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The aggregation of financial and economic time series occurs in a number of ways. Temporal aggregation or systematic
sampling is the commonly used approach. In this paper, we investigate the time interval effect of multiple regression
models in which the variables are additive or systematically sampled. The correlation coefficient changes with the
selected time interval when one is additive and the other is systematically sampled. It is shown that the squared
correlation coefficient decreases monotonically as the differencing interval increases, approaching zero in the limit.
When two random variables are both added or systematically sampled, the correlation coefficient is invariant with time
and equal to the one-period values. We find that the partial regression and correlation coefficients between two additive
or systematically sampled variables approach one-period values as n increases. When one of the variables is
systematically sampled, they will approach zero in the limit. The time interval for the association analyses between
variables is not selected arbitrarily or the statistical results are likely affected.
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Introduction

Time-series data of different frequencies and different time

spans are often available in empirical studies. They are

usually changed to a common time interval through

temporal aggregation or systematic sampling, depending

on whether the variables are flow variables or stock

variables, respectively. Several papers have documented the

fact that time aggregation potentially distorts the relation-

ship between variables.1–5

According to modern portfolio theory, the point about the

gains from international portfolio diversification is inversely

related to the correlations of security returns. Diversification

benefits depend upon the correlations among different stock

markets. Nevertheless, the employed time interval may affect

the results if the data are autocorrelated. Even if all random

variables are independent over time, the effect is seldom

invariant with time. The effect of the differencing interval on

several economic indices and finance has been studied by

Schneller,6 Levhari and Levy,7 Levy,8,9 Lee,10 Bruno and

Easterly,11 and Souza and Smith.12 Levy and Schwarz13

show that the correlation coefficients are affected by the

frequency of data employed when two independent,

identically distributed (i.i.d.) random variables are multi-

plicative over time. Levy et al14 show a similar theoretical

effect when one of the i.i.d. variables is additive and the

other is multiplicative. Jea et al15 complement and extend the

results in Levy and Schwarz13 and Levy et al14 to the

multiple regression model. The recent literature demon-

strates the importance of analysing the time interval effect on

the association between variables. Therefore, if we select

arbitrarily the time interval and neglect its impact, it is likely

to lead us to misguided actions.

In this paper, we investigate the influence of the selected

time interval on the association between i.i.d. variables over

time when one of the variables is additive (eg industrial

production, gross domestic product (GDP), etc.) and one is

from systematic sampling (eg stock price, money supply,

interest rate, etc.). To the best of our knowledge, the

implication of the time horizon on the correlation between

variables in such cases has not been investigated. Levy and

Schwarz13 and Levy et al14 consider the time interval effect

when two random variables are additive or multiplicative.

However, the multiplicative variables can be converted to

additive variables by taking logarithms. The simplification is

not merely in reducing multiplication to addition, but more in

modelling the statistical behaviour of some variables (eg, asset

returns) over time. It is far easier to derive the time series
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properties of additive processes than of multiplicative

processes.16 Systematic sampling is widely applied in many

fields, because it creates the best sample coverage over the

population region, thus ensuring that sampling units are well

spread over the population region. This paper complements

the results in Levy and Schwarz13 and Levy et al,14 and uses

the results of Jea et al15 to extend to multiple regression model.

The paper proceeds as follows. The following section

briefly describes the impact of the employed time interval on

the various correlation coefficients and presents the numer-

ical example corresponding to the US stock market. The

subsequent section shows the time interval effect on the

partial correlation and the regression coefficients in the

multiple-regression model. The last section offers concluding

remarks.

The correlation coefficients between two random variables

Let (Y11, X11, X21),y, (Y1n, X1n, X2n) and (Y21, X11, X21),y,

(Y2n, X1n, X2n) be sequences of i.i.d. distributed variables. We

define four new variables to denote an n-fold increase in the

differencing interval’s two additive and two systematically

sampled variables.

The additive variables, denoted by Y1
(n) and X1

(n), are

given by

Y
ðnÞ
1 ¼ Y11 þ Y12 þ � � � þ Y1n

and

X
ðnÞ
1 ¼ X11 þ X12 þ � � � þ X1n

The systematically sampled variables, denoted by Y2
(n) and

X2
(n), are given by

Y
ðnÞ
2 ¼ Y2k; 1pkpn

and

X
ðnÞ
2 ¼ X2h; 1phpn:

Using the above four variables, denoted by Y1
(n), Y2

(n), X1
(n),

and X2
(n), we can study the properties of the correlation

coefficient between them.

Both are additive

Using two random variables, we can construct a simple

regression model. If the independent variable X1
(n) and

the dependent variable Y1
(n), are both additive, then the

regression coefficients corresponding to the model and

the correlation coefficient between them are unaffected by

the selected time interval (the proof appears in Appendix).

Both are systematically sampled

Let X2
(n) and Y2

(n) be the systematically sampled variables.

Because (X21, Y21), (X22, Y22),y, (X2n, Y2n) is a sequence of

distributed i.i.d. pairs of variables, the n-period expected

values of X2
(n) and Y2

(n), respectively, are

EðXðnÞ
2 Þ ¼ mx2 and EðY ðnÞ

2 Þ ¼ my2 ð1Þ

The n-period variances are denoted by

VarðXðnÞ
2 Þ ¼ s2x2 and VarðY ðnÞ

2 Þ ¼ s2y2 ð2Þ

The n-period covariance and correlation coefficient are

given, respectively, by

CovðX ðnÞ
2 ;Y

ðnÞ
2 Þ ¼ sx2y2 ð3Þ

and

rðnÞx2y2
¼ sx2y2

sx2sy2
ð4Þ

Equations (1)–(4) provide the fundamental statistics of the

systematically sampled variables X2
(n) and Y2

(n), respectively.

These results do not depend on the number of periods. It is also

easy to show that the correlation and regression coefficients of

X2
(n) and Y2

(n) are unaffected by the selected time interval.

One is additive, the other is systematically sampled

Term Y1
(n) is an additive random variable and X2

(n) is a

random variable from systematic sampling. Let the n-period

expected value and variance of Y1
(n), respectively, be

EðY ðnÞ
1 Þ ¼ E

Xn
j¼1

Y1j

 !
¼ nmy1 and

VarðY ðnÞ
1 Þ ¼ Var

Xn
j¼1

Y1j

 !
¼ ns2y1

ð5Þ

Because (X21, Y11), (X22, Y12),y, (X2n, Y1n) is a sequence of

i.i.d. variables, we obtain

CovðX ðnÞ
2 ;Y

ðnÞ
1 Þ ¼ Cov X2h;

Xn
j¼1

Y1j

 !
¼ sx2y1 ð6Þ

The n-period correlation coefficient is as follows:

rðnÞx2y1
¼ CovðXðnÞ

2 ;Y
ðnÞ
1 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðX ðnÞ
2 Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðY ðnÞ

1 Þ
q ¼ sx2y1

sx2
ffiffiffi
n

p
sy1

¼ 1ffiffiffi
n

p rð1Þx2y1
ð7Þ

Proposition 1 Let rðnÞx2y1 be the n-period correlation coefficient

as defined in Equation (7). We obtain the following results:

1. ðrðnÞx2y1Þ2 is monotonically decreasing in n.

2. As n approaches infinity, limn!1 rðnÞx2y1 ¼ 0.

Proof Using Equation (7), we can directly obtain these

results. &
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Numerical example The data used in this numerical

example are obtained from the Center for Research in

Security Prices (CRSP) of the University of Chicago.

Dividend payments, if any, are included in the returns.

Two financial time series are the daily simple returns of the

S&P 500 index and American Express stock from January

1990 to December 1999 for 2528 observations.17 Herein,

assume the one-period correlation coefficients of the above

three cases are equal to 0.5828. Figure 1 shows the behaviour

of the squared correlation coefficients corresponding to the

selected time interval. When two random variables are both

additive or systematically sampled, as we can see in Figure 1,

the squared n-period correlation coefficients in the two cases

(ie, raa
2 and rss

2 ) are invariant with time interval. The squared

n-period correlation coefficient between one additive and the

other systematically sampled is denoted by ras
2 . Figure 1

reveals that ras
2 decreases monotonically as n increases, in the

situation when one is additive and the other is systematically

sampled.

Table 1 shows that for various values of one-period

correlation, the absolute value of the multi-period correla-

tion coefficient decreases monotonically as n increases when

one is additive and the other is systematically sampled

(denoted by the A&S case). On the other hand, when two

random variables are both additive or systematically

sampled (denoted by A&A or S&S), the multi-period

correlation coefficients are equal to the one-period correla-

tion. These phenomena should be noted when the variables

are changed by the aggregation.

The partial regression and correlation coefficients in

multiple regression models

In the preceding section, the effect was observed of the

selected time interval when two random variables are

additive or systematically sampled. Here, we would like to

focus on an extension to the multiple regression models. We

may consider the subject the following cases: (1) the

dependent variable is additive; (2) the dependent variable

is systematically sampled.
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Figure 1 The squared multi-period correlation coefficient.

Table 1 The multi-period correlation coefficient between additive or systematically sampled variables

r(1)¼	0.8 r(1)¼	0.5 r(1)¼	0.2

Time interval A&A S&S A&S A&A S&S A&S A&A S&S A&S

2 	0.800 	0.800 	0.566 	0.500 	0.500 	0.354 	0.200 	0.200 	0.141
3 	0.462 	0.289 	0.115
4 	0.400 	0.250 	0.100
5 	0.358 	0.224 	0.089
6 	0.327 	0.204 	0.082
7 ^ ^ 	0.302 ^ ^ 	0.189 ^ ^ 	0.076
8 	0.283 	0.177 	0.071
9 	0.267 	0.167 	0.067
10 	0.253 	0.158 	0.063
50 	0.113 	0.071 	0.028
100 	0.800 	0.800 	0.080 	0.500 	0.500 	0.050 	0.200 	0.200 	0.020

r(1)¼ 0.3 r(1)¼ 0.6 r(1)¼ 0.9

Time interval A&A S&S A&S A&A S&S A&S A&A S&S A&S

2 0.300 0.300 0.212 0.600 0.600 0.424 0.900 0.900 0.636
3 0.173 0.346 0.520
4 0.150 0.300 0.450
5 0.134 0.268 0.402
6 0.122 0.245 0.367
7 ^ ^ 0.113 ^ ^ 0.227 ^ ^ 0.340
8 0.106 0.212 0.318
9 0.100 0.200 0.300
10 0.095 0.190 0.285
50 	0.113 	0.071 	0.028
100 0.300 0.300 	0.080 0.600 0.600 	0.050 0.900 0.900 0.090
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The dependent variable is additive

In the multiple regression model, the dependent variable is

additive and the regressors are composed of one additive and

one systematically sampled variable simultaneously. We can

then construct the following n-period multiple regression

model:

Y
ðnÞ
1 ¼ a0n þ a1nX

ðnÞ
1 þ a2nX

ðnÞ
2 þ e ð8Þ

where Y1
(n), X1

(n), and X2
(n) are as defined in the previous

section on correlation coefficients. Terms a0n, a1n, and a2n are
the regression coefficients corresponding to the n-period

multiple regression model. The error term e is assumed to be

normally and independently distributed. We additionally

assume that the errors have mean zero and unknown

variance s2.
Let

V1n ¼
Y

ðnÞ
1 	 �YY

ðnÞ
1ffiffiffiffiffiffiffiffiffiffiffi

n	 1
p

S
y
ðnÞ
1

; U1n ¼
X

ðnÞ
1 	 �XX

ðnÞ
1ffiffiffiffiffiffiffiffiffiffiffi

n	 1
p

S
x
ðnÞ
1

and

U2n ¼
X

ðnÞ
2 	 �XX

ðnÞ
2ffiffiffiffiffiffiffiffiffiffiffi

n	 1
p

S
x
ðnÞ
2

ð9Þ

To apply the above suitable transformation and standar-

dized variables, the regression model becomes

V1n ¼ a
0n þ a
1nU1n þ a
2nU2n þ e ð10Þ

where

a
0n ¼ 0; a
1n ¼ a1n
S
x
ðnÞ
1

S
y
ðnÞ
1

and a
2n ¼ a2n
S
x
ðnÞ
2

S
y
ðnÞ
1

We can denote here

a

n ¼

a
1n
a
2n

� �
and Un ¼ ðU1n U2nÞ

The least-squares estimator of an
* can be expressed as

âa

n ¼ ðU 0

nUnÞ	1ðU 0

nV1nÞ ¼

1 r
ðnÞ
12

r
ðnÞ
21 1

" #	1
r
ðnÞ
1y1

r
ðnÞ
2y1

2
4

3
5 ¼

r
ðnÞ
1y1

	r
ðnÞ
12
r
ðnÞ
2y1

1	ðrðnÞ
12
Þ2

r
ðnÞ
2y1

	r
ðnÞ
21
r
ðnÞ
1y1

1	ðrðnÞ
12
Þ2

2
664

3
775 ð11Þ

where rij
(n) is the simple correlation between regressor xi

(n)

and xj
(n) (see Neter et al18, p 290). Similarly, r

ðnÞ
jy1

is the

simple correlation between the regressor xj
(n) and the

response y1
(n).

Proposition 2 Let âa1n be the n-period partial regression

coefficient of the regression as defined in Equation (8). We

obtain the following results:

1. As n approaches infinity, limn!1 âa1n ¼ âa11 and

limn!1 âa2n ¼ âa21 	 r
ð1Þ
21 r

ð1Þ
1y1

S
y
ð1Þ
1

=S
x
ð1Þ
1

.

2. If the regressor variables, X1
(n) and X2

(n), are independent,

then âa1n¼ âa11 and limn!1 âa2n ¼ âa21.

Proof 1. Using the relationship between the original and

standardized regression coefficients, we achieve

âajn ¼ âa
jn
S
y
ðnÞ
1

S
x
ðnÞ
j

; j ¼ 1; 2 ð12Þ

and

âa0n ¼ �yy
ðnÞ
1 	 âa1n�xx

ðnÞ
1 	 âa2n�xx

ðnÞ
2

Using Equation (12) and applying the results of the section

‘one is additive, the other is systematically sampled’ to

Equation (11), the n-period partial regression coefficient âa1n
is as follows:

lim
n!1

âa1n ¼ lim
n!1

r
ð1Þ
1y1

	 r
ð1Þ
12 r

ð1Þ
2y1

=n

1	 ðrð1Þ12 =
ffiffiffi
n

p
Þ2

�
ffiffiffi
n

p
S
y
ð1Þ
1ffiffiffi

n
p

S
x
ð1Þ
1

¼ âa11 ð13Þ

Similarly,

lim
n!1

âa2n ¼ lim
n!1

r
ð1Þ
2y1

=
ffiffiffi
n

p
	 r

ð1Þ
21 r

ð1Þ
1y1

=
ffiffiffi
n

p

1	 ðrð1Þ12 =
ffiffiffi
n

p
Þ2

�
ffiffiffi
n

p
S
y
ð1Þ
1

S
x
ð1Þ
2

¼ âa21 	 r
ð1Þ
21 r

ð1Þ
1y1

S
y
ð1Þ
1

=S
x
ð1Þ
1

ð14Þ

which completes the proof.

2. Because X1
(n) and X2

(n) are independent, it is obvious that

r12
(n)¼ r21

(n)¼ 0 for all n. Similarly, using Equations (11) and

(12), then âa1n¼ âa11. The result limn!1 âa2n ¼ âa21 is obtained

by Equations (14). &

Proposition 3 Let r
ðnÞ
y11:2

and r
ðnÞ
y12:1

be the partial correlation

coefficients of the regression as defined in Equation (7).

Therefore,

1. limn!1 r
ðnÞ
y11:2

¼ r
ð1Þ
y11

(if X1
(n) and X2

(n) are independent, then

r
ðnÞ
y11:2

¼ r
ð1Þ
y11

).

2. limn!1 r
ðnÞ
y12:1

¼ 0.

Proof 1. The partial correlation coefficient r
ðnÞ
y11:2

can be

expressed by

r
ðnÞ
y11:2

¼
r
ðnÞ
y11

	 r
ðnÞ
y12

r
ðnÞ
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1	 ðrðnÞy12
Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 ðrðnÞ12 Þ

2
q

Because limn!1 r
ðnÞ
12 ¼ 0 and limn!1r

ðnÞ
y12

¼ 0 (see the section

‘one is additive, the other is systematically sampled’), we

achieve limn!1 r
ðnÞ
y11:2

¼ r
ðnÞ
y11

. Using the relationship r
ðnÞ
y11

¼
r
ð1Þ
y11

(see the section ‘both are additive’), we obtain

limn!1 r
ðnÞ
y11:2

¼ r
ð1Þ
y11

. In particular, if X1
(n) and X2

(n) are

independent, then r
ðnÞ
y11:2

¼ r
ðnÞ
y11

¼ r
ð1Þ
y11

.
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2. The partial correlation coefficient r
ðnÞ
y12:1

can be ex-

pressed by

r
ðnÞ
y12:1

¼
r
ðnÞ
y12

	 r
ðnÞ
y11

r
ðnÞ
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1	 ðrðnÞy11
Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 ðrðnÞ12 Þ

2
q

Since limn!1 r
ðnÞ
12 ¼ 0 (see the section ‘one is additive, the

other is systematically sampled’) and r
ðnÞ
y11

¼ r
ð1Þ
y11

(see the

section ‘both are additive’), we directly obtain that

limn!1 r
ðnÞ
y12:1

¼ 0, which completes the proof.

The dependent variable is systematically sampled

When the dependent variable is systematically sampled, the

regression model is as follows:

Y
ðnÞ
2 ¼ b0n þ b1nX

ðnÞ
1 þ b2nX

ðnÞ
2 þ e ð15Þ

where Y2
(n), X1

(n), and X2
(n) are as defined in the previous

section on correlation coefficients. Terms b0n, b1n, and b2n
are the regression coefficients corresponding to Equation

(14). Here, e is a random error component.

We similarly let:

V2n ¼
Y

ðnÞ
2 	 Y

ðnÞ
2ffiffiffiffiffiffiffiffiffiffiffi

n	 1
p

S
y
ðnÞ
2

; U1n ¼
X

ðnÞ
1 	 �XX

ðnÞ
1ffiffiffiffiffiffiffiffiffiffiffi

n	 1
p

S
x
ðnÞ
1

and

U2n ¼
X

ðnÞ
2 	 X

ðnÞ
2ffiffiffiffiffiffiffiffiffiffiffi

n	 1
p

S
x
ðnÞ
2

ð16Þ

The regression model then becomes

V2n ¼ b
0n þ b
1nU1n þ b
2nU2n þ e ð17Þ

where

b
0n ¼ 0 b
1n ¼ b1nðSx
ðnÞ
1

=S
y
ðnÞ
2

Þ; and

b
2n ¼ b2nðSx
ðnÞ
2

=S
y
ðnÞ
2

Þ

We can denote

b
n ¼
b
1n
b
2n

� �
and Un ¼ ðU1n U2nÞ

The least-squares estimator of bn
* can therefore be ex-

pressed as

b̂b


n ¼ ðU 0

nUnÞ	1ðU 0

nV2nÞ ¼

1 r
ðnÞ
12

r
ðnÞ
21 1

" #	1
r
ðnÞ
1y2

r
ðnÞ
2y2

2
4

3
5 ¼

r
ðnÞ
1y2

	r
ðnÞ
12
r
ðnÞ
2y2

1	ðrðnÞ
12
Þ2

r
ðnÞ
2y2

	r
ðnÞ
21
r
ðnÞ
1y2

1	ðrðnÞ
12
Þ2

2
664

3
775 ð18Þ

Proposition 4 Let b̂b2n be the n-period partial regression

coefficient of the regression as defined in (14).

1. As n approaches infinity, limn!1 b̂b1n ¼ 0 and

limn!1 b̂b2n ¼ b̂b21.

2. If the regressor variables, X1
(n) and X2

(n), are independent,

then limn!1 b̂b1n ¼ 0 and b̂b2n¼ b̂b21.

Proof The proof for Proposition 4 appears in Appendix.

Proposition 5 Let r
ðnÞ
y21:2

and r
ðnÞ
y22:1

be the partial correla-

tion coefficients of the regression as defined in (13). There-

fore:

1. limn!1 r
ðnÞ
y21:2

¼ 0.

2. limn!1 r
ðnÞ
y22:1

¼ r
ð1Þ
y22

.

Proof 1. The partial correlation coefficient r
ðnÞ
y21:2

can be

expressed by

r
ðnÞ
y21:2

¼
r
ðnÞ
y21

	 r
ðnÞ
y22

r
ðnÞ
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1	 ðrðnÞy22
Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 ðrðnÞ12 Þ

2
q

Since limn!1 r
ðnÞ
12 ¼ 0 and limn!1 r

ðnÞ
y21

¼ 0 (see the section

‘one is additive, the other is systematically sampled’), and

limn!1 r
ðnÞ
y22

¼ 0 (see the section ‘Both are systematically

sampled), we obtain that limn!1 r
ðnÞ
y21:2

¼ 0.

2. The partial correlation coefficient r
ðnÞ
y22:1

can be pre-

sented by

r
ðnÞ
y22:1

¼
r
ðnÞ
y22

	 r
ðnÞ
y21

r
ðnÞ
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1	 ðrðnÞy21
Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 ðrðnÞ12 Þ

2
q

Similarly, because limn!1r
ðnÞ
12 ¼ 0, limn!1 r

ðnÞ
y21

¼ 0 (see the

section ‘one is additive, the other is systematically sampled’)

and limn!1 r
ðnÞ
y22

¼ r
ð1Þ
y22

(see the section ‘both are system-

atically sampled’), we obtain that limn!1 r
ðnÞ
y22:1

¼ r
ð1Þ
y22

, which

completes the proof.

Numerical example Table 2 illustrates the effect of the

selected time interval on the partial regression and correla-

tion coefficients in the multiple regression models corre-

sponding to the US stock market. We use the daily simple

returns of the S&P 500 index and American Express stock

shown in Table 2 as a numerical example. The sample period

is from January 1990 to December 1999. For the reason of

convenient comparison, we use the two variables to simulate

the results in order to keep the corresponding parameters the

same. Three distinct kinds of the correlation coefficients

discussed in the section ‘The correlation coefficents between

two random variables’ seem to be helpful in attempting to

sketch out the association between variables in the multiple

regression models. Using the various correlation coefficients

corresponding to the two return series (corresponding to

E(X)D1.0006, sxD0.0089, E(Y)D, 1.0010, syD0.0206 and

rxy
(1)D0.5828), the other parameters (Table 2, Columns

(1)–(8)) can be easily obtained.
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To begin with, we claim that limn!1 âa1n ¼ âa11 in

Proposition 1 where the dependent variable is additive.

Column (1) of Table 2 reveals that âa1n becomes closer to

âa11(¼ 1.3527) as n increases and âa1n¼ 1.3527 (ie, âa1n¼ âa11) as
n¼ 5000. Also, r

ðnÞ
y11:2

approaches r
ð1Þ
y11

and r
ðnÞ
y12:1

approaches

zero as n increases (see Columns (3) and (4)). The results also

confirm the result of Proposition 3. Finally, we turn to the

case where the dependent variable is systematically sampled.

Column (5) indicates that b̂b1n approaches zero as n increases.

The limits claimed in Propositions 4 and 5 are illustrated in

the Columns (6)–(8).

Concluding remarks

The relationship between variables is described through

regression models and correlation coefficients. If each

of the variables is a time series with autocorrelation, then

a variety of papers have documented the fact that

correlations change over time. When random variables

are additive or multiplicative, such effects have been

evident even if they are i.i.d. variables over time. However,

we should not overlook that some of the variables are

from systematic sampling (eg stock prices and interest rates).

This paper considers the effect of the time interval when one

of the variables is additive and one is from systematic

sampling.

Additive and systematically sampled random variables are

usually analysed in empirical studies. When the original

variables are the stock variables or computed through taking

a logarithm for multiplicative variables, they change their

frequency by additive operations to become additive

variables. Systematic sampling represents the choice of a

particular observation value at fixed intervals. Systematically

sampled variables are widely applied in many fields.

In this paper, we find that the correlation coefficient is

changed with the selected time interval when one is additive

and the other is systematically sampled. It is shown that the

squared correlation coefficient decreases monotonically as

the differencing interval increases, approaching zero in the

limit. In sampling for empirical studies, the results should

not be ignored, particularly for decisions depending on the

correlation between variables. When two random variables

are both added or systematically sampled, the correlation

coefficient is invariant with time and is equal to the one-

period values. Moreover, we also find that the partial

regression and correlation coefficients between two additive

or systematically sampled variables approach one-period

values as n increases. When one of the variables is

systematically sampled, they will approach zero in the limit.

Table 2 The multi-period partial regression and correlation coefficients

Time interval (n) âa1n
* âa2n

w
r
ðnÞ
y11:2

z r
ðnÞ
y12:1

y b̂b1n
z b̂b2n

8
r
ðnÞ
y21:2

** r
ðnÞ
y22:1

ww

1 0.855 0.855 0.368 0.368 0.368 0.368 0.855 0.855
2 1.155 0.680 0.498 0.232 0.232 0.498 0.340 1.155
3 1.229 0.636 0.530 0.184 0.184 0.530 0.212 1.229
4 1.263 0.617 0.544 0.156 0.156 0.5441 0.154 1.263
5 1.282 0.606 0.552 0.139 0.139 0.552 0.121 1.282
6 1.295 0.598 0.558 0.126 0.126 0.558 0.100 1.295
7 1.303 0.593 0.562 0.116 0.116 0.562 0.085 1.303
8 1.310 0.589 0.564 0.108 0.108 0.564 0.074 1.310
9 1.315 0.587 0.567 0.102 0.102 0.567 0.065 1.315
10 1.319 0.584 0.568 0.096 0.096 0.568 0.058 1.319
11 1.322 0.582 0.570 0.092 0.092 0.570 0.053 1.322
12 1.325 0.581 0.571 0.088 0.088 0.571 0.048 1.325
13 1.327 0.580 0.572 0.084 0.084 0.572 0.045 1.327
14 1.329 0.578 0.573 0.081 0.081 0.573 0.041 1.329
15 1.330 0.577 0.573 0.078 0.078 0.573 0.039 1.330
20 1.336 0.574 0.576 0.068 0.068 0.576 0.029 1.336
25 1.339 0.572 0.577 0.060 0.060 0.577 0.023 1.339
50 1.346 0.568 0.580 0.043 0.043 0.580 0.011 1.346
75 1.348 0.567 0.581 0.035 0.035 0.581 0.008 1.348
100 1.350 0.566 0.581 0.030 0.030 0.581 0.006 1.350
5000 1.353 0.564 0.583 0.004 0.004 0.583 0.000 1.353

*The partial regression coefficient as defined in Proposition 2.
wThe partial regression coefficient as defined in Proposition 2.
zThe partial correlation coefficient as defined in Proposition 3.
yThe partial correlation coefficient as defined in Proposition 3.
zThe partial regression coefficient as defined in Proposition 4.
8The partial regression coefficient as defined in Proposition 4.
**The partial correlation coefficient as defined in Proposition 5.
wwThe partial correlation coefficient as defined in Proposition 5.
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These results are similar to the properties of the correlation

coefficients. It will be useful to keep these points in mind as

we examine the empirical studies.
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Appendix

Proof of the property ‘Both are additive’. Because Xj and Yj

are i.i.d. variables, then for j¼ 1,2,y, n, we have

EðX1jÞ ¼mx; VarðX1jÞ ¼ s2x; EðY1jÞ
¼my and VarðY1jÞ ¼ s2y

The one-period correlation coefficient is

r1 ¼
CovðX1t;Y1tÞ

sxsy
¼ sxy

sxsy

Because X11, X12,y, X1n are i.i.d., we have

EðX ðnÞ
1 Þ ¼ E

Xn
j¼1

X1j

 !
¼
Xn
j¼1

mx ¼ nmx

and

VarðX ðnÞ
1 Þ ¼ Var

Xn
j¼1

X1j

 !
¼
Xn
j¼1

s2x ¼ ns2x

Similarly, we can obtain

EðY ðnÞ
1 Þ ¼ nmy

and

VarðY ðnÞ
1 Þ ¼ ns2y

The n-period covariance is

CovðXðnÞ
1 ;Y

ðnÞ
1 Þ ¼ Cov

Xn
j¼1

X1j;
Xn
j¼1

Y1j

 !
¼ nCovðX1t;Y1tÞ

¼ nsxy

The n-period correlation coefficient is as follows:

rn ¼
CovðXðnÞ

1 ;Y
ðnÞ
1 Þ

s
x
ðnÞ
1

s
y
ðnÞ
1

¼ nsxyffiffiffi
n

p
sx

ffiffiffi
n

p
sy

¼ sxy
sxsy

¼ r1

Hence, the correlation coefficient between X1
(n) and Y1

(n) is

independent of the differencing interval.

Proof of Proposition 4 The approach here is similar to that

of Proposition 2. Substituting the variable Y1
(n) with the

variable Y2
(n), we obtain

lim
n!1

b̂b1n ¼ lim
n!1

r
ð1Þ
1y2

=
ffiffiffi
n

p
	 r

ð1Þ
12 r

ð1Þ
2y2

=
ffiffiffi
n

p

1	 ðrð1Þ12 =
ffiffiffi
n

p
Þ2

�
S
y
ð1Þ
2ffiffiffi

n
p

S
x
ð1Þ
1

¼ 0

and

lim
n!1

b̂b2n ¼ lim
n!1

r
ð1Þ
2y2

	 r
ð1Þ
21 r

ð1Þ
1y2

=n

1	 ðrð1Þ12 =
ffiffiffi
n

p
Þ2

S
y
ð1Þ
2

S
x
ð1Þ
2

¼ b̂b21

2. If X1
(n) and X2

(n) are independent, then we have

r12
(n)¼ r21

(n)¼ 0, and limn!1 b̂b1n ¼ 0 and b̂b2n¼ b̂b21 can be

obviously obtained by the above two equations.
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