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Abstract

In this paper we investigate the time interval effect of multiple regression models in which some of the variables are

additive and some are multiplicative. The effect on the partial regression and correlation coefficients is influenced by the

selected time interval. We find that the partial regression and correlation coefficients between two additive variables

approach one-period values as n increases. When one of the variables is multiplicative, they will approach zero in the

limit. We also show that the decreasing speed of the n-period correlation coefficients between both multiplicative

variables is faster than others, except that a one-period correlation has a higher positive value. The results of this paper

can be widely applied in various fields where regression or correlation analyses are employed.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In time series analysis of a given set of variables,

practitioners often have to decide whether to use

monthly, quarterly, or annual data. They usually

try to use the time series data of the higher fre-

quency in order to increase the number of obser-
vations. However, the data for such analyses are

sometimes limited and available for different peri-

odicities and different time spans. The standard
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approach is to change them to a common time

interval through temporal aggregation or system-

atic sampling, depending on whether the variables

are flow variables or stock variables respectively

(Abeysinghe, 1998). This approach, apart from

losing information, may defeat the purpose

of using the association between variables so as to
make a correct decision or to forecast a key vari-

able of interest. Thus, we are concerned with the

question of whether the regression and the corre-

lation coefficients are affected by the selected time

interval.

The effect of the differencing interval on several

economic indices has been studied by Schneller

(1975), Levhari and Levy (1977), Levy (1972,
1984), and Lee (1990). In addition, Bruno and
ed.
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Easterly (1998) explain that the inflation-growth
correlation is only present with high frequency data

and with extreme inflation observations. There is

no cross-sectional correlation between long-run

averages of growth and inflation. Souza and Smith

(2002) show that decreasing the sampling rate will

bias the estimation of the long memory parameter

towards zero for all estimation methods. All these

studies make it clear that the time interval cannot
be selected arbitrarily.

Many studies employ some additive variables

and some multiplicative simultaneously (Easton

and Harris, 1991; Elton et al., 1995; Tang, 1992,

1996; Chance and Hemler, 2001; McAvinchey,

2003), but these are not our present concern. In

general, flow variables and stock variables are

additive (e.g., gross domestic product (GDP),
industrial production, population, inventories,

etc.). Examples multiplicative variables include the

growth rates of GDP, industrial production,

population, etc. Levy and Schwarz (1997) show

that when two random variables are multiplicative

over time, the coefficient of determination de-

creases monotonically as the differencing interval

increases, approaching zero in the limit. Levy et al.
(2001) write that when one of the variables is

additive and the other is multiplicative, the

squared multi-period correlation coefficient de-

creases monotonically as n increases and ap-

proaches zero when n goes to infinity. Thus far, we

have seen the importance of analyzing the time

interval effect on the regression coefficients when

some of the variables are additive and some mul-
tiplicative.

The purpose of this paper is to complement

and extend the results in Levy and Schwarz

(1997) and Levy et al. (2001). Both studies con-

sider the time interval effect when two random

variables are additive or multiplicative. They use

the correlation and the regression coefficient to

demonstrate the importance of analyzing the time
interval effect and provide us with a very good

concept. However, using two random variables,

we can only construct a simple regression model;

that is, a model with a single regressor that has a

relationship with a response. Unfortunately, very

often we move to the situation with more than

one independent variable such that the inferential
possibilities increase more or less exponentially.
Therefore, it always behooves the investigator to

make the underlying rationale and the goals of

the analysis as explicit as possible. For practical

reasons we study the time interval effect by using

the multiple-regression model that can be widely

applied in many fields where regression or corre-

lation analyses are employed.

The paper proceeds as follows. Section 2 briefly
describes prior research and presents the numerical

results with some discussion. Section 3 shows the

time interval effect on the partial correlation and

the regression coefficients in the multiple-regres-

sion model, and gives a numerical example corre-

sponding to the US stock market. Section 4 offers

concluding remarks.
2. The correlation coefficients between two random

variables

Let ðY11;X11;X21Þ; . . . ; ðY1n;X1n;X2nÞ and ðY21;
X11;X21Þ; . . . ; ðY2n;X1n;X2nÞ be sequences of inde-

pendent, identically distributed variables. We de-

fine four new variables to denote an n-fold increase
of the differencing interval two multiplicative and

two additive variables.

The additive variables, denoted by Y ðnÞ
1 and X ðnÞ

1 ,

are given by

Y ðnÞ
1 ¼ Y11 þ Y12 þ � � � þ Y1n

and

X ðnÞ
1 ¼ X11 þ X12 þ � � � þ X1n:

The multiplicative variables, denoted by Y ðnÞ
2

and X ðnÞ
2 , are given by

Y ðnÞ
2 ¼ Y21 � Y22 � � � Y2n

and

X ðnÞ
2 ¼ X21 � X22 � � �X2n:

Using the above four variables, denoted by Y ðnÞ
1 ,

Y ðnÞ
2 , X ðnÞ

1 , and X ðnÞ
2 , we can study a few different

cases depending on the types of variables and the

number of independent variables in the regression

models.
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Fig. 1. The squared multi-period correlation coefficient.
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2.1. The additive–additive case

Using two random variables, we can construct a

simple regression model. If the independent vari-

able X ðnÞ
1 and the dependent variable Y ðnÞ

1 are both

additive, then the regression coefficients corre-

sponding to the model and the correlation coeffi-

cient between them will be unaffected by the
selected time interval.

Proof. Let X1j and Y1j be identically independent

distributed variables (i.i.d.), j ¼ 1; 2; . . . ; n. We

have

EðX1jÞ ¼ lx; VarðX1jÞ ¼ r2
x ;

EðY1jÞ ¼ ly and VarðY1jÞ ¼ r2
y :

The one-period correlation coefficient is

q1 ¼
CovðX1t; Y1tÞ

rxry
¼ rxy

rxry
:

Because X11;X12; . . . ;X1n are i.i.d., we have

EðX ðnÞ
1 Þ ¼ E

Xn
j¼1

X1j

 !
¼
Xn
j¼1

lx ¼ nlx ð1Þ

and

VarðX ðnÞ
1 Þ ¼ Var

Xn
j¼1

X1j

 !
¼
Xn
j¼1

r2
x ¼ nr2

x : ð2Þ

Similarly, we can obtain

EðY ðnÞ
1 Þ ¼ nly ð3Þ

and

VarðY ðnÞ
1 Þ ¼ nr2

y : ð4Þ

The n-period covariance is

CovðX ðnÞ
1 ; Y ðnÞ

1 Þ ¼ Cov
Xn
j¼1

X1j;
Xn
j¼1

Y1j

 !

¼ nCovðX1t; Y1tÞ ¼ nrxy : ð5Þ

Using Eq. (5), so the n-period correlation coeffi-
cient can be easily written as follows:
qn ¼
CovðX ðnÞ

1 ; Y ðnÞ
1 Þ

r
xðnÞ
1

r
yðnÞ
1

¼ nrxyffiffiffi
n

p
rx

ffiffiffi
n

p
ry

¼ rxy

rxry
¼ q1:

ð6Þ
Hence, the correlation coefficient between X ðnÞ

1

and Y ðnÞ
1 is independent of the differencing interval.

Using Eq. (6) and the relationship between the

correlation coefficient and the regression coeffi-

cient, we can easily obtain the same result. That is,

the regression coefficient is also unaffected by the

time interval employed.

2.2. The multiplicative–multiplicative case

Levy and Schwarz (1997) explain that when two

random variables are multiplicative, their correla-

tion coefficient will not be independent of the dif-

ferencing interval even when each of the random

variables is a product of i.i.d. variables over time.
They show that unless Y ¼ kX ; k > 0, the coeffi-

cient of determination (q2) decreases monotoni-

cally as the differencing interval increases,

approaching zero in the limit.

2.3. The additive–multiplicative case

Levy et al. (2001) study the time interval effect
when one of the variables is additive and one is

multiplicative. They show that the squared multi-

period correlation coefficient (q2
n) monotonically

decreases in n, and approaches zero when n goes to
infinity.

2.3.1. Numerical example

Fig. 1 indicates the change of the correlation
coefficients by the selected time interval in the
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above cases. The data used are the monthly rates
of returns of IBM stock and the S&P500 index

from January 1926 to December 1999. There are

888 observations and the returns include dividends

(Tsay, 2002). As the figure indicates, the squared

n-period correlation coefficient in the additive–

additive case (i.e., r^2 aa) shows a horizontal line.

That is, the correlation coefficient between two

additive i.i.d. variables is independent of the dif-
ferencing interval. The squared n-period correla-

tion coefficient in the multiplicative–multiplicative

case and additive–multiplicative case are denoted

by r^2 mm and r^2 am, respectively. Fig. 1 reveals
Table 1

The multi-period correlation coefficient between additive or multiplic

n q1 ¼ �1 q1 ¼ �0:6

M&M A&M M&M A&M

2 )0.9962 )0.9992 )0.5982 )0.5995
3 )0.9925 )0.9984 )0.5964 )0.5991
4 )0.9887 )0.9976 )0.5946 )0.5986
5 )0.9850 )0.9969 )0.5928 )0.5981
6 )0.9812 )0.9961 )0.5910 )0.5976
7 )0.9775 )0.9953 )0.5892 )0.5972
8 )0.9738 )0.9945 )0.5874 )0.5967
9 )0.9702 )0.9937 )0.5856 )0.5962
10 )0.9665 )0.9929 )0.5838 )0.5958
50 )0.8306 )0.9618 )0.5166 )0.5771
100 )0.6871 )0.9233 )0.4426 )0.5540
500 )0.1500 )0.6426 )0.1197 )0.3856
1000 )0.0223 )0.3771 )0.0204 )0.2263
5000 0.0000 )0.0015 0.0000 )0.0009
10000 0.0000 0.0000 0.0000 0.0000

q1 ¼ 0:4 q1 ¼ 0:5

2 0.3995 0.3997 0.4995 0.4996

3 0.3991 0.3994 0.4990 0.4992

4 0.3986 0.3991 0.4985 0.4988

5 0.3982 0.3987 0.4981 0.4984

6 0.3977 0.3984 0.4976 0.4980

7 0.3972 0.3981 0.4971 0.4976

8 0.3968 0.3978 0.4966 0.4973

9 0.3963 0.3975 0.4961 0.4969

10 0.3958 0.3972 0.4956 0.4965

50 0.3775 0.3847 0.4763 0.4809

100 0.3549 0.3693 0.4522 0.4617

500 0.1980 0.2571 0.2754 0.3213

1000 0.0795 0.1508 0.1261 0.1885

5000 0.0000 0.0006 0.0001 0.0008

10000 0.0000 0.0000 0.0000 0.0000
that they indeed decrease as n increases. Hence, the
results of Levy and Schwarz (1997) and Levy et al.

(2001) are demonstrated simultaneously.

Table 1 reveals the relationship between qn and

q1. The corresponding parameters of the two

return series are EðX Þ ffi 1:0148, r2
x ffi 0:0046,

EðY Þ ffi 1:0070, r2
y ffi 0:0032 and rxy ffi 0:0024,

where fxtg and fytg are the monthly rates of re-

turns of IBM stock and the S&P500 index,
respectively. Table 1 illustrates, for various values

of a one-period correlation, that the squared cor-

relation coefficients monotonically decrease as n
increases. For example, if q1 ¼ �1 corresponding
ative variables

q1 ¼ �0:1 q1 ¼ 0:2

M&M A&M M&M A&M

)0.0998 )0.0999 0.1997 0.1998

)0.0996 )0.0998 0.1994 0.1997

)0.0994 )0.0998 0.1991 0.1995

)0.0992 )0.0997 0.1988 0.1994

)0.0990 )0.0996 0.1985 0.1992

)0.0987 )0.0995 0.1982 0.1991

)0.0985 )0.0995 0.1979 0.1989

)0.0983 )0.0994 0.1976 0.1987

)0.0981 )0.0993 0.1973 0.1986

)0.0901 )0.0962 0.1853 0.1924

)0.0808 )0.0923 0.1709 0.1847

)0.0303 )0.0643 0.0807 0.1285

)0.0071 )0.0377 0.0255 0.0754

0.0000 )0.0002 0.0000 0.0003

0.0000 0.0000 0.0000 0.0000

q1 ¼ 0:8 q1 ¼ 1

0.7997 0.7994 1.0000 0.9992

0.7994 0.7987 0.9999 0.9984

0.7990 0.7981 0.9999 0.9976

0.7987 0.7975 0.9999 0.9969

0.7984 0.7969 0.9999 0.9961

0.7981 0.7962 0.9998 0.9953

0.7977 0.7956 0.9998 0.9945

0.7974 0.7950 0.9998 0.9937

0.7971 0.7944 0.9997 0.9929

0.7838 0.7694 0.9985 0.9618

0.7667 0.7386 0.9967 0.9233

0.6167 0.5141 0.9772 0.6426

0.4356 0.3017 0.9465 0.3771

0.0176 0.0012 0.7445 0.0015

0.0003 0.0000 0.5544 0.0000
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to the data, then the correlation coefficient be-
tween both multiplicative variables is decreasing in

n and approaches zero as n ¼ 5000. Similarly, in

the additive–multiplicative case, the correlation

coefficient decreases to )0.0015 as n ¼ 5000 and

q1 ¼ �1. In addition to these, we also find that the

correlation coefficient between two multiplicative

time series decreases faster than other cases, except

that the one-period correlation has a higher posi-
tive value.

As we can see, the correlation coefficient be-

tween both multiplicative variables (M&M) is

relatively small for all n and q1 6 0:5. On the other

hand, the correlation coefficient is relatively large

for q1 ¼ 0:8 and 1. The reduction in qn is rather

minor, particularly for q1 ¼ 1. However, this table

tells us that the multi-period correlation jqnj in-
deed decreases as n increases even when q1 ¼ �1

or q1 ¼ 1. Hence, there is generally good evidence

to show that the correlation decreases in n.
3. The partial regression and correlation coefficients

in multiple regression models

From what has been mentioned above, we

know the effect of the selected time interval when

two random variables are additive or multiplica-

tive. Here, we would like to focus on an extension

to the multiple regression models. We may con-

sider the subject under the following cases: (1) the

dependent variable is additive; (2) the dependent

variable is multiplicative.
3.1. The dependent variable is additive

In the multiple regression model, the dependent

variable is additive and the regressors are com-

posed of one additive and one multiplicative var-

iable simultaneously. We can then construct the

following n-period multiple regression model:

Y ðnÞ
1 ¼ a0n þ a1nX

ðnÞ
1 þ a2nX

ðnÞ
2 þ e; ð7Þ

where Y ðnÞ
1 , X ðnÞ

1 , and X ðnÞ
2 are as defined in Section

2. Terms a0n, a1n, and a2n are the regression coef-

ficients corresponding to the n-period multiple

regression model. The error term e is assumed to
be normally and independently distributed. We

additionally assume that the errors have mean zero

and unknown variance r2.

Let

V1n ¼
Y ðnÞ
1 � Y

ðnÞ
1ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

S
yðnÞ
1

; U1n ¼
X ðnÞ
1 � X

ðnÞ
1ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

S
xðnÞ
1

and

U2n ¼
X ðnÞ
2 � X

ðnÞ
2ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

S
xðnÞ
2

:

ð8Þ

To apply the above suitable transformation,

standardized variables, the regression model be-

comes

V1n ¼ a�0n þ a�1nU1n þ a�2nU2n þ e; ð9Þ

where

a�0n ¼ 0; a�1n ¼ a1n
S
xðnÞ
1

S
yðnÞ
1

and a�2n ¼ a2n
S
xðnÞ
2

S
yðnÞ
1

:

We can denote here

a�n ¼
a�1n
a�2n

� �
and Un ¼ U1n U2nð Þ:

The least-squares estimator of a�n can be ex-

pressed as

â�n ¼ ðU0
nUnÞ�1ðU0

nVnÞ

¼ 1 rðnÞ12

rðnÞ21 1

" #�1
rðnÞ1y1

rðnÞ2y1

2
4

3
5 ¼

rðnÞ
1y1

�rðnÞ
12

rðnÞ
2y1

1�ðrðnÞ
12

Þ2

rðnÞ
2y1

�rðnÞ
21

rðnÞ
1y1

1�ðrðnÞ
12

Þ2

2
664

3
775; ð10Þ

where rðnÞij is the simple correlation between

regressor xðnÞi and xðnÞj (see Neter et al., 1989, p.

290). Similarly, rðnÞjy1 is the simple correlation be-

tween the regressor xðnÞj and the response yðnÞ1 .

Proposition 1. Let â1n be the n-period partial
regression coefficient of the regression as defined in
(7). We obtain the following results:

1. As n approaches infinity, limn!1 â1n ¼ â11 (for
the properties of the partial regression coefficient
â2n, see Levy et al., 2001).

2. If the regressor variables, X ðnÞ
1 and X ðnÞ

2 , are inde-
pendent, then â1n ¼ â11.
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Proof. 1. Applying the results of Section 2.3 to Eq.

(10), we know that limn!1 rðnÞ2y1
¼0 and limn!1 rðnÞ12 ¼

limn!1 rðnÞ21 ¼ 0. Hence, as n approaches infinity,

the standardized regression coefficients â�n can be

obtained

lim
n!1

â�n ¼
rðnÞ1y1
0

� �
¼ rð1Þ1y1

0

� �
; ð11Þ

where rðnÞ1y1
¼ rð1Þ1y1

is shown in Section 2.1. Using the

relationship between the original and standardized

regression coefficients, we achieve

âjn ¼ â�jn
S
yðnÞ
1

S
xðnÞj

; j ¼ 1; 2 ð12Þ

and

â0n ¼ �yðnÞ1 � â1n�x
ðnÞ
1 � â2n�x

ðnÞ
2 :

Using Eqs. (2), (4), (11) and (12), the n-period
partial regression coefficient â1n is as follows:

lim
n!1

â1n ¼ lim
n!1

â�1n
S
yðnÞ
1

S
xðnÞ
1

¼ rð1Þ1y1

ffiffiffi
n

p
S
yð1Þ
1ffiffiffi

n
p

S
xð1Þ
1

¼ â11;

which completes the proof.

2. BecauseX ðnÞ
1 and X ðnÞ

2 are independent, it is

obvious that rðnÞ12 ¼ rðnÞ21 ¼ 0. Similarly, using Eqs.

(2), (4) and (12), we obtain â1n ¼ â11. h

Proposition 2. Let rðnÞy11:2
and rðnÞy12:1

be the partial
correlation coefficients of the regression as defined
in (7). Therefore,

1. limn!1 rðnÞy11:2
¼ rð1Þy11

(if X ðnÞ
1 and X ðnÞ

2 are indepen-
dent, then rðnÞy11:2

¼ rð1Þy11
).

2. limn!1 rðnÞy12:1
¼ 0.
Proof. 1. The partial correlation coefficient rðnÞy11:2

can be expressed by

rðnÞy11:2
¼

rðnÞy11
� rðnÞy12

rðnÞ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðrðnÞy12

Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðrðnÞ12 Þ
2

q :

Because limn!1 rðnÞ12 ¼ 0 and limn!1 rðnÞy12
¼ 0 (see

Section 2.3), we achieve limn!1 rðnÞy11:2
¼ rðnÞy11

. Using

the relationship rðnÞy11
¼ rð1Þy11

(see Section 2.1), we
obtain limn!1 rðnÞy11:2
¼ rð1Þy11

. In particular, if X ðnÞ
1 and

X ðnÞ
2 are independent, then rðnÞy11:2

¼ rðnÞy11
¼ rð1Þy11

.

2. The partial correlation coefficient rðnÞy12:1
can be

expressed by

rðnÞy12:1
¼

rðnÞy12
� rðnÞy11

rðnÞ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðrðnÞy11

Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðrðnÞ12 Þ
2

q :

Since limn!1 rðnÞ12 ¼ 0 (see Section 2.3) and rðnÞy11
¼

rð1Þy11
(see Section 2.1), we directly obtain that

limn!1 rðnÞy2:1 ¼ 0, which completes the proof. h
3.2. The dependent variable is multiplicative

When the dependent variable is multiplicative,

the regression model is as follows:

Y ðnÞ
2 ¼ b0n þ b1nX

ðnÞ
1 þ b2nX

ðnÞ
2 þ e; ð13Þ

where Y ðnÞ
2 , X ðnÞ

1 , and X ðnÞ
2 are as defined in Section

2. Terms b0n, b1n, and b2n are the regression coef-
ficients corresponding to Eq. (13). Here, e is a

random error component.

We similarly let:

V2n ¼
Y ðnÞ
2 � Y

ðnÞ
2ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

S
yðnÞ
2

; U1n ¼
X ðnÞ
1 � X

ðnÞ
1ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

S
xðnÞ
1

and

U2n ¼
X ðnÞ
2 � X

ðnÞ
2ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

S
xðnÞ
2

:

ð14Þ
The regression model then becomes

V2n ¼ b�
0n þ b�

1nU1n þ b�
2nU2n þ e; ð15Þ

where

b�
0n ¼ 0; b�

1n ¼ b1n

S
xðnÞ
1

S
yðnÞ
2

; and b�
2n ¼ b2n

S
xðnÞ
2

S
yðnÞ
2

:

We can denote

b�
n ¼

b�
1n

b�
2n

� �
and Un ¼ U1n U2nð Þ:

The least-squares estimator of b�
n can therefore

be expressed as
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b̂�
n ¼ ðU 0

nUnÞ�1ðU 0
nVnÞ ¼

1 rðnÞ12

rðnÞ21 1

" #�1
rðnÞ1y2

rðnÞ2y2

" #

¼

rðnÞ
1y2

�rðnÞ
12

rðnÞ
2y2

1�ðrðnÞ
12

Þ2

rðnÞ
2y2

�rðnÞ
21

rðnÞ
1y2

1�ðrðnÞ
12

Þ2

2
664

3
775:

Proposition 3. Let b̂2n be the n-period partial
regression coefficient of the regression as defined in
(13). As n approaches infinity, limn!1 b̂2n ¼ 0 (for
the properties of the partial regression coefficient
b̂1n, see Levy et al., 2001).
Table 2

The multi-period partial regression and correlation coefficients

n Corr (n)
A&A (1)

Corr (n)
M&M (2)

Corr (n)
A&M (3)

â1n (4)

1 0.62969 0.62969 0.62969 0.32102

2 0.62969 0.62923 0.62920 0.32154

3 0.62969 0.62878 0.62870 0.32206

4 0.62969 0.62832 0.62821 0.32259

5 0.62969 0.62787 0.62771 0.32311

6 0.62969 0.62741 0.62722 0.32363

7 0.62969 0.62695 0.62672 0.32414

8 0.62969 0.62650 0.62623 0.32466

9 0.62969 0.62604 0.62574 0.32517

10 0.62969 0.62558 0.62524 0.32569

11 0.62969 0.62512 0.62475 0.32620

12 0.62969 0.62467 0.62426 0.32671

13 0.62969 0.62421 0.62376 0.32721

14 0.62969 0.62375 0.62327 0.32772

15 0.62969 0.62329 0.62278 0.32823

20 0.62969 0.62100 0.62031 0.33073

25 0.62969 0.61871 0.61786 0.33319

50 0.62969 0.60718 0.60561 0.34496

75 0.62969 0.59558 0.59346 0.35589

100 0.62969 0.58391 0.58140 0.36605

500 0.62969 0.39989 0.40466 0.46291

1000 0.62969 0.21934 0.23745 0.50477

5000 0.62969 0.00072 0.00097 0.52315

10000 0.62969 0.00000 0.00000 0.52315

(1) The correlation coefficient in the additive–additive case.

(2) The correlation coefficient in the multiplicative–multiplicative case

(3) The correlation coefficient in the additive–multiplicative case.

(4) The partial regression coefficient as defined in Proposition 1.

(5) The partial correlation coefficient as defined in Proposition 2.

(6) The partial correlation coefficient as defined in Proposition 2.

(7) The partial regression coefficient as defined in Proposition 3.

(8) The partial correlation coefficient as defined in Proposition 4.

(9) The partial correlation coefficient as defined in Proposition 4.
The proof for Proposition 3 appears in
Appendix A.

Proposition 4. Let rðnÞy21:2
and rðnÞy22:1

be the partial
correlation coefficients of the regression as defined
in (13). Therefore

1. limn!1 rðnÞy21:2
¼ 0.

2. limn!1 rðnÞy22:1
¼ 0.
Proof

1. The partial correlation coefficient rðnÞy21:2
can be

expressed by
rðnÞy11:2
(5) rðnÞy12:1

(6) b̂2n (7) rðnÞy21:2
(8) rðnÞy22:1

(9)

0.38639 0.38639 0.52720 0.38639 0.38639

0.38702 0.38588 0.52664 0.38618 0.38626

0.38765 0.38538 0.52608 0.38596 0.38614

0.38828 0.38488 0.52553 0.38575 0.38602

0.38890 0.38438 0.52497 0.38554 0.38589

0.38953 0.38388 0.52441 0.38533 0.38577

0.39015 0.38338 0.52385 0.38512 0.38564

0.39077 0.38289 0.52329 0.38491 0.38552

0.39139 0.38239 0.52273 0.38470 0.38539

0.39201 0.38190 0.52218 0.38449 0.38526

0.39262 0.38140 0.52162 0.38428 0.38513

0.39324 0.38091 0.52106 0.38408 0.38501

0.39385 0.38042 0.52050 0.38387 0.38488

0.39446 0.37992 0.51994 0.38366 0.38475

0.39506 0.37943 0.51938 0.38345 0.38462

0.39808 0.37699 0.51659 0.38241 0.38395

0.40104 0.37457 0.51380 0.38137 0.38327

0.41521 0.36278 0.49983 0.37625 0.37966

0.42836 0.35148 0.48588 0.37122 0.37570

0.44060 0.34063 0.47196 0.36625 0.37144

0.55718 0.21094 0.26955 0.28973 0.28238

0.60756 0.11652 0.11059 0.19559 0.17269

0.62969 0.00046 0.00003 0.00097 0.00072

0.62969 0.00000 0.00000 0.00000 0.00000

.
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rðnÞy21:2
¼

rðnÞy21
� rðnÞy22

rðnÞ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðrðnÞy22

Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðrðnÞ12 Þ
2

q :

Since limn!1 rðnÞ12 ¼ 0 and limn!1 rðnÞy21
¼ 0 (see

Section 2.3), and limn!1 rðnÞy22
¼ 0 (see Section

2.2), we obtain that limn!1 rðnÞy21:2
¼ 0.

2. The partial correlation coefficient rðnÞy22:1
can be

expressed by

rðnÞy22:1
¼

rðnÞy22
� rðnÞy21

rðnÞ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðrðnÞy21

Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðrðnÞ12 Þ
2

q :

Similarly, because limn!1 rðnÞ12 ¼ 0, limn!1 rðnÞy21
¼ 0

(see Section 2.3) and limn!1 rðnÞy22
¼ 0 (see Section

2.2), we obtain that limn!1 rðnÞy21:2
¼ 0, which com-

pletes the proof. h

3.2.1. Numerical example

Table 2 illustrates the effect of the selected time

interval on the partial regression and correlation
coefficients in the multiple regression models cor-

responding to the US stock market. We use the

monthly rates of returns of IBM stock and the

S&P500 index shown in Table 2 as a numerical

example. The sample period is from January 1926

to December 1999. In Table 2, three of the corre-

lation coefficients (Columns (1)–(3)), depending on

the additive or multiplicative variables, seem to be
helpful in attempting to sketch out the association

between variables in the multiple regression mod-

els. Using three distinct kinds of correlation coef-

ficients corresponding to the two return series

(corresponding to EðX Þ ffi 1:0148, r2
x ffi 0:0046,

EðY Þ ffi 1:0070, r2
y ffi 0:0032 and rxy ffi 0:0024), the

other parameters (Table 2, Columns (4)–(9)) can be

easily obtained.
To begin with, we claim that limn!1 â1n ¼ â11 in

Proposition 1 where the dependent variable is addi-

tive. Column (4) of Table 2 reveals that â1n becomes

closer to â11 (¼ 0.52315) as n increases and â1n ¼
0:52315 (i.e., â1n ¼ â11) as n ¼ 5000. Therefore, rðnÞy11:2

approaches rð1Þy11
and rðnÞy12:1

approaches zero as n in-

creases (see Columns (5) and (6)). The results also

conform with the claim of Proposition 2. Finally,
we turn to the case where the dependent variable is

multiplicative. Column (7) indicates that b̂2n ap-

proaches zero and decreases monotonically as n
increases. This seems reasonable to support the
claim of Proposition 3. The claim of Proposition 4

is shown in Columns (8) and (9).
4. Concluding remarks

We usually use a regression model to express

the relationship between a variable of interest (the
dependent variable) and a set of related indepen-

dent variables. The association between variables

is often measured by regression and correlation

coefficients. The time interval of the data for such

analyses cannot be selected arbitrarily. When two

random variables are additive or multiplicative,

the effect of the time interval employed is well

documented in the literature.
In this paper we study the multiple linear

regression models with two independent variables,

where one of the variables is additive and the other

variable is multiplicative. The dependent variable

corresponding to the models is either additive or

multiplicative. We show that the partial regression

and correlation coefficients are affected by the se-

lected time interval. When two variables are both
additive, the partial regression and correlation

coefficients between them approach one-period

values as n goes to infinity. When one of the vari-

ables is multiplicative, they approach zero as n in-

creases. The longer time intervals will decrease the

relevant association between variables, particularly

for the multiplicative dependent variable. We

should not overlook these phenomena in such
empirical analyses or it might lead to making

incorrect decisions and misguided actions. The

power of the test for the correlation is also influ-

enced by the differencing interval. We also find that

the decreasing speed of the n-period correlation

coefficients between both multiplicative variables is

faster than others, except that the one-period cor-

relation has a higher positive value. This subject in
the case deserves more than a passing notice.

The results of this paper relate to a multiple

regression analysis, which is one of the most

widely used techniques for analyzing multifactor

data. Its broad appeal and usefulness are applied

to studies conducted in various fields where vari-

ables are additive or multiplicative over time.
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Appendix A. Proof of Proposition 3

Here we demonstrate the results of Proposition

3 from Levy and Schwarz (1997). Substituting the

variable B (see Levy and Schwarz (1997) Eq. (1), p.

343) with the variable A, we get

qn ¼
Cn � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAn � 1Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAn � 1Þ
p :

Using the above substitution, qn can be regarded

as the regression coefficient between two multipli-

cative variables. Hence, the results are obtained

directly from Levy and Schwarz (1997).
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