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SELF-ORGANIZING CONTEXTUALIZED MOBILE
WORKFORCE MANAGEMENT WITH
COLLABORATIVE ART LEARNING

Soe-Tsyr Yuan & Department of Management Information System, National Chengchi
University, Taipei, Taiwan

Mason Wu & Department of Information Management, Fu-Jen University, Taiwan

& With the development in wireless technology and the sophistication in wireless devices, enter-
prising mobile workforces have grown in recent years. Mobile workforces do not work at a fixed area
in a company and they have to visit customers or sell their products in public areas. Therefore, it is
important for these enterprises to properly allocate their mobile workforces and leverage their colla-
borative cooperation. In this paper, we present a novel mechanism, named the collaborative ART
learning (CART), which drives social-awareness collaboration between mobile workforces in a pub-
lic area (e.g., an exhibition center). Because of the characteristics of a pubic working space, this
method is situated in a wireless P2P network environment. The mobile workforce peers self-organize
dynamically into appropriate collaborative work groups to accomplish tasks on demand. With
CART, each peer of a task group receives adjustments of recognized capability levels after the task
assigned is completed. CART learns the way to organize fitting collaborative work groups through
cycles of problem solving and work force status adapting, leading to continued satisfactory colla-
borative performance.

With the advancement of wireless technologies, companies are taking
advantage of the efficiencies offered by these new technologies. Companies
have or will have a significant number of mobile professionals (more than
20% of their work forces) that will increase from 18% to 42% within a year,
and reach 57% within two years (Cutter 2001).

On the other hand, the work force of human teams are often spread
among different places. Computer technology and increased network avail-
ability have enabled and improved distributed group work of collaboration.
Collaboration refers commonly to a set of participants working together to fulfill a
task=service or to produce a product (Gutwin and Greenberg 2002; Niehaus
1995). A crucial point for successful collaboration is the manner in which
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individual work is related to the group as a whole. The coordination of the
contributions of the team members is an important task in supporting dis-
tributed group work.

Moreover, awareness-oriented collaboration systems is when users coor-
dinate their work based on the knowledge of what the members of the col-
laborating group are doing or have done (Bannon and Schmidt 1989). For
instance, work space awareness addressed recently in the computer sup-
ported cooperative work (CSCW) community (Schleicher et al. 1997; Gut-
win and Greenberg 2002) involves up-to-the-minute knowledge about where
others are working, what others are doing, etc. This information is useful
for many of the activities of real-time collaboration.

With the rapid growth of mobile workforces the chances and, considerable that
mobile work forces of a company need to work together to fulfill situated tasks (ser-
vices) in real time. This problem is called contextualized mobile workforce manage-
ment (CMWM). For instance, upon encountering a potential buyer of
designated needs in a big-scale exhibition, a mobile work force can dynami-
cally trigger the formation of a team of mobile work forces made up of myr-
iad skills (who are at different locations in the exhibition center) to
appropriately attend to the buyer in order to gain new business. In other
words, there will be a strong surge of computer and network support for real-time col-
laborative distributed group work between mobile work forces.

The current state of the art in CSCW systems or awareness-oriented sys-
tems in collaboration primarily unfolds in two directions: communication
support for exchanging information at the human level (Schleicher et al.
1997; Malm 1994; Ellis et al. 1991; Johansen, 1991) (as exemplified in
Figure 1), and awareness support for capturing and maintaining the knowl-
edge about the state of an environment (in which people interact with and
explore the environment) bounded in time and space at the data level
(Gutwin and Greenberg 2002; Neisser 1976; Adams et al. 1995; Sohlen-
kamp and Chwelos 1994; Smith et al. 1998; Roseman and Greenberg
1996; Kraut et al. 2002) (as indicated in Figure 2).

In dealing with the CMWM problem, the aforementioned existing
works fall short on the following aspects: social awareness (Greenberg
et al. 1996): the information that a person maintains about others in a
social context (e.g., degree of acquaintance, their emotional state, or their
level of interest, their special skills, etc.), and the mindset in supporting dis-
tributed group work (Miles et al. 1993): the approaches employed to facili-
tate collaboration between distributed group members (e.g., manipulation
of shared artifacts).

Most existing relevant works employed a centralized mindset of sup-
porting collaboration between distributed group members (e.g., the cli-
ent-server approach in wired networks or wireless sensor networks).
Consequently, the extent of social awareness that can be achieved is very
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limited, owing to the private and individual nature of the social-awareness
information. For the CMWM problem this paper aims to provide a solution charac-
terized by social-awareness enabled and purely distributed mindset (i.e., self-organiz-
ing) of collaboration support.

FIGURE 2 The perception-action cycle (Neisser 1976).

FIGURE 1 Myriad types of CSCW systems for communication support (Schleicher et al. 1997).
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THE CMWM PROBLEM

In this section, the definition of the CMWM problem is formulated in
terms of its universe and the parts required in the universe.

In a CMWM universe b ¼ (CMWS , S, T, W, R), CMWS denotes the collec-
tion of mobile M work forces of a company in a designated public work
space; S represents a complete skill set (of which each mobile work force
may embody only a portion of the N skills in the set); T indicates the com-
pany’s task ontology in the work space; the M�N matrix W specifies the
strength of skills the work forces embody; the M�M matrix R denotes the
strength of relationships the work forces bear toward one another. The
descriptions and representations of the parts of the universe are itemized
as follows.

1. Mobile work forces CMWS : The set of M mobile work forces in a desig-
nated public work space CMWS ¼ fp1; p2; . . . ; pMg together with their
availability status.

2. Skill set S: An exhaustive collection of skills e1; e2; . . . ; eN required by the
company in the work space.

3. Task ontology T: A taxonomy of task=subtask knowledge required in the
work space, where a node of the bottom level is as scrutinized as a skill
specified in the skill set. Task ontology helps the decomposition of a task
(tinput) encountered by a mobile workforce (pi) into a collection of sub-
tasks ft1; t2; . . . ; tKg of different weights h1; h2; . . . ; hK specifying the sig-
nificance of a subtask to the input task. That is, pi � SubTaskðtinput ;T Þ ¼
½t1; t2; . . . ; tK � of the respective weights h1; h2; . . . ; hK . Each subtask can
be represented eventually as a numeric vector X ðtjÞ of the N skills
(specifying the minimum skill strengths of the N skill required for
accomplishing the subtask). That is, X ðtjÞ ¼ ½x1; x2; . . . xN �T ,
xi 2 ½0; 1�; j ¼ 1 . . . k; i ¼ 1 . . . N .

4. Skill strength matrix W: A collection of M numeric vectors Wj specifying
the skill strengths wji of a mobile workforce pj over the N skills
(e1; e2; . . . ; eN ), where wji is a number raging from 0 to 1 (0 and 1, respect-
ively, represent the minimum and the maximum strength of the desig-
nated skill). That is, W ðpjÞ ¼ Wj ¼ ½wj1;wj2; . . . wjN �T ;wji 2 ½0; 1�; j ¼
1 . . . M ; i ¼ 1 . . . N :

5. Relation strength matrix R: An M�M matrix of which an element rji

denotes the relationship strength pj bears toward pi . The factors con-
sidered in rji can include their degree of acquaintance, pj ’s knowledge
of the emotional state of pi , pj ’s knowledge of the level of interest of
pi , pj ’s knowledge of the skills of pi , etc.1 In this paper we do not model
the required factors but presume the existence of the relation strength
matrix R that would affect the teaming results when pi encounters a

820 S.-T. Yuan and M. Wu

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
he

ng
ch

i U
ni

ve
rs

ity
] 

at
 1

8:
04

 1
3 

Ju
ly

 2
01

5 



task request and seeks potential partnerships to accomplish the given
task request.

Given the universeb, the goal of a CMWM problem is to find nearly fittest alloca-
tions of mobile work forces for input tasks encountered dynamically by mobile work
forces scattering around in a public workspace.

A SOLUTION WITH THE COLLABORATIVE ART LEARNING
MECHANISM

Given a CMWM universeb, this section presents a solution to the prob-
lem that is a combination of a wireless peer-to-peer infrastructure that
enables self-organizing and a collaborative ART learning approach that
generates nearly fittest groups.

The Concepts

The proposed solution to a given CMWM problem is to equip each
mobile workforce peer with four functionalities (task managing, peer
matching, peer self-organizing, and capability adjusting). Task managing
is responsible for decomposing an input task request into a collection of
subtasks and delegating the search of the fitting peers to accomplish the
subtasks to a certain number of peers. Peer matching is then in charge
of the search of winners of fitting peers for a given subtask. Peer self-orga-
nizing determines a team of the fittest peers out of those winners associated
with the subtasks. Capability adjusting updates the relation strength matrix
according to the team’s performance.

The execution of each functionality is triggered by the contemporary
role played by a peer. There are three types of roles modeled2 (as shown
in Figure 3): initiator: a peer that encounters a task request tinput in the first
place and decomposes the task into a collection of subtasks t1; t2; . . . ; tK
(i.e., task managing), determines the fittest peers for accomplishing the
subtasks (i.e., peer self-organizing), and accordingly updates its relation
strength matrix after the execution of the subtasks (i.e., capability adjust-
ing); (2) dispatcher: a peer that is in charge of the search of the winners
of the fittest peers for a subtask ti (i.e., peer matching); and (3) participant:
any of the mobile work forces pj in the work space available for the
execution of a subtask. A work force, however, can simultaneously assume
multiple roles (if necessary).

Each peer can dynamically assume each of the three roles as demanded based on
the current status of the work space and its knowledge of social awareness. This is a
purely distributed mindset (i.e., wireless peer-to-peer) bearing with social awareness
for collaboration support.

Collaborative ART Learning 821
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Collaborative ART Learning

The four functionalities addressed previously constitute our solution—
the collaborative ART learning mechanism (which we’ll call CART here-
after). In this section, we briefly review the past research on adaptive reson-
ance theory (ART). In our research, we extend ART by considering peer
neurons interrelated interactions and relationships, advancing into a colla-
borative version of ART (i.e., CART).

ART
The ART network (Grossberg 1976; Carpenter 1977; Carpenter et al.

1992) is a self-organizing network and is based on a ‘‘winner-takes-all’’ com-
petitive principle. It has unsupervised learning ability and adaptive ability
for data clustering. ART adapts itself by storing input patterns, and tries to
match best the input pattern being fed in at the time. ART is one of the
features such as real-time learning, fast adaptive search for best match, etc.

For applications of ART, a work (Jiang and Mair 2002) presented an
organizational network for product configuration management within
the context of virtual enterprises. In the work, actors can advertise their
own skill and knowledge and seek for partners to form dynamic alliances
in a community. The connections between different actors who are seeking
for partnership are adjusted based on ART so that the management net-
work can exhibit unsupervised learning ability, adaptive ability, and com-
petitive ability. Working in this way virtual enterprises can evolve
dynamically and force to improve product quality of each actor and organi-
zational performance of partnerships.

FIGURE 3 The role structure.
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Although inspired by the work (Jiang and Mair 2002), our research
makes important advancements with CART. In our research a wide scope
of factors are considered in seeking partnerships (such as mobile work for-
ce’s availability status and social awareness, in addition to their skills),
unlike Jiang and Mair (2002), in which only one factor (work force skills)
was considered. Moreover, the approach of Jiang and Mair (2002) would
result in the same team of work forces (of the best skills) repetitively work-
ing on multiple incoming task requests, leaving other work forces idle and,
consequently, wasting human resources. On the contrary, our solution copes
with the reality by taking into account the practical factors occurring in a work space
and utilizing the work force to a greater extent.

CART
CART differs from ART mainly in two ways: it relaxes the ‘‘winner-takes-all’’

principle by allowing for multiple winners during each matching, and partner seeking
is subsequently accomplished through a heuristic process of collaboration-driven self-
organizing given multiple sets of winners, generating nearly fittest groups for tasks.

In this section, the descriptions of CART are unfolded in terms of the
presentations of the four functionalities (task managing, peer matching,
peer self-organizing, capability adjusting) itemized as follows (assuming a
universe b of the CMWM problem is provided as addressed earlier).

. Task managing: With task ontology of b, when a mobile workforce pi

(initiator) encounters an input task request (tinput), as shown in Figure 4
Task Managing of pi decomposes tinput into a collection of subtasks
ft1; t2; . . . ; tKg, i.e., pi � SubTaskðtinput ;T Þ ¼ ½t1; t2; . . . ; tK �. Each subtask is
represented as a numeric vector X ðtjÞ of the N skills (specifying the mini-
mum skill strengths of the N skill required for accomplishing the
subtasks). With the relationship factor in the relation strength matrix of b, the

FIGURE 4 The process of task managing.
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search of fitting peers for performing the subtasks is then delegated to K appropriate
peers3 (dispatchers).

. Peer matching: As shown in Figure 5, a three-layers ART network (similar
to the one addressed in Jiang and Mair [2002]) is employed by a dis-
patched peer to search for fitting candidates for its delegated subtask.
The layers F0, F1, and F2 are the input layer, comparison layer, and rec-
ognition layer, respectively. The input layer F0 receives a demand Xd(ti)
from an initiator. The skill capability of each participator (provided by b at
the beginning and attained from its relation strength matrix afterward) is access-
ible in the comparison layer F1 for competence comparison. A competi-
tive process conducted is subsequently by examining the degree of match
between the layer F0 and the layer F1 of a participator. If the degree of
match between the demand and the capability is higher than a vigilance
criterion, the participator that fits the subtask is found and qualified as a
winner for the subtask.

The required searching steps in peer matching are similar to Jiang and
Mair (2002) (but with a slight revision in Step 2) as shown as follows.

1. Calculate Tj ¼
Xd^Wjj j
aþ Wjj j for each Participator pj (Wj is attained from the

skill strength matrix of bat the beginning or the relationship strength
matrix afterward), where a is a positive integer number called the
choice parameter (in prevention of the denominator being zero),
Xd ^Wj is a vector of which the ithcomponent is equal to the minimum
of Xd and Wj , and j�j is the norm of a vector, which is defined to be the
sum of its components. In other words, the comparison layer F1 attempts
to classify the subtask into one of the participators in the recognition layer F2
based on its similarity to the skill capability of each participator recognized.

FIGURE 5 The process of peer matching.
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2. Find participators of the top nc4 Tj values as the winner candidates.
(This is different from the past ART works in which the participator
with the maximum Tj value in the layer F2 will be selected as the only
winner for the subtask, i.e., winner-takes-all competition).

3. Examine if SIMdj ¼
Xd^Wjj j

Xdj j � q; j ¼ 1 . . . nc, where q 2 ½0; 1� is the vigil-
ance parameter set by the initiator. In other words, the skill capability of
a winner candidate is sent back to the layer F1 for examining if the similarity
between the winner candidate’s capability and the required capability is above
the vigilance criterion. A winner candidate is considered as a winner only
if it satisfies the vigilance test and thus it is possible to have multiple
winners (say m winners).

. Peer self-organizing: After receiving K sets of m winners from the K dis-
patchers, an initiator needs to accordingly, arrange a fittest group of peers
that can accomplish the designated k subtasks of tinput . In the search for
such a fittest group, it might involve a complexity of O(mK ) in the worst
case. Accordingly, CART employs a heuristic to find this fittest group effectively.
The heuristic is detailed as shown in Figure 6 and described as follows.

1. Calculate SIM i ¼ SIMi1þSIMi2þ...þSIMim

m ; i ¼ 1 . . . K , where SIMi1; SIMi2,
. . . SIMim , respectively, denote the vigilance test values of the winners
(there are at most m winners) for subtaskti . (SIM i accordingly indicates
the average quality of the m winners associated with the subtask ti).

2. Self-organize a test group (i.e., a test winner from each winner set
associated with ti) in the following way (also as shown in Figure 6).

. Calculate hI ¼ h1þh2þh3þ...þhk

k , where h1; h2; . . . ; hK denotes the weights
associated with the subtasks t1; t2; . . . ; tK in the first place from task
ontology. (hI then suggests the average expectation of the subtasks.)

FIGURE 6 The selection of a test winner.
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. Select a test winner starting from one of the SIMij values closest to hI

and greater than hI (and move in the direction of choices of greater
values), if SIM i > hI . (That is, effective and reasonable selections
begin with ones that are close to the average expectation.)

. Select a test winner starting from one of the SIMij values closest to hI

and less than hI (and move in the direction of choices of greater
values), if SIM i < hI . (That is, effective and reasonable selections
begin with ones that are close to the average expectation.)

. Rank the selections of the test winners according to the weights of
h1; h2; . . . ; hK (a bigger weight implies a greater degree of signifi-
cance in selecting a test winner) and perform the selections in
the order specified by the rank.

3. Calculate the fitting value of the test group.

. Compute net ¼
Pk

i¼0
hi < pi

test >, where < pi
test > represents the vigil-

ance test value of the test winner pi
test associated with the subtask ti .

. Compute Po ¼ 1
1þe�net , where Po 2 ½0; 1� denotes the fitting value of

the test group.

4. Examine if the fitting value of the test group is satisfied (assuming Ph

is a fitting threshold set by the initiator).

. If Po � Ph (i.e., the test group is satisfied), output the fittest group
½p1

OG ; p
2
OG ; . . . ; P k

OG � ¼ ½p1
test ; p

2
test ; . . . ; pk

test �.
. If Po < Ph, (i.e., the test group is not satisfied), repeat from Step (2).

. Capability adjusting: After those subtasks are accomplished by the fitting
group ½p1

OG ; p
2
OG ; . . . ; P k

OG �, the initiator is assumed to evaluate the group
by a realistic performance score Pt . With this realistic score, a method
of credit assignment is then exerted to adjust the initiator’s understand-
ing of the capabilities of the group members. The method is outlined as
shown in Figure 7 and detailed as follows.

1. Compute the error function Eðh
!
Þ � 1

2 ðPt � PoÞ2, where Po and Pt denote
the expected performance and the realistic performance, respectively.

2. Perform gradient descent on the error function in order to decide the
credits of h1; h2; . . . ; hK with respect to the given error, that is,
hi  hi þ Dhi and Dhi ¼ �g @E

@hi
¼ gðPt � PoÞPoð1� PoÞ < pi

OG >.
(Please see the Appendix for detailed formula derivation.)

3. Compute the capability adjustments W new
i ¼ W old

i þ lbjXd , where
l 2 ½0; 1� is the parameter of learning rate and bj ¼ Dhj is the extent
of the adjustment required to finetune the capability.

826 S.-T. Yuan and M. Wu
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Once a fitting group accomplishes a task assigned, the members of the group are
available for subsequent incoming tasks or subtasks in the work space and assume
different roles, depending on the changing situation contexts.

THE IMPLEMENTATION

The solution platform is implemented with the technology of JXTA
(Gong 2001), and with personal Java, which works for handheld devices
such as iPAQ. JXTA is a modular platform that provides simple and essen-
tial building blocks for developing a wide range of distributed services and
applications. Both centralized and de-centralized services can be developed
on top of the JXTA platform. JXTA services can be implemented to inter-
operate with other services giving rise to new P2P applications.

As shown in Figure 8, in our implementation of the distributed infra-
structure, the JXTA technology is utilized so as to fulfill the following objec-
tives: enable peers to discover each other across firewalls; empower peers to
self-organize into peer groups and to monitor each other remotely; supply
peers with various P2P services so as to locate each other and communicate
with each other; control the routing of messages over peer communication
pipes; and mask the differences of heterogeneous devices so as to allow
them to access the service platform seamlessly.

In order to well describe task ontology and the required resources
of social awareness in the solution platform we have implemented, the

FIGURE 7 The process of peer self-organizing.
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resource description framework (RDF)=RDF schema (RDFS) is employed
to capture the semantics of the aforementioned resources. RDF (Lassila
and Swick 1999) is a standard instituted by W3C for representing resources,
which is intended to be a universal format to define and apply meta-data
descriptions of web-based resources. Complementary to RDF, the role of
the RDFS (Kraut et al. 2002) is to provide information about the interpret-
ation and specify consistency constraints of the statements given in an RDF
document. RDFS is regarded as a simpler ontology-based language to be
used here.

EVALUATIONS

In this section, we aim to evaluate the qualities of our solution (empow-
ered by the CART mechanism) to the CMWM problem. The envisioned
qualities can be investigated by the following four focus questions.

. With the learning process of CART, is it true that there is a decreasing
trend of the gap between the realistic performance and the expected per-
formance of the fitting groups attained?

. With the learning process of CART, will the perceived capability of a work
force be convergent eventually?

. Upon different tasks encountered, will the performance of our solution
exhibit the same quality?

FIGURE 8 A distributed infrastructure empowered by JXTA with P-Java.
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. Given a fitting group attained for a given task, how suited do the capabili-
ties of the group members fit the requirements of the task?

This section will begin with a description of our experiment settings,
followed by a number of sets of experiments so as to explore the aforemen-
tioned focus questions. We will also examine the impacts of certain design
parameters to the solution quality, such as the size of the winners (m) and
the types of vigilance criterion (q) given (i.e., high q as 0.9 versus normal-
qas 0.75) and the types of performance scores (Pt) expected (high versus
low). Finally, a brief discussion of the evaluations will be furnished.

Experiment Settings

For investigating the performance of our solution, the universe b of a
CMWM has to be provided. Without loss of generalization, a simple CMWM
problem and a simple b are exerted. This CMWM problem is regarding
mobile work forces of an ERP software company in the public work space
of a very large software exhibition. Whenever a potential customer (charac-
terized by the size5 of his=her home business) is encountered by a mobile
work force in the first place, an input task is initiated by the mobile work
force who subsequently triggers the formation of a self-organized fitting
group (of which the members are differentiated by their capabilities) in
order to serve the customer. Since there might be commission involved
(once the customer becomes a buyer), the relationship factor is considered
during the group formation. As follows are the brief descriptions of b.

. Task ontology is represented by a table as shown in Table 1, in which
{large, medium, small} denotes the types of the possible input tasks
(tinput) and {manufacture, marketing, system} represents the possible sub-
task space ft1; t2; . . . ; tKg together with the respective significance weights
fh1; h2; . . . ; hKg. For instance, a ‘‘medium’’ input task can be decomposed
into three subtasks {manufacture, marketing, system} with the signifi-
cance weights {0.6, 0.6, 0.6}, respectively.

. Without loss of generality, the skill space (S) is as well defined as {manu-
facture, marketing, and system}.

TABLE 1 Task Ontology of b

Manufacture Marketing System

Large 0.8 0.8 0.8
Medium 0.6 0.6 0.6
Small 0.4 0.4 0.4
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. The size (M) of CMWS is set to 15 together with the randomly generalized
availabilities of the 15 work forces. It is assumed that an occupied work
force cannot be allocated to tasks unless he=she becomes available.

. Skill strength matrix (W) is a collection of skill strength vectors
Wj ¼ ½wj1;wj2; . . . wjN �T ;wji 2 ½0; 1�; j ¼ 1 . . . M ; i ¼ 1 . . . N . For instance,
Table 2 exemplifies such a skill strength vector of the work force 1.

. Relation strength matrix (R) comprises a collection of relationship strength
vectors partially exemplified as shown in Table 3, in which the value of an
element rji indicates the summarized relationship from work force pj to
work force pi by considering their degree of acquaintance and pj ’s knowl-
edge of the emotional state of pi . A complete matrix should also include
pj ’s knowledge of pi ’s interest, pj ’s knowledge of the pi’s skill levels, etc.

In addition to the universe b, the other settings of the parameters used
in the CART mechanism are also summarized in Table 4. In the simulation,
we assume the distribution of the input tasks encountered roughly follows
the distribution as shown in Table 5 (i.e., a common perceived business dis-
tribution).

The Evaluation Results of the Four Focus Questions (when m ¼ 1
and q ¼ 0.9 and High Pt )

In this section, we give answers to the four focus questions (under the
settings of the size of winners (m) and the vigilance criterion (q) being set
to 1 and 0.9, respectively, and the resulting performance of the attained fit-
ting groups being scored high).

. With the learning process of CART, is it true that there is a decreasing
trend of the gap between the realistic performance and the expected per-
formance of the fitting groups attained?

TABLE 2 An Exemplar of Skill Strength Vector

Manufacture Marketing System ReadyStatus

Work force 1 0.1 0.6 0.1 1

TABLE 3 An Exemplar of the Relationship Element of a Relationship Strength Vector

Work force 1 Work force 2 . . .. . . Work force M
Work force 1 0.8 0.6 0.5

Note: The other portions include Work force 1’s understanding of the skill levels of the others, the interests of the
others, etc.

830 S.-T. Yuan and M. Wu

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
he

ng
ch

i U
ni

ve
rs

ity
] 

at
 1

8:
04

 1
3 

Ju
ly

 2
01

5 



. Figure 9 and Figure 10, respectively, show the trend of the gap between
the expected performance and the realistic performance of the fitting
groups attained by our solution from the individual aspect and the over-
all aspect. From both figures, we do observe a decreasing trend of the
gap. Moreover, from Figure 9 we find the gap is almost negligible after
ten times of task services rendered. This shows that the CART learning
can quickly attain good fitting groups so as to achieve the desired per-
formance.

. With the learning process of CART, will the perceived capability of a work
force be convergent eventually?

. Due to space limitation, the trends of the learned skill strengths (manu-
facture, marketing, and system) of only three work forces (Emp1, Emp4,
Emp10) are shown in Figure 11. According to the figure, the trend of
skill convergence indeed occurs to different skills of different work
forces.

. Upon different tasks encountered, will the performance of our solution
exhibit the same quality?

. Given the results of a set of 180 cycles of task processing, Table 6 shows
the average fitting values (together their standard deviation) attained for
the three types of input tasks (12 large tasks, 64 medium tasks, 83 small
tasks).6 These average fitting values are all approximately 0.8 and with

TABLE 4 Parameter Settings for CART Learning

Parameter Value Description

M 15 Size of CMWS

q 0.9 or 0.75 Vigilance criterion: 0.9 if m ¼ 1 and 0.75 if m ¼ 2
m 1 or 2 Size of the winners associated with a subtask
Ph 0.74 Parameter used in the process of peer matching
a 0.1 Parameter used in the process of peer matching
Pt High (e.g., 0.82, 0.8)

Low (e.g., 0.68)
Realistic performance scores used in the
process of capability adjusting

l 0.1 Learning rate in capability adjusting
Service Time 3-4 minutes The amount of time randomly generated

and indicating the time required accomplishing
a task assigned in the simulation.

Rounds of trainings 180 CART training cycles

TABLE 5 A Distribution of the Input Tasks

Rough distribution of the input tasks

Large 20%
Medium 40%
Small 40%
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the deviations approximately 0.01. In other words, our solution generally
produces solutions of the same quality to different types of tasks encoun-
tered.

. Given a fitting group attained for a given task, how suited do the capabili-
ties of the group members fit the requirements of the task?

. Suppose the skill vectors of the 15 work forces are as shown in Table 7
(that shows Emp1, 2, 3 suit large tasks and Emp4, 5, 6, 7, 8 suit medium
task, and Emp9, 10, 11, 12, 13, 14, 14 then suit small tasks).

FIGURE 9 Performance gap from the individual aspect.

FIGURE 10 Performance gap from the overall aspect.
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. From a macro view Table 8 then shows the results of the work force allo-
cations of the 12 large tasks, 64 medium tasks and 83 small tasks.

1. From Table 8(a) the task assignments to Emp1, 2, 3 (suitably working
for large tasks) are 12 large, 20 medium, and 0 small. The reason
behind the assignments of 20 medium is owing to the situations that
Emp4, 5, 6, 7, 8, 9 are all busy on medium tasks, while Emp1, 2, 3 are
free and qualified for medium tasks (given the fact that there are
much more medium tasks than large tasks).

FIGURE 11 Convergent trends of work force skill strengths learned.
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2. From Table 8(b) and 8(c) the task assignments to Emp4, 5, 6, 7, 8, 9
(suitably working for medium tasks) are 20–25 medium and 11 (13)
small. That is, the majority of the assignments go to medium tasks.
There are no assignments of large tasks due to the failing of the vig-
ilance criterion in the situations.

3. From Table 8(d) and 8(e) the task assignments to Emp10, 11, 12, 13,
14, 15 (suitably working for small tasks) are only 25–33 small. There
are no assignments of medium or large tasks.

. In order to give a numeric measurement of the allocations (for the pur-
pose of easy comparison), in Table 9 a simple method of scoring is provided:
three points are granted to each correct subtask assignment (i.e., a subtask is assigned
to a work force of the exact skill level required); one point is bestowed to each subtask
assignment where a work force of higher skill level is assigned to a subtask requiring
only lower skill levels; and two points are deducted from the score for the situations
where a work force of lower skill level is assigned to a subtask requiring higher skill
level. Accordingly, Table 9 exhibits how a score of 1167, i.e.,
345�3þ 132�1–0�2, is attained for the total subtask allocations occurring
to the processed input tasks. Since the perfect allocations should be of
1431 points, i.e., (345þ 132)�3, the allocations are regarded subsequently
with the allocation accuracy rate of 0.82 (i.e., 1167=1431).

For a more detailed view of the workforce allocation (i.e., micro view),
Figure 12 shows a fragmented portion of the dynamic view of the detailed task
assignments (each task is accomplished within 3–4 minutes and the assigned
work forces for the subtask subsequently become free). In Figure 12, tasks
are labeled consecutively according to the order in time they are generated
and regions of different colors and different stripes represent a variety of types

TABLE 7 Skill Vectors of the 15 Work Forces

Work force Skill strength vector

Emp1, 2, 3 (0.8, 0.8, 0.8)
Emp4, 5, 6, 7, 8, 9 (0.6, 0.6, 0.6)
Emp10, 11, 12, 13, 14, 15 (0.4, 0.4, 0.4)

TABLE 6 Performance Results of Three Task Types

Number of tasks Average group fitting value Standard deviation of performance

Large 12 0.80680834 0.011621671
Medium 64 0.809225549 0.013757696
Small 83 0.806090029 0.016289761

Note: There are 21 input tasks of no fitting groups generated due to high vigilance criterion.
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of allocations (e.g., different colors denoting different work force capabilities
and different stripes indicating tasks requiring different skill levels).

For instance, Task 39 and Task 40 (small tasks) are assigned to Emp10,
11,12 and Emp13, 14, 15, respectively. Task 41 (large task) is assigned to
Emp1, 2, 3. Task 42 (small task), however, is assigned to Emp5, 6, 7 (of
medium skills) because Emp10, 11, 12 and Emp13, 14, 15 are preoccupied.
Task 44 (medium task) is assigned to Emp4, 8, 9. Task 45 (medium task),
however, is assigned to Emp1, 2, 3 due to the preoccupations of Emp5, 6,
7 and Emp4, 8, 9. In summary, this dynamic view of task work force allo-
cation exhibits how our solution dynamically achieves situated allocations
of work forces to dynamic tasks.

TABLE 9 Allocation Scores

Types of allocations Allocation number Weights Allocation score

Correct allocation 345 þ 3 1035
Allocations of High skills to Low tasks 132 þ 1 132
Allocations of Low Skills to High tasks 0 � 2 0
Total Allocation Score 1167

TABLE 8 Macro View of Work Force Allocation
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Moreover, from Table 10 the percentage of input tasks being served and
not being served with our solution is 87%7 (i.e., 159=180) and 13% (i.e.,
21=180), respectively. That is, the service rate is high with respect to high
vigilance criterion.

The Evaluation Results of the Four Focus Questions (when m ¼ 2
and q is 0.75 and High Pt )

In this section, we give the results to the four focus questions (under
the settings of the size of winners (m) and the vigilance criterion (q) being
set to 2 and 0.75, respectively, and the resulting performance of the
attained fitting groups being scored high).

. With the learning process of CART, is it true that there is a decreasing
trend of the gap between the realistic performance and the expected per-
formance of the fitting groups attained?

FIGURE 12 Micro view of work force allocation.

TABLE 10 Percentages of Tasks Served

Number of tasks Percentage

Tasks not served 21 13%
Tasks served 159 87%
Number of Total Tasks 180 100%
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Figure 13 and Figure 14, respectively, show the trend of the gap between
the expected performance and the realistic performance of the fitting
groups attained by our solution from the individual aspect and the over-
all aspect. From both figures, we indeed observe a decreasing trend of
the gap (in light of the existence of few lumps). Moreover, from Figure
13 we find the gap is almost negligible after ten times of task services ren-
dered. This shows that CART learning quickly attains a good fitting group
so as to achieve the desired performance.

. With the learning process of CART, will the perceived capability of a work
force be convergent eventually?

FIGURE 13 Performance gap from the individual aspect.

FIGURE 14 Performance gap from the overall aspect.
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Due to space limitation, the trends of the learned skill strengths (manufac-
ture, marketing, and system) of only three work forces (Emp1, Emp4,
Emp10) are shown in Figure 15. According to the figure, the trend of skill
convergence indeed occurs to different skills of different work forces.

FIGURE 15 Convergent trends of work force skill strengths learned.

TABLE 11 Performance Results of Three Task Types

Number of tasks Average group fitting value Standard deviation of performance

Large 26 0.786856568 0.022623917
Medium 85 0.801767038 0.022973817
Small 67 0.811997089 0.016919644

Note: There are two input tasks of no fitting groups generated.
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. Upon different tasks encountered, will the performance of our solution
exhibit the same quality?
Given the results of a set of 180 cycles of task processing, Table 11 shows the
average fitting values (together their standard deviation) attained for the
three types of input tasks (26 large tasks, 85 medium tasks, 67 small tasks).
These average fitting values are around 0.78–0.81 and with the deviations
around 0.023. In other words, our solution generally produces solutions
of the same quality to different types of tasks encountered.

. Given a fitting group attained for a given task, how suited do the capabili-
ties of the group members fit the requirements of the task?
Suppose the skill vectors of the 15 work forces are as shown in Table 7
(that shows Emp1, 2, 3 suit large tasks and Emp4, 5, 6, 7, 8 suit medium
tasks, and Emp9, 10, 11, 12, 13, 14, 14 then suit small tasks).
From a macro view Table 12 then shows the results of the work force allo-
cations given 12 large tasks, 64 medium tasks, and 83 small tasks;

1. From Table 12(a) the task assignments to Emp1, 2, 3 (suitably working
for large tasks) are 9 large, 17 medium, and 0 small. The reason
behind the assignments of 17 medium is owing to the situations that

TABLE 12 Macro View of Work Force Allocation
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Emp4, 5, 6, 7, 8, 9 are all busy on medium tasks, while Emp1, 2, 3 are
free and qualified for medium tasks (given the fact that there are
many more medium task than large tasks).

2. From Table 12(b) and 12(c), the task assignments to Emp4, 5, 6, 7, 8,
9 (suitably working for medium tasks) are 19–22 medium and 9–15
small. That is, the majority of the assignments go to medium tasks.
However, there are 8–10 assignments of large tasks due to a lower vig-
ilance criterion of 0.75 being exerted in the situations. Moreover, the
lower vigilance criterion makes Emp4, 5, 6, 7, 8, 9 busier (i.e., capable
of executing medium tasks or large tasks), resulting in a greater
chance of executing medium tasks for Emp1, 2, 3 (when they are
free). This also accounts for why Emp1, 2, 3 execute more medium
tasks than large tasks, as shown in Table 12(a).

3. From Table 12(d) and 12(e), the task assignments to Emp10, 11, 12
and Emp13, 14, 15 (suitably working for small tasks) are 11–13 small
and 31 small, respectively. There are no assignments of medium tasks
to Emp13, 14, 15. However, there are 25–28 assignments of medium
tasks to Emp10, 11, 12 due to Emp4, 5, 6, 7, 8, 9 being busy and also
a lower vigilance criterion.

Table 13 gives a numeric measurement of the allocations and also shows
how a score of 676 is attained for the total subtask allocations occurring to
the processed input tasks. Since the perfect allocations should be of 1575
points, the allocations are regarded subsequently with the allocation accu-
racy rate of 0.43 (i.e., 676=1575).

For a more detailed view of the work force allocation (i.e., micro view),
Figure 16 shows a fragmented portion of the dynamic view of the detailed
task assignments. For instance, Task 104 and Task 105 (medium tasks) are
assigned to Emp4, 5,9 and Emp6, 7, 8, respectively. Task 106 (medium task)
is assigned to Emp1, 2, 3 because Emp4, 5, 6 and Emp7, 8, 9 are preoccu-
pied. Task 107 (small task) is assigned to Emp13, 14, 15 (of small skills).
Task 108 and Task109 (large task) are assigned to Emp4, 5, 9 and Emp6,
7, 8 because Emp1, 2, 2 are preoccupied. Task 110 (medium task), however,
is assigned to Emp10, 11, 12 due to the preoccupations of Emp4, 5, 9 and
Emp6, 7, 8. In sum, this dynamic view of task work force allocation exhibits

TABLE 13 Allocation Scores

Type of allocations Allocation number Weights Allocation score

Correct allocation 272 þ 3 816
Allocations of High skills to Low tasks 122 þ 1 122
Allocations of Low Skills to High tasks 131 � 2 � 262
Total Allocation Score 676
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how our solution dynamically achieves situated allocations of work forces to
dynamic tasks.

Moreover, from Table 14 the percentage of input tasks being served and
not being served with our solution is 99%8 (i.e., 178=180)and 1% (i.e.,
2=180), respectively. That is, the service rate is very high with respect to a
lower vigilance criterion.

The Evaluation Results of the Four Focus Questions
(when Pt is Low)

This section aims to examine if our solution also works well when the
realistic performance of the attained fitting groups Pt is low (Pt ¼ 0.68),
unlike the investigations constructed previously (where the realistic per-
formance of the attained fitting groups is high, i.e., Pt > 0. 8). Without loss

TABLE 14 Percentages of Tasks Served

Number of tasks Percentage

Tasks not served 2 1%
Tasks served 178 99%
Number of Total Tasks 180 100%

FIGURE 16 Micro view of work force allocation.
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of generality, the settings of this set of experiments are as follows: the size of
CMWS ¼ 12, the number of input tasks ¼ 150, m ¼ 1, and q ¼ 0.9. By working
well for our solution in this situation, we mean the convergent capability of
work forces will accordingly be degraded appropriately (if the original capa-
bilities are overestimated). As follows are the brief evaluation results.

Figure 17 and Figure 18, respectively, show the trend of the gap
between the expected performance and the realistic performance of the fit-
ting groups attained by our solution from the individual aspect and the
overall aspect. From both figures, we indeed observe a decreasing trend
of the gap (in light of the existence of few lumps). Moreover, from Figure
17, we find the gap is almost negligible after ten times of task services ren-
dered. This shows that CART learning quickly attains a good fitting group,
so as to achieve the desired performance.

From Figure 19 the trends of the learned skill strengths (manufacture,
marketing, and system) of an individual work force are shown in Figure 19.
According to the figure, the trend of skill convergence indeed occurs to dif-
ferent skills of different work forces.

From Table 15 the percentage of input tasks being served and not being
served with our solution is 65% (i.e., 98=150)and 1% (i.e., 52=150),
respectively. That is, the service rate is low with respect to a high vigilance

FIGURE 18 Performance gap of the overall work forces.

FIGURE 17 Performance gap of an individual work force.
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criterion and low realistic performance. This is owing to the situations that,
as time goes by, work forces of small skill level become unable to service
small tasks. Work forces of medium skill level become unable to service
medium tasks, but can service small tasks. Work forces of large skill level
become unable to service large tasks, but, medium or small tasks. Conse-
quently, there are 52 tasks not being served. In short, our solution can service
learn to downgrade the capability of a work force if the reality performance of the work
force is lower.

Discussion

Cross-examining the results attained from previous sections (of features
m ¼ 1 and q ¼ 0.9 and of features m ¼ 2 and q ¼ 0.75) , we have the follow-
ing observations.

Considering correct work force allocation as briefed in Table 16(a), the
settings of m ¼ 1 and q ¼ 0.9 outperform those of m ¼ 2 and q ¼ 0.75
(82% versus 43%). On the other hand, the settings of m ¼ 2 and
q ¼ 0.75 outperform those of m ¼ 1 and q ¼ 0.9 (99% versus 87%) as
far as percentage of tasks served is concerned (as briefed in Table
16(b)). Accordingly, it is believed that our solution works best as follows.

. If a high level of correction is desired in work force allocation, the num-
ber of winners (m) should be lower and the vigilance criterion (q) should
be higher.

TABLE 15 Percentages of Tasks Served

Number of tasks Percentage

Tasks not served 52 35%
Tasks served 98 65%
Number of Total Tasks 150 100%

FIGURE 19 Convergent trend of the capability learned.
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. If a high level of service percentages is desired in tasks served, the num-
ber of winners (m) should be higher and the vigilance criterion (q)
should be lower.

In light of the aforementioned differentiations, our solution is of the
features itemized as follows.

. A solution to the CMWM problem should be characterized by a social-
awareness enabled and purely distributed mindset (i.e., self-organizing)
of collaboration support.

. A solution should learn to know the realistic capabilities of peers and
accordingly deploy appropriate workforce allocation for serving tasks col-
laboratively.

. A solution should adapt to the dynamic changes of the environment in
terms of the status of work forces and input tasks.

There were a few recent works (Edwards et al. 2002; Groove Networks
2004; World Street 2004) addressing spontaneous collaboration via wired
P2P technologies. However, these work are concerned mainly with issues
such as how two people can have an unplanned interaction with one
another (e.g., the exchange of current contact information, notes, docu-
ments, etc.), i.e., the support of anywhere collaboration. This kind of collab-
oration primarily concerns the ‘‘tools’’ to be interfaced by peers for
collaboration (e.g., whiteboard, voice chat, file space, co-browsing, etc.) and
the extensibility of the tool set. Nevertheless, the management of mobile work
forces addressed in the CMWM problem requires a type of collaboration
considering the utilities of grouping. Accordingly, these tool-oriented P2P
collaboration systems cannot be applied to the CMWM problem.

CONCLUSION

With the rapid growth of mobile work forces, the chances are consider-
able that mobile work forces of a company need to work together to fulfill

TABLE 16 Brief Cross-Examinations of the Evaluation Results

(a)
Rates of Correct Work Force Allocation

m ¼ 1 and q ¼ 0.9 82%
m ¼ 2 and q ¼ 0.75 43%
(b)

Percentage of Tasks Served
m ¼ 1 and q ¼ 0.9 87%
m ¼ 2 and q ¼ 0.75 99%
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situated tasks (services) in real time. This problem is defined in this paper
as the problem of contextualized mobile workforce management
(CMWM). In order to supportreal-time collaboration of distributed group
work between mobile work forces, this paper presents to the problem a
novel solution that is a combination of a wireless peer-to-peer infrastructure
that enables self-organizing and a collaborative ART learning approach
(CART) that generates nearly fittest work groups.

The CART approach advances traditional ART approaches mainly in two
ways: relaxing the ‘‘winner-takes-all’’ principle by allowing multiple winners
to be generated during each matching so as to avoid the consequence of
wasting human resources, and partner seeking is resolved through a novel
heuristics process of collaboration-driven self-organizing so as to generate
nearly fittest work force groups for tasks to a greater extent, considering a
wide scope of factors (e.g., relationships, interests, work force skills, etc.).
In other words, the CART approach better copes with the reality by regard-
ing realistic factors of a work space so as to further utilize work forces.

Unlike existing relevant research, our solution empowered by CART is char-
acterized by a social-awareness enabled and purely distributed mindset (i.e., self-
organizing) of collaboration support. Furthermore, our solution learns the
realistic capabilities of work forces and deploys appropriate work force allo-
cation for effectively engaging collaboration between work forces, in addition
to its capability of adapting to the dynamic changes of the environments.

Future fruitful research directions include the following: the flexibility
of work force allocation (e.g., the ability to rearrange the work force allo-
cation in the middle of task execution if the utility of the foreseeable
rearrangement is better than that of the original arrangement; the con-
sideration of a wider scope of context attributes (e.g., proximity of work
forces, fine granularity of task descriptions, etc.), and the other possible
applications of the proposed solution.
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ENDNOTES

1. At the beginning, pj ’s knowledge of the skills of pi is attained from the skill strength matrix. As time
goes by, this knowledge will be updated in accord with pj ’s interactions with pi .

2. The so-called role-based administration in which roles are created to reflect various job functions and
users are assigned to roles based on their responsibilities and qualifications. (Should the need of a
more complex administration be required, role hierarchies can be employed to structure roles to
reflect an organization line of responsibilities.)

3. By appropriate peers, we mean peers of good relationships or of the same benefit group, etc.
4. This is a predetermined integer number indicating the number of winner candidates considered in

the next phase of the vigilance test.
5. In this paper this size information can be attained either from the RFID tag carried by the customer

or from an inquiry by the mobile work force that encounters the customer in the first place.
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6. There are 21 input tasks of no fitting groups generated owing to the inability to pass the fitting
threshold Ph .

7. Table 6 shows the detailed results of the 159 services (i.e., 12 large, 64 medium, 83 small).
8. Table 11 shows the detailed results of the 178 services (i.e., 26 large, 85 medium, 67 small).

APPENDIX

The derivation of Dhi ¼ �g @E
@hi
¼ gðPt � PoÞPoð1� PoÞpi

OG is attained as
follows:

. Eð~hhÞ � 1
2 ðPt � PoÞ2 (the error function)

. Apply gradient descent to the error function:

Dhi ¼ �g
@E

@hi
ð1Þ

@E

@hi
¼ @E

@net

@net

@hi

¼ @E

@net
< pi

OG > ð2Þ

@E

@net
¼ @E

@Po

@Po

@net
ð3Þ

@E

@Po
¼ @

@Po

1

2
ðPt � PoÞ2

¼ 1

2
2ðPt � PoÞ

@ðPt � PoÞ
@Po

¼ �ðPt � PoÞ ð4Þ

@Po

@net
¼ @rðnetÞ

@net
¼ Poð1� PoÞ ð5Þ

@E

@net
¼ �ðPt � PoÞPoð1� PoÞ ð6Þ

Based on Formulas (3), (4), (5).

Dhi¼�g @E
@hi
¼gðPt�PoÞPoð1�PoÞ<pi

OG >. Based on Formulas (1), (2), (6).
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