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Abstract

With the growth of various data types, mining useful
association rules from large databases has been an
important research topic nowadays. Previous works focus
on the attributes of data items to derive a variety of
association rules. In this paper, we use the attributes of
transactions to organize the data as a multiple-attribute
hierarchical tree where the multiple-attribute association
rules can be efficiently derived. Furthermore, we store the
derived rules as a frequent hierarchical tree and allow
users to specify various types of queries for finding
interesting correlations named phenomena among the rules.
We then make experiments to evaluate the performance of
our approach.

Keywords: data mining, association rule, data warehousing,
correlation, query.

1 Introduction

Recently, the explosive growth of marketing data has
brought urgent needs for new mining techniques. One of
the important techniques is to mine association rules from
large transaction database [1] [3] [4] [9] [13] [14] [15] [17]
[18] [19]. The following are some terminologies used in
this field. In a transaction database, each transaction
consists of a transaction date and a set of items purchased.
A set of items is called an itemser. The support of an
itemset is the percentage of transactions that contain this
itemset. An itemset is Jarge when its support is larger than
a user-defined threshold (called minimum support). For
each large itemset, the association rules that cover this set
of items can be easily derived. An association rule
describes the associations among the data, indicating the
- purchasing behaviors of most customers. For instance, a
manager might be interested in the rule — if a customer

buys bread, she will also probably buy milk.
Most of the researchers derive the association rules
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that do not consider the layered concepts on items [2][5],
e.g., people who buy food often buy drink at the same time
(both are more general concepts). Recent works view the
attribute values as the layered concepts and set up proper

~ values of minimum supports to find the associations among

the concepts at the same or different levels. For example,
when we buy bread, soft drinks would be probably bought
together. Srikant and Agrawal [11] employ a constant
value of minimum support to mine the association rules
over all the layers. On the other hand, Han and Fu [7]
utilize variable values of minimum supports for different
layers. In that approach, the higher the layer is, the larger
the minimum support will be. These works claim that if we
extend the data domain to include the layered concepts on
items, the derived rules will reveal more specific and
concrete information to us.

In addition to the layered concepts on items, other
interesting rules can be found by dividing the transactions
into partitions based on item types they contain. For
instance, in summer the ice cream is a hot seller and the
database is overwhelmed by the transactions that contain
this item type. No matter how the sales of the air
conditioner increase, it cannot be large due to the large
sales of ice cream.

In this paper, we combine the above two ideas and
consider the attributes of transactions to discover more
comprehensive knowledge from data. At first, we
recursively divide the transactions into groups by their
attributes to construct a multiple-attribute hierarchical tree
(called MAH-tree). After that, we focus on the information
kept on this tree to derive association rules (called MA
association rules) for each group of transactions. The
derived rules are organized as a frequent hierarchical tree
(called FH-tree), which allows users to specify queries for
finding correlations among the rules (called phenomena).

In the following, we illustrate the phenomena in the
real world and their relationships with the MA association
rules. From the MAH-tree, we may derive the MA
association rules like “in the U.S., if a boy buys a BB gun,
he will also probably buys BB shots” and “in the U.S., if a
women buys a first-aid box, she will also probably buys



2 Journal of Internet Technology Volume 7 (2006) No.1

bandages”. In this circumstance, the FH-tree may contain
the large itemsets {BB gun, BB shot} and {first-aid box,
bandage} with certain attribute values, e.g., in summer. By
analyzing the FH-tree, we may discover the correlations
between the two large itemsets, such as “in the U.S., a boy
and a woman often buy a BB gun and a first-aid box
respectively in the same seasons”. It is easy for users to get
this kind of phenomena by specifying a query like “in the
U. S., what kinds of purchasing behavior do a boy and a
woman often have at the same time?” To sum up, a
phenomenon indicates the significant correlation among
large itemsets within certain attribute domains.

Grahne and et al. [6] consider the problem of finding
circumstances (i.e., time and locations) where a pattern
holds. The circumstances for a pattern are first discovered
and then the itemsets that match the pattern under the
circumstances are derived. For example, the time period
when ice cream has a large sale is first found and then the
other itemsets that also have large sales during the same
period. On the other hand, the itemsets that match a pattern
under a circumstance can also be found. After that, more
circumstances under which these itemsets also match the
pattern are derived. For instance, for each itemset bought
frequently in fall, other seasons in which the itemset is also
bought frequently are derived. Compared with this paper,
we can find the same results from the FH-tree and further
obtain their correlations.

Another approach named data warehousing [16]
proposes the concept of a data cube to analyze multi-
dimensional data. A data cube stores all the aggregated
values of data in the form of a multi- dimensional cube,
where each dimension has its own hierarchical skeleton [8]
[20]. However, this approach essentially lacks the concept
of transactions and therefore provides no sufficient
information about the association among items.

The rest of this paper is organized as follows. Section
2 introduces the MAH-tree construction. The derivation of
MA association rules is described in Section 3 and the
approach for phenomena mining is presented in Section 4.
In Section 5, the experimental results are shown. Finally,
Section 6 concludes this paper.

2 MAH-Tree

From a variety of information associated with the
transactions, we consider the typical attributes in our work
on mining. In this section, we first introduce the basic
types of attributes and then show how to construct a
MAH-tree.

2.1 Basic Types of Attributes
In a transaction database, each transaction is usually

associated with four typical attributes, i.e., when, who,
where, and what to buy. The manager of a supermarket is
always interested in the following question “at what time,
what kinds of customers in which areas will buy what
kinds of items?” In this paper, we consider them as the
basic types of attributes.

@ Time Attribute (TA) specifies when the transactions
occur, €.g., seasons.

@ Customer Attribute (CA) specifies who creates the
transactions. In this paper, we combine gender and
age of each customer to be CA, i.e., male or female at
the age below 20, from 20 to 40, from 40 to 60, or
above 60.

€ Location Atribute (LA) specifies where the
transactions occur. In this paper, we apply the concept
of MX-Quadtree [12] to generate LA.

@ lrem Awribute (IA) specifies what the transactions
contain. In this paper, we denote each product as a
distinct symbol (i.e., item) and regard the itemsets as
IA.

In the following, we briefly describe how to generate

LA. At first, the positions where the transactions occur are
classified into four disjoint regions with equal area. After
that, the enfropy of each region, indicating the degree of
disorder in the region, is computed by the following
formula [10], where A; is one of the n positions in the
region and P(A;) is the probability that a transaction occur
in Aj.

Entropy (A) = —jilP(Aj)IOg P(4;) ey

Based on the entropy of each region, we can identify
the non-uniform regions and continue to classify them into
smaller regions. When there is no more non-uniform region,
this process terminates and the resultant regions are
numbered as LA. Take Figure 1 as an example. Only the
region at the top left comer of Figure 1(a) is further
classified into four smaller regions. At last, seven regions
as shown in Figure 1(b) are numbered as LA.

In the following, we illustrate how to transform a
database into the one with the above four attributes. For a
transaction database in Table 1, we first transform it into a
database with four attributes. As Table 2 shows, we use
alphabets to denote IA, e.g., “a” stands for “drink”, “b”
means “food”, etc. In the other columns, we use numbers
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Figure 1 An example for generating LA
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Table 2 The transformed database of Table 1

Date |Age| Gender | Location Products T-ID TA CA LA IA
McDonald in |cola, French 1 1 3 2 abd
99/4/1 25 male [the eastarea |fries, ice 2 1 6 4 b
cream 3 3 3 2 bedef
beach in French fries 4 4 1 7 abe
99/5/3 52 female the north area son cee DY cee .
movie theater |French fries, 50 1 7 1 ac
99/10/30 | 31 1 in the east ticket, ice
male  larea cream, juice, assoctated with the transactions under this node. For
— polpc%rn - example, the vector on the root of the spring tree indicates
movie theater |cola, Frenc . .
99/12/5 13 male |in the south | fries, ticket thaF the TA values of the transactions under this t'ree are
area spring (1), and the values of CA and LA are un-designated
(00). Moreover, we also associated the number of
Veaik PR transactions. for each partition (called the partition size)
n cola, ticket : ..
02/6/8 65 | male |gowntown with the correspor?dmg }ntemal node..' .
The transactions in each partition are then divided

to denote TA (e.g., “1” means “spring”), CA, and LA,
respectively.

2.2 Tree Construction

According to the four types of attributes, there are six
kinds of structures for the MAH-tree, as shown in Figure 2.
At first, we consider the position of three attributes in the
MAH-tree. We make initial experiments to examine
whether the tree structure influences the performance of
tree construction and large itemset generation. Based on
the results (to be detailed in Section 5.2), we take the order
TA—CA—LA from top to bottom as the structure of the
MAH-tree. :

A MAH-tree contains four layers, where each
corresponds to one of the four types of attributes. To build
a MAH-tree, we recursively divide all the transactions in
the database into several groups according to the attribute
values. Finally, the information about transactions is stored
in the leaf nodes of the MAH-tree.

Firstly, at the top layer, we divide the transactions into
four groups (called partition) by TA and name each of
them spring tree, summer tree, fall tree, and winter tree,
respectively. Figure 3 is the MAH-tree of Table 2. A spring
tree consists of all the transactions whose TA is spring and
the other trees are built in the same way. Consequently, the
database is fully represented by these trees. Each internal
node on the MAH-tree keeps a vector of three fields, which
refer to the values of the three attributes TA, CA and LA

Figure 2 Six kinds of tree structures

recursively by CA and LA into smaller partitions. Similarly,
the vector 110 indicates that the TA is spring, the CA is a
boy and the LA is un-designated. For each partition at the
bottom layer, we collect the information about each item,
including the number of transactions that it appears (called
the count) and the set of the corresponding T-ID’s (called
the T-ID set), to build the leaf nodes. In this way, the count
can be used to decide whether the item is large, and the
T-ID set can be used to compute all the large itemsets.

3 MA Association Rule Mining

Based on the MAH-tree, we can derive the MA
association rules like “in summer, if the youth buy ice
skates in a shopping mall, they also buy protecting
fittings,” and store the large itemsets as an FH-tree for
efficient phenomena mining,.

Due to the various sizes of partitions on the
MAH-tree, at the beginning we compute the ratio of each
partition to the entire database and filter out the partitions
with small ratios. After that, we respectively derive the
large itemsets in each partition from the bottom to the top
of the MAH-tree. For efficiency, we regard the large
itemsets derived from the lower layer as the candidate
itemsets for the higher layer.

D330 S —

11 11 111 3 211
@6)(46) (X3 @Y (40) (41D (40) (LIAN (LA ) (D)

Figure 3 A MAH-tree
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3.1 Size Filtering

For each layer, we define the inverse of the domain
size for the corresponding attribute as the expected ratio
and compute a threshold for size filtering (called SF
threshold) by multiplying its expected ratio with the ones
of all the layers above it. In Table 2, the expected ratio of
TA, CA, and LA are 1/4, 1/8, and 1/7 respectively. The SF
thresholds of three layers are 1/4, 1/4*1/8, and 1/4*1/8*1/7
respectively. The mining task on a partition can be sklpped
only if the following inequality fails.

partition Size

2
database size ~ SF threshold @

For example, the partition under node 100 at the TA
layer has 15 transactions, which meets inequality (2)
(15/50 > 1/4). Therefore, we have to derive the large
itemsets from this partition. On the other hand, the partition
under node 200 at the same layer has 2 transactions, which
contradicts inequality (2). Therefore, we do not need to
derive the large itemsets in node 200. In addition to the SF
threshold, we also allow users to specify a value, called the
criterion of SF threshold, between 0.1 and 1.0 to adjust the

_magnitude of the SF threshold.

3.2 Mining Algorithm

After the filtering process, we start from the bottom
layer of the MAH-tree to derive the large itemsets for all
the qualified partitions. For each partition at the bottom
layer, we use the partition size and the count kept in each
leaf node to derive large-1 itemsets. After that, we generate
large-k itemsets by intersecting the T-ID sets of any k
large-1 itemsets. Finally, we store the following
information in each internal node of the MAH-tree.

@ The T-ID set and the count for each 1-itemset.
@ The count of each large k-itemset.

Based on the stored information of the partitions at the
bottom layer, we continue to derive the large itemsets for
the partitions at the higher layer. For each partition
(denoted by P), we sum up the sizes of the partitions under
P. At this point, we have the following three cases to
consider:

Case 1

For each 1-itemset, we sum up its counts from each
partition under P and join the T-ID sets. Moreover, we
compute its support by the following formula to decide
whether it is large in P or not, where PS; denotes the size of
the iy, partition and C; is its count in the iy, partition.

2.Ci
S ps; 3

Case2

For each large-k itemset that appears in all the
partitions under P (k > 1), we also compute its support by
formula (3) to decide whether it is large in P or not.

Case 3

For each large-k itemset X in some but not all the
partitions under P, we use the derived large-1 itemsets that
are subsets of X to decide whether X is large in P.

Finally, we follow the structure of the MAH-tree to
build the corresponding FH-tree in a bottom-up fashion,
where each node keeps the derived large itemsets. An
example FH-tree is shown in Figure 4.

To illustrate, take the MAH-tree in Figure 3 as an
example. Let the minimum support be set to 50%. Firstly,
we consider node 131 and use the partition size and the
count of each item to derive the large-1 itemsets in it, i.e.,
a, b, and c. Then, we intersect the T-ID sets of the three
large-1 itemsets to generate the large-2 and the large-3
itemsets, i.e., ab, ac, bc and abc. Finally, we store the large
itemsets in the corresponding node on the FH-tree. In this
way, we can also derive the large itemsets of node 132.

Secondly, we generate the large itemsets of node 130
for the three cases, respectively. In case 1, we apply
formula (3) to get the large-1 itemsets, which are a, b, and
c. In case 2, the common large-k itemset in the partitions
under node 130 is ab, so we apply formula (3) to generate
the large-2 itemset (ab) for node 130. In case 3, the large-k
itemsets that appear in one of the partitions under node 130
are be, ac and abc. We use the large-1 itemsets of node 130
(i.e., a, b, ¢) to generate the large-k itemsets by applying
the Apriori property. Consequently, the derived large-k
itemsets for node 130 are ab and ac. Finally, the derived
large itemsets are stored into the FH-tree as shown in
Figure 4.

4 Phenomena Mining By User Queries

Before mining the phenomena, the users have to spec-

Figure 4 The FH-tree derived from Figure 3



ify queries (called phenomena queries) for the phenomena
they want to find. Consider the query “in spring, what
items do young women and chiidren often purchase in the
same areas?” In this query, the query conditions include
TA and CA, while the support counts of phenomena
depend on LA. We call the former attributes specified
attributes (abbreviated as SA), while the latter count-by
attributes (CBA in short).

Given a value pair of two SA’s, we can collect the
corresponding large itemsets from the FH-tree. A value
pair of two SA’s may lead to any number of large itemsets,
including zero. After that, we compute the frequencies of
these large itemsets over the CBA values to find significant
ones called behaviors. Finally, we analyze the correlation
among the behaviors to discover phenomena. In this
section, we first present the classification of phenomena
queries and then the method for mining phenomena.

4.1 Types of Phenomena Queries

At first, the syntax of a phenomena query is presented
as follows.
SA <(X,{Vi1, Via-..Vii}), (Y {Vy1, Vyo...Vy})»>
CBA (2)
CONDITION <n>

Here X, Y, and Z are selected from the basic types of
attributes, and the V;’s and V;’s are the values of X and Y
respectively. The criterion n in the condition limits the
number of the same behaviors in the phenomena to three
values, i.e., ZERO, ONE, and ALL. ZERO and ALL mean
no and all behaviors are the same, respectively, while ONE
means that one of the SA’s has the same behavior for each
value.

Example 1
The phenomena query “in spring, what items do

young women and children often purchase in the same
areas, where the items purchased by young women and
children are completely different?” can be stated as
follows:

SA <(TA,{spring}), (CA,{young women, children})>
CBA (LA)

CONDITION <ZERO>

CBA Classification

According to the position of CBA on the FH-tree, we
can classify the phenomena queries into three types (called
CBA classification), corresponding to the three ways to

Type A Type B Type C
SA, CBA SA,
SA; SA, CBA
CBA SA, SA;

Figure 5 Three types of phenomena queries with CBA classification
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Table 3 An example of medical database

T-ID | Time | Patient Circumstance Disease
1 1 3 2 3
2 2 5 6 7

collect large itemsets for phenomena queries. As Figure 5
shows, the CBA of types A, B, and C are located at the
bottom, the top, and the middle layers, respectively.

Suppose there is only one value for each SA and the
domain sizes of both SA’s and CBA are n;, n, and n;
respectively. During traversing the FH-tree to collect the
large itemsets for the query, we have to compare the
specified SA values with each value on the corresponding
layers. For type A, the comparisons need n;+mn, times,
while for types B and C, the comparisons need ns(nj+n,)
and n;+n,n; times respectively. Therefore, the queries of
type A require the least comparisons, while type B needs
the most.

Given more than one value in each SA, we may derive
more results by collecting more large itemsets. Suppose the
numbers of SA values are 8, and 8,, respectively. For type
A, the comparisons need (n;+n,9,)8; times, while for type
B and C, the comparisons need (n;+n,8,)n:d; and
(n1+nyn38,)8, times respectively. Similarly, we conclude
that type A achieves the best efficiency in query processing
while type B is the worse one.

Phenomena Classification

In addition to the CBA classification, we also classify
the phenomena queries into three types (called phenomena
classification) based on the number of behaviors that are
the same in the phenomena. The three types of phenomena
queries are illustrated in Figure 6. We assume that there are
two values specified in each SA, i.e., Vx;, Vxp, Vy; and
Vy,. Let A, B, C and D be the behaviors. We introduce
them as follows:
@ Type 1: All behaviors in the phenomena are different.
@ Type 2: One of the SA’s has the same behavior for

each value.

@ Type 3: All behaviors in the phenomena are the same.

Example 2
We show the three types of phenomena by the

example in Table 3.

[ype 1 query
Type 1 Type 2 Type 3
Vx;  Vx; Vx; Vx; Vx;  Vx;
Vy, A B Vv, A A Vi A A
Vv, C D Vy, B B Vy, A A

Figure 6 Three types of phenomena queries based on phenomena
classification
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SA <(TA,{summer,fall}), (LA, {muggy,dark})>
CBA (CA) '
CONDITION <ZERO>

A possible result is stated as follows, “in summer and
fall, people who live in a muggy circumstance tend to
suffer from measles and asthma, and people who live in a
dark circumstance tend to suffer from photophobia and
psychology problem; this phenomenon often appears to the
patients with the same age.” According to this phenomenon
, we can take actions to prevent the diseases in advance
when people live under these circumstances.

I'ype 2 query
SA <(TA, {spring, summer}), (CA,{group A, group B})>
CBA (LA)
CONDITION <ONE>

A possible result is stated as follows, “in spring, the
patients of group A and group B tend to suffer from
allergy; in summer, the patients of group A and group B
tend to suffer from dermatitis; this phenomenon often
appears in the same circumstances.” It implies that the
patients suffering from allergy will suffer from dermatitis
after a season.

I'ype 3 query
SA <(CA,{group A, group B}), (LA, {moist, muggy})>
CBA (TA)
CONDITION <ALL>

A possible result is stated as follows, “the patients of
group A and group B who live in the moist and muggy
circumstances often suffer from diarrhea in the same
seasons.” From this phenomenon, we can take precaution
against this disease for the patients of the two groups living
in the moist and muggy circumstances.

4.2 Phenomena Mining

In the following, we present our approach to
phenomena mining, which takes into account the
phenomena classification. The first steps for all the query
types are the same. For each combination of the SA values
in the query, we collect the corresponding large itemsets
from the FH-tree, store them into a table, and use a cube to
organize them, as shown in Figure 7(a).

Q’
cBA £ — SA; SA; =1
- SA;=2
SA cBAla| | .. | L

CBAI P AN A /SA£1 SA|=1
(o T T Pom-s

SAz
(@ (b)

Figure 7 The structure for collecting the large itemsets from the FH-tree

In this cube, each dimension refers to one of the three
attributes, while each cell keeps the large itemsets
according to certain attribute values. Given a value pair of
two SA’s, we can collect the cells to form a unit array,
where its indices refer to the CBA values and the contents
keep the large itemsets. For example, in Figure 7(b), the set
of unit arrays is a part of the cube in Figure 7(a).

In the second step, for each large item’set, we count
the number of its occurrences (called the fregquency) in
every unit array. Based on a user-specified threshold
(called the behavior threshold), we then select the large
itemsets that appear in most of the cells as the behaviors
and keep the set of the corresponding cells’ indices (called
the index set).

: Jr U __ > behavior threshold 4)
size of unit array

. At last, based on the other user-specified threshold -
(called the phenomenon threshold), we estimate the
correlation among two or more behaviors in different unit
arrays to identify the phenomena as follows:

RS

|F| 2 phenomenon threshold 5)

The notation |/] is the number of indices in the

intersection of two or more index sets, while [U] is the

number of indices in the union of two or more index sets.

In the following, the ways to process the three types of
phenomena queries are described respectively.

I'ype 1 query processing

Inequality (5) is applied to examine every
combination of the distinct behaviors collected from each
unit array and the qualified ones are then selected as the
phenomena.

Type 2 query processing

We iteratively choose an SA and divide the unit arrays
into groups by the values of the chosen SA. Moreover,
inequality (5) is applied to the behaviors that appear in
each unit array of a group. After that, we apply inequality
(5) again to every combination of the qualified behaviors
collected from each group and regard the qualified
combinations as the phenomena.

T'ype 3 query processing
Inequality (5) is applied to the behaviors that appear

in each unit array and the qualified ones are regarded as the
phenomenon.

Example 3
Let the behavior threshold and the phenomenon

threshold be set to 40% and 30%, respectively. The follow-



Table 4 Collected behaviors by the SA values
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Table 5 Parameters used in the experiment

Summer | LAl | LA2 | LA3 | LA4|LAS|LA6|LA7

Young |abc,dlac  |acd |ef |ace |b ac
Women

Children |ae ac,b |ae c,d |ace [cd,b |ae

(a)

Parameter Meaning
D Number of transactions
[MT] Maximum size of the transactions
IL| Number of potentially large itemsets

Winter | LA1 | LA2 | LA3 | LA4 | LA5| LA6 | LA7

Young |acf |bef, |acf |b,ad |bef |be acf
Women ad

. abe, |ac ade |[bcf |bce |bdf, |ade
Children de def

()
ing is a query example.
SA <(TA,{summer, winter}), (CA, {young women,
children})>
CBA (LA)
CONDITION <ZERO/ONE/ALL>

At the first step, we collect the large itemsets from the
FH-tree based on the SA values. Table 4 shows an
example, where (a) and (b) stand for two unit arrays,
respectively. Since the behavior threshold is set to 40%, the
frequency of a behavior must be larger than 3.

For each unit array, inequality (4) is then used to find
out the behaviors and the results are shown in Figure 8. For
type 1 queries, every combination of the distinct behaviors
collected from each unit array is examined by inequality
(5) and the resultant phenomenon is shown in Figure 9. For
type 2 and type 3 queries, there is no phenomenon because
each behavior appears in exactly one unit array.

5 Experimental Results

In this section, we describe how to generate the
synthetic data and demonstrate the experimental results on
the effect of tree construction, large itemset generation and
phenomena discovery, respectively. In addition, we also
implement an array-based data cube to compare it with our
tree structure in various aspects.

5.1 Synthetic Data Generation

Synthetic data are used to simulate a customer
purchasing in a retail environment. We generate the
synthetic data by a simple version method. Table 5 summa-

summer / young |ac (LA number: 123 57)
women

summer / ae (LA number: 135 7)
children ¢ (LA number:2456)
winter / young  |acf (LA number: 1 3 7)
women b (LA number:2 45 6)
winter / children |de (LA number: 13 7)

Figure 8 Behaviors of the young women and children in summer and
winter

rizes the parameters used. The transaction is repeatedly
assigned items from a set of potentially large itemsets, until
the length of a transaction reaches a predefined maximum.
As for the other three types of attributes (TA, CA,
LA), after randomly generating the buying times, the
customers (with different ages and genders) and the
locations (in coordinate format), we classify the attributes
into different types and associate them with each
transaction. Basically, the time attribute is classified into
four types, the customer is classified into eight types and
the location is classified into seven types. We generate the
data by |L| = 2000 and |MT| = 20. The number of
transactions is set to be in the range from 1K to 100K.

5.2 Effects of Tree Construction

Since the positions of the three attributes in the
MAH-tree and FH-tree are significant to our approach, in
the first experiment we examine whether different tree
structures influence the performance of tree construction.
Because the data cube has a structure similar to ours, the
second experiment evaluates the storage cost of our
approach via a comparison.

Domain Sizes of Attributes

We set the number of transaction to be 1000, the
domain size of TA and CA 4, and increase the domain size
of LA from 4 to 200. Under this setting, there are three
kinds of tree structure, that is, LA is in the top (denoted by
L*¥), middle (*L*) and bottom (**L) layer.

From Figure 10, we see that the increase of domain
size leads to the increase of tree construction time for any
kind of tree structure. When an attribute with a larger
domain size is put in the higher layer, the tree construction
costs more. When the domain sizes for TA, CA and LA are
set to 4, 8 and 7 respectively, the influence of tree structure
is small. We take the first kind of tree structure
(TA-CA-LA) as our settings in the subsequent experi-
ments.

Storage Costs
We increase the number of transactions from 1K to

young women children
summer ac ae
winter acf de

Figure 9 An example phenomenon returned from Type 1 queries
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100K. In Figure 11, we compare the storage cost of the
transformed database in the disk with the one of MAH-tree
in the memory by calculating the ratio of storage space of
MAH-tree to the transformed database. We find that the
storage cost of MAH-tree is much less than the
transformed database. The MAH-tree can still be stored in
the memory even when the number of transactions is
100K.

Figure 12 indicates FH-tree takes up less space than
the data cube, especially when the number of transaction
becomes larger. This is because we only have to store large
itemsets in FH-tree for discovering phenomena, while the
data cube needs to store the counts of all the items.

5.3 Effects of Large Itemset Generation

In Section 3.2, we propose a method for mining MA
association rules with three cases. In this section, we
propose a brute-force method for comparison. This method
combines the itemsets computed in the lower layer to
derive the large itemsets in the higher layer. This
experiment evaluates the efficiency of the large itemset
generation as either the number of transactions or the
criterion of the SF threshold increases. .

Number of Transactions

The number of transactions is from 1K to 100K, the
criterion of the SF threshold is fixed to 0.5, and the
minimum support is set to 0.1%. The execution time of
both methods increases when more transactions are
examined. Our method costs less than the brute-force
method, as shown in Figure 13, especially when the
number of transactions reaches 100K.

T4C4L4 T4C4L20 T4C4L100

domain size

T4C4L200

Figure 10 Domain size vs. Execution time for tree construction
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Figure 11 MAH-tree vs. Transformed database

Criterion of the SF Threshold

Next, we investigate how the criterion of the SF
threshold affects the performance of our approach. The
criterion of the SF threshold varies from 0.1 to 1.0. The
minimum support is set to 1%. There are three sets of
transactions with numbers 1000 (denoted as D1000),
10000 (D10000) and 50000 (D50000), respectively.

The results are shown in Figure 14. When the
criterion of the SF threshold increases, the number of
qualified partitions will decrease. In addition, it is
interesting to note that when the criterion of the SF
threshold increases as 0.5, the number of qualified
partitions descends to the minimum value and this
condition is the same for the three sets. After checking the
size of each qualified partition, we find that when the
criterion of the SF threshold is greater than 0.5, the average
partition size remains large.

5.4 Effects of Phenomena Discovery
The last experiment evaluates the performance of
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Figure 13 Number of transactions vs. Execution time for large itemset
generation
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Figure 14 Criterion of the SF threshold vs. Number of qualified partitions



phenomena mining for various query types, the number of
large itemsets, the number of the SA wvalues, and the
domain size of the CBA.

Query Types

In this experiment, the minimum support and |D| are
set to 1% and 1000, respectively. Moreover, both the
behavior threshold and the phenomenon threshold are 0.5,
and the number of the SA values is 2. As Figure 15 shows,
the execution time of query type A in the CBA
classification is the least among the three query types in the
phenomena classification. We take query type A in the
CBA classification as the basic query type in the
subsequent experiments.

Number of Large Itemsets

To observe the influence of the number of large
itemsets on the phenomena mining, we vary the number of
large itemsets in the range from 300 to 1800. Both the
behavior threshold and the phenomenon threshold are 0.5.
Besides, the number of the SA values is 2. As shown in
Figure 16, the execution time of each query type in the
phenomena classification increases with the growth of the
number of large itemsets.

Number of the SA Values

In Figure 17, the number of the SA values varies from
2 to 6. Moreover, the minimum support and |D| are 1% and
1000, respectively. Besides, both the behavior threshold
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Figure 15 Classification of phenomena queries vs. Execution time for
phenomena mining
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Figure 16 Number of large itemsets vs. Execution time for phenomena
mining
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and the phenomenon threshold are 0.5. The execution titne
for each query type in the phenomena classification
increases when the number of the SA values increases.

Domain Size of the CBA

In Figure 18, the domain size of the CBA increases
from 10 to 200. The minimum support and |D| are 1% and
1000. Both the behavior threshold and the phenomenon
threshold are 0.5. Besides, the number of the SA values is
2. The execution time for each query type in the
phenomena classification increases when the domain size
of the CBA increases.

6 Conclusion

In this paper, we propose a novel approach for mining
association rules with multiple attributes and deriving
interesting phenomena from the large itemsets. A multiple
attribute hierarchical tree is built for efficient association
rule mining and then a frequent hierarchical tree is built for
phenomena mining. The experimental results indicate that
our method for phenomena mining is insensitive to the
number of large itemsets, the number of the SA values, and
the domain size of the CBA. In the future, we will study
the various kinds of phenomena in the real-world
applications.

0.5
0.45
0.4
0.35

e
w

0.25

time(sec)

e
1S

0.15
0.1 k
0.05

the number of both SA values

Figure 17 Number of the SA values vs. Execution time for phenomena
mining
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