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Abstract

We consider the initial value problems for second order nonlinear differential equa-
tions of the form

!
<|u/|m—2ul) —
and the system
uf = filw,w), i=1,2.

By using the energy method, some blow-up properties such as the life span, blow-up
rates and blow-up constants are given and the asymptotic behavior of the global solu-
tion is also discussed.
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1. Introduction

We shall consider the initial value problem for second order scalar differen-
tial equation of the form
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(Iu’l"”zu’)/ =, (1.1)

where m > 2 and p>m — 1, and the system of two ordinary differential
equations

{u,/ = f(u,0), (12)
V" = g(u,v).

These problems are occurred in the study of non-Newtonian fluid theory by
Esteban and Vazquez [1] and Herrero and Vazquez [2]. When m = 2, the scalar
equation is described by the Calligraphic process in Li [3]. Some asymptotic
behavior and oscillation results for the scalar differential equation of the sec-
ond order are given by O’Regan [4], Wang and Gao [5], Bobisub and O’Regan
[6], and Yang [7] and regularity results is recently obtained by Lin [8].

In this paper, we shall discuss the blow-up properties, such as the life span,
the blow-up rates, blow-up constants, and the asymptotic behavior of the glo-
bal solution by using the energy method. Some interesting properties of the
solutions for (1.1) are found in Li [3] when m = 2. Here we shall consider the
more general equations and extend the results of [3] to the case m > 2.

The content of this paper is divided in two parts. In the first part, we study
the Eq. (1.1). We first give some fundamental lemmas and notations in Section
2.1, which will be used later. Then the asymptotic behavior of the global solu-
tion is discussed in Section 2.2. The life span of the local solutions is estimated
in Section 2.3. The blow-up rates and blow-up constants are given in Section
2.4. In Section 2.5, some properties of the life span are obtained. In the second
part, we discuss the system (1.2). Some fundamental Lemmas are derived in
Section 3.1. The existence of blow-up solution and the upper bound for the life
span are given in Section 3.2. We also investigate a particular system of the
form

u' = upprt!
{u”:v”uP“: p>1 (1.3)
and give more blow-up properties under various conditions. Note that when

the forcing form in (2.1) is replaced by |u|’u, p > m — 1, we can get the similar
result for the blow-up properties of the corresponding solutions.

2. On the scalar differential equation

In this section we shall consider the second order differential equation of the
form
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(Ju'"u) = w, 2.1
{“(0) =uy, u(0)=uy, (2.1)

where m > 2 and p>m — 1.

For p <m — 1, we have the nonuniqueness of the solution. Thus we only
consider the case p > m — 1 (for the special case p =m — 1, it can be similarly
discussed). Since the forcing term is locally Lipschitz, the local existence and
uniqueness of the problem (2.1) can be proved by Banach fixed point theorem.
Hereafter we shall discuss the behavior and the properties of solutions and find
the estimate for the life span through energy method.

2.1. Fundamental lemmas

Definition. A function g: R — R blows up means that g exists only in finite
time, that is, there is a finite number 7 such that

limg(t)™' =0

t—T*

and a function g: R — R has a blow-up rate ¢ > 0 if
lil’7I_1(T* —1)g(t) = .
P

In this case, f is called the blow-up constant of g.

Let u € C'[0, 7). Define the energy function
E(t) = (m = D)/ ()" — o),

—_m_
where o =

Theorem 2.1. If u € C*0, )N C°[0,T) is the classical solution of the problem
(2.1) with the life span T, then we have

E(t) =E0) = (m— V)|u,|" — o™, Vte0,T). (2.2)

Proof. From (2.1), we have
(m — Dl (0" 2 (1) = u(2)”. (2.3)

By multiplying (2.3) on both sides with #'(#) and then integrating it from 0 to ¢,
we get (2.2). O
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p=mtl

J(t)=a(t)”" >, t=0.

By some elementary calculations, we have the following lemmas.

Lemma 2.2. Suppose that u e C*0,T)N C°[0,T) is a classical solution of the
problem (2.1), then we have following identities:

@ W@ =22 e - 20ED gy (2.4

m m(m—1)

(i) (m — 1) (p + D] ()" d () — (m — 1)(p + 1wy " (0)

:aﬁ—n@—m+4{/ﬁvf“w+2@+1wmy. (2.5)
(iid) (m— D' ()" 2" (&) = kg (0)" . (2.6)
D U m ’ m p—m + 1 —m
(M(M*UUUNAWM*UU®N4~;;T*H V(O =),

(2.7)

1
where f =" and k; = (ME(O))M'

p—m+1 m"
Proof. (i) Note that 2u(r)u”(f) = a"(¢) — 2u/(1)*. From (2.3), we have
2mu(t)™ = m(m — V)| ()" d" () = 2m(m — D]l ()" (1))’
By (2.2), we get

2(m — 1) (p+ D' (1)]" = 2(p + 1)E(0)
= m(m = 1)} (1)|"a" (£) = 2m(m — D} (1)]"

and (2.4) follows at once.
(i1) By integrating the identity (2.4) from 0 to ¢, we obtain

2m—1)(p+m + 1)/()[ [/ (#)|" dr
=m(m — 1)/0 [ (F)|"2a" (r) dr + 2(p + 1)E(0)z.
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Since u/(1)* = La"(t) — u()u"(¢) and by (2.3), we have

m=1p+1) | W () dr

=2(pp+m+ 1)/0tu(r)”“dr+2(p+ 1)E(0)z. (2.8)
Note that
/ WP ) dr = W )] / 2 —2) (") () dr
= {|u'(r)|m*2a'(r)]; *% /Otu(r)p+1 dr. (2.9)

Hence, by (2.8) and (2.9), we arrive at (2.5).
(il) Let g =2 _2':?1. By differentiating J(f) twice and multiplying
(m — D)|u'(1)]" =2 on both sides, we have

(m = D) (0)" 2" (t) = —q(m — 1)/ (1)" 2a(t)™"
X (a(t)a”(t) —(q+ l)a'(t)z). (2.10)
Multiplying (2.4) on both sides with a(¢), we get the following identity:
W ()" (al)d (1) - (g + D) ()
— ()" (M - 1))a/(t)2 2 EOu). (211

2m a(m—1)
By (2.10) and (2.11), we obtain
— 1 ptm+l
(m = D ()"0 (1) = ’%E(O)J(r)p——mﬂ. (2.12)
m
On the other hand, by the definitions of J(¢), we get
m—2
1( g\ |m=2 m PN ) _(pt)(m-2)
_ ) —_— p—mt1 21
WP = () o) (.13)

Combining (2.12) and (2.13), the assertion (2.6) holds.
(iv) (2.7) is easily obtained by integrating (2.6) from 0 to . [

Lemma 2.3. Let C, and C, be any real constants. Suppose that u € C(R") is a
nonnegative function satisfying the following differential inequality:

W+ C +Cu<0, Vt=0,

u(0) =0, '(0)=0,

then u must be a zero function.
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Proof. We first consider the case (i) C; = 0. If Cz <0, let C, = —k* with k # 0.
Then we have u"(r) — k*u(f) < 0. Multiplying ¢ on both sides of the above
inequality and then integrating from 0 to #, we have u'(¢) < ku(z), V¢ = 0. By
integration again, u(t) < 0, V¢ > 0. Therefore, u is a zero function. If C, = 0,
we have u” < 0. Hence we get u/(f) < 0 and thus u(r) =0 in R".

In the case (ii) C; # 0, let v(¢) = e “u(t), then we have

v (1) — <<%)2 — C2> v(r) £ 0.

By case (i), u is a zero function in R*. [

Lemma 24. If f(t) and g(t,r) are continuous with respect to their variables and
the limit im,_. 1 fo ) g(t,r)dr exists, then

(1) f(T)
lim g(t,r)dr = / g(T,r)dr.
0

t—T 0

2.2. Asymptotic behavior of global solutions

In this section, we shall consider asymptotic properties of global solutions of
the problem (2.1).

Theorem 2.5. If u e C*(0,T)N C°[0,T) is a classical solution of the problem
(2.1) with ug= 0 and u; = 0 then u must be null.

Proof. Since uy = u; = 0, by Theorem 2.1, we have
(m— D' ()" =

And by (2.4), we get

W (O] " (1) =

m p+1
1 cu(n. (2.14)

2p+m+1) 2l
—(m—l)(p—|—1) a(t)™. (2.15)

Let
sp:=sup{t = 0:a(r) < 1}. (2.16)

Since a(0) = a’(0) = 0, the supremum exists. By using (2.14)—(2.16), we obtain
a'(t) < (p+ m+ Da(t) in [0, s;]. Lemma 2.3 implies that a(¢) = 0 in [0, s;], Hence
u(t) = 0 and &'(¢) = 0 in [0, 51]. Continuing this process we get the nullity of u on
[0, 7). O

Remark. If E(0) =0 and &’(0) = 0, then uy = #; = 0 and u must be null.
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Theorem 2.6. If u € C*(0,00) N C°[0,00) is a classical solution of the problem
(2.1) with E(0)= 0 and a’(0) <0, then

t—00 2m

2m prm+ — 1 p—m+1
lim 7 a(t) = a(0)F (-pi’" + a'(O)) . (2.17)

Proof. From (2.12) with E(0) = 0, we get J'(¢) = 0. By integrating it once and
twice from 0 to ¢, we have
p—m+ 1 pmtl

J(0) = ~E=5—a(0) Fd (0) (2.18)
and

J(t) = J(0) — ’%nfla(oy”%“a'(oy (2.19)
or

a(t) = a(0)r w1 (a(O) - }%’jla’(o)z) ”"”. (2.20)

Since a’(0) <0, from (2.18) and (2.19), we see that J'(f) = 0 and J(¢) = 0
Vt = 0. And (2.17) follows at once from (2.20). O

2.3. Estimates for the life span of blow-up solutions

In this section, we shall find an upper bound for the life span of blow-up
solutions under two different cases: (I) £(0) < 0 and (IT) £(0) > 0. If the nega-
tivity of the solution happens, p should be a positive rational number. We say
that p is odd (even) if p ==, (r,s) = I, r is odd (even) and s is odd.

Case (I) E(0) <0.
Theorem 2.7. Let u € Cz(O, N CO[O, T, T <+ oo, be a classical solution of
the problem (2.1) with life span T. If E(0) < 0, then T is bounded. Furthermore,

we have the following estimates.

() If E(0) <0 and a’'(0) = 0, then

m(m dr
TLT = . 2.21
1 pfl’)’l‘i’l/() '"/OC—FE(O)F/; ( )
(i) If E(0) <0 and a’(0)<0, then
TLT: = mil /kz / - (2.22)
S p-m+1 \/oc—&—E \/oc—&—E CT

1) ;
where oo = it = Z@T++1 and k; = (W) :
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(iii) If E(0) = 0 and a'(0) > 0, then
2m  a(0)

r<ry=——"——=.
ST p—m+1a(0)

(2.23)

Proof. We first claim that a(0) > 0 under the condition E(0) <0. If not, then
a(0) = 0, that is, uy = 0. Thus
E0) = (m—1)]wy|" = 0.

This contradicts to E(0) < 0.
(1) By (2.4), we have the inequality

m(m — D) (1)]"*d"(t) = =2(p+ 1)E(0). (2.24)
Since E(0) <0, from (2.24), we have ¢"(t) = 0 Vit = 0. By the assumption that
a'(0) = 0, we then obtain ¢'(¢) = 0, Vi = 0 or J'(1) < 0, V¢ > 0. Therefore, by
taking mth root in (2.7) and simplifying the sum of the first two terms, and the

third term in the mth root to (m(p )’(”pill kﬁ " and (‘”m '”f),]n) E(0) respectively, we
have

‘(¢ - 1
SO _pom+l (2.25)
m [a+E(0)J (1) m
m—1

Now we claim that there exists 77 such that J(T}) = 0. Indeed, by (2.6), we
have J'(t) < 0. By integrating J”(¢) from 0 to ¢, we obtain

J@gﬂ@@ﬂg%ﬂigo.

Thus there exists a finite number 77 < 22— “,((%>) such that J(77) = 0.

p—m+l1 a
On the other hand, by integrating (2.25) from 0 to 77 and letting r = J(¢), we
get
1
/ _p-—m+ T,
0 (o + E(0)rF) m

Hence we get (2.21).

(i) Since E(f) <0, by (2.24), we see that a(f) is a nonnegative convex
function. By the assumption that a’(0) < 0 we can find a unique finite number
to, which is the critical point of @, such that

a(t) <0, Vtrel0,¢),
2 (ty) = 0, (2.26)
a(t) >0, Vte (ty,o00).
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Note that a(z) > 0. If not, then a(zy) = 0, thus
E(0) = E(ty) = (m — )|/ (t0)|" = 0.

This is a contradiction to the assumption E(0) <0.
Hence we see that a(t)>0 V=0, u'(t)) =0, E(0)=—ou(to)’*! and

J (tg)ﬁ = GrnEo = For BY the definition of J'(¢) and the positivity of a(¢),
(2.26) implies that

J'() >0, Vtel0,1),

J'(t) =0

J'(t) <0, Vte (t,00)

and from (2.6), we get

J) =" n”; 1 \/ " 1_ o+ E0)J(0)) Ve 0,1 (2.27)
and
J(t) = -2~ Z +1 (/(m 1_ 3 (e +E(0)J (1)) Vit € (ty, ). (2.28)

Since J(t) < 0 and J'(f) < 0 Vt > 1y, J is monotone decreasing in (zy, 00). Thus
there exists a 7 > ¢, such that J(T3) = 0.
By integrating (2.27) from 0 to 7y, we have

ka
=" / dr . (2.29)
p=mt b Joo /el (a+ E(0)rF)
And integrating (2.28) from ¢, to 75 we get

m /J(fo) dr
p=mA 1wy vfis (a+ E(O)r)

Hence by (2.29) and (2.30), we get (2.22).
(ii1) If E£(0) = 0, from (2.6) we get J”(r) = 0 V¢ > 0. By integration twice from
0 to ¢, we have

_p—m—&-la/(O)). (231)

Since a’(0) > 0, there exists 75 such that J(7%) = 0, (2.23) is then obtained. [

Case (II) E(0) > 0.
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Theorem 2.8. Let u € CZ(O, DN o, T), T<+ o0, be a classical solution of
the problem (2.1). If E(0)> 0, then T is bounded. Furthermore, an upper bound
for T is estimated.

(i) If ' (0)" > -2 E(0)a(0)%, then we have

m_lm

T<T;,= 2.32
=2 / T 232)
(ii) If |a'(0)[" = 2 E(0)a(0)* and
(a) if u; >0, then we have
m(m — 1)"% > dr
T<T:= ; 2.33
Sp—m+1Jy aut EQO)F (233)
(b) if uy <0, and p is odd, then we have
T<T:= 2.34
= / el (234)

(¢) if uy <0 and p is even, then there exist a critical point t| and a null
point zy of u such that

T<T;=z+Ts, (2.35)

where

fH= / - dr (2.36)
0 VAT ey

and

z =24y, (2.37)

R
here —u(t)) = (M)pﬂ~
(iii) 1f|a/(0)|m < mz—flE(O)a(())%’ p is even, and

(@) if a'(0) > 0 then there exist a critical point t, and a null point z, such
that
T<Ty=z+Ts, (2.38)
where

k3
t» = C(m, p) / dr (2.39)
J | (p

7m+1)m71kmrp+1
m 1
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and

ks I
Z :C(Whp) / dr +/ dr ,
J(0) vl _ (#)m’lk;",,pﬂ 0 = (p—:ﬂ)"’*‘krln,,pﬂ
(2.40)
here ks = (m) , Cm,p)=m ' (p—m+ l)m(m — l)ml(p—i- 1)%
and J(0) = k;*a(0)".
(b) if a’(0) <0, then there exists a null point z3 such that

T<T)=z+T; (2.41)
where
J(0) dr
2= Clmp) | 1 (242)
"y e

and C(m, p) is given in (iii)(b).

Remark. By (2.2) with u; =0, we have
2m
m—1

m2"
(m—1(p+1)

Hence the sign of |a/(0)" — -2~ E(0)a(0)? is determined by the sign of .

m—1

@' ()" — E(0)a(0)* = ! fuol".

Proof of Theorem 2.8. We set

T L m| ! m P—m+ 1

E@) = (m = DRIV O = 2= I (), (2.43)
then by (2.7), we have

E(t) = E(0). (2.44)

By some calculations, we have

B = n= k7 () a0 (wor - 550000

or

Foy— D

(i) From the assumption |a’'(0)[" > mz—flE(())a(O)%, (2.44) implies that E(¢) > 0.
And by (2.45), we get
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ut’' >0 vr=0. (2.46)
Hence by (2.45), we have
~ ~ —m+1D)"  mp—m+1
E() = By = Bt D et L)y
m"(p+1) (p+ 1)°E(0)
By (2.5) and (2.46), we get

2
W (0)]"7d (1) = " (0) + = E(0)r. (2.47)

m—
Now we claim that @’(0) > 0. Suppose not, then a'(0) < 0. From (2.47), we
see that a'(f) = 0 for large ¢. Let 59 > 0 be the first number such that a'(sg) = 0,

by (2.5), we get
(m—1)(p+ D)[ud (6)|"d (1) = 2(p+1)E(0) (¢ = 50)
+2(,Bfl)(p—m+l)/ u(rY ™ dr Yt = 5.

S0

(2.48)
By (2.46), we have
a(t) <0, forze(0,s),
{ a/(s()) = 07
a(t) >0, fortée (so,00),
and we also have a(sg) > 0 by (2.46). Hence, u'(so) = 0. Therefore, by using (2.2)
and (2.46) again, we obtain that
(p+ 1)E(0) = —mu(so)"" < 0.

This contradicts to the assumption E(0) > 0. Hence we get «’(0) > 0. By using
the same arguments as in the proof of Theorem 2.7, we get (2.32).

(ii)-(a) In this case, we have uy = 0, hence a(0) = 0 and a’(0) = 0.

We shall claim that a’(¢) > 0 V¢ > 0. Suppose not, there exists some ¢* >0
such that a'(r")=0. Let 7> 0 be the first number such that &'(f) =0 and
u(?) > 0 in (0,7). By the positivity of u; and (2.5), we have

(m—D)(p+ D' (0)"d (7) ]
=2(p+ DEO)4+2(—1)(p—m+1) / u(r)’ dr. (2.49)

The left hand side of (2.49) is zero while the right hand side is positive. It leads
to a contradiction.
Hence J'(f) <0 Vi > 0. By (2.7), for any ¢ > 0, we have

J(t) = — \/ @) — %E(O)U(Z)” —J@)), V=i (2.50)
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and

: /~mi(p—m+1)m ~':'(€:+11)) m(p_m+1)m
lth(} <J ()| 7m’”(m - E(0)J(¢) =D (2.51)
By (2.50) and (2.51), (2.33) is obtained.

(ii)-(b) From (2.45), since p is odd, we have (2.46). By similar arguments as
in (ii)-(a), we can get (2.34).

(ii)-(¢) We first claim that there is a critical point of u, that is, u is not strictly
monotone decreasing in [0, o0). Suppose not, since #y = 0 and u; <0 and from
(2.2), we get

1

(G yap) <1

From (2.2), we also have

V

0. (2.52)

o

CEN

By integrating above equality from 0 to ¢ and using (2.52), we have

u(t™ Ve =0

u'(t) = —

< m — 1 FH _p—m+l

t _ p+1

U ) / \/17
<o 1’“(}’}1 _ ])p+l ppzrl /

Since ) g =T (1+ )T (1 =) < oo, it leads to a contradiction for large .
Therefore u must have a critical point #; > 0.
To calculate the critical point ¢;, we start from (2.2) and have

mm(ﬂgyﬁcz_gﬁﬁy%

By integrating (2.52) from 0 to #;, we get the identity (2.36).
Next we show that u has a null point. Since p is even, u’ is monotone
increasing for ¢ > #;. Suppose that u(¢) <0 for all £ > 0, By (2.2), we have

/u(h) dr
—u@ 2 |ug|" — ﬁrp+l

The above integral is less than a constant. Hence it is impossible for sufficiently
large ¢.

=t—1. (2.53)
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From (2.53) we get

—u(ty) dr
Z1=10h +/ ~
0 ’\”/ |M1| - moil

Since u(z;) = 0, u'(z;) > 0 and E(0) > 0, then (2.35) holds by using the result in
case (ii)-(a).

(#if) Let u( ) = kiJ (1), by (2.6) u satisfies (1.1) with replacmgp by f — L. Let
a(t) = a(t)* and J(¢) = a(t) %=1, we have a(¢) = k3J (1), and

o/ m _ptl
a (O) = —k% (p—]n—i—l)a(o) p—m+lg (0)

Since |@'(0)|" < 25 E (0)a(0)? and p is even, by the above remark after (2.42),

we have uy < 0. Thus

= 2t.

B(0) = —r =MD

RS

In the case (iii)-(a), since a’(0) > 0, &' (0) < 0. By Theorem 2.7, there exists z,
such that J(z;) = 0 and the assertions (2.39) and (2.40) follow at once. Since
u(z,) = 0 and u'(z) > 0, by Theorem 2.8 in [z, T), we have (2.38).

In the case (iii)-(b), we have &' (0) > 0. By similar arguments as in (iii)-(a),
we obtain (2.41). O

2.4. Blow-up rates and blow-up constants

Theorem 2.9. Let u e C*(0,T) N C°[0,T) be a classical solution of the problem
(2.1). If one of the following assumptions holds:

(i) E0)<0.
(i) E0)=0, a'(0)> 0.
(iii) E(0)> 0.

Then we have the blow-up rates 7m+1’ i*;’:ﬁ and m(”+1 Lof a,d’, and |u'|""*d"
respectively and the blow-up constants K, K>, K5 of a a and |u'|"%d" respec-
tively. More precisely, we have, for i € {1,2,3,4,5,6,7,8,9},

lim (7; — Fa(t) = K, (2.54)

t—T*

lim (77 — t)p g '(t) = K>, (2.55)

t—T;
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and

lim (77 — 0F 51w (0" (1) = K, (2.56)
where

K, —mlzﬂ('"ﬂ)(m—l) St (p—&-l)ﬁf—rzﬂﬁ(p—m—kl)_rz"—n’l‘”,

Ky 1= 2557 (p + 1)7 (m — 1) (p — m + 1) 501,
and

mip+1)

Ks = 2(p+m+ Dm 75T (p+ 1)rsmi(m — 17t (p — m + 1) 5o,

Proof. (i) If a’(0) = 0, from (2.25), by using (2.21) we can get

0 d - 1
/ ! _PmmE gy (2.57)
o it @By ™
Let (T} — t)s =rin (2.57) and let  — T}, we have
I J@ _p—m+ 1 (2.58)

t—>T 1'"/ T* —t m
(2.58) is equ1valent to (2.54) for i = 1.
If a’(0) < 0, by integrating (2.28) from ¢ to 75, we obtain

/ _pomtl (Ty—1) Yt =1 (2.59)
V=5 oc-l—E(O) ) m

By the similar arguments as above, we get (2.54) for i = 2.
Furthermore, from (2.25) and (2.28), we find

P e
limJ'() = — 2= mEm T (2.60)
= o+ 1)

Therefore for i = 1,2, we have
h@dﬁ%%ﬂ)—bm@+w (1)
t—T%

by using (2.54) and (2.55) is obtained.
From (2.54) and (2.55), we get

1) mp _2m__ _2m __ _ptDm
llm(T* _ t)p W (1) = e (p 4+ 1) (m — 1)t (p — m 4 1) 7.

(2.61)
Combining (2.4) and (2.61), we obtain (2.56).
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(@) If E(0) =0 and a’(0) > 0, by using (2.31), we get

+m+ 1 T pemiT
a(t) = a(0)F 5 (]% ’(0>) T, (2:62)
m

Therefore, (2.54)—(2.56) with i = 3 follow at once from (2.62).
(iii). The estimates (2.54)—(2.56) for i € {4,5,6,7,8,9} can be achieved as in
case (i), so we omit the proofs. [

Theorem 2.10. Let u € C*0,T) N C°[0,T) be a classical solution of the problem
(2.1). If one of the following assumptions holds:

(i) E(0)>0, |a'(0)]" = -2 E(0)a(0)%, u, <0 and p is even.
(ii) E(0)>0, |a'(0)]" < -2~ E(0)a(0)%, a'(0) > 0.
" < 22 E(0)a(0)?, a'(0) < 0.

(i) E(O) > 0, [ (0)]" < 2

Then there are null points z;, i € {1,2,3} such that

lim a () (z; - Hn’= <j(_°)l> (2.63)
and
lim /(1) (= - =2 < rf (_0)1>"’ (2.64)

Proof. For i=1, by (2.36) and (2.37) we use the same arguments as in the
proof of Theorem 2.9.

For i= 23 as in the proof of Theorem 2.8 (iii), we set u(t) = k1J(¢),
a(t) = u(7)*. By Theorem 2.9, we get

2p—mt1) 2(p—m+1) 2p-m+1) 2p—m+1) 2m—1)(p—m+1)

lima(t)(zi—t) = =m— = (m—1) = (p+1) = (p—m+1)

1—z;

(2.65)
Thus (2.63) follows at once.
By Theorem 2.9 again, we also have
—2(p—m+1)
il E -z
lim(a(6)(z — )2z — o) 'd () = —2 (%) . (2.66)
1—zj —

By (2.63) and (2.66), (2.64) is obtained. [
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2.5. Properties of the life span of T} and T}
In this section we give some properties of the life span of 77 and T73. Since

T} depends on four variables, uy, u;, p and m, we write T (uo, u1, p, m) instead of
T1, and from (2.21), we have

. B mu(m — 1)%(]?“‘ 1)% —m L
T (ug, ur, p,m) = ( (p—m+1) ((p+1)E(O)) )

" pomtl oyl
(—2LE(0)) P Da(0)™ 2m dr

(2.67)

m mip+1)
1 — pp—m+l

We see that

(i) T;(uo,uy,p,m) — oo as p —m + 1 — 0 for each fixed uy, u; and m.
(11) TT(”O»”hp’ m) - T;(u07ul7p7m) as E(O) - 0

In particular, when u; # 0, and either uo < 0 and p is odd, or uy > 0, we have
a'(0)=0and E(0) = ;T’”lu{)’“ < 0. By some calculation, we also have

B . _ F(m”—ll)r(ﬁ;mntl)
T} (1o, 0, p, m) = m (m — 1% (p + 1)__mlu(;p—m A \medh)
P

Corollary 2.11. For fixed m, the life span Tj(uo,0,p,m) has the following
properties:

(2.68)

() If ugp = 1, then the life span T (uy,0,p, m) is decreasing in p € (m — 1, 00).
(iiy There exists a constant uj, such that T}(uy,0,p,m) decreases in p for
uy <up < 1
(#it) If 0 < ug < ujy, then there exists a p* such that T} (uy,0, p, m) is decreasing in
(m — 1,p") and T} (up,0, p,m) is increasing in (p*, o).

Proof. Note that

d ., m's (m — 1)%(]9—!- 1)%;,77”71“
a_pTl(u0707p7m)_< p_m+1
1
/ fl(u07p7s) ds , (269)
0 m m(p+1)

1 — Sp—m+l
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where
m(p+1)
1 1 In ug sp-mil Ins
Uo, ps =
Sfi(uo,p,s) = m(p+ 1) p_m—|-l m 1,S,’,"f‘f"+lf
for s €[0,1].

Thus all properties in (i)—(iii) follow at once from the properties of f;. [

To find the properties of 73, we start from (2.23), after some computations,
we have

mu
T5(uo, ur, p,m) = m (2.70)

Since E(0) = 0, we have |u)| = {/-2 uo If uy > 0 and u; > 0, from (2.70), we
obtain

pm+1

T3 (g, pym) = m'5(m — 1)i(p + 1)7(p—m + 1) "y " .

Corollary 2.12. Let m be fixed. If uy >0, u; > 0, then the life span T%(ug, p, m)
has the following properties:

(7) For uy = 1, the life span T;(uy, p, m) is decreasing in p.
(7)) There exists a constant uj, such that for uy, < uy < 1, the life span T3 (ug, p, m)
is decreasing in p.
(iif) For 0 < uy < uj, there exists a p* > m — 1 such that T(ug, p, m) is decreas-
ing in (m — 1,p") and T%(uo, p, m) is increasing in (p*, c0).

Proof. Note that

0 e 1 1 _poml
o Ti(ug, p,m) = m'= (m — 1) (p+ 1)"(p — m+ Dug " f(uo, p),
where
1 1 Inu
fz(uo,P) = 0

mip+1) p—m+1 m

Hence from the properties of f>(ug,p), we have our results. [

3. On the system of differential equations

In this section we shall consider the initial value problem for a system of
second order ordinary differential equations of the form
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u// = f(u7 U)7
v = g(u,v), (3.0)
u(0) =up, ' (0) =uy,
v(0) = vy, V(0) =0y,
under the following assumption:
of _0g
=5 3.2
ov  Ou’ (3.2)

where f and g are of class C'.
Remark 1. For brevity, we only consider a system of two equations. In fact, a
system of k (=2) equations can be similarly studied under the Hamiltonian

assumptions.

Hereafter we shall discuss the properties of blow-up solutions by using the
energy method.

3.1. Fundamental lemmas

Lemma 3.1. Let (u,v) be a classical solution of the problem (3.1) with the life
span T. Define the energy function E(t), t = 0 by

E(f) =/ (1)" + V' (t)* — 2M (u, v). (3.3)
Then

E(t) =E0) forallt =0, (3.4)
where

Mu,v) = /O " (s, 0)ds + /0 ' 4(0,5)ds. (3.5)

Proof. From (3.5) we see that 2/ = f(u,v) and 24 = g(u,v). By differentiating
(3.3) and using (3.1), we get E'(¢) = 0. Therefore E(z) = E(0) forallz > 0. O

Hereafter, we assume that there exists some ¢ > 0 such that

uf (u,v) +vg(u,v) = 22 + 1)M(u,v) for u,v € R. (3.6)
For example, when f{u,v) = «”v"*" and g(u,v) = "1™, (3.6) is satisfied when
q=5p>0.
Let

a(t) = u(t)’ +0(¢)> and J(t)=a(r)?, ¢

WV
o
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Lemma 3.2. Suppose that (u,v) is a classical solution of the problem (3.1), then
we have the following identities.

() 30— (W0 + V() = wl)f (), v(0) + o)) v(0). (37)

(i) J"(1) < 2q(2q + DE(O)J ()T, ¢ > 0. (3.8)

@iif) If J'(t) < 0 for t = 0, then

2g+1

J(6) = J(0)2 — 42E(0)J(0)T + 42 E(0) (1) T (3.9)
and if J'(t) = 0 for t = 0, then

2g+1 2g+1

J'(1)* < J(0)* —442E(0)J(0) T +44°E(0)J (1) 7 . (3.10)
Proof. (i) By differentiating a(¢) twice and using (3.1), we obtain (3.7).
(ii) Since J(¢) = a(z)" ¢, then
J'(0) = —ga(0) 7 (a0 (1) = (g + 1) (1)), (3.11)
By Cauchy-Schwartz inequality, (3.6) and (3.7), we have
a(t)d"(t) — (g + 1)d' (1) = —2(2q + 1)a(t)E(0). (3.12)
Combining (3.11) and (3.12), we obtain (3.8).

(iii) If J'(r) <0, multiplying (3.8) with J'(r) on both sides and then
integrating from 0 to ¢, we have (3.9). Similarly, we also get (3.10) if
J( =0 0O
3.2. Estimates for the life span

Theorem 3.3. Let (u,v) be a classical solution of the problem (3.1) with the life
span T. If E(0) < 0 then T is bounded. Furthermore,

(i) if E(0) <0 and a'(0) = 0, then

T < T} = min (“ (3.13)

(0)g 1 /J(O) dr
a(0)°2q Jo ks + EQO)%s )’

where

— gq(0)" %t a,(o)z — an = 29 +1.
ks = a(0) <4a(0) E(O)) d ks pat (3.14)
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(i) if E(0) <0 and a’(0) <0, then

1 J(t*)
T < T;:z_/ dr 7 (3.15)
9o\ J—E0)a(0) ) + E(O)
* a0 .
where t* = m,
(iii) if E(0)= 0 and a’(0) > 0, then
a(0)q
<Ti= . .
T<Ti= 00 (3.16)

Proof. Note that ¢(0) > 0 under the condition E(0) < 0. By (3.7) and (3.3), we
get

ad'(t) = —2(2¢ + 1)E(0). (3.17)

As in the proof of Theorem 2.7, we get the estimates of the life spans in each
case. [J

Example 3.4. Let (u,v) be a classical solution of the particular system

u' = uPertt

V" = vyl

(3.18)

with the life span T, where p > 0. We have the following results:

Case (1) E(0)<0.
(i-a) If ¢'(0) = 0, then

J(0)
rer—ma{la0 Lo ]
pd0)'p o ky + E(0)r%s

(i-b) If @’(0) < 0, then

r<r— l /k6 dr
P B a0+ B
+1 /kﬁ dr -
P L0 [_E(0)a(0) ) + E(O)

Case (i1) E(0) =0.
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If 4’(0) > 0, then
. _2a(0)
S pa(0)
Case (iii)) E(0) > 0 and u, v are of the same sign.
(iii-a) If ug, vy > 0, then we have

1 /O dr
T < TZZ—/ _— .
P Jo \/k1+E(O)Fk5

(iii-b) If ug = v9 = 0, u; > 0 and v; > 0, then we have

T<T*_1/°° dr
S 1—|—p2E(O)rkS.

(ii-c) If ug=v9=0, u; <0, v; <0 and p is odd, then we have

Tgrzzl/ &
P Jo 1 + p2E(0)rks

where E(0) = (u} + v}) — ﬁuﬁ“v{)’“, a(0) = u3 +v3,  a'(0) = 2(uou; + vovy),

1
_p _ a 2 CAp Te
J(0) = a(0)%, ky = a(0)""*Y (4% fE(0)>, ks =22 and kg = (m)

Proof. In the case E£(0) < 0, we apply Theorem 3.3 , and in the case E(0) > 0,
we follow the similar arguments as that of Theorem 2.8 to get the
assertion. [
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