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Abstract

Approximate confidence intervals are derived for the autoregressive parameters of a stationary,
Gaussian auto-regressive process of arbitrary order and shown to be asymptotically correct to order
o(1/n), where n is the sample size. Simulation studies are included for small and moderate sample
sizes for the case of two auto-regressive parameters, and these indicate excellent approximation for
sample sizes as small as n = 10,20. The convergence is in the very weak sense, and the derivation
differs from most existing work through its direct focus on Studentized estimation error and its use
of Stein’s identity.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In 1943 Mann and Wald wrote two pioneering papers. In Mann and Wald (1943a) they
introduced stochastic order relations which have since become an integral part of large
sample theory. In Mann and Wald (1943b) they gave a careful proof of the consistency and
asymptotic normality of the maximum likelihood estimator from a stationary autoregressive
process, a topic which is now an integral part of advanced courses on time series—for
example, Brockwell and Davis (1991, pp. 258–262). Here we continue the line begun in
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Mann and Wald (1943b) by obtaining asymptotic expansions for the distribution of the
maximum likelihood estimator suitably normalized.

Consider a stationary autoregressive process of order p,

yt = �1yt−1 + · · · + �pyt−p + �et , t = 0, ±1, . . . ,

where et are independent standard normal random variables and �1, . . . , �p ∈ R and �2 > 0
are unknown parameters. We suppose throughout that the process is causal. Thus, let � be
all �= (�1, . . . ,�p)′ for which the polynomial 1− (�1z+· · ·+�pzp) does not vanish for
complex |z|�1, and suppose that �=(�1, . . . , �p)′ ∈ �. It is well known that the maximum
likelihood estimators may be severely biased in the AR(p) models. See, for example, Coad
and Woodroofe (1998). The purpose of this paper is to derive an asymptotic expansion for
the distribution of the maximum likelihood estimator, suitably renormalized, up to terms
that are small compared to 1/n, where n is the sample size. Our findings are similar to those
of Tanaka (1984), who derived Edgeworth expansions for ARMA models, but there are
several important differences. The normalization used here is different, employing a random
matrix instead of

√
n. See (3), below. This normalization leads to a simple expansion. It is

possible to describe the expansion solely in terms of the mean and covariance matrix of the
renormalized estimation error, and this simplifies the formation of confidence sets. Further,
the derivation here follows work in Woodroofe and Coad (1997, 2002) on sequentially
designed experiments and is entirely different from Tanaka (1984). On the other hand,
Tanaka’s model is more general.

The nature of the expansions and their derivations is presented in Sections 2 and 3, and
the expansions are illustrated by an example in Section 4. Sections 5 and 6 contain details
of the proofs. Some discussions are made in Section 7.

2. Preliminaries

The Likelihood Function. To fix ideas, suppose that y1, . . . , yp+n are observed, and let

Xn =
⎛
⎜⎝

yp . . y1
yp+1 . . y2

. . . .

yp+n−1 . . yn

⎞
⎟⎠

ek,n = [ek+1, . . . , ek+n]′, and yk,n = [yk+1, . . . , yk+n]′, where ′ denotes transpose. Then
the model may be written as

yp,n = Xn� + �ep,n,

y0,p ∼ Np(0, �2G�),

the normal distribution with mean 0 and covariance matrix �2G� = E�,�(y0,py′
0,p). So, the

log-likelihood function given (y1, . . . , yp+n)
′ is

�n(�
2, �) = �0(�

2, �) − 1

2�2 ‖yp,n − Xn�‖2 − 1

2
n log(�2),



R.C. Weng, M. Woodroofe / Journal of Statistical Planning and Inference 136 (2006) 2719–2745 2721

where

�0(�
2, �) = −1

2
log(det G�) − 1

2�2 y′
0,pG−1

� y0,p − 1

2
p log(�2)

depends only on the first p observations. Further,

∇�n(�
2, �) = 1

�2 X′
n(yp,n − Xn�) + ∇�0(�

2, �),

∇2�n(�
2, �) = − 1

�2 X′
nXn + ∇2�0(�

2, �),

where ∇ denotes differentiation with respect to �. It is easily seen (and follows from Lemma
5.2 below) that the maximum likelihood estimators, �̂n and �̂2

n say, exist w.p.1 and satisfy
the likelihood equation. So,

�̂n = (X′
nXn)

−1[X′
nyp,n + �̂2

n∇�0(�̂
2
n, �̂n)]

and

�̂2
n =

‖yp,n − Xn�̂n‖2 + y′
0,pG−1

�̂n

y0,p

n + p
. (1)

Writing �n(�2, �) = �n(�2, �|y0,n+p) to emphasize the dependence on y1, . . . , yn+p, it is

easily seen that �n(�2, �|cy0,n+p)=�n(c
−2�2, �|y0,n+p)−(n+p) log(c) for all c > 0. So, �̂n

is invariant under scale transformations and �̂n is equivariant, i.e. �̂n(cy0,n+p)= �̂n(y0,n+p)

and �̂2
n(cy0,n+p) = c2�̂2

n(y0,n+p) for all c > 0. The least squares estimators are denoted by

�̃n and �̃2
n, so that

�̃n = (X′
nXn)

−1X′
nyp,n

�̃2
n = ‖yp,n − Xn�̃n‖2

n − p

for n > p. These are similarly invariant and equivariant.
Very weak expansions: Let În denote the information matrix, În=−∇2�n(�̂

2
n, �̂n). Then

În is invariant too, and În is non-negative definite w.p.1. Let Bn = Bn(y0,n+p) be a scale
equivariant p × p matrix for which

BnB
′
n = �̂2

nÎn = X′
nXn − �̂2

n∇2�0(�̂
2
n, �̂n). (2)

There are many possible choices for Bn. The main requirements are (2) and (12) below. Let
Tn be the studentized estimation error

Tn = 1

�̃n

B ′
n(� − �̂n). (3)
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A main result provides an asymptotic expansion for the distribution of Tn from which
improved confidence intervals may be found. The derivation proceeds by first considering
the related quantity

Zn = 1

�
B ′

n(� − �̂n). (4)

The distributions of Tn and Zn do not depend on �. So, there is no loss of generality
in supposing that � = 1 when studying them; and � is omitted from the notation in the
sequel, so that E� is written for E1,�, �n(�) for �n(1, �), etc. It is shown that to order
o(1/n), Zn is normal with a mean �n(�) and a covariance matrix �n(�) that are approach-
ing 0 and the identity matrix. Further, there are estimators �̂n and �̂n for which Z∗

n :=
�̂

−1
n (Zn − �̂n) is asymptotically standard normal to order o(1/n), and the distribution of

T ∗
n := �̂

−1
n (Tn − �̂n) differs from a p-variate t-distribution with n degrees of freedom

by o(1/n).
The convergence here is in the very weak sense of Woodroofe (1986, 1989). In the case

of Z∗
n, this means that∫

�
[P�{Z∗

n ∈ B} − �p(B)]	(�) d� = o

(
1

n

)
(5)

uniformly with respect to Borel sets B ⊆ Rp for all twice continuously differen-
tiable densities 	 with compact convex support in � that satisfy the mild condition
(31) below, where �p is the standard p-variate normal distribution. Woodroofe (1989)
writes (5) as

P�{Z∗
n ∈ B} = �p(B) + o

(
1

n

)
(6)

very weakly, and argues that (6) is strong enough to support a frequentist interpretation for
confidence intervals. The corresponding result for Tn is

P�{T ∗
n ∈ B} = G

p
n(B) + o

(
1

n

)
(7)

very weakly, uniformly with respect to Borel sets B ⊆ Rp, where G
p
n is the spherically

symmetric p-variate t distribution with n degrees of freedom. It is easy to use (7) to form
corrected confidence sets. The procedure is illustrated in Section 4.

The Bayesian connection: The integrated probability in (5) is probability in a Bayesian
model in which � is given a prior density 	. So, consider a Bayesian model in which � has
a twice continuously differentiable prior density 	 with compact convex support K ⊆ �.
Throughout this paper we denote the probability and expectation corresponding to prior 	
as P	 and E	, and the conditional expectation given y1, . . . , yp+n as En

	 . When � = 1, the
posterior density of � given y1, . . . , yp+n is

	n(�) ∝ e�n(�)−�n(�̂n)	(�).
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From (2) and (4)

�n(�) − �n(�̂n) = − 1
2‖Zn‖2 + rn(�),

where

rn(�) = �n(�) − �n(�̂n) − 1
2 (� − �̂n)

′�̂2
n∇2�n(�̂

2
n, �̂n)(� − �̂n). (8)

So, the posterior density of Zn is


n(z) ∝ �p(z)fn(z), (9)

where

fn(z) = 	(�)ern(�),

� and z are related by (4), and �p is the standard p-variate normal density. For later reference,
observe that

∇fn

fn

(z) = B−1
n

[∇	

	
(�) + ∇rn(�)

]
(10)

and

∇2fn

fn

= B−1
n

[∇2	

	
+ ∇	

	
∇r ′

n + ∇rn
∇	′

	
+ ∇2rn + ∇rn∇r ′

n

]
B ′−1

n , (11)

where ∇fn(z) is obtained by differentiation with respect to z, and ∇	(�) and ∇rn(�) by
differentiation with respect to �.

Stein’s identity: The basic approach makes use of Stein’s (1981, 1987) identity, which
is reviewed next. Recall that �p denotes the standard p-variate normal distribution and
write

�ph =
∫

h d�p

for functions h for which the integral is finite. Next let � denote a finite signed measure of
the form d� = f d�p, where f is a real-valued function defined onRp satisfying �p|f | =∫ |f | d�p < ∞. The posterior density of Zn is of this form by (9). For s > 0, let Ho

s be
the collection of all measurable functions h : Rp → R for which |h(z)|�1 + ‖z‖s ; let
Hs = {h : h/b ∈ Ho

s , for some b > 0}; and let H = ⋃
s �0 Hs . Given h ∈ H, let

h0 = �ph, hp = h,

hj (y1, . . . , yj ) =
∫
Rp−j

h(y1, . . . , yj , w)�p−j (dw),

for j = 1, . . . , p − 1, and

gj (y1, . . . , yp)

= e1/2y2
j

∫ ∞

yj

[hj (y1, . . . , yj−1, w) − hj−1(y1, . . . , yj−1)]e−1/2w2
dw
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for −∞ < y1, . . . , yp < ∞ and j =1, . . . , p. Each gj is regarded as a function onRp, even
though gj only depends on y1, . . . , yj . Next, let

Uh = (g1, . . . , gp)′.

The transformation U may be iterated. Let U2h be the p × p matrix whose jth column is
Ugj , and let

V h = (U2h + U2h′)
2

.

Then Vh is a symmetric matrix. Simple calculations show that

�p(Uh) =
∫
Rp

zh(z)�p(dz)

and

�p(V h) = 1

2

∫
Rp

(zz′ − Ip)h(z)�p(dz)

for all h ∈ H. When p = 1, these formulas simplify. Then

Uh(z) = e1/2z2
∫ ∞

z

(h(y) − �h)e−1/2w2
dw

and U2 is the composition of U with itself. It may be shown that if h ∈ Hs , then ‖Uh‖ ∈
Hs′ , where s′ = max(0, s − 1). See Woodroofe (1992).

Proposition 2.1 (Stein’s identity). Let r be a nonnegative integer. Suppose that d�=f d�p,
where f is a differentiable function on Rp, for which∫

Rp
|f | d�p +

∫
Rp

(1 + ‖z‖r )‖∇f (z)‖�p(dz) < ∞,

then

�h = �1 · �ph +
∫
Rp

Uh(z)′∇f (z)�p(dz)

for all h ∈ Hr . If �f/�zj , j = 1, . . . , p, are differentiable, and∫
Rp

(1 + ‖z‖r )‖∇2f (z)‖�p(dz) < ∞

then, for all h ∈ Hr ,

�h = �1 · �ph + �p(Uh)′
∫
Rp

∇f (z)�p(dz) +
∫
Rp

tr[(V h)∇2f ] d�p.

Proof. See Woodroofe (1989, Proposition 1) and Woodroofe and Coad (1997,
Proposition 2). �
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3. Main results

In this section we state the results of the paper and outline the proofs. The details of the
proofs are deferred to Section 6. In addition to (2), it is required that Bn be so chosen that

Qn := √
nB−1

n → Q� (12)

in P�-probability for all � when � = 1, where the entries in Q� are twice continuously
differentiable in �. This will always be true if BnB

′
n is a Cholesky decomposition of �̂2

nIn.
For then

BnB
′
n

n
→ G�

w.p.1(P�), where G� is the covariance matrix of y1, . . . , yp. Writing G−1
� = Q′

�Q� by
a Cholesky decomposition, the entries of Q� are twice continuously differentiable and
limn→∞ Qn = Q�, w.p.1.(P�), for all � ∈ �.

In Section 5, events Dn are constructed for which P	(D
c
n) = o(1/n) and the likelihood

function is well behaved when Dn occur. So, if h is a bounded measurable function, then

E	h(Zn) = E	{En
	 [h(Zn)]1Dn} + o

(
1

n

)
.

Restricting attention to Dn and applying Stein’s identity to the posterior distribution of
h(Zn) given y1, . . . , yp+n,

En
	 {h(Zn)} = �ph + (�pUh)′En

	

{∇fn

fn

(Zn)

}
+ En

	

{
tr

[
V h(Zn)

∇2fn

fn

(Zn)

]}
.

Using (10) and (11), this may be written

En
	 {h(Zn)} = �ph + 1√

n
(�pUh)′En

	

{
Q�

(∇	

	

)}

+ 1

n
En

	

{
tr

[
(�pV h)Q�

(∇2	

	

)
Q′

�

]}

+ 1√
n
(�pUh)′[In + IIn] + 1

n
[IIIn(h) + IVn(h)], (13)

where

In = En
	

{
(Qn − Q�)

(∇	

	

)}
,

IIn = En
	 {Qn∇rn},

IIIn(h) = En
	

{
tr

[
V h(Zn)Qn

(∇	

	
∇r ′

n + ∇rn
∇	

	

′
+ ∇2rn + ∇rn∇r ′

n

)
Q′

n

]}
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and

IVn(h) = En
	

{
tr

[
V h(Zn)Qn

(∇2	

	

)
Q′

n − (�pV h)Q�

(∇2	

	

)
Q′

�

]}

and the dependence of ∇	 and ∇rn on � has been suppressed in the notation. The terms
involving In–IVn are shown to be negligible compared to 1/n below, and it follows that:

E	{h(Zn)} = �ph + 1√
n
(�pUh)′E	

{
Q�

(∇	

	

)}

+ 1

n
E	

{
tr

[
(�pV h)Q�

(∇2	

	

)
Q′

�

]}
+ o

(
1

n

)
. (14)

In fact, (14) holds for all h ∈ H2 and uniformly with respect to h ∈ Ho
2.

Write Q� = [qij (�) : i = 1, . . . , p, j = 1, . . . , p] for � ∈ Rp, and let Q#
� = [q#

ij (�) :
i, j = 1, . . . , p] and M� = [mij (�) : i, j = 1, . . . , p], where

q#
ij (�) = �qij (�)

��j

(15)

and

mij (�) =
p∑

k=1

p∑
l=1

�2

��k��l

[qik(�)qjl(�)].

Integrating by parts,

E	

{
Q�

(∇	

	

)}
= −

∫
(Q#

�1)	(�) d�

and

E	

{
tr

[
(�pV h)Q�

(∇2	

	

)
Q′

�

]}
=
∫

tr[(�pV h)M�]	(�) d�,

where 1 = [1, . . . , 1]′. So, (14) becomes

E	{h(Zn)} =
∫ {

�ph − 1√
n
(�pUh)′Q#

�1 + 1

n
tr[(�pV h)M�]

}
	(�) d� + o

(
1

n

)
or

E�{h(Zn)} = �ph − 1√
n
(�pUh)′Q#

�1 + 1

n
tr[(�pV h)M�] + o

(
1

n

)
(16)

very weakly. The forms of asymptotic expansions in (14) and (16) agree with those in
Woodroofe and Coad (1997), but the definitions of �̂n, Bn, and Zn are different.

If h(z) = z, then �ph = 0 and Uh(z) = Ip = �pUh. Applying (16) to this h suggests

E�(Zn) ≈ − 1√
n

Q#
�1 = �n(�), (17)
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Let

�̂ni =
{−∑p

j=1 q#
ij (�̂n)/

√
n if |∑p

j=1 q#
ij (�̂n)|�√

n

−sgn[∑p
j=1 q#

ij (�̂n)] otherwise
(18)

for i = 1, . . . , p, �̂n = (�̂n1, . . . , �̂np)′, and consider (Zn − �̂n). Approximations like those
described above lead to

E�{(Zn − �̂n)(Zn − �̂n)
′} = Ip + �(�)

n
+ o

(
1

n

)

very weakly, where �(�) = [ij (�) : i, j = 1, . . . , p] and

ij (�) =
p∑

k=1

p∑
l=1

(
�qik

��l

)(
�qjl

��k

)
. (19)

Next, let ̂n,ij =ij (�̂n) if |ij (�̂n)|�n, ̂ij =0 otherwise, and �̂n =[̂n,ij : i, j =1, . . . , p];
and let �̂n be any (measurable) p × p matrices for which

lim
n→∞ nE	

∥∥∥∥∥
(

�̂n + �̂
′
n

2

)
−
[
Ip + �̂n

2n

]∥∥∥∥∥= 0 (20)

for any 	 (under consideration). The choice �̂n = (Ip + �̂n/2n) always satisfies (20), but
other choices may be convenient in applications. The main result asserts that (6) and (7)
hold with these choices of �̂n and �̂n. This will be proved in Section 6.

4. An example

In this section we compare the theoretical results to simulation experiments. Consider an
AR(2) process,

yt = �1yt−1 + �2yt−2 + �et , t = 0, ±1, . . . ,

where et are independent standard normal random variables, and � = (�1, �2)
′ ∈ � and

� > 0 are unknown parameters. For {yt } to be causal, the parameter space � is determined
by the inequalities: �1 + �2 < 1, �1 − �2 > − 1, and �2 > − 1. See Brockwell and Davis
(1991, Chapter 3). These inequalities imply |�2| < 1. When � = 1, the covariance matrix
G� has inverse

G−1
� =

(
1 − �2

2 −�1(1 + �2)

−�1(1 + �2) 1 − �2
2

)
= Q′

�Q�.

The procedure for setting confidence intervals is illustrated for �2; the treatment of �1 is
similar. If Bn is a lower triangular matrix in (2) and �̂n is an upper triangular matrix for
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which �̂n�̂
′
n = Ip + �̂n/n, then (20) holds, and

�2 − �̂n,2 = �̃n

bn

⎧⎨
⎩�̂n,2 +

√√√√(1 + ̂n,22

n

)
× T ∗

n,2

⎫⎬
⎭ ,

where bn is the lower right-hand entry in Bn and T ∗
n,2 is the second component of T ∗

n . With
this choice of Bn,

Q� =

⎛
⎜⎜⎜⎜⎝

√
1 − �2

2 − �2
1(1 + �2)

2

1 − �2
2

0

−�1(1 + �2)√
1 − �2

2

√
1 − �2

2

⎞
⎟⎟⎟⎟⎠ .

So, by (15), (17) and (19),

�n,2(�) = 1 + 2�2√
n(1 − �2

2)

(21)

and

22 = (1 + 2�2)
2

1 − �2
2

.

Since T ∗
n2 is asymptotically tn to order o(1/n), an asymptotic level � confidence interval

for �2 is {|T ∗
n,2|�cn}, where cn is the 100(1 + �)/2 quantile of the standard univariate

t-distribution with n degrees of freedom, i.e.

�̂n,2 + �̃n

bn

�̂n,2 ± �̃n

bn

√√√√(1 + ̂n,22

n

)
× cn.

Table 1 reports the simulated values of P�(Tn2 �2.228), P�(Tn2 � − 2.228), P�(|Tn2|�
2.228), E�(Tn2), and E�(T

2
n2), for � = 1 and n = 10; and similarly for T ∗

n2. Here −2.228
is the 2.5th percentile of the standard univariate t-distribution with 10 degrees of freedom.
The notation ± in the last row indicates 1.96 standard deviations; for example, ±0.022
is obtained by E(t10) ± 1.96 × [Var(t10)/10,000]1/2, 1.25 ± 0.042 is by E(t2

10) ± 1.96 ×
[Var(t2

10)/10, 000]1/2, etc. Results for n = 20 and 50 are given in Tables 2 and 3, respectively.
For Tn2, the simulated values of P�(Tn2 �cn) and P�(Tn2 � − cn) are not sensitive to �1,
but quite sensitive to �2. For �2 = 0.0, 0.5, these values are significantly different from the
nominal value 0.025 at significance level 0.05 even for n = 50; for �2 = −0.5 and n = 50,
they agree well with the nominal value 0.025. For all choices of n, the values of E�(Tn2) are
similarly not sensitive to �1, but sensitive to �2. They are significantly different from zero for
�2 = −0.5 at significance level 0.05. All these features can be explained from (21), which
says that the theoretical mean of Tn2 depends only on �2 and it vanishes when �2 = −0.5.
For the refined pivot T ∗

n2, the simulated values of P�(T
∗
n2 �cn) and P�(T

∗
n2 � − cn) show

that T ∗
n2 is not symmetric in the tails. Especially, for n = 10 and �2 = 0.5, these coverage
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Table 1
n = 10, replicates = 10, 000; cn = 2.228; ± is the range within 1.96 standard deviations

(�1, �2) E�(Tn2) E�(T
2
n2) P�(Tn2 �cn) P�(Tn2 � − cn) P�(|Tn2|�cn)

E�(T
∗
n2) E�(T

∗2

n2 ) P�(T
∗
n2 �cn) P�(T

∗
n2 � − cn) P�(|T ∗

n2|�cn)

(0.0 −0.5) −0.012 1.005 0.016 0.016 0.967
−0.014 1.130 0.024 0.023 0.953

(0.0 0.0) 0.281 1.075 0.034 0.011 0.955
0.095 1.494 0.037 0.005 0.958

(0.0 0.5) 0.552 1.196 0.053 0.008 0.939
0.461 3.568 0.048 0.000 0.952

(0.5 −0.5) −0.020 1.008 0.016 0.016 0.968
−0.029 1.132 0.022 0.023 0.955

(0.5 −0.2) 0.148 1.050 0.025 0.013 0.962
0.026 1.215 0.030 0.016 0.954

(0.5 0.0) 0.250 1.100 0.032 0.014 0.954
0.077 1.409 0.035 0.005 0.960

± ±0.022 1.25 ± 0.042 0.025 ± 0.003 0.025 ± 0.003 0.95 ± 0.004

Table 2
n = 20, replicates = 10, 000; cn = 2.086; ± is the range within 1.96 standard deviations

(�1, �2) E�(Tn2) E�(T
2
n2) P�(Tn2 �cn) P�(Tn2 � − cn) P�(|Tn2|�cn)

E�(T
∗
n2) E�(T

∗2

n2 ) P�(T
∗
n2 �cn) P�(T

∗
n2 � − cn) P�(|T ∗

n2|�cn)

(0.0 −0.5) −0.005 0.994 0.019 0.020 0.961
−0.006 1.075 0.026 0.027 0.947

(0.0 0.0) 0.215 1.049 0.037 0.012 0.951
0.030 1.084 0.034 0.020 0.946

(0.0 0.5) 0.449 1.105 0.054 0.006 0.939
0.081 1.011 0.036 0.000 0.964

(0.5 −0.5) −0.003 0.987 0.018 0.018 0.964
−0.003 1.068 0.025 0.026 0.949

(0.5 −0.2) 0.127 1.022 0.028 0.015 0.957
0.012 1.082 0.030 0.024 0.946

(0.5 0.0) 0.207 1.044 0.035 0.013 0.953
0.022 1.078 0.032 0.020 0.949

± ±0.021 1.11 ± 0.033 0.025 ± 0.003 0.025 ± 0.003 0.95 ± 0.004

probabilities indicate that the distribution of T ∗
n2 is skewed to the right. Correspondingly,

the estimated values of E�(T
∗
n2) and E�(T

∗2

n2 ) are far above their nominal values. This

skewness may be due to the facts that �̂n,2 tends to under-estimate �2, and that from (21) the
downward bias of �̂n,2 is more severe for larger �2. The tables also show that the estimated
means of T ∗

n2 are much closer to 0 than those of Tn2, and for n=50 the values of E�(T
∗
n2) are

all within 1.96 standard deviations. Although the difference between the simulated values
of E�(T

∗2

n2 ) and E�(T
2
n2) are less obvious, in general the former is larger and closer to
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Table 3
n = 50, replicates = 10, 000; cn = 2.008; ± is the range within 1.96 standard deviations

(�1, �2) E�(Tn2) E�(T
2
n2) P�(Tn2 �cn) P�(Tn2 � − cn) P�(|Tn2|�cn)

E�(T
∗
n2) E�(T

∗2

n2 ) P�(T
∗
n2 �cn) P�(T

∗
n2 � − cn) P�(|T ∗

n2|�cn)

(0.0 −0.5) −0.013 0.999 0.023 0.023 0.954
−0.014 1.036 0.027 0.027 0.946

(0.0 0.0) 0.127 1.026 0.033 0.019 0.948
−0.005 1.045 0.029 0.028 0.943

(0.0 0.5) 0.303 1.046 0.045 0.011 0.943
0.015 1.003 0.026 0.021 0.953

(0.5 −0.5) −0.003 0.989 0.023 0.021 0.957
−0.003 1.026 0.026 0.024 0.950

(0.5 −0.2) 0.083 1.018 0.029 0.020 0.951
0.002 1.046 0.028 0.026 0.946

(0.5 0.0) 0.138 1.031 0.033 0.018 0.949
0.006 1.049 0.029 0.025 0.945

± ±0.020 1.04 ± 0.030 0.025 ± 0.003 0.025 ± 0.003 0.95 ± 0.004

the nominal values. The implementation of simulations is written in C; it is available at
http://www3.nccu.edu.tw/∼chweng/AR2.c.

5. Some bounds

Several bounds are needed for the proofs of the main results. Throughout this section, 	
denotes a twice continuously differentiable density with compact, convex support K ⊆ �,
and ‖A‖ denotes the spectral norm of a matrix A, i.e. ‖A‖2 = �max(A

′A).

Lemma 5.2. inf�∈� �minG� > 0 and lim�→�� det G� = ∞.

Proof. By Brockwell and Davis (1991, 137pp), �min(G�)�2� inf� f�(�), where f�(�) is
the spectral density of {yt }. For an AR(p) process, f�(�) = 1/[2�|1 −∑p

j=1 �j e−ij�|2],
which is bounded below for all � ∈ �. Next, let v = (1, 0, . . . , 0)′. Then

�maxG� �v′G�v =
∫ �

−�
f�(�) d� → ∞

as � approaches any boundary point of �. �

Lemma 5.3. For every s�1, there is an integer ns and a continuous function Cs(�) for
which

E�

{
n

�min(X′
nXn)

s

}
�Cs(�)

for all n�ns and all � ∈ �.

http://www3.nccu.edu.tw/~chweng/AR2.c
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Proof. Let xi = (yi+p−1, . . . , yi)
′, i = 1, . . . , n. Further, let q = p + 2s and let r = rn be

positive integers for which pqr �n < pq(r + 1). Then

X′
nXn =

n∑
i=1

xix
′
i �

r∑
k=1

q∑
j=1

xpq(k−1)+p(j−1)+1x
′
pq(k−1)+p(j−1)+1 =

r∑
k=1

Nk,

in the sense of positive definite matrices. So, �min(X
′
nXn)�

∑r
k=1 �min(Nk); and, since

f (x) = 1/xs is convex in 0 < x < ∞,

ns

(�min(X′
nXn))

s �
(n

r

)s 1[ 1
r

∑r
k=1 �min(Nk)

]s �(2pq)s
1

r

r∑
k=1

1

�min(Nk)
s

and

E�

{
ns

�min(X′
nXn)

s

}
�(2pq)sE�

{
1

�min(N1)
s

}
.

Observe that N1 = x1x
′
1 + xp+1x

′
p+1 + · · · + xp(q−1)+1x

′
p(q−1)+1 is a function of U =

(y1, . . . , ypq)′, sayN1=g(U). Here U is normally distributed with mean zero and covariance
matrix �. Let � denote the maximum eigenvalue of �. Let W = (w1, . . . , wpq)′ be a pq-
variate normally distributed random vector with mean zero and covariance matrix �Ipq . Then
fU �c�fW , where fU and fW are density functions of U and W, and c�={det(�)}−1/2�pq/2

depends continuously on �. Now g(W) follows the Wishart distribution with q degrees
of freedom, dimension p and covariance matrix �Ip. For q �p, the joint density of the
eigenvalues of g(W), l1 > · · · > lp > 0, is

f (l1, . . . , lp) = Ce−1/2�
∑p

i=1 li

p∏
i=1

l
(q−p−1)/2+p−i
i ×

∏
i<j

(li − lj ).

With q = p + 2s, (q − p − 1)/2 − s = − 1
2 and

E�

{(
1

�min(N1)

)s}
=
∫ [

1

�min(g(u))

]s

FU (du)

�c�

∫
· · ·
∫

1

lsp
f (l1, . . . , lp) dlp · · · dl1,

which is finite, and the lemma follows with ns = p(p + 2s). �

Recall that �̃n and �̃2
n denote the least squares estimators, �̃n = (X′

nXn)
−1X′

nyp,n and
�̃2

n =‖yp,n −Xn�̃n‖2/(n−p); let B̃nB̃
′
n =X′

nXn be the Cholesky decomposition of X′
nXn,

and let Z̃n = B̃ ′
n(� − �̃n). Then ‖Z̃n‖2 = (� − �̃n)

′X′
nXn(� − �̃n). It is known and clear

that
[√

n(�̃2
n − 1), Z̃n

]
⇒ [U, Z] for fixed �, where U ∼ N [0, 2] and Z ∼ Np[0, Ip] are

independent and it follows easily that
[
�,

√
n(�̃2

n − 1), Z̃n

]
⇒ [�, U, Z], under P	.
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Lemma 5.4. For any k�1, ‖Z̃n‖2k and nk(�̃2
n−1)2k, n > p, are uniformly integrable w.r.t.

P	. Moreover, E	(�̃
2
n − 1) = o(1/n).

Proof. For the uniform integrability of‖Z̃n‖2k, n > p, first observe that‖Z̃n‖2=e′
p,nXn(X

′
n

Xn)
−1X′

nep,n �p‖ep,n‖2, so that E	‖Z̃n‖2k = O(nk) for every k. Next, let An = {�min(X
′
n

Xn)�1} and gk(z) = 1 + ‖z‖2k . Then

E	‖Z̃n‖2k1Ac
n
�√

E	‖Z̃n‖4k√P(Ac
n) → 0 as n → ∞

for every k, by Lemma 5.3. So, it suffices to show that supn>p E	[gk(Zn)1An ] < ∞
for every k�1. Now �pUgk = 0, and there are constants Ck for which ‖Vgk(z)‖�
Ckgk−1. So,

En
	 [gk(Z̃n)1An ] = �gk1An + En

	

{
tr

[
Vgk(Z̃n)B̃

−1
n

∇2	

	
B̃ ′

n
−11An

]}

��gk + CkE
n
	

[
gk−1(Z̃n)‖B̃−1

n ‖2
∥∥∥∥∇2	

	

∥∥∥∥ 1An

]

and therefore,

E	[gk(Z̃n)1An ]��gk + Ck

∫
�

E�[gk−1(Z̃n)1An ]‖∇2	(�)‖ d�. (22)

There is a second twice continuously differentiable density 	̃ with compact convex support
and a constant C for which ‖∇2	(�)‖�C	̃(�) for all �. Then the right side of (22) is at most
�gk +CCkE	̃[gk−1(Z̃n)1An ]. That supn>p E	[gk(Z̃n)1An ] < ∞ then follows by induction

over k. The assertions concerning �̃2
n then follow from

�̃2
n − 1 = ‖yp,n − Xn�‖2 − n − (‖Z̃n‖2 − p)

n − p
,

since ‖yp,n − Xn�‖2 ∼ �2
n. �

Lemma 5.5. For any k�1, nk(�̂2
n − 1)2k, n > p, are uniformly integrable with respect to

P	. Further,
[
�, y0,p,

√
n(�̂2

n − 1)
]

⇒ [�, y0,p, U ], where U ∼ Normal[0, 2] is indepen-

dent of [�, y0,p].

Proof. From (1) and the non-negativity of y′
0,pG−1

�̂n

y0,p,

�̂2
n � ‖yp,n − Xn�̃n‖2

n + p
= ‖yp,n − Xn�‖2 − ‖Z̃n‖2

n + p
.
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Next, from (1) and the likelihood function,

(n + p)�̂2
n = − 2�̂2

n�n(�̂
2
n, �̂n) − �̂2

n log |G�̂n
| − (n + p)�̂2

n log(�̂2
n)

� − 2�̂2
n�n(�̂

2
n, �) − �̂2

n log |G�̂n
| − (n + p)�̂2

n log(�̂2
n)

= ‖yp,n − Xn�‖2 + y′
0,pG−1

� y0,p + �̂2
n log |G�| − �̂2

n log |G�̂n
|

�‖yp,n − Xn�‖2 + y′
0,pG−1

� y0,p + C�̂2
n

for � ∈ K and some constant C depending on 	. Let Un = ‖yp,n − Xn�‖2, so that Un ∼ �2
n

is independent of y1, . . . , yp. Then

Un − n − ‖Z̃n‖2 − p

n + p
� �̂2

n − 1�
Un − n + y′

0,pG−1
� y0,p − p + C

n + p − C

for n > C − p. The lemma follows from these inequalities and Lemma 5.4. �

Recall that 	 has a compact convex support K and that lim�→�� det G� = ∞, from
Lemma 5.2. So, there exist two other compact convex sets K1 and K2 for which K ⊂
K0

1 ⊂ K1 ⊂ K0
2 ⊂ K2 ⊂ �, where K0

i denotes the interior of Ki , and det[G�]�1
for all � /∈ K1.

Lemma 5.6. There are events Dn for which

Dn ⊇ { 1
2 � �̂2

n � 3
2 , �̃ ∈ K1, �̂ ∈ K2, ‖y0,p‖�n1/4, �min(X

′
nXn)�n3/4} (23)

P	(D
c
n) = o

(
1

nk

)
(24)

for every k�1.

Proof. To show existence, let Dn be the right side of (23). Then it suffices to show (24).
For this choice of Dn,

Dc
n ⊆ {|�̂2

n − 1|� 1
2 } ∪ {‖y0,p‖ > n1/4} ∪ {�min(X

′
nXn) < n3/4}

∪ {‖y0,p‖�n1/4, �min(X
′
nXn)�n3/4, �̃n /∈ K1}

∪ {‖y0,p‖�n1/4, �min(X
′
nXn)�n3/4, �̃n ∈ K1, �̂n /∈ K2}

= A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5. (25)

It is clear from Lemmas 5.3 and 5.5 that P	(A1) + P	(A2) + P	(A3) = o(1/nk) for every

k�1. Let 1 = dist(K, Kc
1) > 0. If A4 occurs, then ‖�̃ − �‖�1 and therefore, ‖Z̃n‖2 =

(�̃ − �)′X′
nXn(�̃ − �)�2

1n
3/4. So,

P	(A4)�
1

2k
1 n3/2k

E	‖Z̃n‖4k = o

(
1

nk

)
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for all k. For A5, let 2 = dist(K1, K
c
2) and observe that if A5 occurs, then ‖Xn(�̂n −

�̃n)‖2 �2
2n

3/4. If �̃n ∈ K1, then using the form of the likelihood function and Lemma 5.2,

‖Xn(�̂n − �̃n)‖2 = ‖yp,n − Xn�̂n‖2 − ‖yp,n − Xn�̃n‖2

= − 2�̂2
n�(�̂

2
n, �̂n) − y′

0,pG−1
�̂n

y0,p − �̂2
n log[det(G�̂n

)]
+ 2�̂2

n�(�̂
2
n, �̃n) + y′

0,pG−1
�̃n

y0,p + �̂2
n log[det(G�̃n

)]
�2C0 + 2C1 + C2‖y0,p‖2, (26)

where −C0 denotes a lower bound for log[det(G�)], � ∈ �, C1 denotes an upper bound
for log[det(G�)], � ∈ K1, and 1/C2 denotes a lower bound for �min[G�], � ∈ K1. So,
A5 is empty for sufficiently large n. �

Lemma 5.7. For any k�1, ‖Xn(�̂n − �)‖2k and nk‖�̂n − �‖2k are uniformly integrable.

Proof. Since �̂n and � are bounded and E	‖X′
nXn‖2k =O(n2k) for any k, it suffices to show

that ‖Zn‖2k1Dn and nk‖� − �̂n‖2k1Dn are uniformly integrable for events Dn that satisfy
(23) and (24). Uniform integrability of ‖Zn‖2k1Dn follows directly from Lemma 5.4 and
(26); and that of n‖�̂n − �‖21Dn then follows from

n‖� − �̂‖21Dn � n

�min(X′
nXn)

(� − �̂)′X′
nXn(� − �̂)1Dn,

Lemma 5.3, Schwarz’s Inequality, and the first assertion. �

Recall the definition of rn from (8).

Proposition 5.8. Let Dn satisfy (23) and let 2�� = log[det(G�)]. Then

(a) For any q �1, (‖∇rn‖2 + ‖∇2rn‖)q1Dn are uniformly integrable.
(b) n‖∇rn‖21Dn are uniformly integrable.
(c)

[
�,

√
n∇rn(�)

]⇒ [�, ∇��U ], where U ∼ Normal[0, 2] is independent of [�, y0,p].

Proof. Again using the form of the likelihood function, �n(�) − �2�n(�2, �) = �0(�) −
�2�0(�2, �) + n�2 log �, so that

∇rn(�̂n) = ∇�n(�̂n) = ∇�0(�̂n) − �̂2
n∇�0(�̂

2
n, �̂n) = (�̂2

n − 1)(∇��̂n
),

∇2rn(�) = ∇2�0(�) − �̂2
n∇2�0(�̂

2
n, �̂n) = op(1)

and

∇rn(�) = ∇rn(�̂n) +
∫ 1

0
∇2rn[t� + (1 − t)�̂n](� − �̂n) dt.
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The assertion (c) follows immediately. Next, since �̂n and �̂n are bounded on Dn, there is
a constant C for which

‖∇rn(�)‖2 �C[(�̂2
n − 1)2 + ‖�̂n − �‖2]

on Dn. Assertions (a) and (b) follow directly from Lemmas 5.5–5.7. �

Proposition 5.9. Let Dn be as in (23) and (24). Then,

(a) for any q �1, ‖Qn‖2q1Dn , n�nq , are uniformly integrable w.r.t. P	,
(b) limn→∞

√
n
∫
� ‖E�[(Qn − Q�)1Dn ]‖	(�) d� = 0.

Proof. For (a), note that on Dn we have �̂ ∈ K2. So, there exist constants C0 and C1 such
that ‖∇2�0(�̂

2
n, �̂n)‖�C0 + C1‖y0,p‖2 �C0 + C1n

1/2 on Dn. It follows that

‖Qn‖21Dn = �max[n(X′
nXn − �̂2

n∇2�0(�̂
2
n, �̂n))

−1]1Dn

� n

�min(X′
nXn − 2∇2�0(�̂

2
n, �̂n))

1Dn

� 2n

�min(X′
nXn)

1Dn

for sufficiently large n. Assertion (a) follows from Lemma 5.3 and the compactness of K.
For (b) if M is a p × p matrix, denote vec(M) as the p2 × 1 vector composed of the

p row vectors. Write the ij component of Qn as Q
ij
n = g(wn + sn), where g is a smooth

function and

wn = vec

(
1

n
X′

nXn

)
and sn = vec

(
−1

n
�̂2

n∇2�0(�̂
2
n, �̂n)

)

are p2-variate random vectors. Since sn → 0 w.p.1 and wn → � = vec(G�)w.p.1, we
have g(�) = Q

ij

� . Then an application of Taylor’s expansion leads to

Q
ij
n = Q

ij

� + ∇g(�)′(wn + sn − �) + 1
2 (wn + sn − �)′∇2g()(wn + sn − �),

where  lies between � and wn + sn. Let B�;� denote the ball centered at � with radius � > 0
and define An = {wn ∈ B�;�/2 and ‖sn‖��/2}. Write

E	(Q
ij
n 1Dn) − E	(Q

ij

� 1Dn) = E	((Q
ij
n − Q

ij

� )1Dn∩Ac
n
)

+ E	{∇g(�)′(wn + sn − �)1Dn∩An}
+ 1

2E�{(wn +sn −�)′∇2g1()(wn +sn −�)1Dn ∩An}
= R1 + R2 + R3.
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It suffices to show that R1 + R2 + R3 = o
(
1/

√
n
)
. To begin, observe that

E�(‖wn − �‖2) = O(1/n), (27)

E�(‖sn‖21Dn) = O(1/n) (28)

and

P�(Dn ∩ Ac
n)�P�(‖wn − �‖ > �/2) + P�(‖sn‖1Dn > �/2) = o(1/n) (29)

uniformly in � ∈ K1. In view of part (a), (29) and Schwarz’s inequality, we have

|R1| = |E	((Q
ij
n − Q

ij

� )1Dn∩Ac
n
)|

�{E	((Q
ij
n − Q

ij

� )21Dn∩Ac
n
)P	(Dn ∩ Ac

n)}1/2

= o(1/
√

n).

Since E�(wn − �) = 0, we can rewrite the second part of R2 as

E	{(wn + sn − �)1Dn∩An} = −E	{(wn − �)1Dc
n∪Ac

n
} + E	{sn1Dn∩An}. (30)

By Schwarz’s inequality, (27), (29) and Lemma 5.6, the first term on the right side of (30)
is o
(
1/

√
n
)
, and write

E	{|sn|1Dn∩An}�
C

n
E	[1 + ‖y0,p‖2] = o

(
1√
n

)
.

For R3, since ∇2g1() is bounded on Dn ∩ An, we obtain

2|R3|�C′E	{‖wn − �‖21Dn∩An + ‖sn‖21Dn∩An}
for some C′ > 0. So, R3 = o

(
1/

√
n
)

follows from (27) and (28). �

Corollary 5.10. For any compact convex K0 ⊆ �,

lim
n→∞

[∫
K0

E�{‖Qn − Q�‖2q1Dn} d� + √
n

∫
K0

‖E�{[Qn − Q�]1Dn}‖ d�

]
= 0.

Proof. This follows directly from Proposition 5.9(b), by letting 	 have a slightly larger
support than K0. �

6. Proofs of the main results

The proofs of (6) and (7) are presented in this section. As above 	 denotes a fixed, but
arbitrary, twice continuously differentiable density with compact, convex support K in �,
and ‖ · ‖ denotes the spectral norm of a matrix throughout this section.

Proof of (13). Recall that Ho
k denotes all measurable h for which |h(z)|�1 + ‖z‖k . The

first lemma has the flavor of the proof of (13) with fewer technicalities. Throughout this
section, the notation ‘essup f ’ means essential supremum of f. �
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Lemma 6.11.

lim
n→∞ E	

[
essup
h∈Ho

1

|En
	 {h(Zn)} − �ph|1Dn

]
= 0.

Proof. By Stein’s identity,

En
	 [h(Zn) − �ph] = En

	

[
Uh(Zn)

′ ∇fn(Zn)

fn(Zn)

]
= En

	

{
Uh(Zn)

′B−1
n

[∇	

	
+ ∇rn

]}
.

Here ‖Uh‖ is bounded, say ‖Uh‖�C for all h ∈ Ho
1, and ‖Bn‖−1 �n−3/8 on Dn. So,

essup
h∈Ho

1

|En
	 {h(Zn)} − �ph|1Dn �Cn−3/8En

	

[∥∥∥∥∇	

	

∥∥∥∥+ ‖∇rn‖ 1Dn

]
,

which is independent of h and approaches 0 in the mean. �

With the notation of (13), let

Rn(h) = n

∣∣∣∣En
	 [h(Zn)] −

{
�ph + 1√

n
(�pUh)′En

	

[
Q�

(∇	

	

)]

+1

n
En

	

{
tr

[
(�pV h)Q�

(∇2	

	

)
Q′

�

]}}∣∣∣∣ 1Dn

for h ∈ H2.

Theorem 6.12. If 	 is twice continuously differentiable with compact support K, and

∫
�

∥∥∥∥∇2	

	

∥∥∥∥
�

	 d� < ∞ (31)

for some � > 1, then

lim
n→∞ E	

{
essup
h∈Ho

2

Rn(h)

}
= 0. (32)

Moreover, (14) holds for all h ∈ H2 and uniformly with respect to h ∈ Ho
2.

Proof. Relation (32) is established first. From (13), it suffices to show that

√
n

∥∥∥∥
∫

Dn

(In + IIn) dP	

∥∥∥∥+
∫

Dn

esssup
h∈Ho

2

(|IIIn(h)| + |IVn(h)|) dP	 → 0
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as n → ∞, where In–IVn are defined following (13). These four terms are considered
separately. For In,

∥∥∥∥
∫

Dn

√
nIn dP	

∥∥∥∥ = √
n‖E	{In1Dn}‖

= √
n

∥∥∥∥E	

{
(Qn − Q�)

(∇	

	

)
1Dn

}∥∥∥∥
�C

√
n

∥∥∥∥
∫

K

E�{(Qn − Q�)1Dn}∇	(�) d�

∥∥∥∥
�C

√
n

∫
K

‖E�[(Qn − Q�)1Dn ]‖‖∇	(�)‖ d�

→ 0

by Corollary 5.10(b). For IIn, write

√
nE	[Qn∇rn(�)1Dn ] = √

nE	[Q�∇rn(�)1Dn ] + √
nE	[(Qn − Q�)∇rn(�)1Dn ].

The two terms on the right approach zero by Propositions 5.8 and 5.9 and Hölder’s inequality.
Next, since Vh is bounded when h ∈ Ho

2, there is a constant C for which

|IIIn(h)|1Dn �C‖Qn‖2
[

2‖∇rn‖
∥∥∥∥∇	

	

∥∥∥∥+ ‖∇2rn‖ + ‖∇rn‖2
]

1Dn,

which is independent of h. The expectation of the terms on the right approach zero as n →
∞, by Propositions 5.8 and 5.9. This is clear for E	[‖Qn‖2(‖∇2rn‖+‖∇rn‖2)1Dn ]. For the

first term on the right, there is a twice continuously differentiable density 	̃ with compact
convex support and a constant C for which ‖∇	‖�C	̃, as in the proof of Lemma 5.4, and
then

E	

{
‖Qn‖2‖∇rn‖

∥∥∥∥∇	

	

∥∥∥∥ 1Dn

}
�CE	̃[‖Qn‖2‖∇rn‖1Dn ],

which approaches zero as n → ∞, by Propositions 5.8 and 5.9.
For IVn, first observe that

lim
n→∞ E	

∥∥∥∥En
	

[∇2	

	

]
− ∇2	

	

∥∥∥∥
�

→ 0 (33)

by the Martingale Convergence theorem and (31), and then write

IVn = IV1,n + IV2,n + IV3,n,
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where

IV1,n(h) = En
	 tr

{
V h(Zn)Qn

[∇2	

	
− En

	

(∇2	

	

)]
Q′

n

}
,

IV2,n(h) = En
	 tr

{
[V h(Zn) − �pV h]QnE

n
	

[∇2	

	

]
Q′

n

}

and

IV3,n(h) = En
	 tr

{
(�pV h)

[
Qn

(∇2	

	

)
Q′

n − Q�

(∇2	

	

)
Q′

�

]}
.

As in the analysis of IIIn(h), there is a constant C for which

|IV3,n(h)|�C(‖Qn − Q�‖)(‖Qn + Q�‖)
∥∥∥∥∇2	

	

∥∥∥∥
which is independent of h and approaches zero in the mean by Proposition 5.9 and (33).
For IV1,n and IV2,n

E	

[
essup
h∈Ho

2

|IV1,n(h)|1Dn

]
�CE	

{∥∥∥∥En
	

[∇2	

	

]
− ∇2	

	

∥∥∥∥ ‖Qn‖2
}

→ 0

as n → ∞, by Proposition 5.9, (33), and Hölder’s inequality. Similarly, since Vh is bounded
when h ∈ Ho

2

E	

[
essup
h∈Ho

2

|IV2,n(h)|1Dn

]

�E	

{
esssup
h∈Ho

2

‖En
	 [V h(Zn) − �pV h]‖

∥∥∥∥En
	

[∇2	

	

]∥∥∥∥ ‖Qn‖21Dn

}
→ 0

by Proposition 5.9, Lemma 6.11, (33), and Hölder’s inequality. This completes the
proof of (32).

For (14), let R̄n = essuph∈Ho
2
Rn(h). Then there is a constant C for which the difference

between E	[h(Zn)] and its approximation in (14) is at most

∫
Dn

R̄n dP	 + C

∫
Dc

n

[
1 + ‖Zn‖2 + 1√

n
‖Q�‖

∥∥∥∥∇	

	

∥∥∥∥+ 1

n
‖Q�‖2

∥∥∥∥∇2	

	

∥∥∥∥
]

P	.

The first term here is o(1/n) by the Theorem, the second by Lemma 5.7, and the remaining
two by Lemma 5.6. �

Studentization: Two more auxiliary results are needed for the transition from Zn to Z∗
n

and T ∗
n . As in the last section, let K1 and K2 be compact convex sets for which K ⊂ Ko

1 ⊂
K1 ⊂ Ko

2 ⊂ K2 ⊂ �.
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Proposition 6.13. Let Dn satisfy (23). If g is continuous on �, then

lim
n→∞

∫
Dn

|g(�̂n) − g(�)| dP	 = 0

and if g is twice continuously differentiable on �, then∫
Dn

[g(�) − g(�̂n)] dP	 = o

(
1√
n

)
.

Proof. By compactness and continuity, g and its derivatives (if continuous) are bounded
on K2. The first assertion then follows directly from the Dominated convergence theorem.
For the second, there is a constant C for which

|g(�) − g(�̂n) − ∇g(�̂n)
′(� − �̂n)|�C‖� − �̂n‖2

for all � ∈ K on Dn; and E	(‖� − �̂n‖21Dn) = o
(
1/

√
n
)

by Lemma 5.6. Further, using

En
	 (� − �̂n) = B ′

n
−1En

	 (Zn) and Proposition 2.1, there is a C for which

∣∣∣∣
∫

Dn

∇g(�̂n)
′(� − �̂n) dP	

∣∣∣∣ �C

∫
Dn

‖En
	 (� − �̂n)‖ dP	

= C

∫
Dn

∥∥∥∥(X′
nXn)

−1En
	

[∇	

	
+ ∇rn(�)

]∥∥∥∥ dP	

�Cn−3/4
∫

Dn

[∥∥∥∥∇	

	

∥∥∥∥+ ‖rn(�)‖
]

dP	,

which is o
(
1/

√
n
)

by Proposition 5.8. �

Given a function h ∈ H, a t > 0, a � ∈ Rp, and a p × p non-singular matrix �, let

h∗(z) = h[t−1/2�−1(z − �)],
�0(h; �, t, �) = − (�pUh)′� + tr{(�pV h)[��′ − (� + �′ − 2Ip)]}

− tr(�pV h)(t − 1) − (�p
3 h)′�(t − 1) + 1

2 (�p
4 h)(t − 1)2,

�1(h; �, t, �) = −2(�pV h)� + (�p
3 h)(t − 1),

where

�p
3 h = 1

2

∫
Rp

[p + 1 − ‖z‖2]zh(z)�p{dz},

�p
4 h =

∫
Rp

{
1

4
[‖z‖2 − p]2 − 1

2
p

}
h(z)�p{dz}.
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Lemma 6.14. There is a constant C for which

|�ph∗ − �ph − �0(h; �, t, �)|�C[‖�‖3 + |t − 1|3 + ‖� − Ip‖3/2],
‖�pUh∗ − �pUh − �1(h; �, t, �)‖�C[‖�‖2 + |t − 1|2 + ‖� − Ip‖]

and

‖�pV h∗ − �pV h‖�C[‖�‖ + |t − 1| + ‖� − Ip‖]
for all ‖�‖�1, 1

2 � t � 3
2 , ‖� − Ip‖� 1

2 , and h ∈ H0.

Proof. As in Woodroofe and Coad (1997),

�ph∗ =
∫
Rp

h(x)�(x; �, t, �) dx,

where

�(x; �, t, �) = t1/2p| det(�)|�
(√

t�x + �
)

.

The latter forms an exponential family of densities, so that the integral is infinitely dif-
ferentiable. The first assertion then follows from a Taylor series expansion and the iden-
tity ��′ − Ip = (� + �′ − 2Ip) + (� − Ip)(�′ − Ip). The others may be established
similarly. �

Recall that Z∗
n = �̂

−1
n (Zn − �̂n) and T ∗

n = �̃−1
n �̂

−1
n (Zn − �̃n�̂n).

Theorem 6.15. Let �̂n and �̂n be as in (18) and (20). If 	 is a twice continuously dif-
ferentiable density with compact support for which (31) holds, then (6) and (7) hold. In
fact, ∣∣∣∣

∫
�
[E�[h(Z∗

n)] − �ph]	(�) d�

∣∣∣∣= o

(
1

n

)
(34)

and ∣∣∣∣
∫
�

[
E�[h(T ∗

n )] − �ph − 1

n
�p

4 h

]
	(�) d�

∣∣∣∣= o

(
1

n

)
(35)

for all h ∈ H0 and uniformly with respect to h ∈ Ho
0.

Proof. Relations (6) and (7) follow from (34) and (35) by letting h be an indicator function
and using the relation G

p
nh = �ph + �p

4 h/n + o(1/n) for h ∈ H. Only the proof of (35)
is given; that of (34) is similar and simpler. Let Do

n be the right side of (23),

Dn = Do
n ∩

{
1
2 � �̃2

n � 3
2

}
.

Then Dn satisfies (23) and (24). If h ∈ Ho
0, let

hn(z) = h[�̃−1
n �̂

−1
n (z − �̃n�̂n)].
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Then

E	[h(T ∗
n )] − �ph = E	{En

	 [h(T ∗
n ) − �ph]1Dn} + o

(
1

n

)
,

En
	 [h(T ∗

n )] = En
	 [hn(Zn)]

and

En
	 [hn(Zn)] − �ph = {En

	 [hn(Zn)] − �phn} + [�phn − �ph].
On Dn,

En
	 [hn(Zn)] − �phn = 1√

n
(�pUhn)

′En
	

[
Q�

(∇	

	

)]

+ 1

n
En

	 tr

{
(�pV hn)Q�

(∇	

	

)
Q′

�

}
+ 1

n
Rn(hn).

Now �phn, �pUhn, and �pV hn may be approximated using Lemma 6.14. After this
approximation and some algebra,

En
	 [hn(Zn)] − �ph = 1√

n
(�pUh)′I∗n + 1

n
tr{(�pV h)[II∗n − n(�̃2

n − 1)]}

− (�p
3 h)′�̃n�̂n(�̃

2
n − 1) + 1

2n
(�p

4 h)n(�̃2
n − 1)2 + 1

n
R̃n(h),

where

I∗n = En
	

[
Q�

(∇	

	

)]
− √

n�̃n�̂n,

II∗n = En
	

[
Q�

(∇2	

	

)
Q′

� + n�̃2
n�̂n�̂

′
n − �̂n − 2Q�

∇	

	

√
n�̃n�̂

′
n

]

and limn→∞ E	[essuph∈Ho
2
|R̃n(h)|] = 0. Here limn→∞ E	[n(�̃2

n − 1)21Dn ] = 2, by
Lemma 5.4 and the preceding remark. So, it suffices to show that

E	[(�̃2
n − 1)1Dn ] = o(1/n),

E	[�̃n�̂n(�̃
2
n − 1)1Dn ] = o(1/n),

E	(I
∗
n1Dn) = o

(
1/

√
n
)
,

E	(II
∗
nDn) → 0.

The first of these is clear, since

E	[(�̃2
n − 1)1Dn ] = −E	[(�̃2

n − 1)1Dc
n
] + o(1/n) = o(1/n),
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by Lemma 5.4 and Schwarz’s inequality, and the second follows since n�̃n�̂n(�̃
2
n − 1) has

a limiting distribution with mean 0. For II∗n, it is easily seen that II∗n→pM(�), where

M(�) = Q�

(∇2	

	

)
Q′

� + (Q#
�1)(Q#

�1)′ − �(�) − 2Q�
∇	

	
(Q#

�1)′

and that

E	[II∗n1Dn ] →
∫
�

M(�)	(�) d� = 0,

where the final equality follows from an integration by parts. See Lemma 2 (Woodroofe
and Coad, 1997).

The term involving I ∗
n is more delicate. Here

I∗n = En
	

[
Q�

(∇	

	

)
+ Q#

�1
]

1Dn + En
	 [�̃nQ

#
�̂n

1 − Q#
�1]1Dn

= I∗1,n + I∗2,n,

E	(I
∗
1,n) =

∫
�

[
Q�

(∇	

	

)
+ Q#

�1
]

P�(Dn)	(�) d�

= −
∫
�

[
Q�

(∇	

	

)
+ Q#

�1
]

P�(D
c
n)	(�) d�

= o(1/n);
and

E	(I
∗
2,n) = E	

{[
�̃nQ

#
�̂n

1 − Q#
�1
]

1Dn

}
= o

(
1/

√
n
)

by Lemmas 5.4 and 5.6 and Proposition 6.13. This completes the proof of (35). The proof
of (34) is similar, but the terms involving �̃2

n are absent. �

7. Discussions

We have derived approximate confidence intervals for a stationary, Gaussian auto-
regressive process of order p. Simulation experiments for AR(2) processes with sample
sizes n = 10, 20, 50 show excellent agreement with the theoretical results, recalling that
they predict better agreement in the symmetric case than for the one-sided one.

Though this paper mainly concerns setting confidence intervals from a frequentist point
of view, the integrable expansion derived here has a close connection with Bayesian models.
In the Bayesian literature, there has been an extensive study on developing priors that match
asymptotically the coverage probabilities of Bayesian credible sets with the corresponding
frequentist probabilities. Such priors are referred to as ‘probability matching priors.’ See,
for example, Ghosh (1994), Datta and Mukerjee (2004). Our work suggests an equation for
the matching prior. Letting � = log 	 and approximating the coefficient of 1/

√
n in (13)
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suggests that the frequentist approximation (16) and posterior expansion (13) will agree to
order o

(
1/

√
n
)

if

Q�∇�(�) = −Q#
�1.

This has the solution

�(�) = �(0) −
∫ 1

0
�′Q−1

t� Q#
t�1 dt

or

	(�) ∝ exp

[
−
∫ 1

0
�′Q−1

t� Q#
t�1 dt

]
. (36)

Of course, our conditions are not satisfied by (36), so that (36) can be at most suggestive, but
it is that at least. If p=1, then the unique solution to (36) is the Jeffreys prior, 	(�) ∝ √I�,
where I� is the information, but if p�2, then (36) need not be the Jeffreys prior. For p=2,
it is (after straightforward, but lengthy calculations)

	(�) ∝
√

1 + �2

1 − �2

√|I�|,

where now |I�| is the determinant of the information matrix.
Further investigation of (36), including more general conditions on the prior for its va-

lidity, is one open problem for future research. Another is to extend the result to ARMA
processes. A natural approach is to write an ARMA process as an AR process of infinite
order, where the sequence of coefficients in the latter depends on finitely many parameters,
but this may be messy (at best), because the likelihood function for an ARMA process is
complicated.
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