\hat{\mu}_{n}\right)$ differs from a p-variate t-distribution with n degrees of freedom by $o(1 / n)$.

The convergence here is in the very weak sense of Woodroofe $(1986,1989)$. In the case of Z_{n}^{*}, this means that

$$
\begin{equation*}
\int_{\Omega}\left[P_{\theta}\left\{Z_{n}^{*} \in B\right\}-\Phi^{p}(B)\right] \xi(\theta) \mathrm{d} \theta=\mathrm{o}\left(\frac{1}{n}\right) \tag{5}
\end{equation*}
$$

uniformly with respect to Borel sets $B \subseteq \mathfrak{R}^{p}$ for all twice continuously differentiable densities ξ with compact convex support in Ω that satisfy the mild condition (31) below, where Φ^{p} is the standard p-variate normal distribution. Woodroofe (1989) writes (5) as

$$
\begin{equation*}
P_{\theta}\left\{Z_{n}^{*} \in B\right\}=\Phi^{p}(B)+\mathrm{o}\left(\frac{1}{n}\right) \tag{6}
\end{equation*}
$$

very weakly, and argues that (6) is strong enough to support a frequentist interpretation for confidence intervals. The corresponding result for T_{n} is

$$
\begin{equation*}
P_{\theta}\left\{T_{n}^{*} \in B\right\}=G_{n}^{p}(B)+\mathrm{o}\left(\frac{1}{n}\right) \tag{7}
\end{equation*}
$$

very weakly, uniformly with respect to Borel sets $B \subseteq \mathfrak{R}^{p}$, where G_{n}^{p} is the spherically symmetric p-variate t distribution with n degrees of freedom. It is easy to use (7) to form corrected confidence sets. The procedure is illustrated in Section 4.

The Bayesian connection: The integrated probability in (5) is probability in a Bayesian model in which θ is given a prior density ξ. So, consider a Bayesian model in which θ has a twice continuously differentiable prior density ξ with compact convex support $K \subseteq \Omega$. Throughout this paper we denote the probability and expectation corresponding to prior ξ as P_{ξ} and E_{ξ}, and the conditional expectation given y_{1}, \ldots, y_{p+n} as E_{ξ}^{n}. When $\sigma=1$, the posterior density of θ given y_{1}, \ldots, y_{p+n} is

$$
\xi_{n}(\theta) \propto \mathrm{e}^{\ell_{n}(\theta)-\ell_{n}\left(\hat{\theta}_{n}\right)} \xi(\theta)
$$

From (2) and (4)

$$
\ell_{n}(\theta)-\ell_{n}\left(\hat{\theta}_{n}\right)=-\frac{1}{2}\left\|Z_{n}\right\|^{2}+r_{n}(\theta)
$$

where

$$
\begin{equation*}
r_{n}(\theta)=\ell_{n}(\theta)-\ell_{n}\left(\hat{\theta}_{n}\right)-\frac{1}{2}\left(\theta-\hat{\theta}_{n}\right)^{\prime} \hat{\sigma}_{n}^{2} \nabla^{2} \ell_{n}\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right)\left(\theta-\hat{\theta}_{n}\right) . \tag{8}
\end{equation*}
$$

So, the posterior density of Z_{n} is

$$
\begin{equation*}
\zeta_{n}(z) \propto \phi_{p}(z) f_{n}(z) \tag{9}
\end{equation*}
$$

where

$$
f_{n}(z)=\xi(\theta) \mathrm{e}^{r_{n}(\theta)}
$$

θ and z are related by (4), and ϕ_{p} is the standard p-variate normal density. For later reference, observe that

$$
\begin{equation*}
\frac{\nabla f_{n}}{f_{n}}(z)=B_{n}^{-1}\left[\frac{\nabla \xi}{\xi}(\theta)+\nabla r_{n}(\theta)\right] \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\nabla^{2} f_{n}}{f_{n}}=B_{n}^{-1}\left[\frac{\nabla^{2} \xi}{\xi}+\frac{\nabla \xi}{\xi} \nabla r_{n}^{\prime}+\nabla r_{n} \frac{\nabla \xi^{\prime}}{\xi}+\nabla^{2} r_{n}+\nabla r_{n} \nabla r_{n}^{\prime}\right] B_{n}^{\prime-1} \tag{11}
\end{equation*}
$$

where $\nabla f_{n}(z)$ is obtained by differentiation with respect to z, and $\nabla \xi(\theta)$ and $\nabla r_{n}(\theta)$ by differentiation with respect to θ.

Stein's identity: The basic approach makes use of Stein's $(1981,1987)$ identity, which is reviewed next. Recall that Φ^{p} denotes the standard p-variate normal distribution and write

$$
\Phi^{p} h=\int h \mathrm{~d} \Phi^{p}
$$

for functions h for which the integral is finite. Next let Γ denote a finite signed measure of the form $\mathrm{d} \Gamma=f \mathrm{~d} \Phi^{p}$, where f is a real-valued function defined on \mathfrak{R}^{p} satisfying $\Phi^{p}|f|=$ $\int|f| \mathrm{d} \Phi^{p}<\infty$. The posterior density of Z_{n} is of this form by (9). For $s>0$, let \mathscr{H}_{s}^{o} be the collection of all measurable functions $h: \mathfrak{R}^{p} \rightarrow \mathfrak{R}$ for which $|h(z)| \leqslant 1+\|z\|^{s}$; let $\mathscr{H}_{s}=\left\{h: h / b \in \mathscr{H}_{s}^{o}\right.$, for some $\left.b>0\right\}$; and let $\mathscr{H}=\bigcup_{s \geqslant 0} \mathscr{H}_{s}$. Given $h \in \mathscr{H}$, let $h_{0}=\Phi^{p} h, h_{p}=h$,

$$
h_{j}\left(y_{1}, \ldots, y_{j}\right)=\int_{\mathfrak{R}^{p-j}} h\left(y_{1}, \ldots, y_{j}, w\right) \Phi_{p-j}(\mathrm{~d} w),
$$

for $j=1, \ldots, p-1$, and

$$
\begin{aligned}
& g_{j}\left(y_{1}, \ldots, y_{p}\right) \\
& \quad=\mathrm{e}^{1 / 2 y_{j}^{2}} \int_{y_{j}}^{\infty}\left[h_{j}\left(y_{1}, \ldots, y_{j-1}, w\right)-h_{j-1}\left(y_{1}, \ldots, y_{j-1}\right)\right] \mathrm{e}^{-1 / 2 w^{2}} \mathrm{~d} w
\end{aligned}
$$

for $-\infty<y_{1}, \ldots, y_{p}<\infty$ and $j=1, \ldots, p$. Each g_{j} is regarded as a function on \mathfrak{R}^{p}, even though g_{j} only depends on y_{1}, \ldots, y_{j}. Next, let

$$
U h=\left(g_{1}, \ldots, g_{p}\right)^{\prime}
$$

The transformation U may be iterated. Let $U^{2} h$ be the $p \times p$ matrix whose j th column is $U g_{j}$, and let

$$
V h=\frac{\left(U^{2} h+U^{2} h^{\prime}\right)}{2}
$$

Then $V h$ is a symmetric matrix. Simple calculations show that

$$
\Phi^{p}(U h)=\int_{\mathfrak{R}^{p}} z h(z) \Phi^{p}(\mathrm{~d} z)
$$

and

$$
\Phi^{p}(V h)=\frac{1}{2} \int_{\mathfrak{R}^{p}}\left(z z^{\prime}-I_{p}\right) h(z) \Phi^{p}(\mathrm{~d} z)
$$

for all $h \in \mathscr{H}$. When $p=1$, these formulas simplify. Then

$$
U h(z)=\mathrm{e}^{1 / 2 z^{2}} \int_{z}^{\infty}(h(y)-\Phi h) \mathrm{e}^{-1 / 2 w^{2}} \mathrm{~d} w
$$

and U^{2} is the composition of U with itself. It may be shown that if $h \in \mathscr{H}_{s}$, then $\|U h\| \in$ $\mathscr{H}_{s^{\prime}}$, where $s^{\prime}=\max (0, s-1)$. See Woodroofe (1992).

Proposition 2.1 (Stein's identity). Letr be a nonnegative integer. Suppose that $\mathrm{d} \Gamma=f \mathrm{~d} \Phi^{p}$, where f is a differentiable function on \mathfrak{R}^{p}, for which

$$
\int_{\mathfrak{R}^{p}}|f| \mathrm{d} \Phi^{p}+\int_{\mathfrak{R}^{p}}\left(1+\|z\|^{r}\right)\|\nabla f(z)\| \Phi^{p}(\mathrm{~d} z)<\infty
$$

then

$$
\Gamma h=\Gamma 1 \cdot \Phi^{p} h+\int_{\mathfrak{R}^{p}} U h(z)^{\prime} \nabla f(z) \Phi^{p}(\mathrm{~d} z)
$$

for all $h \in \mathscr{H}_{r}$. If $\partial f / \partial z_{j}, \quad j=1, \ldots, p$, are differentiable, and

$$
\int_{\mathfrak{R}^{p}}\left(1+\|z\|^{r}\right)\left\|\nabla^{2} f(z)\right\| \Phi^{p}(\mathrm{~d} z)<\infty
$$

then, for all $h \in \mathscr{H}_{r}$,

$$
\Gamma h=\Gamma 1 \cdot \Phi^{p} h+\Phi^{p}(U h)^{\prime} \int_{\mathfrak{R}^{p}} \nabla f(z) \Phi^{p}(\mathrm{~d} z)+\int_{\mathfrak{R}^{p}} \operatorname{tr}\left[(V h) \nabla^{2} f\right] \mathrm{d} \Phi^{p} .
$$

Proof. See Woodroofe (1989, Proposition 1) and Woodroofe and Coad (1997, Proposition 2).

3. Main results

In this section we state the results of the paper and outline the proofs. The details of the proofs are deferred to Section 6. In addition to (2), it is required that B_{n} be so chosen that

$$
\begin{equation*}
Q_{n}:=\sqrt{n} B_{n}^{-1} \rightarrow Q_{\theta} \tag{12}
\end{equation*}
$$

in P_{θ}-probability for all θ when $\sigma=1$, where the entries in Q_{θ} are twice continuously differentiable in θ. This will always be true if $B_{n} B_{n}^{\prime}$ is a Cholesky decomposition of $\hat{\sigma}_{n}^{2} \mathscr{I}_{n}$. For then

$$
\frac{B_{n} B_{n}^{\prime}}{n} \rightarrow G_{\theta}
$$

w.p.1 $\left(P_{\theta}\right)$, where G_{θ} is the covariance matrix of y_{1}, \ldots, y_{p}. Writing $G_{\theta}^{-1}=Q_{\theta}^{\prime} Q_{\theta}$ by a Cholesky decomposition, the entries of Q_{θ} are twice continuously differentiable and $\lim _{n \rightarrow \infty} Q_{n}=Q_{\theta}$, w.p.1. $\left(P_{\theta}\right)$, for all $\theta \in \Omega$.

In Section 5, events D_{n} are constructed for which $P_{\xi}\left(D_{n}^{c}\right)=\mathrm{o}(1 / n)$ and the likelihood function is well behaved when D_{n} occur. So, if h is a bounded measurable function, then

$$
E_{\xi} h\left(Z_{n}\right)=E_{\xi}\left\{E_{\xi}^{n}\left[h\left(Z_{n}\right)\right] 1_{D_{n}}\right\}+\mathrm{o}\left(\frac{1}{n}\right) .
$$

Restricting attention to D_{n} and applying Stein's identity to the posterior distribution of $h\left(Z_{n}\right)$ given y_{1}, \ldots, y_{p+n},

$$
E_{\xi}^{n}\left\{h\left(Z_{n}\right)\right\}=\Phi^{p} h+\left(\Phi^{p} U h\right)^{\prime} E_{\xi}^{n}\left\{\frac{\nabla f_{n}}{f_{n}}\left(Z_{n}\right)\right\}+E_{\xi}^{n}\left\{\operatorname{tr}\left[V h\left(Z_{n}\right) \frac{\nabla^{2} f_{n}}{f_{n}}\left(Z_{n}\right)\right]\right\}
$$

Using (10) and (11), this may be written

$$
\begin{align*}
E_{\xi}^{n}\left\{h\left(Z_{n}\right)\right\}= & \Phi^{p} h+\frac{1}{\sqrt{n}}\left(\Phi^{p} U h\right)^{\prime} E_{\xi}^{n}\left\{Q_{\theta}\left(\frac{\nabla \xi}{\xi}\right)\right\} \\
& +\frac{1}{n} E_{\xi}^{n}\left\{\operatorname{tr}\left[\left(\Phi^{p} V h\right) Q_{\theta}\left(\frac{\nabla^{2} \xi}{\xi}\right) Q_{\theta}^{\prime}\right]\right\} \\
& +\frac{1}{\sqrt{n}}\left(\Phi^{p} U h\right)^{\prime}\left[\mathrm{I}_{n}+\mathrm{II}_{n}\right]+\frac{1}{n}\left[\mathrm{III}_{n}(h)+\mathrm{IV}_{n}(h)\right], \tag{13}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{I}_{n}=E_{\xi}^{n}\left\{\left(Q_{n}-Q_{\theta}\right)\left(\frac{\nabla \xi}{\xi}\right)\right\}, \\
& \mathrm{II}_{n}=E_{\xi}^{n}\left\{Q_{n} \nabla r_{n}\right\}, \\
& \mathrm{III}_{n}(h)=E_{\xi}^{n}\left\{\operatorname{tr}\left[\operatorname{Vh}\left(Z_{n}\right) Q_{n}\left(\frac{\nabla \xi}{\xi} \nabla r_{n}^{\prime}+\nabla r_{n} \frac{\nabla \xi^{\prime}}{\xi}+\nabla^{2} r_{n}+\nabla r_{n} \nabla r_{n}^{\prime}\right) Q_{n}^{\prime}\right]\right\}
\end{aligned}
$$

and

$$
\operatorname{IV}_{n}(h)=E_{\xi}^{n}\left\{\operatorname{tr}\left[V h\left(Z_{n}\right) Q_{n}\left(\frac{\nabla^{2} \xi}{\xi}\right) Q_{n}^{\prime}-\left(\Phi^{p} V h\right) Q_{\theta}\left(\frac{\nabla^{2} \xi}{\xi}\right) Q_{\theta}^{\prime}\right]\right\}
$$

and the dependence of $\nabla \xi$ and ∇r_{n} on θ has been suppressed in the notation. The terms involving $\mathrm{I}_{n}-\mathrm{IV}_{n}$ are shown to be negligible compared to $1 / n$ below, and it follows that:

$$
\begin{align*}
E_{\xi}\left\{h\left(Z_{n}\right)\right\}= & \Phi^{p} h+\frac{1}{\sqrt{n}}\left(\Phi^{p} U h\right)^{\prime} E_{\xi}\left\{Q_{\theta}\left(\frac{\nabla \xi}{\xi}\right)\right\} \\
& +\frac{1}{n} E_{\xi}\left\{\operatorname{tr}\left[\left(\Phi^{p} V h\right) Q_{\theta}\left(\frac{\nabla^{2} \xi}{\xi}\right) Q_{\theta}^{\prime}\right]\right\}+\mathrm{o}\left(\frac{1}{n}\right) . \tag{14}
\end{align*}
$$

In fact, (14) holds for all $h \in \mathscr{H}_{2}$ and uniformly with respect to $h \in \mathscr{H}_{2}^{o}$.
Write $Q_{\theta}=\left[q_{i j}(\theta): i=1, \ldots, p, j=1, \ldots, p\right]$ for $\theta \in \mathfrak{R}^{p}$, and let $Q_{\theta}^{\#}=\left[q_{i j}^{\#}(\theta):\right.$ $i, j=1, \ldots, p]$ and $M_{\theta}=\left[m_{i j}(\theta): i, j=1, \ldots, p\right]$, where

$$
\begin{equation*}
q_{i j}^{\#}(\theta)=\frac{\partial q_{i j}(\theta)}{\partial \theta_{j}} \tag{15}
\end{equation*}
$$

and

$$
m_{i j}(\theta)=\sum_{k=1}^{p} \sum_{l=1}^{p} \frac{\partial^{2}}{\partial \theta_{k} \partial \theta_{l}}\left[q_{i k}(\theta) q_{j l}(\theta)\right] .
$$

Integrating by parts,

$$
E_{\xi}\left\{Q_{\theta}\left(\frac{\nabla \xi}{\xi}\right)\right\}=-\int\left(Q_{\theta}^{\#} \mathbf{1}\right) \xi(\theta) \mathrm{d} \theta
$$

and

$$
E_{\xi}\left\{\operatorname{tr}\left[\left(\Phi^{p} V h\right) Q_{\theta}\left(\frac{\nabla^{2} \xi}{\xi}\right) Q_{\theta}^{\prime}\right]\right\}=\int \operatorname{tr}\left[\left(\Phi^{p} V h\right) M_{\theta}\right] \xi(\theta) \mathrm{d} \theta
$$

where $\mathbf{1}=[1, \ldots, 1]^{\prime}$. So, (14) becomes

$$
E_{\xi}\left\{h\left(Z_{n}\right)\right\}=\int\left\{\Phi^{p} h-\frac{1}{\sqrt{n}}\left(\Phi^{p} U h\right)^{\prime} Q_{\theta}^{\#} \mathbf{1}+\frac{1}{n} \operatorname{tr}\left[\left(\Phi^{p} V h\right) M_{\theta}\right]\right\} \xi(\theta) \mathrm{d} \theta+\mathrm{o}\left(\frac{1}{n}\right)
$$

or

$$
\begin{equation*}
E_{\theta}\left\{h\left(Z_{n}\right)\right\}=\Phi^{p} h-\frac{1}{\sqrt{n}}\left(\Phi^{p} U h\right)^{\prime} Q_{\theta}^{\#} \mathbf{1}+\frac{1}{n} \operatorname{tr}\left[\left(\Phi^{p} V h\right) M_{\theta}\right]+\mathrm{o}\left(\frac{1}{n}\right) \tag{16}
\end{equation*}
$$

very weakly. The forms of asymptotic expansions in (14) and (16) agree with those in Woodroofe and Coad (1997), but the definitions of $\hat{\theta}_{n}, B_{n}$, and Z_{n} are different.

If $h(z)=z$, then $\Phi^{p} h=0$ and $U h(z)=I_{p}=\Phi^{p} U h$. Applying (16) to this h suggests

$$
\begin{equation*}
E_{\theta}\left(Z_{n}\right) \approx-\frac{1}{\sqrt{n}} Q_{\theta}^{\#} \mathbf{1}=\mu_{n}(\theta) \tag{17}
\end{equation*}
$$

Let

$$
\hat{\mu}_{n i}= \begin{cases}-\sum_{j=1}^{p} q_{i j}^{\#}\left(\hat{\theta}_{n}\right) / \sqrt{n} & \text { if }\left|\sum_{j=1}^{p} q_{i j}^{\#}\left(\hat{\theta}_{n}\right)\right| \leqslant \sqrt{n} \tag{18}\\ -\operatorname{sgn}\left[\sum_{j=1}^{p} q_{i j}^{\#}\left(\hat{\theta}_{n}\right)\right] & \text { otherwise }\end{cases}
$$

for $i=1, \ldots, p, \hat{\mu}_{n}=\left(\hat{\mu}_{n 1}, \ldots, \hat{\mu}_{n p}\right)^{\prime}$, and consider $\left(Z_{n}-\hat{\mu}_{n}\right)$. Approximations like those described above lead to

$$
E_{\theta}\left\{\left(Z_{n}-\hat{\mu}_{n}\right)\left(Z_{n}-\hat{\mu}_{n}\right)^{\prime}\right\}=I_{p}+\frac{\Delta(\theta)}{n}+\mathrm{o}\left(\frac{1}{n}\right)
$$

very weakly, where $\Delta(\theta)=\left[\delta_{i j}(\theta): i, j=1, \ldots, p\right]$ and

$$
\begin{equation*}
\delta_{i j}(\theta)=\sum_{k=1}^{p} \sum_{l=1}^{p}\left(\frac{\partial q_{i k}}{\partial \theta_{l}}\right)\left(\frac{\partial q_{j l}}{\partial \theta_{k}}\right) . \tag{19}
\end{equation*}
$$

Next, let $\hat{\delta}_{n, i j}=\delta_{i j}\left(\hat{\theta}_{n}\right)$ if $\left|\delta_{i j}\left(\hat{\theta}_{n}\right)\right| \leqslant n, \hat{\delta}_{i j}=0$ otherwise, and $\hat{\Delta}_{n}=\left[\hat{\delta}_{n, i j}: i, j=1, \ldots, p\right]$; and let $\hat{\Gamma}_{n}$ be any (measurable) $p \times p$ matrices for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n E_{\xi}\left\|\left(\frac{\hat{\Gamma}_{n}+\hat{\Gamma}_{n}^{\prime}}{2}\right)-\left[I_{p}+\frac{\hat{\Delta}_{n}}{2 n}\right]\right\|=0 \tag{20}
\end{equation*}
$$

for any ξ (under consideration). The choice $\hat{\Gamma}_{n}=\left(I_{p}+\hat{\Delta}_{n} / 2 n\right)$ always satisfies (20), but other choices may be convenient in applications. The main result asserts that (6) and (7) hold with these choices of $\hat{\mu}_{n}$ and $\hat{\Gamma}_{n}$. This will be proved in Section 6.

4. An example

In this section we compare the theoretical results to simulation experiments. Consider an $\mathrm{AR}(2)$ process,

$$
y_{t}=\theta_{1} y_{t-1}+\theta_{2} y_{t-2}+\sigma e_{t}, \quad t=0, \pm 1, \ldots,
$$

where e_{t} are independent standard normal random variables, and $\theta=\left(\theta_{1}, \theta_{2}\right)^{\prime} \in \Omega$ and $\sigma>0$ are unknown parameters. For $\left\{y_{t}\right\}$ to be causal, the parameter space Ω is determined by the inequalities: $\theta_{1}+\theta_{2}<1, \theta_{1}-\theta_{2}>-1$, and $\theta_{2}>-1$. See Brockwell and Davis (1991, Chapter 3). These inequalities imply $\left|\theta_{2}\right|<1$. When $\sigma=1$, the covariance matrix G_{θ} has inverse

$$
G_{\theta}^{-1}=\left(\begin{array}{cc}
1-\theta_{2}^{2} & -\theta_{1}\left(1+\theta_{2}\right) \\
-\theta_{1}\left(1+\theta_{2}\right) & 1-\theta_{2}^{2}
\end{array}\right)=Q_{\theta}^{\prime} Q_{\theta} .
$$

The procedure for setting confidence intervals is illustrated for θ_{2}; the treatment of θ_{1} is similar. If B_{n} is a lower triangular matrix in (2) and $\hat{\Gamma}_{n}$ is an upper triangular matrix for
which $\hat{\Gamma}_{n} \hat{\Gamma}_{n}^{\prime}=I_{p}+\hat{\Delta}_{n} / n$, then (20) holds, and

$$
\theta_{2}-\hat{\theta}_{n, 2}=\frac{\tilde{\sigma}_{n}}{b_{n}}\left\{\hat{\mu}_{n, 2}+\sqrt{\left(1+\frac{\hat{\delta}_{n, 22}}{n}\right)} \times T_{n, 2}^{*}\right\}
$$

where b_{n} is the lower right-hand entry in B_{n} and $T_{n, 2}^{*}$ is the second component of T_{n}^{*}. With this choice of B_{n},

$$
Q_{\theta}=\left(\begin{array}{cc}
\sqrt{1-\theta_{2}^{2}-\frac{\theta_{1}^{2}\left(1+\theta_{2}\right)^{2}}{1-\theta_{2}^{2}}} & 0 \\
-\frac{\theta_{1}\left(1+\theta_{2}\right)}{\sqrt{1-\theta_{2}^{2}}} & \sqrt{1-\theta_{2}^{2}}
\end{array}\right)
$$

So, by (15), (17) and (19),

$$
\begin{equation*}
\mu_{n, 2}(\theta)=\frac{1+2 \theta_{2}}{\sqrt{n\left(1-\theta_{2}^{2}\right)}} \tag{21}
\end{equation*}
$$

and

$$
\delta_{22}=\frac{\left(1+2 \theta_{2}\right)^{2}}{1-\theta_{2}^{2}}
$$

Since $T_{n 2}^{*}$ is asymptotically t_{n} to order o $(1 / n)$, an asymptotic level γ confidence interval for θ_{2} is $\left\{\left|T_{n, 2}^{*}\right| \leqslant c_{n}\right\}$, where c_{n} is the $100(1+\gamma) / 2$ quantile of the standard univariate t-distribution with n degrees of freedom, i.e.

$$
\hat{\theta}_{n, 2}+\frac{\tilde{\sigma}_{n}}{b_{n}} \hat{\mu}_{n, 2} \pm \frac{\tilde{\sigma}_{n}}{b_{n}} \sqrt{\left(1+\frac{\hat{\delta}_{n, 22}}{n}\right)} \times c_{n}
$$

Table 1 reports the simulated values of $P_{\theta}\left(T_{n 2} \geqslant 2.228\right), P_{\theta}\left(T_{n 2} \leqslant-2.228\right), P_{\theta}\left(\left|T_{n 2}\right| \leqslant\right.$ 2.228), $E_{\theta}\left(T_{n 2}\right)$, and $E_{\theta}\left(T_{n 2}^{2}\right)$, for $\sigma=1$ and $n=10$; and similarly for $T_{n 2}^{*}$. Here -2.228 is the 2.5 th percentile of the standard univariate t-distribution with 10 degrees of freedom. The notation \pm in the last row indicates 1.96 standard deviations; for example, ± 0.022 is obtained by $E\left(t_{10}\right) \pm 1.96 \times\left[\operatorname{Var}\left(t_{10}\right) / 10,000\right]^{1 / 2}, 1.25 \pm 0.042$ is by $E\left(t_{10}^{2}\right) \pm 1.96 \times$ $\left[\operatorname{Var}\left(t_{10}^{2}\right) / 10,000\right]^{1 / 2}$, etc. Results for $n=20$ and 50 are given in Tables 2 and 3 , respectively. For $T_{n 2}$, the simulated values of $P_{\theta}\left(T_{n 2} \geqslant c_{n}\right)$ and $P_{\theta}\left(T_{n 2} \leqslant-c_{n}\right)$ are not sensitive to θ_{1}, but quite sensitive to θ_{2}. For $\theta_{2}=0.0,0.5$, these values are significantly different from the nominal value 0.025 at significance level 0.05 even for $n=50$; for $\theta_{2}=-0.5$ and $n=50$, they agree well with the nominal value 0.025 . For all choices of n, the values of $E_{\theta}\left(T_{n 2}\right)$ are similarly not sensitive to θ_{1}, but sensitive to θ_{2}. They are significantly different from zero for $\theta_{2} \neq-0.5$ at significance level 0.05 . All these features can be explained from (21), which says that the theoretical mean of $T_{n 2}$ depends only on θ_{2} and it vanishes when $\theta_{2}=-0.5$. For the refined pivot $T_{n 2}^{*}$, the simulated values of $P_{\theta}\left(T_{n 2}^{*} \geqslant c_{n}\right)$ and $P_{\theta}\left(T_{n 2}^{*} \leqslant-c_{n}\right)$ show that $T_{n 2}^{*}$ is not symmetric in the tails. Especially, for $n=10$ and $\theta_{2}=0.5$, these coverage

Table 1
$n=10$, replicates $=10,000 ; c_{n}=2.228 ; \pm$ is the range within 1.96 standard deviations

$\left(\theta_{1}, \theta_{2}\right)$	$E_{\theta}\left(T_{n 2}\right)$	$E_{\theta}\left(T_{n 2}^{2}\right)$	$P_{\theta}\left(T_{n 2} \geqslant c_{n}\right)$	$P_{\theta}\left(T_{n 2} \leqslant-c_{n}\right)$	$P_{\theta}\left(\left\|T_{n 2}\right\| \leqslant c_{n}\right)$
	$E_{\theta}\left(T_{n 2}^{*}\right)$	$E_{\theta}\left(T_{n 2}^{*}\right)$	$P_{\theta}\left(T_{n 2}^{*} \geqslant c_{n}\right)$	$P_{\theta}\left(T_{n 2}^{*} \leqslant-c_{n}\right)$	$P_{\theta}\left(\left\|T_{n 2}^{*}\right\| \leqslant c_{n}\right)$
$(0.0-0.5)$	-0.012	1.005	0.016	0.016	0.967
	-0.014	1.130	0.024	0.023	0.953
$(0.00 .0)$	0.281	1.075	0.034	0.011	0.955
	0.095	1.494	0.037	0.005	0.958
$(0.00 .5)$	0.552	1.196	0.053	0.008	0.939
	0.461	3.568	0.048	0.000	0.952
$(0.5-0.5)$	-0.020	1.008	0.016	0.016	0.968
	-0.029	1.132	0.022	0.023	0.955
$(0.5-0.2)$	0.148	1.050	0.025	0.013	0.962
	0.026	1.215	0.030	0.016	0.954
$(0.50 .0)$	0.250	1.100	0.032	0.014	0.954
	0.077	1.409	0.035	0.005	0.960
\pm	± 0.022	1.25 ± 0.042	0.025 ± 0.003	0.025 ± 0.003	0.95 ± 0.004

Table 2
$n=20$, replicates $=10,000 ; c_{n}=2.086 ; \pm$ is the range within 1.96 standard deviations

$\left(\theta_{1}, \theta_{2}\right)$	$E_{\theta}\left(T_{n 2}\right)$	$E_{\theta}\left(T_{n 2}^{2}\right)$	$P_{\theta}\left(T_{n 2} \geqslant c_{n}\right)$ $P_{\theta}\left(T_{n 2}^{*} \geqslant c_{n}\right)$	$P_{\theta}\left(T_{n 2} \leqslant-c_{n}\right)$ $P_{\theta}\left(T_{n 2}^{*} \leqslant-c_{n}\right)$	$P_{\theta}\left(\left\|T_{n 2}\right\| \leqslant c_{n}\right)$ $E_{\theta}\left(T_{n 2}^{*}\right)$
$E_{\theta}\left(\mid T_{n 2}^{*}\right)$	0.019	0.020	0.961		
$(0.0-0.5)$	-0.005	0.994	0.026	0.027	0.947
	-0.006	1.075	0.037	0.012	0.951
$(0.00 .0)$	0.215	1.049	0.034	0.020	0.946
	0.030	1.084	0.054	0.006	0.939
$(0.00 .5)$	0.449	1.105	0.036	0.000	0.964
	0.081	1.011	0.018	0.018	0.964
$(0.5-0.5)$	-0.003	0.987	0.025	0.026	0.949
	-0.003	1.068	0.028	0.015	0.957
$(0.5-0.2)$	0.127	1.022	0.030	0.024	0.946
	0.012	1.082	0.035	0.013	0.953
$(0.50 .0)$	0.207	1.044	0.032	0.020	0.949
	0.022	1.078	0.025 ± 0.003	0.025 ± 0.003	0.95 ± 0.004

probabilities indicate that the distribution of $T_{n 2}^{*}$ is skewed to the right. Correspondingly, the estimated values of $E_{\theta}\left(T_{n 2}^{*}\right)$ and $E_{\theta}\left(T_{n 2}^{*^{2}}\right)$ are far above their nominal values. This skewness may be due to the facts that $\hat{\theta}_{n, 2}$ tends to under-estimate θ_{2}, and that from (21) the downward bias of $\hat{\mu}_{n, 2}$ is more severe for larger θ_{2}. The tables also show that the estimated means of $T_{n 2}^{*}$ are much closer to 0 than those of $T_{n 2}$, and for $n=50$ the values of $E_{\theta}\left(T_{n 2}^{*}\right)$ are all within 1.96 standard deviations. Although the difference between the simulated values of $E_{\theta}\left(T_{n 2}^{*^{2}}\right)$ and $E_{\theta}\left(T_{n 2}^{2}\right)$ are less obvious, in general the former is larger and closer to

Table 3
$n=50$, replicates $=10,000 ; c_{n}=2.008 ; \pm$ is the range within 1.96 standard deviations

$\left(\theta_{1}, \theta_{2}\right)$	$E_{\theta}\left(T_{n 2}\right)$	$E_{\theta}\left(T_{n 2}^{2}\right)$	$P_{\theta}\left(T_{n 2} \geqslant c_{n}\right)$	$P_{\theta}\left(T_{n 2} \leqslant-c_{n}\right)$	$P_{\theta}\left(\left\|T_{n 2}\right\| \leqslant c_{n}\right)$
	$E_{\theta}\left(T_{n 2}^{*}\right)$	$E_{\theta}\left(T_{n 2}^{*}\right)$	$P_{\theta}\left(T_{n 2}^{*} \geqslant c_{n}\right)$	$P_{\theta}\left(T_{n 2}^{*} \leqslant-c_{n}\right)$	$P_{\theta}\left(\left\|T_{n 2}^{*}\right\| \leqslant c_{n}\right)$
$(0.0-0.5)$	-0.013	0.999	0.023	0.023	0.954
	-0.014	1.036	0.027	0.027	0.946
$(0.00 .0)$	0.127	1.026	0.033	0.019	0.948
	-0.005	1.045	0.029	0.028	0.943
$(0.00 .5)$	0.303	1.046	0.045	0.011	0.943
	0.015	1.003	0.026	0.021	0.953
$(0.5-0.5)$	-0.003	0.989	0.023	0.021	0.957
	-0.003	1.026	0.026	0.024	0.950
$(0.5-0.2)$	0.083	1.018	0.029	0.020	0.951
	0.002	1.046	0.028	0.026	0.946
$(0.50 .0)$	0.138	1.031	0.033	0.018	0.949
	0.006	1.049	0.029	0.025	0.945
\pm	± 0.020	1.04 ± 0.030	0.025 ± 0.003	0.025 ± 0.003	0.95 ± 0.004

the nominal values. The implementation of simulations is written in C ; it is available at http://www3.nccu.edu.tw/~chweng/AR2.c.

5. Some bounds

Several bounds are needed for the proofs of the main results. Throughout this section, ξ denotes a twice continuously differentiable density with compact, convex support $K \subseteq \Omega$, and $\|A\|$ denotes the spectral norm of a matrix A, i.e. $\|A\|^{2}=\lambda_{\max }\left(A^{\prime} A\right)$.

Lemma 5.2. $\inf _{\theta \in \Omega} \lambda_{\min } G_{\theta}>0$ and $\lim _{\theta \rightarrow \partial \Omega} \operatorname{det} G_{\theta}=\infty$.
Proof. By Brockwell and Davis (1991, 137pp), $\lambda_{\min }\left(G_{\theta}\right) \geqslant 2 \pi \inf _{\lambda} f_{\theta}(\lambda)$, where $f_{\theta}(\lambda)$ is the spectral density of $\left\{y_{t}\right\}$. For an $\operatorname{AR}(p)$ process, $f_{\theta}(\lambda)=1 /\left[2 \pi\left|1-\sum_{j=1}^{p} \theta_{j} \mathrm{e}^{-i j \lambda}\right|^{2}\right]$, which is bounded below for all $\theta \in \Omega$. Next, let $v=(1,0, \ldots, 0)^{\prime}$. Then

$$
\lambda_{\max } G_{\theta} \geqslant v^{\prime} G_{\theta} v=\int_{-\pi}^{\pi} f_{\theta}(\lambda) \mathrm{d} \lambda \rightarrow \infty
$$

as θ approaches any boundary point of Ω.
Lemma 5.3. For every $s \geqslant 1$, there is an integer n_{s} and a continuous function $C_{s}(\theta)$ for which

$$
E_{\theta}\left\{\frac{n}{\lambda_{\min }\left(X_{n}^{\prime} X_{n}\right)^{s}}\right\} \leqslant C_{s}(\theta)
$$

for all $n \geqslant n_{s}$ and all $\theta \in \Omega$.

Proof. Let $x_{i}=\left(y_{i+p-1}, \ldots, y_{i}\right)^{\prime}, i=1, \ldots, n$. Further, let $q=p+2 s$ and let $r=r_{n}$ be positive integers for which $p q r \leqslant n<p q(r+1)$. Then

$$
X_{n}^{\prime} X_{n}=\sum_{i=1}^{n} x_{i} x_{i}^{\prime} \geqslant \sum_{k=1}^{r} \sum_{j=1}^{q} x_{p q(k-1)+p(j-1)+1} x_{p q(k-1)+p(j-1)+1}^{\prime}=\sum_{k=1}^{r} N_{k},
$$

in the sense of positive definite matrices. So, $\lambda_{\min }\left(X_{n}^{\prime} X_{n}\right) \geqslant \sum_{k=1}^{r} \lambda_{\min }\left(N_{k}\right)$; and, since $f(x)=1 / x^{s}$ is convex in $0<x<\infty$,

$$
\frac{n^{s}}{\left(\lambda_{\min }\left(X_{n}^{\prime} X_{n}\right)\right)^{s}} \leqslant\left(\frac{n}{r}\right)^{s} \frac{1}{\left[\frac{1}{r} \sum_{k=1}^{r} \lambda_{\min }\left(N_{k}\right)\right]^{s}} \leqslant(2 p q)^{s} \frac{1}{r} \sum_{k=1}^{r} \frac{1}{\lambda_{\min }\left(N_{k}\right)^{s}}
$$

and

$$
E_{\theta}\left\{\frac{n^{s}}{\lambda_{\min }\left(X_{n}^{\prime} X_{n}\right)^{s}}\right\} \leqslant(2 p q)^{s} E_{\theta}\left\{\frac{1}{\lambda_{\min }\left(N_{1}\right)^{s}}\right\} .
$$

Observe that $N_{1}=x_{1} x_{1}^{\prime}+x_{p+1} x_{p+1}^{\prime}+\cdots+x_{p(q-1)+1} x_{p(q-1)+1}^{\prime}$ is a function of $U=$ $\left(y_{1}, \ldots, y_{p q}\right)^{\prime}$, say $N_{1}=g(U)$. Here U is normally distributed with mean zero and covariance matrix Γ. Let γ denote the maximum eigenvalue of Γ. Let $W=\left(w_{1}, \ldots, w_{p q}\right)^{\prime}$ be a $p q$ variate normally distributed random vector with mean zero and covariance matrix $\gamma I_{p q}$. Then $f_{U} \leqslant c_{\theta} f_{W}$, where f_{U} and f_{W} are density functions of U and W, and $c_{\theta}=\{\operatorname{det}(\Gamma)\}^{-1 / 2} \gamma^{p q / 2}$ depends continuously on θ. Now $g(W)$ follows the Wishart distribution with q degrees of freedom, dimension p and covariance matrix γI_{p}. For $q \geqslant p$, the joint density of the eigenvalues of $g(W), l_{1}>\cdots>l_{p}>0$, is

$$
f\left(l_{1}, \ldots, l_{p}\right)=C \mathrm{e}^{-1 / 2 \gamma \sum_{i=1}^{p} l_{i}} \prod_{i=1}^{p} l_{i}^{(q-p-1) / 2+p-i} \times \prod_{i<j}\left(l_{i}-l_{j}\right) .
$$

With $q=p+2 s,(q-p-1) / 2-s=-\frac{1}{2}$ and

$$
\begin{aligned}
E_{\theta}\left\{\left(\frac{1}{\lambda_{\min }\left(N_{1}\right)}\right)^{s}\right\} & =\int\left[\frac{1}{\lambda_{\min }(g(u))}\right]^{s} F_{U}(\mathrm{~d} u) \\
& \leqslant c_{\theta} \int \cdots \int \frac{1}{l_{p}^{s}} f\left(l_{1}, \ldots, l_{p}\right) \mathrm{d} l_{p} \cdots \mathrm{~d} l_{1}
\end{aligned}
$$

which is finite, and the lemma follows with $n_{s}=p(p+2 s)$.
Recall that $\tilde{\theta}_{n}$ and $\tilde{\sigma}_{n}^{2}$ denote the least squares estimators, $\tilde{\theta}_{n}=\left(X_{n}^{\prime} X_{n}\right)^{-1} X_{n}^{\prime} y_{p, n}$ and $\tilde{\sigma}_{n}^{2}=\left\|y_{p, n}-X_{n} \tilde{\theta}_{n}\right\|^{2} /(n-p)$; let $\tilde{B}_{n} \tilde{B}_{n}^{\prime}=X_{n}^{\prime} X_{n}$ be the Cholesky decomposition of $X_{n}^{\prime} X_{n}$, and let $\tilde{Z}_{n}=\tilde{B}_{n}^{\prime}\left(\theta-\tilde{\theta}_{n}\right)$. Then $\left\|\tilde{Z}_{n}\right\|^{2}=\left(\theta-\tilde{\theta}_{n}\right)^{\prime} X_{n}^{\prime} X_{n}\left(\theta-\tilde{\theta}_{n}\right)$. It is known and clear that $\left[\sqrt{n}\left(\tilde{\sigma}_{n}^{2}-1\right), \tilde{Z}_{n}\right] \Rightarrow[U, Z]$ for fixed θ, where $U \sim N[0,2]$ and $Z \sim N_{p}\left[0, I_{p}\right]$ are independent and it follows easily that $\left[\theta, \sqrt{n}\left(\tilde{\sigma}_{n}^{2}-1\right), \tilde{Z}_{n}\right] \Rightarrow[\theta, U, Z]$, under P_{ξ}.

Lemma 5.4. For any $k \geqslant 1,\left\|\tilde{Z}_{n}\right\|^{2 k}$ and $n^{k}\left(\tilde{\sigma}_{n}^{2}-1\right)^{2 k}, n>p$, are uniformly integrable w.r.t. P_{ξ}. Moreover, $E_{\xi}\left(\tilde{\sigma}_{n}^{2}-1\right)=\mathrm{o}(1 / n)$.

Proof. For the uniform integrability of $\left\|\tilde{Z}_{n}\right\|^{2 k}, n>p$, first observe that $\left\|\tilde{Z}_{n}\right\|^{2}=e_{p, n}^{\prime} X_{n}\left(X_{n}^{\prime}\right.$ $\left.X_{n}\right)^{-1} X_{n}^{\prime} e_{p, n} \leqslant p\left\|e_{p, n}\right\|^{2}$, so that $E_{\xi}\left\|\tilde{Z}_{n}\right\|^{2 k}=\mathrm{O}\left(n^{k}\right)$ for every k. Next, let $A_{n}=\left\{\lambda_{\min }\left(X_{n}^{\prime}\right.\right.$ $\left.\left.X_{n}\right) \geqslant 1\right\}$ and $g_{k}(z)=1+\|z\|^{2 k}$. Then

$$
E_{\xi}\left\|\tilde{Z}_{n}\right\|^{2 k} 1_{A_{n}^{c}} \leqslant \sqrt{ } E_{\xi}\left\|\tilde{Z}_{n}\right\|^{4 k} \sqrt{ } P\left(A_{n}^{c}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for every k, by Lemma 5.3. So, it suffices to show that $\sup _{n>p} E_{\xi}\left[g_{k}\left(Z_{n}\right) 1_{A_{n}}\right]<\infty$ for every $k \geqslant 1$. Now $\Phi^{p} U g_{k}=0$, and there are constants C_{k} for which $\left\|V g_{k}(z)\right\| \leqslant$ $C_{k} g_{k-1}$. So,

$$
\begin{aligned}
E_{\xi}^{n}\left[g_{k}\left(\tilde{Z}_{n}\right) \mathbf{1}_{A_{n}}\right] & =\Phi g_{k} \mathbf{1}_{A_{n}}+E_{\xi}^{n}\left\{\operatorname{tr}\left[V g_{k}\left(\tilde{Z}_{n}\right) \tilde{B}_{n}^{-1} \frac{\nabla^{2} \xi}{\xi} \tilde{B}_{n}^{\prime-1} 1_{A_{n}}\right]\right\} \\
& \leqslant \Phi g_{k}+C_{k} E_{\xi}^{n}\left[g_{k-1}\left(\tilde{Z}_{n}\right)\left\|\tilde{B}_{n}^{-1}\right\|^{2}\left\|\frac{\nabla^{2} \xi}{\xi}\right\| 1_{A_{n}}\right]
\end{aligned}
$$

and therefore,

$$
\begin{equation*}
E_{\xi}\left[g_{k}\left(\tilde{Z}_{n}\right) 1_{A_{n}}\right] \leqslant \Phi g_{k}+C_{k} \int_{\Omega} E_{\theta}\left[g_{k-1}\left(\tilde{Z}_{n}\right) 1_{A_{n}}\right]\left\|\nabla^{2} \xi(\theta)\right\| \mathrm{d} \theta . \tag{22}
\end{equation*}
$$

There is a second twice continuously differentiable density $\tilde{\xi}$ with compact convex support and a constant C for which $\left\|\nabla^{2} \xi(\theta)\right\| \leqslant C \tilde{\xi}(\theta)$ for all θ. Then the right side of (22) is at most $\Phi g_{k}+C C_{k} E_{\tilde{\xi}}\left[g_{k-1}\left(\tilde{Z}_{n}\right) \mathbf{1}_{A_{n}}\right]$. That $\sup _{n>p} E_{\xi}\left[g_{k}\left(\tilde{Z}_{n}\right) 1_{A_{n}}\right]<\infty$ then follows by induction over k. The assertions concerning $\tilde{\sigma}_{n}^{2}$ then follow from

$$
\tilde{\sigma}_{n}^{2}-1=\frac{\left\|y_{p, n}-X_{n} \theta\right\|^{2}-n-\left(\left\|\tilde{Z}_{n}\right\|^{2}-p\right)}{n-p}
$$

since $\left\|y_{p, n}-X_{n} \theta\right\|^{2} \sim \chi_{n}^{2}$.
Lemma 5.5. For any $k \geqslant 1, n^{k}\left(\hat{\sigma}_{n}^{2}-1\right)^{2 k}, n>p$, are uniformly integrable with respect to P_{ξ}. Further, $\left[\theta, y_{0, p}, \sqrt{n}\left(\hat{\sigma}_{n}^{2}-1\right)\right] \Rightarrow\left[\theta, y_{0, p}, U\right]$, where $U \sim \operatorname{Normal}[0,2]$ is independent of $\left[\theta, y_{0, p}\right]$.

Proof. From (1) and the non-negativity of $y_{0, p}^{\prime} G_{\hat{\theta}_{n}}^{-1} y_{0, p}$,

$$
\hat{\sigma}_{n}^{2} \geqslant \frac{\left\|y_{p, n}-X_{n} \tilde{\theta}_{n}\right\|^{2}}{n+p}=\frac{\left\|y_{p, n}-X_{n} \theta\right\|^{2}-\left\|\tilde{Z}_{n}\right\|^{2}}{n+p}
$$

Next, from (1) and the likelihood function,

$$
\begin{aligned}
(n+p) \hat{\sigma}_{n}^{2} & =-2 \hat{\sigma}_{n}^{2} \ell_{n}\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right)-\hat{\sigma}_{n}^{2} \log \left|G_{\hat{\theta}_{n}}\right|-(n+p) \hat{\sigma}_{n}^{2} \log \left(\hat{\sigma}_{n}^{2}\right) \\
& \leqslant-2 \hat{\sigma}_{n}^{2} \ell_{n}\left(\hat{\sigma}_{n}^{2}, \theta\right)-\hat{\sigma}_{n}^{2} \log \left|G_{\hat{\theta}_{n}}\right|-(n+p) \hat{\sigma}_{n}^{2} \log \left(\hat{\sigma}_{n}^{2}\right) \\
& =\left\|y_{p, n}-X_{n} \theta\right\|^{2}+y_{0, p}^{\prime} G_{\theta}^{-1} y_{0, p}+\hat{\sigma}_{n}^{2} \log \left|G_{\theta}\right|-\hat{\sigma}_{n}^{2} \log \left|G_{\hat{\theta}_{n}}\right| \\
& \leqslant\left\|y_{p, n}-X_{n} \theta\right\|^{2}+y_{0, p}^{\prime} G_{\theta}^{-1} y_{0, p}+C \hat{\sigma}_{n}^{2}
\end{aligned}
$$

for $\theta \in K$ and some constant C depending on ξ. Let $U_{n}=\left\|y_{p, n}-X_{n} \theta\right\|^{2}$, so that $U_{n} \sim \chi_{n}^{2}$ is independent of y_{1}, \ldots, y_{p}. Then

$$
\frac{U_{n}-n-\left\|\tilde{Z}_{n}\right\|^{2}-p}{n+p} \leqslant \hat{\sigma}_{n}^{2}-1 \leqslant \frac{U_{n}-n+y_{0, p}^{\prime} G_{\theta}^{-1} y_{0, p}-p+C}{n+p-C}
$$

for $n>C-p$. The lemma follows from these inequalities and Lemma 5.4.
Recall that ξ has a compact convex support K and that $\lim _{\theta \rightarrow \partial \Omega} \operatorname{det} G_{\theta}=\infty$, from Lemma 5.2. So, there exist two other compact convex sets K_{1} and K_{2} for which $K \subset$ $K_{1}^{0} \subset K_{1} \subset K_{2}^{0} \subset K_{2} \subset \Omega$, where K_{i}^{0} denotes the interior of K_{i}, and $\operatorname{det}\left[G_{\theta}\right] \geqslant 1$ for all $\theta \notin K_{1}$.

Lemma 5.6. There are events D_{n} for which

$$
\begin{align*}
& D_{n} \supseteq\left\{\frac{1}{2} \leqslant \hat{\sigma}_{n}^{2} \leqslant \frac{3}{2}, \tilde{\theta} \in K_{1}, \hat{\theta} \in K_{2},\left\|y_{0, p}\right\| \leqslant n^{1 / 4}, \lambda_{\min }\left(X_{n}^{\prime} X_{n}\right) \geqslant n^{3 / 4}\right\} \tag{23}\\
& P_{\xi}\left(D_{n}^{c}\right)=\mathrm{o}\left(\frac{1}{n^{k}}\right) \tag{24}
\end{align*}
$$

for every $k \geqslant 1$.
Proof. To show existence, let D_{n} be the right side of (23). Then it suffices to show (24). For this choice of D_{n},

$$
\begin{align*}
D_{n}^{c} \subseteq & \left\{\left|\hat{\sigma}_{n}^{2}-1\right| \geqslant \frac{1}{2}\right\} \cup\left\{\left\|y_{0, p}\right\|>n^{1 / 4}\right\} \cup\left\{\lambda_{\min }\left(X_{n}^{\prime} X_{n}\right)<n^{3 / 4}\right\} \\
& \cup\left\{\left\|y_{0, p}\right\| \leqslant n^{1 / 4}, \lambda_{\min }\left(X_{n}^{\prime} X_{n}\right) \geqslant n^{3 / 4}, \tilde{\theta}_{n} \notin K_{1}\right\} \\
& \cup\left\{\left\|y_{0, p}\right\| \leqslant n^{1 / 4}, \lambda_{\min }\left(X_{n}^{\prime} X_{n}\right) \geqslant n^{3 / 4}, \tilde{\theta}_{n} \in K_{1}, \hat{\theta}_{n} \notin K_{2}\right\} \\
= & A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5} . \tag{25}
\end{align*}
$$

It is clear from Lemmas 5.3 and 5.5 that $P_{\xi}\left(A_{1}\right)+P_{\xi}\left(A_{2}\right)+P_{\xi}\left(A_{3}\right)=\mathrm{o}\left(1 / n^{k}\right)$ for every $k \geqslant 1$. Let $\delta_{1}=\operatorname{dist}\left(K, K_{1}^{c}\right)>0$. If A_{4} occurs, then $\|\tilde{\theta}-\theta\| \geqslant \delta_{1}$ and therefore, $\left\|\tilde{Z}_{n}\right\|^{2}=$ $(\tilde{\theta}-\theta)^{\prime} X_{n}^{\prime} X_{n}(\tilde{\theta}-\theta) \geqslant \delta_{1}^{2} n^{3 / 4}$. So,

$$
P_{\xi}\left(A_{4}\right) \leqslant \frac{1}{\delta_{1}^{2 k} n^{3 / 2 k}} E_{\xi}\left\|\tilde{Z}_{n}\right\|^{4 k}=\mathrm{o}\left(\frac{1}{n^{k}}\right)
$$

for all k. For A_{5}, let $\delta_{2}=\operatorname{dist}\left(K_{1}, K_{2}^{c}\right)$ and observe that if A_{5} occurs, then $\| X_{n}\left(\hat{\theta}_{n}-\right.$ $\left.\tilde{\theta}_{n}\right) \|^{2} \geqslant \delta_{2}^{2} n^{3 / 4}$. If $\tilde{\theta}_{n} \in K_{1}$, then using the form of the likelihood function and Lemma 5.2,

$$
\begin{align*}
\left\|X_{n}\left(\hat{\theta}_{n}-\tilde{\theta}_{n}\right)\right\|^{2}= & \left\|y_{p, n}-X_{n} \hat{\theta}_{n}\right\|^{2}-\left\|y_{p, n}-X_{n} \tilde{\theta}_{n}\right\|^{2} \\
= & -2 \hat{\sigma}_{n}^{2} \ell\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right)-y_{0, p}^{\prime} G_{\hat{\theta}_{n}}^{-1} y_{0, p}-\hat{\sigma}_{n}^{2} \log \left[\operatorname{det}\left(G_{\hat{\theta}_{n}}\right)\right] \\
& +2 \hat{\sigma}_{n}^{2} \ell\left(\hat{\sigma}_{n}^{2}, \tilde{\theta}_{n}\right)+y_{0, p}^{\prime} G_{\tilde{\theta}_{n}}^{-1} y_{0, p}+\hat{\sigma}_{n}^{2} \log \left[\operatorname{det}\left(G_{\tilde{\theta}_{n}}\right)\right] \\
\leq & 2 C_{0}+2 C_{1}+C_{2}\left\|y_{0, p}\right\|^{2}, \tag{26}
\end{align*}
$$

where $-C_{0}$ denotes a lower bound for $\log \left[\operatorname{det}\left(G_{\omega}\right)\right], \omega \in \Omega, C_{1}$ denotes an upper bound for $\log \left[\operatorname{det}\left(G_{\omega}\right)\right], \omega \in K_{1}$, and $1 / C_{2}$ denotes a lower bound for $\lambda_{\min }\left[G_{\omega}\right], \omega \in K_{1}$. So, A_{5} is empty for sufficiently large n.

Lemma 5.7. For any $k \geqslant 1,\left\|X_{n}\left(\hat{\theta}_{n}-\theta\right)\right\|^{2 k}$ and $n^{k}\left\|\hat{\theta}_{n}-\theta\right\|^{2 k}$ are uniformly integrable.
Proof. Since $\hat{\theta}_{n}$ and θ are bounded and $E_{\xi}\left\|X_{n}^{\prime} X_{n}\right\|^{2 k}=\mathrm{O}\left(n^{2 k}\right)$ for any k, it suffices to show that $\left\|Z_{n}\right\|^{2 k} 1_{D_{n}}$ and $n^{k}\left\|\theta-\hat{\theta}_{n}\right\|^{2 k} 1_{D_{n}}$ are uniformly integrable for events D_{n} that satisfy (23) and (24). Uniform integrability of $\left\|Z_{n}\right\|^{2 k} 1_{D_{n}}$ follows directly from Lemma 5.4 and (26); and that of $n\left\|\hat{\theta}_{n}-\theta\right\|^{2} \mathbf{1}_{D_{n}}$ then follows from

$$
n\|\theta-\hat{\theta}\|^{2} 1_{D_{n}} \leqslant \frac{n}{\lambda_{\min }\left(X_{n}^{\prime} X_{n}\right)}(\theta-\hat{\theta})^{\prime} X_{n}^{\prime} X_{n}(\theta-\hat{\theta}) 1_{D_{n}}
$$

Lemma 5.3, Schwarz's Inequality, and the first assertion.
Recall the definition of r_{n} from (8).
Proposition 5.8. Let D_{n} satisfy (23) and let $2 \kappa_{\theta}=\log \left[\operatorname{det}\left(G_{\theta}\right)\right]$. Then
(a) For any $q \geqslant 1,\left(\left\|\nabla r_{n}\right\|^{2}+\left\|\nabla^{2} r_{n}\right\|\right)^{q} 1_{D_{n}}$ are uniformly integrable.
(b) $n\left\|\nabla r_{n}\right\|^{2} 1_{D_{n}}$ are uniformly integrable.
(c) $\left[\theta, \sqrt{n} \nabla r_{n}(\theta)\right] \Rightarrow\left[\theta, \nabla \kappa_{\theta} U\right]$, where $U \sim \operatorname{Normal}[0,2]$ is independent of $\left[\theta, y_{0, p}\right]$.

Proof. Again using the form of the likelihood function, $\ell_{n}(\theta)-\sigma^{2} \ell_{n}\left(\sigma^{2}, \theta\right)=\ell_{0}(\theta)-$ $\sigma^{2} \ell_{0}\left(\sigma^{2}, \theta\right)+n \sigma^{2} \log \sigma$, so that

$$
\begin{aligned}
& \nabla r_{n}\left(\hat{\theta}_{n}\right)=\nabla \ell_{n}\left(\hat{\theta}_{n}\right)=\nabla \ell_{0}\left(\hat{\theta}_{n}\right)-\hat{\sigma}_{n}^{2} \nabla \ell_{0}\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right)=\left(\hat{\sigma}_{n}^{2}-1\right)\left(\nabla \kappa_{\hat{\theta}_{n}}\right), \\
& \nabla^{2} r_{n}(\theta)=\nabla^{2} \ell_{0}(\theta)-\hat{\sigma}_{n}^{2} \nabla^{2} \ell_{0}\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right)=\mathrm{o}_{p}(1)
\end{aligned}
$$

and

$$
\nabla r_{n}(\theta)=\nabla r_{n}\left(\hat{\theta}_{n}\right)+\int_{0}^{1} \nabla^{2} r_{n}\left[t \theta+(1-t) \hat{\theta}_{n}\right]\left(\theta-\hat{\theta}_{n}\right) \mathrm{d} t
$$

The assertion (c) follows immediately. Next, since $\hat{\sigma}_{n}$ and $\hat{\theta}_{n}$ are bounded on D_{n}, there is a constant C for which

$$
\left\|\nabla r_{n}(\theta)\right\|^{2} \leqslant C\left[\left(\hat{\sigma}_{n}^{2}-1\right)^{2}+\left\|\hat{\theta}_{n}-\theta\right\|^{2}\right]
$$

on D_{n}. Assertions (a) and (b) follow directly from Lemmas 5.5-5.7.
Proposition 5.9. Let D_{n} be as in (23) and (24). Then,
(a) for any $q \geqslant 1,\left\|Q_{n}\right\|^{2 q} 1_{D_{n}}, n \geqslant n_{q}$, are uniformly integrable w.r.t. P_{ξ},
(b) $\lim _{n \rightarrow \infty} \sqrt{n} \int_{\Omega}\left\|E_{\theta}\left[\left(Q_{n}-Q_{\theta}\right) 1_{D_{n}}\right]\right\| \xi(\theta) \mathrm{d} \theta=0$.

Proof. For (a), note that on D_{n} we have $\hat{\theta} \in K_{2}$. So, there exist constants C_{0} and C_{1} such that $\left\|\nabla^{2} \ell_{0}\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right)\right\| \leqslant C_{0}+C_{1}\left\|y_{0, p}\right\|^{2} \leqslant C_{0}+C_{1} n^{1 / 2}$ on D_{n}. It follows that

$$
\begin{aligned}
\left\|Q_{n}\right\|^{2} 1_{D_{n}} & =\lambda_{\max }\left[n\left(X_{n}^{\prime} X_{n}-\hat{\sigma}_{n}^{2} \nabla^{2} \ell_{0}\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right)\right)^{-1}\right] 1_{D_{n}} \\
& \leqslant \frac{n}{\lambda_{\min }\left(X_{n}^{\prime} X_{n}-2 \nabla^{2} \ell_{0}\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right)\right)} 1_{D_{n}} \\
& \leqslant \frac{2 n}{\lambda_{\min }\left(X_{n}^{\prime} X_{n}\right)} 1_{D_{n}}
\end{aligned}
$$

for sufficiently large n. Assertion (a) follows from Lemma 5.3 and the compactness of K.
For (b) if M is a $p \times p$ matrix, denote $\operatorname{vec}(M)$ as the $p^{2} \times 1$ vector composed of the p row vectors. Write the $i j$ component of Q_{n} as $Q_{n}^{i j}=g\left(w_{n}+s_{n}\right)$, where g is a smooth function and

$$
w_{n}=\operatorname{vec}\left(\frac{1}{n} X_{n}^{\prime} X_{n}\right) \quad \text { and } \quad s_{n}=\operatorname{vec}\left(-\frac{1}{n} \hat{\sigma}_{n}^{2} \nabla^{2} \ell_{0}\left(\hat{\sigma}_{n}^{2}, \hat{\theta}_{n}\right)\right)
$$

are p^{2}-variate random vectors. Since $s_{n} \rightarrow 0 w . p .1$ and $w_{n} \rightarrow \mu=\operatorname{vec}\left(G_{\theta}\right) w . p .1$, we have $g(\mu)=Q_{\theta}^{i j}$. Then an application of Taylor's expansion leads to

$$
Q_{n}^{i j}=Q_{\theta}^{i j}+\nabla g(\mu)^{\prime}\left(w_{n}+s_{n}-\mu\right)+\frac{1}{2}\left(w_{n}+s_{n}-\mu\right)^{\prime} \nabla^{2} g(\delta)\left(w_{n}+s_{n}-\mu\right)
$$

where δ lies between μ and $w_{n}+s_{n}$. Let $B_{\mu ; \eta}$ denote the ball centered at μ with radius $\eta>0$ and define $A_{n}=\left\{w_{n} \in B_{\mu ; \eta / 2}\right.$ and $\left.\left\|s_{n}\right\| \leqslant \eta / 2\right\}$. Write

$$
\begin{aligned}
E_{\xi}\left(Q_{n}^{i j} 1_{D_{n}}\right)-E_{\xi}\left(Q_{\theta}^{i j} 1_{D_{n}}\right)= & E_{\xi}\left(\left(Q_{n}^{i j}-Q_{\theta}^{i j}\right) 1_{D_{n} \cap A_{n}^{c}}\right) \\
& +E_{\xi}\left\{\nabla g(\mu)^{\prime}\left(w_{n}+s_{n}-\mu\right) 1_{D_{n} \cap A_{n}}\right\} \\
& +\frac{1}{2} E_{\theta}\left\{\left(w_{n}+s_{n}-\mu\right)^{\prime} \nabla^{2} g_{1}(\delta)\left(w_{n}+s_{n}-\mu\right) 1_{D_{n} \cap A_{n}}\right\} \\
= & R_{1}+R_{2}+R_{3} .
\end{aligned}
$$

It suffices to show that $R_{1}+R_{2}+R_{3}=\mathrm{o}(1 / \sqrt{n})$. To begin, observe that

$$
\begin{align*}
& E_{\theta}\left(\left\|w_{n}-\mu\right\|^{2}\right)=\mathrm{O}(1 / n) \tag{27}\\
& E_{\theta}\left(\left\|s_{n}\right\|^{2} 1_{D_{n}}\right)=\mathrm{O}(1 / n) \tag{28}
\end{align*}
$$

and

$$
\begin{equation*}
P_{\theta}\left(D_{n} \cap A_{n}^{c}\right) \leqslant P_{\theta}\left(\left\|w_{n}-\mu\right\|>\eta / 2\right)+P_{\theta}\left(\left\|s_{n}\right\| 1_{D_{n}}>\eta / 2\right)=\mathrm{o}(1 / n) \tag{29}
\end{equation*}
$$

uniformly in $\theta \in K_{1}$. In view of part (a), (29) and Schwarz's inequality, we have

$$
\begin{aligned}
\left|R_{1}\right| & =\left|E_{\xi}\left(\left(Q_{n}^{i j}-Q_{\theta}^{i j}\right) 1_{D_{n} \cap A_{n}^{c}}\right)\right| \\
& \leqslant\left\{E_{\xi}\left(\left(Q_{n}^{i j}-Q_{\theta}^{i j}\right)^{2} 1_{D_{n} \cap A_{n}^{c}}\right) P_{\xi}\left(D_{n} \cap A_{n}^{c}\right)\right\}^{1 / 2} \\
& =\mathrm{o}(1 / \sqrt{n}) .
\end{aligned}
$$

Since $E_{\theta}\left(w_{n}-\mu\right)=0$, we can rewrite the second part of R_{2} as

$$
\begin{equation*}
E_{\xi}\left\{\left(w_{n}+s_{n}-\mu\right) 1_{D_{n} \cap A_{n}}\right\}=-E_{\xi}\left\{\left(w_{n}-\mu\right) 1_{D_{n}^{c} \cup A_{n}^{c}}\right\}+E_{\xi}\left\{s_{n} 1_{D_{n} \cap A_{n}}\right\} . \tag{30}
\end{equation*}
$$

By Schwarz's inequality, (27), (29) and Lemma 5.6, the first term on the right side of (30) is o $(1 / \sqrt{n})$, and write

$$
E_{\xi}\left\{\left|s_{n}\right| 1_{D_{n} \cap A_{n}}\right\} \leqslant \frac{C}{n} E_{\xi}\left[1+\left\|y_{0, p}\right\|^{2}\right]=\mathrm{o}\left(\frac{1}{\sqrt{n}}\right) .
$$

For R_{3}, since $\nabla^{2} g_{1}(\delta)$ is bounded on $D_{n} \cap A_{n}$, we obtain

$$
2\left|R_{3}\right| \leqslant C^{\prime} E_{\xi}\left\{\left\|w_{n}-\mu\right\|^{2} 1_{D_{n} \cap A_{n}}+\left\|s_{n}\right\|^{2} 1_{D_{n} \cap A_{n}}\right\}
$$

for some $C^{\prime}>0$. So, $R_{3}=\mathrm{o}(1 / \sqrt{n})$ follows from (27) and (28).
Corollary 5.10. For any compact convex $K_{0} \subseteq \Omega$,

$$
\lim _{n \rightarrow \infty}\left[\int_{K_{0}} E_{\theta}\left\{\left\|Q_{n}-Q_{\theta}\right\|^{2 q} 1_{D_{n}}\right\} \mathrm{d} \theta+\sqrt{n} \int_{K_{0}}\left\|E_{\theta}\left\{\left[Q_{n}-Q_{\theta}\right] 1_{D_{n}}\right\}\right\| \mathrm{d} \theta\right]=0
$$

Proof. This follows directly from Proposition 5.9(b), by letting ξ have a slightly larger support than K_{0}.

6. Proofs of the main results

The proofs of (6) and (7) are presented in this section. As above ξ denotes a fixed, but arbitrary, twice continuously differentiable density with compact, convex support K in Ω, and $\|\cdot\|$ denotes the spectral norm of a matrix throughout this section.

Proof of (13). Recall that \mathscr{H}_{k}^{o} denotes all measurable h for which $|h(z)| \leqslant 1+\|z\|^{k}$. The first lemma has the flavor of the proof of (13) with fewer technicalities. Throughout this section, the notation 'essup f ' means essential supremum of f.

Lemma 6.11.

$$
\lim _{n \rightarrow \infty} E_{\xi}\left[\operatorname{essup}_{h \in \mathscr{H}_{1}^{o}}\left|E_{\xi}^{n}\left\{h\left(Z_{n}\right)\right\}-\Phi^{p} h\right| 1_{D_{n}}\right]=0 .
$$

Proof. By Stein's identity,

$$
E_{\xi}^{n}\left[h\left(Z_{n}\right)-\Phi^{p} h\right]=E_{\xi}^{n}\left[U h\left(Z_{n}\right)^{\prime} \frac{\nabla f_{n}\left(Z_{n}\right)}{f_{n}\left(Z_{n}\right)}\right]=E_{\xi}^{n}\left\{U h\left(Z_{n}\right)^{\prime} B_{n}^{-1}\left[\frac{\nabla \xi}{\xi}+\nabla r_{n}\right]\right\} .
$$

Here $\|U h\|$ is bounded, say $\|U h\| \leqslant C$ for all $h \in \mathscr{H}_{1}^{o}$, and $\left\|B_{n}\right\|^{-1} \leqslant n^{-3 / 8}$ on D_{n}. So,

$$
\underset{h \in \mathscr{H}_{1}^{o}}{\operatorname{essup}}\left|E_{\xi}^{n}\left\{h\left(Z_{n}\right)\right\}-\Phi^{p} h\right| 1_{D_{n}} \leqslant C n^{-3 / 8} E_{\xi}^{n}\left[\left\|\frac{\nabla \xi}{\xi}\right\|+\left\|\nabla r_{n}\right\| 1_{D_{n}}\right],
$$

which is independent of h and approaches 0 in the mean.
With the notation of (13), let

$$
\begin{aligned}
R_{n}(h)=n \mid & E_{\xi}^{n}\left[h\left(Z_{n}\right)\right]-\left\{\Phi^{p} h+\frac{1}{\sqrt{n}}\left(\Phi^{p} U h\right)^{\prime} E_{\xi}^{n}\left[Q_{\theta}\left(\frac{\nabla \xi}{\xi}\right)\right]\right. \\
& \left.+\frac{1}{n} E_{\xi}^{n}\left\{\operatorname{tr}\left[\left(\Phi^{p} V h\right) Q_{\theta}\left(\frac{\nabla^{2} \xi}{\xi}\right) Q_{\theta}^{\prime}\right]\right\}\right\} \mid 1_{D_{n}}
\end{aligned}
$$

for $h \in \mathscr{H}_{2}$.
Theorem 6.12. If ξ is twice continuously differentiable with compact support K, and

$$
\begin{equation*}
\int_{\Omega}\left\|\frac{\nabla^{2} \xi}{\xi}\right\|^{\alpha} \xi \mathrm{d} \theta<\infty \tag{31}
\end{equation*}
$$

for some $\alpha>1$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{\xi}\left\{\operatorname{essup}_{h \in \mathscr{H}_{2}^{o}} R_{n}(h)\right\}=0 \tag{32}
\end{equation*}
$$

Moreover, (14) holds for all $h \in \mathscr{H}_{2}$ and uniformly with respect to $h \in \mathscr{H}_{2}^{o}$.
Proof. Relation (32) is established first. From (13), it suffices to show that

$$
\sqrt{n}\left\|\int_{D_{n}}\left(\mathrm{I}_{n}+\mathrm{II}_{n}\right) \mathrm{d} P_{\xi}\right\|+\int_{D_{n}} \operatorname{esssup}_{h \in \mathscr{H}_{2}^{o}}\left(\left|\mathrm{III}_{n}(h)\right|+\left|\mathrm{IV}_{n}(h)\right|\right) \mathrm{d} P_{\xi} \rightarrow 0
$$

as $n \rightarrow \infty$, where $\mathrm{I}_{n}-\mathrm{IV}_{n}$ are defined following (13). These four terms are considered separately. For I_{n},

$$
\begin{aligned}
\left\|\int_{D_{n}} \sqrt{n} \mathrm{I}_{n} \mathrm{~d} P_{\xi}\right\| & =\sqrt{n}\left\|E_{\xi}\left\{\mathrm{I}_{n} 1_{D_{n}}\right\}\right\| \\
& =\sqrt{n}\left\|E_{\xi}\left\{\left(Q_{n}-Q_{\theta}\right)\left(\frac{\nabla \xi}{\xi}\right) 1_{D_{n}}\right\}\right\| \\
& \leqslant C \sqrt{n}\left\|\int_{K} E_{\theta}\left\{\left(Q_{n}-Q_{\theta}\right) 1_{D_{n}}\right\} \nabla \xi(\theta) \mathrm{d} \theta\right\| \\
& \leqslant C \sqrt{n} \int_{K}\left\|E_{\theta}\left[\left(Q_{n}-Q_{\theta}\right) 1_{D_{n}}\right]\right\|\|\nabla \xi(\theta)\| \mathrm{d} \theta \\
& \rightarrow 0
\end{aligned}
$$

by Corollary 5.10(b). For II_{n}, write

$$
\sqrt{n} E_{\xi}\left[Q_{n} \nabla r_{n}(\theta) 1_{D_{n}}\right]=\sqrt{n} E_{\xi}\left[Q_{\theta} \nabla r_{n}(\theta) 1_{D_{n}}\right]+\sqrt{n} E_{\xi}\left[\left(Q_{n}-Q_{\theta}\right) \nabla r_{n}(\theta) 1_{D_{n}}\right] .
$$

The two terms on the right approach zero by Propositions 5.8 and 5.9 and Hölder's inequality.
Next, since $V h$ is bounded when $h \in \mathscr{H}_{2}^{O}$, there is a constant C for which

$$
\left|\mathrm{III}_{n}(h)\right| 1_{D_{n}} \leqslant C\left\|Q_{n}\right\|^{2}\left[2\left\|\nabla r_{n}\right\|\left\|\frac{\nabla \xi}{\xi}\right\|+\left\|\nabla^{2} r_{n}\right\|+\left\|\nabla r_{n}\right\|^{2}\right] 1_{D_{n}},
$$

which is independent of h. The expectation of the terms on the right approach zero as $n \rightarrow$ ∞, by Propositions 5.8 and 5.9. This is clear for $E_{\xi}\left[\left\|Q_{n}\right\|^{2}\left(\left\|\nabla^{2} r_{n}\right\|+\left\|\nabla r_{n}\right\|^{2}\right) 1_{D_{n}}\right]$. For the first term on the right, there is a twice continuously differentiable density $\tilde{\xi}$ with compact convex support and a constant C for which $\|\nabla \xi\| \leqslant C \tilde{\xi}$, as in the proof of Lemma 5.4, and then

$$
E_{\xi}\left\{\left\|Q_{n}\right\|^{2}\left\|\nabla r_{n}\right\|\left\|\frac{\nabla \xi}{\xi}\right\| 1_{D_{n}}\right\} \leqslant C E_{\tilde{\xi}}\left[\left\|Q_{n}\right\|^{2}\left\|\nabla r_{n}\right\| 1_{D_{n}}\right]
$$

which approaches zero as $n \rightarrow \infty$, by Propositions 5.8 and 5.9.
For IV_{n}, first observe that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{\xi}\left\|E_{\xi}^{n}\left[\frac{\nabla^{2} \xi}{\xi}\right]-\frac{\nabla^{2} \xi}{\xi}\right\|^{\alpha} \rightarrow 0 \tag{33}
\end{equation*}
$$

by the Martingale Convergence theorem and (31), and then write

$$
\mathrm{IV}_{n}=\mathrm{IV}_{1, n}+\mathrm{IV}_{2, n}+\mathrm{IV}_{3, n}
$$

where

$$
\begin{aligned}
& \mathrm{IV}_{1, n}(h)=E_{\xi}^{n} \operatorname{tr}\left\{V h\left(Z_{n}\right) Q_{n}\left[\frac{\nabla^{2} \xi}{\xi}-E_{\xi}^{n}\left(\frac{\nabla^{2} \xi}{\xi}\right)\right] Q_{n}^{\prime}\right\}, \\
& \mathrm{IV}_{2, n}(h)=E_{\xi}^{n} \operatorname{tr}\left\{\left[V h\left(Z_{n}\right)-\Phi^{p} V h\right] Q_{n} E_{\xi}^{n}\left[\frac{\nabla^{2} \xi}{\xi}\right] Q_{n}^{\prime}\right\}
\end{aligned}
$$

and

$$
\operatorname{IV}_{3, n}(h)=E_{\xi}^{n} \operatorname{tr}\left\{\left(\Phi^{p} V h\right)\left[Q_{n}\left(\frac{\nabla^{2} \xi}{\xi}\right) Q_{n}^{\prime}-Q_{\theta}\left(\frac{\nabla^{2} \xi}{\xi}\right) Q_{\theta}^{\prime}\right]\right\} .
$$

As in the analysis of $\mathrm{III}_{n}(h)$, there is a constant C for which

$$
\left|\mathrm{IV}_{3, n}(h)\right| \leqslant C\left(\left\|Q_{n}-Q_{\theta}\right\|\right)\left(\left\|Q_{n}+Q_{\theta}\right\|\right)\left\|\frac{\nabla^{2} \xi}{\xi}\right\|
$$

which is independent of h and approaches zero in the mean by Proposition 5.9 and (33). For $\mathrm{IV}_{1, n}$ and $\mathrm{IV}_{2, n}$

$$
E_{\xi}\left[\operatorname{essup}_{h \in \mathscr{H}_{2}^{o}}\left|\mathrm{IV}_{1, n}(h)\right| 1_{D_{n}}\right] \leqslant C E_{\xi}\left\{\left\|E_{\xi}^{n}\left[\frac{\nabla^{2} \xi}{\xi}\right]-\frac{\nabla^{2} \xi}{\xi}\right\|\left\|Q_{n}\right\|^{2}\right\} \rightarrow 0
$$

as $n \rightarrow \infty$, by Proposition 5.9, (33), and Hölder's inequality. Similarly, since $V h$ is bounded when $h \in \mathscr{H}_{2}^{o}$

$$
\begin{aligned}
& E_{\xi}\left[\operatorname{essup}_{h \in \mathscr{H}_{2}^{o}}\left|\mathrm{IV}_{2, n}(h)\right| 1_{D_{n}}\right] \\
& \\
& \leqslant E_{\xi}\left\{\underset{h \in \mathscr{H}_{2}^{o}}{\operatorname{esssup}}\left\|E_{\xi}^{n}\left[V h\left(Z_{n}\right)-\Phi^{p} V h\right]\right\|\left\|E_{\xi}^{n}\left[\frac{\nabla^{2} \xi}{\xi}\right]\right\|\left\|Q_{n}\right\|^{2} 1_{D_{n}}\right\} \rightarrow 0
\end{aligned}
$$

by Proposition 5.9, Lemma 6.11, (33), and Hölder's inequality. This completes the proof of (32).

For (14), let $\bar{R}_{n}=\operatorname{essup}_{h \in \mathscr{H}_{2}^{o}} R_{n}(h)$. Then there is a constant C for which the difference between $E_{\xi}\left[h\left(Z_{n}\right)\right]$ and its approximation in (14) is at most

$$
\int_{D_{n}} \bar{R}_{n} \mathrm{~d} P_{\xi}+C \int_{D_{n}^{c}}\left[1+\left\|Z_{n}\right\|^{2}+\frac{1}{\sqrt{n}}\left\|Q_{\theta}\right\|\left\|\frac{\nabla \xi}{\xi}\right\|+\frac{1}{n}\left\|Q_{\theta}\right\|^{2}\left\|\frac{\nabla^{2} \xi}{\xi}\right\|\right] P_{\xi} .
$$

The first term here is $o(1 / n)$ by the Theorem, the second by Lemma 5.7, and the remaining two by Lemma 5.6.

Studentization: Two more auxiliary results are needed for the transition from Z_{n} to Z_{n}^{*} and T_{n}^{*}. As in the last section, let K_{1} and K_{2} be compact convex sets for which $K \subset K_{1}^{o} \subset$ $K_{1} \subset K_{2}^{o} \subset K_{2} \subset \Omega$.

Proposition 6.13. Let D_{n} satisfy (23). If g is continuous on Ω, then

$$
\lim _{n \rightarrow \infty} \int_{D_{n}}\left|g\left(\hat{\theta}_{n}\right)-g(\theta)\right| \mathrm{d} P_{\xi}=0
$$

and if g is twice continuously differentiable on Ω, then

$$
\int_{D_{n}}\left[g(\theta)-g\left(\hat{\theta}_{n}\right)\right] \mathrm{d} P_{\xi}=\mathrm{o}\left(\frac{1}{\sqrt{n}}\right) .
$$

Proof. By compactness and continuity, g and its derivatives (if continuous) are bounded on K_{2}. The first assertion then follows directly from the Dominated convergence theorem. For the second, there is a constant C for which

$$
\left|g(\theta)-g\left(\hat{\theta}_{n}\right)-\nabla g\left(\hat{\theta}_{n}\right)^{\prime}\left(\theta-\hat{\theta}_{n}\right)\right| \leqslant C\left\|\theta-\hat{\theta}_{n}\right\|^{2}
$$

for all $\theta \in K$ on D_{n}; and $E_{\xi}\left(\left\|\theta-\hat{\theta}_{n}\right\|^{2} 1_{D_{n}}\right)=\mathrm{o}(1 / \sqrt{n})$ by Lemma 5.6. Further, using $E_{\xi}^{n}\left(\theta-\hat{\theta}_{n}\right)=B_{n}^{\prime-1} E_{\xi}^{n}\left(Z_{n}\right)$ and Proposition 2.1, there is a C for which

$$
\begin{aligned}
\left|\int_{D_{n}} \nabla g\left(\hat{\theta}_{n}\right)^{\prime}\left(\theta-\hat{\theta}_{n}\right) \mathrm{d} P_{\xi}\right| & \leqslant C \int_{D_{n}}\left\|E_{\xi}^{n}\left(\theta-\hat{\theta}_{n}\right)\right\| \mathrm{d} P_{\xi} \\
& =C \int_{D_{n}}\left\|\left(X_{n}^{\prime} X_{n}\right)^{-1} E_{\xi}^{n}\left[\frac{\nabla \xi}{\xi}+\nabla r_{n}(\theta)\right]\right\| \mathrm{d} P_{\xi} \\
& \leqslant C n^{-3 / 4} \int_{D_{n}}\left[\left\|\frac{\nabla \xi}{\xi}\right\|+\left\|r_{n}(\theta)\right\|\right] \mathrm{d} P_{\xi}
\end{aligned}
$$

which is o $(1 / \sqrt{n})$ by Proposition 5.8.
Given a function $h \in \mathscr{H}$, a $t>0$, a $v \in \mathbb{R}^{p}$, and a $p \times p$ non-singular matrix Γ, let

$$
\begin{aligned}
& h^{*}(z)=h\left[t^{-1 / 2} \Gamma^{-1}(z-v)\right] \\
& \Psi_{0}(h ; v, t, \Gamma)=-\left(\Phi^{p} U h\right)^{\prime} v+\operatorname{tr}\left\{\left(\Phi^{p} V h\right)\left[v v^{\prime}-\left(\Gamma+\Gamma^{\prime}-2 I_{p}\right)\right]\right\} \\
&-\operatorname{tr}\left(\Phi^{p} V h\right)(t-1)-\left(\Phi_{3}^{p} h\right)^{\prime} v(t-1)+\frac{1}{2}\left(\Phi_{4}^{p} h\right)(t-1)^{2} \\
& \Psi_{1}(h ; v, t, \Gamma)=-2\left(\Phi^{p} V h\right) v+\left(\Phi_{3}^{p} h\right)(t-1)
\end{aligned}
$$

where

$$
\begin{aligned}
\Phi_{3}^{p} h & =\frac{1}{2} \int_{\mathfrak{R}^{p}}\left[p+1-\|z\|^{2}\right] z h(z) \Phi^{p}\{\mathrm{~d} z\}, \\
\Phi_{4}^{p} h & =\int_{\mathfrak{R}^{p}}\left\{\frac{1}{4}\left[\|z\|^{2}-p\right]^{2}-\frac{1}{2} p\right\} h(z) \Phi^{p}\{\mathrm{~d} z\} .
\end{aligned}
$$

Lemma 6.14. There is a constant C for which

$$
\begin{aligned}
& \left|\Phi^{p} h^{*}-\Phi^{p} h-\Psi_{0}(h ; v, t, \Gamma)\right| \leqslant C\left[\|v\|^{3}+|t-1|^{3}+\left\|\Gamma-I_{p}\right\|^{3 / 2}\right] \\
& \left\|\Phi^{p} U h^{*}-\Phi^{p} U h-\Psi_{1}(h ; v, t, \Gamma)\right\| \leqslant C\left[\|v\|^{2}+|t-1|^{2}+\left\|\Gamma-I_{p}\right\|\right]
\end{aligned}
$$

and

$$
\left\|\Phi^{p} V h^{*}-\Phi^{p} V h\right\| \leqslant C\left[\|v\|+|t-1|+\left\|\Gamma-I_{p}\right\|\right]
$$

for all $\|v\| \leqslant 1, \quad \frac{1}{2} \leqslant t \leqslant \frac{3}{2},\left\|\Gamma-I_{p}\right\| \leqslant \frac{1}{2}$, and $h \in \mathscr{H}_{0}$.
Proof. As in Woodroofe and Coad (1997),

$$
\Phi^{p} h^{*}=\int_{\mathfrak{R}^{p}} h(x) \varphi(x ; v, t, \Gamma) \mathrm{d} x,
$$

where

$$
\varphi(x ; v, t, \Gamma)=t^{1 / 2 p}|\operatorname{det}(\Gamma)| \varphi(\sqrt{t} \Gamma x+v)
$$

The latter forms an exponential family of densities, so that the integral is infinitely differentiable. The first assertion then follows from a Taylor series expansion and the identity $\Gamma \Gamma^{\prime}-I_{p}=\left(\Gamma+\Gamma^{\prime}-2 I_{p}\right)+\left(\Gamma-I_{p}\right)\left(\Gamma^{\prime}-I_{p}\right)$. The others may be established similarly.

$$
\text { Recall that } Z_{n}^{*}=\hat{\Gamma}_{n}^{-1}\left(Z_{n}-\hat{\mu}_{n}\right) \text { and } T_{n}^{*}=\tilde{\sigma}_{n}^{-1} \hat{\Gamma}_{n}^{-1}\left(Z_{n}-\tilde{\sigma}_{n} \hat{\mu}_{n}\right)
$$

Theorem 6.15. Let $\hat{\mu}_{n}$ and $\hat{\Gamma}_{n}$ be as in (18) and (20). If ξ is a twice continuously differentiable density with compact support for which (31) holds, then (6) and (7) hold. In fact,

$$
\begin{equation*}
\left|\int_{\Omega}\left[E_{\theta}\left[h\left(Z_{n}^{*}\right)\right]-\Phi^{p} h\right] \xi(\theta) \mathrm{d} \theta\right|=\mathrm{o}\left(\frac{1}{n}\right) \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{\Omega}\left[E_{\theta}\left[h\left(T_{n}^{*}\right)\right]-\Phi^{p} h-\frac{1}{n} \Phi_{4}^{p} h\right] \xi(\theta) \mathrm{d} \theta\right|=\mathrm{o}\left(\frac{1}{n}\right) \tag{35}
\end{equation*}
$$

for all $h \in \mathscr{H}_{0}$ and uniformly with respect to $h \in \mathscr{H}_{0}^{o}$.
Proof. Relations (6) and (7) follow from (34) and (35) by letting h be an indicator function and using the relation $G_{n}^{p} h=\Phi^{p} h+\Phi_{4}^{p} h / n+\mathrm{o}(1 / n)$ for $h \in \mathscr{H}$. Only the proof of (35) is given; that of (34) is similar and simpler. Let D_{n}^{o} be the right side of (23),

$$
D_{n}=D_{n}^{o} \cap\left\{\frac{1}{2} \leqslant \tilde{\sigma}_{n}^{2} \leqslant \frac{3}{2}\right\} .
$$

Then D_{n} satisfies (23) and (24). If $h \in \mathscr{H}_{0}^{o}$, let

$$
h_{n}(z)=h\left[\tilde{\sigma}_{n}^{-1} \hat{\Gamma}_{n}^{-1}\left(z-\tilde{\sigma}_{n} \hat{\mu}_{n}\right)\right] .
$$

Then

$$
\begin{aligned}
& E_{\xi}\left[h\left(T_{n}^{*}\right)\right]-\Phi^{p} h=E_{\xi}\left\{E_{\xi}^{n}\left[h\left(T_{n}^{*}\right)-\Phi^{p} h\right] \mathbf{1}_{D_{n}}\right\}+\mathrm{o}\left(\frac{1}{n}\right), \\
& E_{\xi}^{n}\left[h\left(T_{n}^{*}\right)\right]=E_{\xi}^{n}\left[h_{n}\left(Z_{n}\right)\right]
\end{aligned}
$$

and

$$
E_{\xi}^{n}\left[h_{n}\left(Z_{n}\right)\right]-\Phi^{p} h=\left\{E_{\xi}^{n}\left[h_{n}\left(Z_{n}\right)\right]-\Phi^{p} h_{n}\right\}+\left[\Phi^{p} h_{n}-\Phi^{p} h\right] .
$$

On D_{n},

$$
\begin{aligned}
E_{\xi}^{n}\left[h_{n}\left(Z_{n}\right)\right]-\Phi^{p} h_{n}= & \frac{1}{\sqrt{n}}\left(\Phi^{p} U h_{n}\right)^{\prime} E_{\xi}^{n}\left[Q_{\theta}\left(\frac{\nabla \xi}{\xi}\right)\right] \\
& +\frac{1}{n} E_{\xi}^{n} \operatorname{tr}\left\{\left(\Phi^{p} V h_{n}\right) Q_{\theta}\left(\frac{\nabla \xi}{\xi}\right) Q_{\theta}^{\prime}\right\}+\frac{1}{n} R_{n}\left(h_{n}\right)
\end{aligned}
$$

Now $\Phi^{p} h_{n}, \Phi^{p} U h_{n}$, and $\Phi^{p} V h_{n}$ may be approximated using Lemma 6.14. After this approximation and some algebra,

$$
\begin{aligned}
E_{\xi}^{n}\left[h_{n}\left(Z_{n}\right)\right]-\Phi^{p} h= & \frac{1}{\sqrt{n}}\left(\Phi^{p} U h\right)^{\prime} \mathrm{I}_{n}^{*}+\frac{1}{n} \operatorname{tr}\left\{\left(\Phi^{p} V h\right)\left[\mathrm{II}_{n}^{*}-n\left(\tilde{\sigma}_{n}^{2}-1\right)\right]\right\} \\
& -\left(\Phi_{3}^{p} h\right)^{\prime} \tilde{\sigma}_{n} \hat{\mu}_{n}\left(\tilde{\sigma}_{n}^{2}-1\right)+\frac{1}{2 n}\left(\Phi_{4}^{p} h\right) n\left(\tilde{\sigma}_{n}^{2}-1\right)^{2}+\frac{1}{n} \tilde{R}_{n}(h),
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{I}_{n}^{*}=E_{\xi}^{n}\left[Q_{\theta}\left(\frac{\nabla \xi}{\xi}\right)\right]-\sqrt{n} \tilde{\sigma}_{n} \hat{\mu}_{n} \\
& \mathrm{II}_{n}^{*}=E_{\xi}^{n}\left[Q_{\theta}\left(\frac{\nabla^{2} \xi}{\xi}\right) Q_{\theta}^{\prime}+n \tilde{\sigma}_{n}^{2} \hat{\mu}_{n} \hat{\mu}_{n}^{\prime}-\hat{\Delta}_{n}-2 Q_{\theta} \frac{\nabla \xi}{\xi} \sqrt{n} \tilde{\sigma}_{n} \hat{\mu}_{n}^{\prime}\right]
\end{aligned}
$$

and $\lim _{n \rightarrow \infty} E_{\xi}\left[\operatorname{essup} p_{h \in \mathscr{H}_{2}^{\rho}}\left|\tilde{R}_{n}(h)\right|\right]=0$. Here $\lim _{n \rightarrow \infty} E_{\xi}\left[n\left(\tilde{\sigma}_{n}^{2}-1\right)^{2} \mathbf{1}_{D_{n}}\right]=2$, by Lemma 5.4 and the preceding remark. So, it suffices to show that

$$
\begin{aligned}
& E_{\xi}\left[\left(\tilde{\sigma}_{n}^{2}-1\right) \mathbf{1}_{D_{n}}\right]=\mathrm{o}(1 / n), \\
& E_{\xi}\left[\tilde{\sigma}_{n} \hat{\mu}_{n}\left(\tilde{\sigma}_{n}^{2}-1\right) \mathbf{1}_{D_{n}}\right]=\mathrm{o}(1 / n), \\
& E_{\xi}\left(\mathrm{I}_{n}^{*} \mathbf{1}_{D_{n}}\right)=\mathrm{o}(1 / \sqrt{n}), \\
& E_{\xi}\left(\mathrm{II}_{n}^{*} D_{n}\right) \rightarrow 0 .
\end{aligned}
$$

The first of these is clear, since

$$
E_{\xi}\left[\left(\tilde{\sigma}_{n}^{2}-1\right) \mathbf{1}_{D_{n}}\right]=-E_{\xi}\left[\left(\tilde{\sigma}_{n}^{2}-1\right) \mathbf{1}_{D_{n}^{c}}\right]+\mathrm{o}(1 / n)=\mathrm{o}(1 / n),
$$

by Lemma 5.4 and Schwarz's inequality, and the second follows since $n \tilde{\sigma}_{n} \hat{\mu}_{n}\left(\tilde{\sigma}_{n}^{2}-1\right)$ has a limiting distribution with mean 0 . For II_{n}^{*}, it is easily seen that $\mathrm{II}_{n}^{*} \rightarrow^{p} M(\theta)$, where

$$
M(\theta)=Q_{\theta}\left(\frac{\nabla^{2} \xi}{\xi}\right) Q_{\theta}^{\prime}+\left(Q_{\theta}^{\#} \mathbf{1}\right)\left(Q_{\theta}^{\#} \mathbf{1}\right)^{\prime}-\Delta(\theta)-2 Q_{\theta} \frac{\nabla \xi}{\xi}\left(Q_{\theta}^{\#} \mathbf{1}\right)^{\prime}
$$

and that

$$
E_{\xi}\left[\mathrm{II}_{n}^{*} 1_{D_{n}}\right] \rightarrow \int_{\Omega} M(\theta) \xi(\theta) \mathrm{d} \theta=0
$$

where the final equality follows from an integration by parts. See Lemma 2 (Woodroofe and Coad, 1997).

The term involving I_{n}^{*} is more delicate. Here

$$
\begin{aligned}
& \mathrm{I}_{n}^{*}=E_{\xi}^{n}\left[Q_{\theta}\left(\frac{\nabla \xi}{\xi}\right)+Q_{\theta}^{\#} \mathbf{1}\right] \mathbf{1}_{D_{n}}+E_{\xi}^{n}\left[\tilde{\sigma}_{n} Q_{\hat{\theta}_{n}}^{\#} \mathbf{1}-Q_{\theta}^{\#} \mathbf{1}\right] \mathbf{1}_{D_{n}} \\
&=\mathrm{I}_{1, n}^{*}+\mathrm{I}_{2, n}^{*}, \\
& E_{\xi}\left(\mathrm{I}_{1, n}^{*}\right)=\int_{\Omega}\left[Q_{\theta}\left(\frac{\nabla \xi}{\xi}\right)+Q_{\theta}^{\#} \mathbf{1}\right] P_{\theta}\left(D_{n}\right) \xi(\theta) \mathrm{d} \theta \\
&=-\int_{\Omega}\left[Q_{\theta}\left(\frac{\nabla \xi}{\xi}\right)+Q_{\theta}^{\#} \mathbf{1}\right] P_{\theta}\left(D_{n}^{c}\right) \xi(\theta) \mathrm{d} \theta \\
&=\mathrm{o}(1 / n)
\end{aligned}
$$

and

$$
E_{\xi}\left(\mathrm{I}_{2, n}^{*}\right)=E_{\xi}\left\{\left[\tilde{\sigma}_{n} Q_{\hat{\theta}_{n}}^{\#} \mathbf{1}-Q_{\theta}^{\#} \mathbf{1}\right] \mathbf{1}_{D_{n}}\right\}=\mathrm{o}(1 / \sqrt{n})
$$

by Lemmas 5.4 and 5.6 and Proposition 6.13. This completes the proof of (35). The proof of (34) is similar, but the terms involving $\tilde{\sigma}_{n}^{2}$ are absent.

7. Discussions

We have derived approximate confidence intervals for a stationary, Gaussian autoregressive process of order p. Simulation experiments for $\operatorname{AR}(2)$ processes with sample sizes $n=10,20,50$ show excellent agreement with the theoretical results, recalling that they predict better agreement in the symmetric case than for the one-sided one.

Though this paper mainly concerns setting confidence intervals from a frequentist point of view, the integrable expansion derived here has a close connection with Bayesian models. In the Bayesian literature, there has been an extensive study on developing priors that match asymptotically the coverage probabilities of Bayesian credible sets with the corresponding frequentist probabilities. Such priors are referred to as 'probability matching priors.' See, for example, Ghosh (1994), Datta and Mukerjee (2004). Our work suggests an equation for the matching prior. Letting $\rho=\log \xi$ and approximating the coefficient of $1 / \sqrt{n}$ in (13)
suggests that the frequentist approximation (16) and posterior expansion (13) will agree to order $\mathrm{o}(1 / \sqrt{n})$ if

$$
Q_{\theta} \nabla \rho(\theta)=-Q_{\theta}^{\#} \mathbf{1}
$$

This has the solution

$$
\rho(\theta)=\rho(0)-\int_{0}^{1} \theta^{\prime} Q_{t \theta}^{-1} Q_{t \theta}^{\#} \mathbf{1} \mathrm{~d} t
$$

or

$$
\begin{equation*}
\xi(\theta) \propto \exp \left[-\int_{0}^{1} \theta^{\prime} Q_{t \theta}^{-1} Q_{t \theta}^{\#} \mathbf{1} \mathrm{~d} t\right] \tag{36}
\end{equation*}
$$

Of course, our conditions are not satisfied by (36), so that (36) can be at most suggestive, but it is that at least. If $p=1$, then the unique solution to (36) is the Jeffreys prior, $\xi(\theta) \propto \sqrt{\mathscr{I}_{\theta}}$, where \mathscr{I}_{θ} is the information, but if $p \geqslant 2$, then (36) need not be the Jeffreys prior. For $p=2$, it is (after straightforward, but lengthy calculations)

$$
\xi(\theta) \propto \sqrt{\frac{1+\theta_{2}}{1-\theta_{2}}} \sqrt{\left|\mathscr{I}_{\theta}\right|}
$$

where now $\left|\mathscr{I}_{\theta}\right|$ is the determinant of the information matrix.
Further investigation of (36), including more general conditions on the prior for its validity, is one open problem for future research. Another is to extend the result to ARMA processes. A natural approach is to write an ARMA process as an AR process of infinite order, where the sequence of coefficients in the latter depends on finitely many parameters, but this may be messy (at best), because the likelihood function for an ARMA process is complicated.

Acknowledgements

The authors would like to thank the referees and associate editor for their comments on this paper. Both authors are supported by the National Science Foundation, and the first author is also partially supported by National Science Council of Taiwan.

References

Brockwell, P.J., Davis, R.A., 1991. Time Series: Theory and Methods. Springer, New York.
Coad, D.S., Woodroofe, M., 1998. Approximate bias calculations for sequentially designed experiments. Sequential Anal. 17, 1-31.
Datta, G.S., Mukerjee, R., 2004. Probability Matching Priors: Higher Order Asymptotics. Series: Lecture Notes in Statistics, vol. 178. Springer, New York.
Ghosh, J.K., 1994. Higher Order Asymptotics. IMS, Hayward, CA.
Mann, H.B., Wald, A., 1943a. On stochastic limit and order relations. Ann. Math. Statist. 14, 217-226.
Mann, H.B., Wald, A., 1943b. On the statistical treatment of linear stochastic difference equations. Econometrica 11, 173-220.

Stein, C., 1981. Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9, 1135-1151.
Stein, C., 1987. Approximate Computation of Expectations. IMS, Hayward, CA.
Tanaka, K., 1984. An asymptotic expansions associated with the maximum likelihood estimators in ARMA models. J. R. Statist. Soc. B 46, 58-67.

Woodroofe, M., 1986. Very weak expansions for sequential confidence levels. Ann. Statist. 14, 1049-1067.
Woodroofe, M., 1989. Very weak expansions for sequentially designed experiments: linear models. Ann. Statist. 17, 1087-1102.
Woodroofe, M., 1992. Integrable expansions for posterior distributions for one-parameter exponential families. Statist. Sinica 2, 91-111.
Woodroofe, M., Coad, D.S., 1997. Corrected confidence sets for sequentially designed experiments. Statist. Sinica 7, 53-74.
Woodroofe, M., Coad, D.S., 2002. Corrected confidence sets for sequentially designed experiments: examples. Sequential Anal. 21, 191-218.

[^0]: * Corresponding author.

 E-mail address: chweng@ nccu.edu.tw (R.C. Weng).

