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Abstract Within a co-evolutionary framework of reputations, strategies and social
norms, we study the role of punishment in the promotion of cooperation. Norms differ
according to whether they allow or do not allow the punishment action to be a part of
the strategies, and, in the case of the former, they further differ in terms of whether they
encourage or do not encourage the punishment action. In such a framework, depending
on the applied social norm, players are first given different reputations based on their
employed strategies. Players then update their strategies accordingly after they observe
the payoff differences among different strategies. Finally, over a longer horizon, the
evolution of the social norms may be driven by the average payoffs of all members
of the society. The strategy dynamics are articulated under different social norms. It
is found that costly punishment does contribute to the evolution toward cooperation.
Not only does the attraction basin of the cooperative evolutionary stable state become
larger, but the speed of convergence to the CESS also becomes faster. These two
properties are further enhanced if the punishment action is encouraged by the social
norm.

T. Yu · H. Li
School of Systems Science, Beijing Normal University, Beijing 100875, China
e-mail: hli@bnu.edu.cn

T. Yu · S-H. Chen (B)
AI-ECON Research Center, Department of Economics,
National Chengchi University, Taipei 11605, Taiwan
e-mail: chen.shuheng@gmail.com

T. Yu
School of Computer and Information Science,
Southwest University, Chongqing 400715, China
e-mail: ytkui@swu.edu.cn

123



T. Yu et al.

Keywords Social norm · Costly punishment · Cooperative evolutionary
stable state · Attraction basin · Convergence speed

1 Introduction

Cooperation is of utmost importance to human society, and our civilization is based
upon the cooperation between genetically unrelated individuals in large groups (Axel-
rod 1984). This is obviously true for modern societies with large organizations and
nation states, but it also holds for hunter-gatherer societies with sophisticated forms
of hunting, warfare, and food sharing (Fehr and Fischbacher 2003). However, coop-
eration leads to a tension between what is best for the individual and what is best for
the group. A group does better if everyone cooperates, but each individual is tempted
to defect. Since neither the naive natural selection assumption in biology nor the pure
self-interested individual assumption in economics can lead to cooperation directly
(Olson 1965; Ostrom 2000; Henrich et al. 2005; Nowak 2006), there need to be some
specific mechanisms for the emergence of cooperation in a population (Taylor and
Nowak 2007).

Recently, the effect of costly punishment on cooperation has received considerable
attention from various disciplines.1 Costly punishment, which is also referred to as
altruistic punishment (Fehr and Gächter 2002) or sanctioning (Falk et al. 2005) in some
of the literature, means that people have the propensity to incur a cost in order to punish
a social norm violator (Henrich et al. 2006). It is also a part of strong reciprocity which
is a combination of voluntary cooperation in regard to cooperative, norm-abiding
behaviors, and punishment in the case of non-cooperative, norm-violating behaviors
(Gintis 2000; Fehr et al. 2002).

In the light of the behavioral experiments (Fehr and Gächter 2000, 2002; Gürerk
et al. 2006; Rockenbach and Milinski 2006; Henrich et al. 2010) and ethnographic
evidence (Knauft et al. 1991; Boehm 1993), costly punishment is prevalently seen
(Falk et al. 2005). Furthermore, cross-cultural evidence in complex large-scale and
small-scale societies around the globe (Oosterbeek et al. 2004; Henrich et al. 2005,
2006; Marlowe et al. 2008) suggests that the punishment of selfish behavior is “human
universal” (Gächter and Herrmann 2009).

However, the role of costly punishment in promoting cooperation is ambiguous.
In behavioral experiments, costly punishment has been shown to effectively enforce
cooperation (Fehr and Gächter 2002; Fehr and Fischbacher 2003; Gürerk et al. 2006;
Rockenbach and Milinski 2006), while some other experiments indicate that punish-
ment is less efficient when the costs associated with punishment exceed the gains
from increased cooperation (Dreber et al. 2008; Milinski and Rockenbach 2008;
Egas and Riedl 2008; Wu et al. 2009). In particular, the recent theoretical work by

1 There is a great amount of literature on this topic, for instance: Fehr and Gächter (2002), Boyd et al.
(2003), Fowler (2005), Rockenbach and Milinski (2006), Henrich et al. (2006), Henrich (2006), Gürerk
et al. (2006) and Ohtsuki et al. (2009) in general journals; Henrich and Boyd (2001), Gintis (2000) and
Bowles and Gintis (2004) in biological journals; Fehr and Fischbacher (2004) in cognitive science journals;
and Ostrom et al. (1992), Fehr and Gächter (2000), Andreoni et al. (2003), Falk et al. (2005) and Bochet
et al. (2006) in economic and other social science journals.
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Ohtsuki et al. (2009) shows that costly punishment can not lead to an efficient outcome
in most situations, and a better alternative is to withhold help from defectors rather than
punish them. This series of work makes the noticeable existence of costly punishment
even more puzzling, as Milinski and Rockenbach (2008) point out, “costly punishment
remains one of the most thorny puzzles in human social dilemmas (ibid, p. 298)”.

One possible reason for such a puzzle may be that these studies only focus on a short
period of experience and omit the long history of cultural evolution. Obviously, the
experimental works can only obtain the spot performance of subjects with cultivated
culture, but not the process of the cultural cultivation of subjects. On the other hand,
the analytical work of Ohtsuki et al. (2009) only analyzes the equilibrium (i.e., the
Cooperative Evolutionary Stable State, CESS) but not the route to the equilibrium
when the conclusion that costly punishment is less efficient is reached. If we turn our
attention to the states far away from the equilibrium and study the route of the co-
evolution of the social norms and individual strategies, costly punishment may play a
different role in promoting cooperation.

In general, the research question that interests us can be endowed with a three-
level evolutionary framework, starting from the level of individual reputation, then
extending to the level of individual strategies, and finally coming to the level of social
norms. This three-level evolutionary framework can extend the evolutionary selection
within a society (Ohtsuki et al. 2009) to the evolutionary selection among societies.
Consider a population of competing societies. To survive, each society has its social
norm. This norm will determine the reputation of each individual based on how he/she
behaves towards others. In the context of the donor-recipient game (to be detailed in
Sect. 2), each individual when playing the role of a donor can take one of the following
two or three actions toward the randomly matched individual (the recipient). The two
basic actions are to cooperate (to give) and to defect (to ignore); some societies allow
one additional action, i.e., to punish.

Under a given social norm, each individual has kept a reputation, either a good one
or a bad one, and this reputation will be updated each time he plays the role of donor,
depending on what he does and whom he meets. Norms can be different, depending
on whether the society explicitly allows the punishment action. If it does, norms can
be further differentiated by the way they treat the punishment action. Some norms do
not care about it, but some norms require donors to punish ‘bad’ recipients and those
who fail to comply with this requirement may earn for themselves a bad reputation.

In addition to the reputation, each individual also has a strategy which informs him
of what to do (cooperate, defect, or punish) given the characteristic of the matched
recipient (good reputation or bad reputation). Each individual will learn and update
their strategies from the feedbacks received from the applied social norm in order
to improve their fitness. With respect to a specific social norm, the strategies which
can help individuals to gain higher payoffs will then become popular and vice versa.
This within-society competition determines the evolution of the distribution of the
strategies used in the society.

Over a longer horizon, due to the competition among societies, societies may evolve
their social norms by comparing the average payoffs of all the social members that
different social norms can provide. Such a social norm evolution may take the form of
social transformation, a civil war, an external war, colonization, etc. This evolutionary
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framework shares the same idea as the cultural group selection of Bergstrom (2002) and
Henrich (2004), for a social norm may be regarded as a kind of culture (Young 2008).

In such a framework, the individual’s strategy is adaptation to the social norm, and
ultimately the surviving social norm determines how often the punishment actions are
taken. If the fittest social norm is the one with a punishment option or one that even
encourages punishment, individuals from such a cultural background will naturally
exhibit the tendency to punish. This argument is also supported by cross-cultural exper-
iments which demonstrate that punishments are substantially shaped by the cultural
background across a range of diverse societies (Gächter and Herrmann 2009).

Instead of combining all levels of evolution into one equation as in Henrich (2004),
we only model the dynamics of the evolution of individual strategies under several
fixed social norms. This is because there are only a few social norms that can fos-
ter cooperation (Henrich 2004). We select three typical social norms including the
non-punishment, punishment-optional and punishment-provoking social norms, and
explicitly model the evolutionary dynamics of individual strategies under these three
social norms. By comparing the cooperation propensity and average payoff in the
dynamics under different social norms, we can gain a clear insight into the driving
force behind the evolution of social norms.

It is found that costly punishment does contribute to the evolution toward cooper-
ation. Once individuals have the choice of punishment, not only does the attraction
basin of the cooperative evolutionary stable state (CESS) become larger, but also the
speed of convergence to the CESS becomes faster in the social norms with a punish-
ment option. These two properties are further enhanced if the punishment action is
encouraged in the punishment-provoking social norm.

This result implies that costly punishment is necessary in at least two situations.
The first is that where there are too many defectors in a society, for it will be stuck in a
social dilemma in which defection is the best choice for each individual in the case of
a non-punishment or even punishment-optional social norm and it can only struggle
out of the social dilemma by encouraging punishment through providing individuals
with the incentive to punish the defectors. The second is that, where the society is not
sufficiently patient and wishes to reach the highly cooperative state quickly, a social
norm with punishment or which even encourages punishment can increase the speed
at which the cooperative evolutionary stable state is approached.

The remainder of the paper is organized as follows. Section 2 presents a model of
an evolutionary donor-recipient game, which differs from the work of Ohtsuki et al.
(2009) in that we explicitly model the dynamics of the strategy evolution. Section 3
compares the attraction basin of CESS and the speed of convergence to the CESS for
three social norms. Section 4 gives the conclusion and discussions.

2 Model

2.1 Donor-recipient game

At each small time interval, a fraction of players is randomly sampled from a society
with a large population to form pairs. In each pair, one player acts as a donor and the
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other player as a recipient. The donor has two basic behavioral choices: cooperation
(C) and defection (D). Cooperation involves a cost c for the donor and a benefit b
for the recipient. Defection has no cost and yields no benefit. A donor may also have
the choice of punishment (P) for some social norms. Punishment has a cost α to the
donor and a cost β to the recipient. Here c, b, α and β are all positive real numbers.
Each individual is endowed with a binary reputation, which is either good (G) or
bad (B). The donor can base his decision on the recipient’s reputation. After each
interaction, the reputation of the donor is updated according to the social norm of
the population, while the reputation of the recipient remains the same. The reputation
update process is susceptible to errors. With probability μ, where 0 ≤ μ ≤ 0.5, an
incorrect reputation is assigned, or, with probability 1 − μ, the correct reputation is
assigned. The reputation of each individual is public information.

2.1.1 Strategies

Each player has an action rule (or strategy), s, which depends on the recipient’s rep-
utation. A player with an action rule s takes the action s(G) toward a good recip-
ient, and the action s(B) toward a bad one. Each of s(G) and s(B) can be either
C , D, or P . For social norms without a punishment option, there are 22 = 4 pos-
sible action rules: s(G)s(B) = CC, C D, DC, DD. For social norms with pun-
ishment being available, there are 32 = 9 possible action rules: s(G)s(B) =
CC, C D, C P, DC, DD, D P, PC, P D, and P P . In the present study, we only con-
sider a subset of these nine strategies, namely, CC, CD, CP and DD. These four
are interesting and sufficient if one is only interested in the social norms which can
facilitate cooperation, as the ones to be introduced in Sect. 2.1.2.

2.1.2 Social norms

A social norm n is used for updating the reputations of players. A donor who has taken
the action X (X = C, D, P) toward a recipient whose reputation is Y (Y = G, B) is
assigned a reputation based on the social norm n, n(Y, X)(= G, B). Social norms
of this type are based on a ‘second-order assessment’ (Nowak and Sigmund 2005),
i.e., they depend on both the action of the donor and the reputation of the recipient.
Figure 1 presents three typical social norms that we will study in this work with the
related ordinary strategies.

Figure 1a represents the case where to punish a recipient is not feasible. A donor
can only choose to cooperate or to defect. One social norm corresponding to this
case is GGBG. Under this social norm, cooperators in relation to both good and bad
recipients are assigned a good reputation. Defectors in regard to a bad recipient are
also assigned a good reputation; however, defectors in regard to a good recipient are
assigned a bad reputation. For convenience, we shall call this norm the simple social
norm.2

2 In addition to the matrix representation, social norms can also be represented by finite-state automata
(see Fig. 8 in “Appendix A”).
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Fig. 1 Typical social norms (a simple, b weakly augmented and c strongly augmented) with the related
ordinary strategies. A social norm is used to update the donor’s reputation taking into account both the
donor’s action (X ), cooperation (C), defection (D), or punishment (P), and the recipient’s reputation (Y ),
good (G) or bad (B). A strategy specifies the action (C, D, or P) that the donor should take given the
reputation of the recipients, G or B

Figure 1b represents the case where to punish a recipient is an option. The social
norms corresponding to this case extend the previous one by assigning a reputation
value to the donor who chooses to punish the recipient. One example is GGBGBG. This
norm, in addition to the simple social norm GGBG, further assigns a good reputation
to the donor who punished a bad recipient, but a bad reputation to him/her if the one
being punished is a good recipient. Again, for the convenience of further discussion,
we shall refer to these kinds of norms as augmented social norms.

Figure 1c GGBBBG gives another example of the augmented social norms. It differs
from the previous one by the value assigned to the defection action toward the bad
recipient. The previous norm assigns a good reputation for this action, but this norm
assigns the opposite. Since it is free to defect but costly to punish, the previous norm
(GGBGBG) results in a weaker incentive to punish the bad recipient than the current
norm (GGBBBG). Because of this subtle difference, we shall further distinguish the
augmented social norms into the weakly augmented ones and strongly augmented
ones; weak and strong are in the sense of their implied incentive for punishing the bad
recipient.

In sum, three social norms are studied in this paper. There are simple, weakly aug-
mented, and strongly augmented social norms. The main driver along this extension
is the social emphasis on punishment. We will explicitly model the dynamics of indi-
vidual strategies under these three social norms to study the role of punishment in
promoting cooperation.

2.2 Evolutionary dynamics of strategies

In a society with social norm n, individuals interact with each other. Each of them has
his own strategy that specifies what action he will take toward recipients with a good
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or a bad reputation. Once a donor takes an action, a new reputation is assigned to him
according to the social norm n. It is this reputation that will determine what action
others may take toward him.

Individuals will learn and update their strategies to obtain a higher individual payoff
by imitating a better strategy. Sometimes a player is given an opportunity to change his
strategy. He randomly samples a player and compares the difference in payoffs. If a
sampled player has a greater payoff, then the sampling player will imitate the sampled
player’s strategy with a probability proportional to the difference in payoffs. Other-
wise the sampling player will retain the same strategy. Hence, similar to replicator
dynamics, strategies with higher payoffs (fitness) tend to have more offspring.

In this model, the payoff of a strategy relies not only on the relative size of the
offspring (the fraction) of each strategy, but also on the fraction of good individuals,
individuals with a good reputation. Because the reputation of individuals is ever chang-
ing, it is hard to provide a proper calculation of the payoff of a strategy. In a similar
situation, Ohtsuki and Iwasa (2007) calculate the expected payoff of a strategy as the
discounted total payoff along the infinitely long future of reputation evolution with
the initial reputation of all individuals being good. However, there are two problems
with this method: the first is that the calculation of the payoff along the infinitely long
future is based on the fixed strategies frequency, while the individual strategy is also
evolving although relatively slowly; the second is that arbitrarily assigning a good
initial reputation to all individuals is not suitable, for the individual reputation should
be inherited from one period to the next period.

Fortunately, we find that for a fixed strategy distribution (the relative size of each
strategy), the reputation distribution (the frequencies of individuals with good and bad
reputations) will quickly converge to a stable state mainly because the reputation is
the instantaneous result of a donor’s action.

We assume the following timeline for the evolution of the reputation distribution
as well as the evolution of the strategy distribution. First, for a small time scale,
only the reputation distribution evolves, while the underlying strategy distribution is
fixed. This arrangement allows the reputation distribution to converge to a steady-state
distribution (Sect. 2.2.1) and the expected payoff (fitness) of each strategy with respect
to this steady-state distribution can then be derived (Sect. 2.2.2). Second, in a large
time scale, the strategy distribution also evolves (Sect. 2.2.3). To distinguish between
the two, we shall call the former the short-term dynamics and the latter the long-
term dynamics. In the following, we shall first detail the operation of the short-term
dynamics.

2.2.1 Stable reputation distribution

Given a fixed strategy distribution, a stable reputation distribution can be derived.
For the simple social norm (GGBG), there are three strategies CC , C D and DD,
with corresponding frequencies denoted by x1, x2 and x3, and x1 + x2 + x3 = 1.
The percentages of players with good reputations in CC , C D and DD players are
denoted by g1, g2 and g3, respectively. Thus the percentage of good players in the
entire population is g = x1g1 + x2g2 + x3g3.
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Fig. 2 Reputation dynamics of individuals adopting different strategies for the simple social norm (GGBG)

Figure 2 presents the reputation dynamics for CC , C D and DD players. A CC
player has a 1

2 chance of being a donor, and takes cooperation action regardless of
the reputation the recipient has, and this tends to give him a good reputation. Due to
the assignment error, he obtains a good reputation with probability 1 − μ and a bad
reputation with probability μ.3 The CC player also has a 1

2 chance of being a recipient;
his reputation does not change and remains at the current frequency g1. So the new
frequency of a good reputation among CC players is g′

1 = 1
2 g1 + 1

2 (1 − μ).
Similarly we obtain the new frequency of a good reputation among C D and DD

players as g′
2 = 1

2 g2 + 1
2 (1 − μ) and g′

3 = 1
2 g3 + 1

2 (1 − g)(1 − μ) + 1
2 gμ (See B.1

for the details). Since g = x1g1 + x2g2 + x3g3, we can solve the linear recursion and
obtain the stable frequency of good reputation among players adopting each strategy,

g∗
1 = g∗

2 = 1 − μ, g∗
3 = (1 − μ)

[
1 − 1 − 2μ

1 + (1 − 2μ)x3

]
.

Furthermore, the good reputation frequency among the entire population is

g∗ = 1 − μ

1 + (1 − 2μ)x3
.

For the weakly augmented norm (GGBGBG), we can also obtain the stable repu-
tation frequency among CC , C D and C P players g∗

1 = g∗
2 = g∗

3 = 1 − μ, and the
stable good reputation frequency among DD players as g∗

4 = (1−μ)[1− 1−2μ
1+(1−2μ)x4

].
The good reputation frequency among the entire population is g∗ = 1−μ

1+(1−2μ)x4
(see

“Appendix B.2” for a derivation).
For the strongly augmented norm (GGBBBG), the stable good reputation frequen-

cies among CC and C P players are g∗
1 = g∗

3 = 1 − μ, while those of C D players
are g∗

2 = μ + (1 − 2μ)g∗ and those of DD players are g∗
4 = μ. The good reputation

frequency among the entire population is g∗ = (1−μ)(x1+x3)
1−(1−2μ)x2

(see “Appendix B.2” for
a derivation).

3 In the literature, this is known as the reputation error (Ohtsuki and Iwasa 2007). Errors and mistakes are
prevalently seen in human behavior. “There will be mistakes in perceiving what the other player does, and
mistakes in carrying our one’s reply. (Sigmund 1993, p. 192)” Hence, the donor has made a donation, but
with a small probability of misunderstanding, it was not publicly acknowledged.

123



Social norms, costly punishment and the evolution of cooperation

Fig. 3 The calculation of the expected payoffs of strategies for the simple social norm (GGBG)

2.2.2 Fitness of strategies

We can then calculate a strategy’s expected payoff with respect to the stable reputation
distribution (the steady-state distribution of the good people and the bad people in the
society), g∗, and take it as the main driver for the strategy evolution. We shall detail
the derivation process under the simple social norm. Then, the very similar derivation
processes for the other two norms will be given in a compact manner.

Simple Social Norm The calculation of the expected payoffs of the CC , C D and DD
strategies for the simple social norm (GGBG) is illustrated in Fig. 3. A CC player has
a 1

2 chance of being a donor and cooperating with a cost c. With another 1
2 chance

of being a recipient, he meets CC , C D and DD players with probabilities x1, x2 and
x3, respectively, and is expected to obtain b, (1 − μ)b and 0 revenue, respectively.
So the expected revenue of strategy CC is p1 = 1

2 (−c) + 1
2 [bx1 + bx2(1 − μ)].

Similarly, the expected payoff of strategy C D and DD can also be calculated (see
“Appendix C.1”). The expected revenues of all three strategies for the GGBG social
norm are ⎧⎪⎪⎨

⎪⎪⎩
p1 = 1

2 (−c) + 1
2 [bx1 + bx2(1 − μ)],

p2 = 1
2 g(−c) + 1

2 [bx1 + bx2(1 − μ)],
p3 = 1

2 (0) + 1
2 [bx1 + bx2g3].

(1)

In a similar vein as shown in C.2 and C.3, the expected revenues of strategies CC ,
C D, C P and DD for the weakly augmented social norm (GGBGBG) and the strongly
augmented social norm (GGBBBG) can be derived as follows, respectively.

Weakly Augmented Social Norm

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p1 = 1
2 (−c) + 1

2 x3μ(−β) + 1
2 [bx1 + b(x2 + x3)(1 − μ)],

p2 = 1
2 g(−c) + 1

2 x3μ(−β) + 1
2 [bx1 + b(x2 + x3)(1 − μ)],

p3 = 1
2 g(−c) + 1

2 (1 − g)(−α) + 1
2 x3μ(−β) + 1

2 [bx1 + b(x2 + x3)(1 − μ)],
p4 = 1

2 [bx1 + b(x2 + x3)g4] + 1
2 x3(1 − g4)(−β).

(2)
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Strongly Augmented Social Norm

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1 = 1
2 (−c) + 1

2 x3μ(−β) + 1
2 [bx1 + b(x2 + x3)(1 − μ)],

p2 = 1
2 g(−c) + 1

2 x3(1 − g2)(−β) + 1
2 [bx1 + bg2(x2 + x3)],

p3 = 1
2 g(−c) + 1

2 (1 − g)(−α) + 1
2 x3μ(−β) + 1

2 [bx1 + b(x2 + x3)(1 − μ)],
p4 = 1

2 [bx1 + b(x2 + x3)μ] + 1
2 x3(1 − μ)(−β).

(3)

2.2.3 Replicator dynamics of strategies frequency

We model the evolution of the strategy distribution using replicator dynamics (Hof-
bauer and Sigmund 1998). In replicator dynamics, the share of the population using
each strategy, in our case, {xi }3 or 4

i=1 , grows at a rate proportional to that strategy’s
payoff, in our case, {pi }3 or 4

i=1 [Eqs. (1)–(3)]. Mathematically, it can be written as
follows.

ẋi = xi (pi − p̄), i = 1, 2, 3, (4), (4)

where

p̄ =
3(4)∑
i=1

xi pi (5)

is the average payoff or the expected payoff per individual. In Eq. (4), i = 1, 2, 3 for
the simple social norm (GGBG) and i = 1, 2, 3, 4 for the augmented social norms
(GGBGBG and GGBBBG). These differential equations are defined on the simplex
S3 = {(x1, x2, x3)|x1 + x2 + x3 = 1, xi ≥ 0} for the simple social norm and S4 =
{(x1, x2, x3, x4)|x1 + x2 + x3 + x4 = 1, xi ≥ 0} for the augmented social norms.
Each corner of the simplex is an equilibrium of the dynamics corresponding to a
homogeneous population.4

The replicator dynamics as shown in Eq. (4) can be normalized by adding the same
constant; in our case, we shall subtract the fitness of the last strategy from the first
two (or three). Hence, for the simple social norm (GGBG), we define p′

1 = p1 − p3,
p′

2 = p2 − p3 = and p̄ = x1 p′
1 + x2 p′

2 using the corresponding pi (i = 1, 2, 3, 4) in
Eq. (1). Then the replicator dynamics of the first two strategies, CC and C D, can be
derived as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x1(p′
1 − p̄) = −cx1 + cx2

1

+ [(1 − 2μ)b + c]x1x2 − (1 − 2μ)bx2
1 x2 − (1 − 2μ)bx1x2

2

2 − 1−2μ
1−μ

(x1 + x2)
,

ẋ2 = x2(p′
2 − p̄) = cx1x2

+ −cx2 + [(1 − 2μ)b + c]x2
2 − (1 − 2μ)bx1x2

2 − (1 − 2μ)bx3
2

2 − 1−2μ
1−μ

(x1 + x2)
.

(6)

4 This can be shown simply by inserting the vertex states into the replicator dynamics [Eq. (4)].
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Likewise, for both weakly and strongly augmented social norms (GGBGBG and
GGBBBG), we define p′

1 = p1 − p4, p′
2 = p2 − p4, p′

3 = p3 − p4 and p̄ =
x1 p′

1 + x2 p′
2 + x3 p′

3 with the corresponding pi (i = 1, 2, 3) in Eqs. (2) and (3),
respectively. The replicator dynamics of the strategies of CC , C D and C P ,

⎧⎨
⎩

ẋ1 = x1(p′
1 − p̄),

ẋ2 = x2(p′
2 − p̄),

ẋ3 = x3(p′
3 − p̄),

(7)

are much longer; for brevity, we leave their explicit forms in “Appendix D” [see
Eqs. (20) and (21)].

3 Analysis

The replicator dynamics of the three social norms, namely, Eqs. (6), (20), (21), provides
us with the basis on which the contribution of costly punishment to cooperative behav-
ior can be examined. Our evaluation will not be limited to the long-run equilibria or
the evolutionary stable states (Sect. 3.1) as some studies have already done; instead,
we will focus more on the transition dynamics in terms of the basin of attraction
(Sect. 3.2) and the speed of convergence (Sect. 3.3).

3.1 Evolutionary stable states

The long-term behavior of the replicator dynamics (the system of differential equa-
tions), Eqs. (6), (20) and (21), is characterized by their evolutionary stable states. For
our purpose, it is useful to distinguish between the non-cooperative state and the coop-
erative state. For simplicity, let us define these two states by first confining them within
the case of the homogeneous agents, i.e., all agents adopt the same strategy. With this
confinement, the non-cooperative state refers to the state in which all agents would
always defect regardless of the reputation of the matched recipient, i.e., all agents
are DD players. In terms of the strategy distribution, the non-cooperative state cor-
responds to the degenerate distribution (x∗

1 , x∗
2 , x∗

3 ) = (0, 0, 1) for the simple social
norm and the degenerate distribution (x∗

1 , x∗
2 , x∗

3 , x∗
4 ) = (0, 0, 0, 1) for the augmented

social norm.
The (homogeneous) cooperative states then refer to the state in which all agents

would cooperate if the matched recipient has a good reputation, i.e, all agents are either
CC , C D or C P players. Based on our notation, they correspond to the degenerate
distribution x∗

1 = 1, x∗
2 = 1 for the simple social norm, and plus x∗

3 = 1 for the
augmented social norm, respectively.

We do not consider the heterogeneous states with a i where 0 < x∗
i < 1. As we

shall see from the analysis below, none of them is evolutionary stable. Hence, we only
focus on the non-cooperative state and cooperative state and, accordingly, distinguish
between the non-cooperative evolutionary stable state (NESS) and the cooperative
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evolutionary stable state (CESS).5 In the following, we shall present two propositions.
These two propositions simply say that all the three social norms can support one non-
cooperative evolutionary stable state (Proposition 1) and one cooperative evolutionary
stable state (Proposition 2). Although the proposition is stated with only supportive
intuition, a mathematical proof can be found in “Appendix E”.

Proposition 1 The non-cooperative state, i.e., x∗
3 = 1 for the simple social norm and

x∗
4 = 1 for the augmented social norm, is evolutionary stable.

Proposition 1 simply says that, regardless of the ruling social norm, there is no
incentive to cooperate if all other agents always defect. This is so because a good
reputation will not do anything good for the recipient; whatever his reputation is, he
will not be treated decently. It is then not cost-efficient to maintain a good reputation.

Proposition 2 1. The cooperative state x∗
2 = 1 is evolutionary stable for the simple

social norm if c
(1−2μ)b < 1.

2. The cooperative state x∗
2 = 1 is evolutionary stable for the weakly augmented

social norm if c
(1−2μ)b < 1.

3. The cooperative state x∗
3 = 1 is evolutionary stable for the strongly augmented

social norm if α < c and (1−μ)c+μα
(1−2μ)(b+β)

< 1.

Proposition 2-(1) can be easily understood by rearranging the inequality condition
as follows.

c

(1 − 2μ)b
< 1 ⇒ (1 − μ)b − (1 − μ)c > 2μ(1 − μ)b. (8)

When all other agents are C D players, the inequality (8) simply states that the net
benefit from playing C D (the left-hand side of the second inequality) must be greater
then the net benefit from playing DD (the right-hand side of the second inequality)
when the agent meets the matched recipient.6 Proposition 2-(2) is essntially the same
as Proposition 2-(1). Adding C P does not alter our above argument much under the
weakly augmented social norm since the additional cost of being a C P player, i.e.,
μα, is compensated by nothing under the GGBGBG norm.

Proposition 2-(3) can be understood in a similar vein. The inequality can be
rearranged as

(1 − μ)c + μα

(1 − 2μ)(b + β)
< 1 ⇒ (1 − μ)b − μβ − (1 − μ)c − μα > μb − (1 − μ)β (9)

Assuming that the society has already evolved to the state in which all agents adopt
C P , then as in inequality (8), the two sides of inequality (9) refer to the expected
payoff from adopting the C P and the DD strategy under the strongly augmented

5 Hereafter, we also remove the word “homogeneous” for brevity.
6 In a similar but more complex setting, Ohtsuki and Iwasa (2007) also prove Proposition 2-(1). See
Ohtsuki and Iwasa (2007), p. 522.
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norm, respectively. In addition, at this point, the payoff from adopting C P is greater
than that from CC as long as c > α.

While all three norms have their own CESS, the stability condition of CESS for the
simple and weakly augmented social norms is more stringent than that for the strongly
augmented social norm. This is because under the normal case the cost of cooperation
(c) is greater than the cost of punishment (α), and, if so, it follows that

c

(1 − 2μ)b
>

(1 − μ)c + μα

(1 − 2μ)(b + β)
.

This further implies that the CESS under the strongly augmented norm is more resilient
to the error rate μ than that for the other two norms.

3.2 Basin of attraction

As we have said at the very beginning of the paper, our concern over the role of costly
punishment has more to do with its transition dynamics rather than just the limit point.
Hence, given that there are two evolutionary stable states under each social norm, one
NESS and one CESS, the basin of attraction for each ESS is pertinent to our concern.
The basins of attraction are the sets of all strategy distributions {xi }3 or 4

i=1 which lies on
a portrait leading to the respective ESS. For an illustration, Fig. 4 presents the phase
portraits for the three norms with the parameter setting: b = 3, c = 2, α = 1, β = 4
and μ = 0.02. What particularly interests us is the relative size of the basin of attraction
of the CESS and NESS. Calling the former BC E SS and denoting its size (area, volume)
by #(BC E SS), we try to estimate the following ratio under three different social norms:

q = #(BC E SS)

#(BSimplex )
, (10)

where #(BSimplex ) is the size of the entire simplex.
Due to the lack of analytical tractability, numerical approaches are applied for this

estimation. We first identify the critical points along each edge of the simplex. These
points are where the two strategies, characterizing the edge, have the same expected
payoffs. Of course, not all edges have these critical points, and what can be found are
marked as “A” in Fig. 4a, “A” and “B” in Fig. 4b, and “A”, ‘B” and “C” in Fig. 4c. Then,
in light of these critical points, one can use the fourth-order Runge–Kutta method and
the bi-section method to identify the stable manifold (the separatrix line) dividing the
plane into two regions, i.e., BC E SS and BN E SS . Each of the two regions is further
distinguished by its portrait, i.e., paths intensively sampled through the Runge–Kutta
method.7 With this identified BC E SS and BN E SS , we find that the relative size of the

7 In Fig. 4a, Point A, (x1, x2) = (0, 1
1−2μ

c
b ), is a saddle node whose unstable manifold is along the CD-DD

line. In Fig. 4b, Point A, (x1, x2, x3) = (0, 0, 1
1−2μ

(1−μ)(α+c)
(1−μ)(b+β)+α

) is a saddle node with a one-dimensional

stable manifold and a two-dimensional unstable manifold. Point B, (x1, x2, x3) = (0, 1
1−2μ

c
b , 0) is a

saddle node with a one-dimensional unstable manifold along the CD-DD line and a two-dimensional
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Fig. 4 Phase portrait of the
three social norms (a simple,
b weakly augmented and c
strongly augmented) with b = 3,
c = 2, α = 1, β = 4 and
μ = 0.02. Each vertex
represents a state with
individuals adopt the same
corresponding strategy, such as
points DD in all three norms
representing the state in which
all individuals adopting the DD
strategy. The arrows indicate the
direction of the flow. For the
simple norm GGBG (a), the blue
part is the attraction basin of the
cooperative evolutionary stable
state CD and the yellow part is
the attraction basin of the
non-cooperative evolutionary
stable state DD. The separatrix
line is the stable manifold of
saddle point A. State CC is
unstable. For the weakly
augmented norm GGBGBG (b),
a separatrix surface which is the
stable manifold of saddle point
A divides the phase space into
two parts. The part over the
surface is the attraction basin of
the cooperative evolutionary
stable state CD and the nether
part is the attraction basin of the
stable state DD. States CC and
CP are unstable. For the strongly
augmented norm GGBBBG (c),
there is also a separatrix surface
dividing the phase space into
two parts. The upper and nether
regions are the attraction basins
of states CD and CP,
respectively. States CC and CD
are unstable. The attraction basin
of the cooperative evolutionary
stable state occupies 15, 60 and
81 % of the entire simplex for
the simple, weakly augmented
and strongly augmented social
norms, respectively. a GGBG.
b GGBGBG. c GGBBBG
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CC

CD

CP

DD

A(GGBGBG)

A(GGBBBG)
B

S1

S2
S3

Fig. 5 Typical trajectories under the weakly augmented (blue lines) and strongly augmented (red lines)
norms. The simplex is divided into three regions. The bottom region under the separatrix surface of the
weakly augmented norm, exemplified by the point S1, is also the attraction basin of the non-cooperative evo-
lutionary state DD under the strongly augmented norm. The middle region between the separatrix surfaces
of the two norms, exemplified by the point S2, is the attraction basin of the non-cooperative evolutionary
state DD under the weakly augmented norm but the attraction basin of the cooperative evolutionary state
C P under the strongly augmented norm (color figure online)

basin of attraction of CESS, or simply the q, increases from 0.15 (simple social norm),
to 0.60 (weakly augmented social norm), and further up to 0.81 (strongly augmented
social norm).8

Obviously, in terms of q, the social norms augmented with costly punishment
increase the likelihood of the emergence of the cooperative evolutionary stable state.
Even though the CESS of the weakly augmented norm does not directly involve pun-
ishment (C D rather than C P being the CESS), the feasibility of costly punishment (P)
has sharply increased q from a value of 0.15 to 0.60. To see the further enlargement of
the basin of attraction of the CESS when costly punishment is explicitly incorporated
into the social norm, Fig. 4b, c are drawn together into Fig. 5. In Fig. 5, the same
initial point S2 follows the blue trajectory to converge to DD under the weakly aug-
mented norm, but then follows the red trajectory to converge to C P under the strongly
augmented norm.

Footnote 7 continued
stable manifold ( the separatrix surface). In Fig. 4c, Point A, (x1, x2, x3) = (0, 0, 1

1−2μ
(1−μ)α+μc
α+β+b−c ) is a

saddle node with a one-dimensional unstable manifold along the CP-DD line and a two-dimensional stable
manifold (the separatrix surface). In the facet of CC-CD-DD, there is a line connecting B, (x1, x2, x3) =
(0, 1

1−2μ
c
b , 0) and C, (x1, x2, x3) = ( 1

1−2μ
c
b , 1

1−2μ
c
b , 0) which consists of equilibria which are Lyapunov

stable.
8 The area or the volume of BC E SS , #(BC E SS), is calculated based on the intensive sampling of points in
the simplex. We take a step size of 0.001 in each of the three, in the case of Fig. 4a, or four, in the case of
Fig. 4b, c, dimensions and obtain a total of 500,500 and 20,958,500 points, respectively. We then trace the
flow of each of these paths emanating from these points and see where they converge, CESS or NESS, then
use the fraction of the converging paths to CESS to approximate the size (area or volume) of #(BC E SS).
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To obtain an overview of the effect of parameters (α, β, b, c) on the CESS attrac-
tion basin, we calculate the ratio q under different parameter settings numerically
and present the results in Fig. 6. The q under the simple, weakly augmented and
strongly augmented norms are green-colored, blue-colored and red-colored, respec-
tively. In most regular parameter settings, such as α < c, the strongly augmented norm
(GG B B BG) tends to have the largest basin of attraction of the CESS (q), followed
by the weakly augmented norm (GG BG BG), with that of the simple social norm
(GG BG) being the smallest. Only in some situations, such as when the inequality
α < c is violated, do we see exceptions, as shown in the right part of Fig. 6a (α is
relatively too large) or the left part of Fig. 6d (c is relatively too small).

Very loosely, let us characterize the good society as a society consisting of good
people, i.e., people with good intentions. They help strangers and are also helped
when they become strangers to others. Then what is shown in our analysis above is
that the emergence of this good society can critically depend on the ruling social norm,
particularly, whether this norm would punish those “bad” people and those who are
tolerant with them.
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Fig. 6 Ratios of the CESS attraction basin of different social norms under different parameter settings
(b = 3, c = 2, α = 1, β = 4 if not specified, and μ = 0.02)
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3.3 Convergence speed of the three social norms

The expanded basin of attraction as shown above sheds light on the contribution of
punishment in cooperation-enhancing norms. It simply differentiates what a society
can possibly achieve with or without the incorporation of punishment as part of the
norm. The difference between being able to converge to CESS or the alternative, NESS,
is permanent. Hence, we have shown that norms which emphasize punishment can
lead to a non-trivial positive effect for the society. In this section, we shall consider a
secondary and short-term effect, i.e., even though within the same basin of attraction to
CESS, depending on the presence of punishment or not, the convergence speed can still
be different. In other words, even if it starts from such an initial strategy distribution,
{xi (0)}3 or 4

i=1 , whereby a society with any of the three social norms will approach
cooperative evolutionary stable states, a society may converge to the cooperative states
with different speeds for different social norms.

To see this, we first start with two concrete numerical illustrations, which are then
followed by a more general result based on the intensive simulation. Figure 7a, b
provide an illustrative comparison of the transition dynamics of societies with a
simple (green) and augmented (blue) social norm, starting from the very close ini-
tial states, x1(0) = 0.02, x2(0) = 0.72 for the simple social norm (GGBG) and
x1(0) = 0.02, x2(0) = 0.71, x3(0) = 0.01 for the weakly augmented social norm
(GGBGBG). In Fig. 7a, the horizontal axis is time, and the vertical axis is the coop-
eration ratio, defined as the percentage of individuals adopting the CC , C D or C P
strategies. We can easily observe that a society with a weakly augmented social norm
will converge to the cooperative evolutionary stable states more rapidly than a society
with a simple social norm.

The economic significance of this faster convergence to a cooperative state is shown
in Fig. 7b, where the expected payoffs, as defined in Eq. (5), of the two social norms
are drawn in contrast. By contrast, when both societies converge to their cooperative
state, with all individuals adopting either the CC or C D state, and the expected payoff
being the same, the norm which can lead the society to converge faster to it can bring
additional gains during the transition time.

Figure 7d, e provide another illustrative comparison of the transition dynamics
in societies with a weakly augmented (blue) and strongly augmented (red) social
norm, starting from an identical initial strategy distribution, x1(0) = 0.05, x2(0) =
0.15, x3(0) = 0.3. As shown in Fig. 7d, a society with a strongly augmented social
norm will converge to the cooperative evolutionary stable state more rapidly than a
society with a weakly augmented norm. Consequently, the expected payoff of a society
with a strongly augmented norm increases more quickly than that of a society with a
weakly augmented norm, except for a very short period of time in the beginning. After
the society reaches the cooperative evolutionary stable state, i.e., with all individuals
adopting C D (for the GGBGBG norm) or C P (for the GGBBBG norm) strategy, the
expected payoff of the latter will be slightly smaller than that of the former for there are
errors in reputation assignment and punishment will be meted out to ‘bad’ individuals
with cost to both the punisher and punished.

What has been shown here is that, even though in some cases norms would not
matter from a long-run perspective, they still matter for the transition dynamics and
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Fig. 7 Illustrative comparisons of cooperative behavior and economic efficiency for the three social norms.
a and b are the dynamics of the cooperative population and the expected payoffs realized using the initial
strategy distribution x1(0) = 0.02, x2(0) = 0.72 for the simple social norm (green line) and x1(0) =
0.02, x2(0) = 0.71, x3(0) = 0.01 for the weakly augmented social norm (blue line). c and d are the
counterparts using x1(0) = 0.05, x2(0) = 0.15, x3(0) = 0.3 for both weakly and strongly augmented
social norms, blue for the weakly one and red for the stronger one (color figure online)

can determine how fast the society becomes rich and prospers. As indicated in our
illustrations, the differences due to this transition dynamics can be so prolonged that it
takes quite a long while to see its disappearance. Hence, unlike some earlier analysis
mainly focusing on the long-term performance (Ohtsuki et al. 2009), we find that the
norm which promotes costly punishment can have a non-trivial effect. Nevertheless,
their key argument remains valid when the society has already come to a cooperative
state and most people have a good reputation most of the time. At this stage, the norm
which values costly punishment can incur more social loss than social gain. Cases like
that shown in our Fig. 7e demonstrate the undesirability of the strongly augmented
norm after the society has been “fully developed” and hence suggest the desirability
of a norm change or a regime change.9

9 Here, we come to a point to see that the social norm is not just exogenous in terms of shaping human
behavior, but should, more generally, co-evolve with human behavior. While the current paper does not
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4 Concluding remarks

4.1 Findings and implications

Costly punishment is widespread in human society although both theoretical analysis
and laboratory experiments show that punishment provides little efficiency and can
hardly increase the overall benefit of a population. In this paper, we reconcile the gap
between reality and theory. We study the role of costly punishment in a “developing”
society characterized by her process of evolution toward a fully cooperative state. The
analysis is conducted in a co-evolutionary framework of reputations, strategies, and
social norms. A social norm is a globally shared rule used to update the reputation of
agents based on what they did and to whom. It is the collective choice of a population
and evolves gradually according to the total benefit of all members in a society for
a considerably long period of time.10 Agents are embedded in a certain social norm
and they choose their strategies to maximize their individual benefits given the current
social environment that includes the strategies of other agents and the ruling social
norm.

We explicitly model the evolutionary dynamics of the three different social norms
which give different support for the “altruistic” punishment behavior, and find that the
social norm which acknowledges “altruistic” punishment would matter for a “devel-
oping” society. It makes it easier for a developing society to transit faster into a fully
cooperative state or a “good society”, easier in the sense of the size of the basin of
attraction to the CESS, and faster in the sense of the speed of convergence.

To sum up, costly punishment is inevitable in the process of evolution to cooperation
in two situations. The first situation is that the current state, under a social norm which
does not value punishment, has no hope to get to the cooperative evolutionary stable
state (not in the basin of attraction). One can bring hope to this society by changing
the norm to the one which values punishment (enlarging the basin of attraction). The
second situation is that even if the current state is moving toward the cooperative
evolutionary stable state, the society is not sufficiently patient for its slow progress.
A social norm which supports punishment can speed up this transition.

4.2 Direction for further studies

Our focus on the transition dynamics justifies why social norms may value costly
punishment or altruistic punishment. In the long-run when the society has already
come to the CESS, we concur with Ohtsuki et al. (2009) on the social undesirability of
costly punishment since it may result in a lower social efficiency given the noises of
the operational social norm, i.e., the reputation error probability μ. A desirable social

Footnote 9 continued
deal with this co-evolutionary framework, it does suggest that if the selection mechanism for norms also
exists, probably with an even longer horizon and at a slower pace, the ruling norm may change with the
development of society.
10 We do not directly model the evolution of social norms, but we do argue that different norms may serve
the society differently at her different developing stages. See Sect. 3.3.
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norm at this stage should lead individuals to withhold help from defectors rather than to
punish them. However, the CESS only serves as a point of reference. It may be difficult
to reach if more realistic concerns of social development are taken into account. In
this section, we will point out a number of directions for further research.

First, one important variable which is not considered in our current model is the
constant change in demographic characteristics related to migration, mortality, and fer-
tility. This changing demographic structure may impact both the domain of attraction
and the convergence path to the CESS. Technically, one direction in which to extend
our current model is to introduce an appropriate birth-and-death process to charac-
terize the demographic change. This added birth-and-death process may constantly
perturb the transition dynamics, including the strategy distribution. Hence, in this
more unsettled environment, a social norm which acknowledges costly punishment
behavior may enhance the stability of CESS.

Second, in this paper, we do not consider a larger set of strategies. While the four
selected are typical and enough if one is only interested in the social norms which can
facilitate cooperation, some other strategies, from a different point of view, may also
be worth an effort. For example, a series of recent experiments based on the public
good game shows that while stingy subjects were punished, exceedingly generous
subjects were also punished (Herrmann et al. 2008; Parks and Stone 2010; Irwin and
Horne 2013). A later phenomenon known as antisocial punishment may motivate a
design of the strategies that is finer than the one considered in this paper.

Third, while our proposed model can be considered to be a co-evolutionary model
of reputations, strategies, and norms, due to analytical concerns, in this paper we
only consider one of them at a time. Hence, the reputation distribution evolves with
respect to a given strategy distribution, and strategy distribution evolves with respect
to a given reputation distribution. Likewise, the evolution of social norms will be
considered only after the strategy distribution reaches its steady state. Nonetheless,
in a more realistic situation, the three can evolve in parallel, despite their different
time frames. Extending the current model to this truly co-evolutionary framework
may make the model analytically intractable, and one has to rely on simulation. In
this regard, agent-based models would help. In fact, agent-based models may do
more. The conventional literature simply assumes that the reputation of any agent
is freely publicly known and is homogeneously recognized by all other agents. Using
agent-based modeling, we can relax both assumptions and study the effect of social
norms on the emergence of a ‘good society’ when both interactions and reputation are
local.11
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11 See Ma et al. (2014) for recent progress in this direction.
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Fig. 8 The simple social norm (GGBG) in the form of a finite-state automaton

Appendix A: Social norms in the form of finite-state automata

The social norm as demonstrated in the matrix form (Fig. 1) can also be demonstrated
in the familiar finite state automata. Figure 8 gives such an example.12 What is shown
in this figure corresponds to the simple social norm “GGBG”. There are two states in
the automaton. State “G” refers to the state of a good reputation, and state “B” refers
to the state of a bad reputation. The transition rules are depicted by various arrowed
paths. For example, if the agent starting with the “G” state (the left-hand side of the
figure) takes an action “D” (defection) toward a “G” agent, then by the transition rule
his state will be changed to the “B” state (the right-hand of the figure), as shown by
the red-color arrowed path leading from state “G” to state “B”.

Appendix B: Short-term dynamics: stable reputation distribution

In the main text, we only provide a simple introduction regarding how to obtain a
stable reputation distribution under the simple social norm. The details for obtaining
the stable reputation distribution for all three social norms are provided here.

B.1 Simple social norm

We have shown the reputation dynamics (the difference equation) of the CC players.
The reputation dynamics of the C D and DD players are detailed here.

12 We are grateful to Cyrille Piatecki for this suggestion and his generosity of providing us with his latex
source code to generate Fig. 8.
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A C D player has a 1
2 chance of being a donor, and he takes cooperative action

toward good recipients and defection action toward bad recipients; both should bring
him a good reputation under the simple social norm GGBG. Due to the assignment
error, he obtains a good reputation with a probability of 1 − μ and a bad reputation
with a probability of μ. The C D player also has a 1

2 chance of being a recipient and
his reputation does not change and remains as good with probability g2. So after one
iteration the percentage of good reputation for C D players is g′

2 = 1
2 (1 − μ) + 1

2 g2.
A DD player has a 1

2 chance of being a donor, and he takes defection action
regardless of the reputation of the recipient. He has a chance of 1 − g of meeting a
bad recipient. According to the simple social norm GGBG, he should obtain a good
reputation. With the reputation assignment error, he will obtain a good reputation with
probability (1 − μ)(1 − g) and a bad reputation with probability μ(1 − g). He also
has a chance of g of meeting a good recipient and obtaining a bad reputation with
probability (1 − μ)g and a good reputation with probability μg. The DD player also
has a 1

2 chance of being a recipient and his reputation does not change and remains
as good with probability g3. So the new percentage of a good reputation among DD
players is g′

3 = 1
2 (1 − g)(1 − μ) + 1

2 gμ + 1
2 g3.

In sum, what we have is a system of difference equations (11):⎧⎪⎨
⎪⎩

g′
1 = 1

2 (1 − μ) + 1
2 g1,

g′
2 = 1

2 (1 − μ) + 1
2 g2,

g′
3 = 1

2 (1 − g)(1 − μ) + 1
2 gμ + 1

2 g3,

(11)

where g = x1g1 + x2g2 + x3g3.
By solving equation (11), we obtain the steady state solution, i.e., the limit distrib-

ution of good people for each strategy, as in Eq. (12):⎧⎪⎨
⎪⎩

g∗
1 = 1 − μ,

g∗
2 = 1 − μ,

g∗
3 = (1 − μ)

[
1 − 1−2μ

1+(1−2μ)x3

]
.

(12)

The percentage of good people for the whole population is g∗ = 1−μ
1+(1−2μ)x3

.

B.2 Weakly augmented social norm

For the weakly augmented social norm (GGBGBG), there are four strategies CC ,
C D, C P and DD, with corresponding frequencies denoted by x1, x2, x3 and x4, and
x1 +x2 +x3 +x4 = 1. The ratios of players with good reputation among CC , C D, C P
and DD players are denoted by g1, g2, g3 and g4, respectively. Thus the percentage
of good players for the entire population is g = ∑4

i=1 xi gi . The reputation dynamics
of the four kinds of players is illustrated by Fig. 9.

By making the same inference as we did in B.1, it is easy to see that g′
i = 1

2 (1−μ)+
1
2 gi (i = 1, 2, 3), mainly because this weakly augmented norm will always assign the
players who do nice things for nice guys a good reputation, and does not care what
they do for the bad guys. Similarly, it is easy to see that the dynamics of g4 has the
same form of g3 in the simple norm (11): defection toward nice guys shall be assigned
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Fig. 9 Reputation dynamics of individuals adopting different strategies under a weakly augmented social
norm (GGBGBG)

a bad reputation. This similarity can also be seen by comparing Fig. 2 with Fig. 9.
Hence, in sum, we have the following system of difference equations, (13).⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g′
1 = 1

2 (1 − μ) + 1
2 g1,

g′
2 = 1

2 (1 − μ) + 1
2 g2,

g′
3 = 1

2 (1 − μ) + 1
2 g3,

g′
4 = 1

2 (1 − g)(1 − μ) + 1
2 gμ + 1

2 g4.

(13)

The steady-state solution for Eq. (13) is:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g∗
1 = 1 − μ,

g∗
2 = 1 − μ,

g∗
3 = 1 − μ,

g∗
4 = (1 − μ)

[
1 − 1−2μ

1+(1−2μ)x4

]
.

(14)

Furthermore, the good reputation ratio for the entire society is g∗ = 1−μ
1+(1−2μ)x4

.

B.3 Strongly augmented social norm

The same four strategies can also be operated by the strongly augmented social norm
(GGBBBG), hence the notations used above (B.2) are kept here, including x1, x2, x3
and x4, and g1, g2, g3, g4 and g. The reputation dynamics of the four kinds of players
is illustrated by Fig. 10.
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Fig. 10 Reputation dynamics of individuals adopting different strategies under a strongly augmented social
norm (GGBBBG)

By comparing Fig. 10 with Fig. 9, one can see that the main differences between the
two norms are their effects on the dynamics of g2 and g4 (the right half of the figures),
corresponding to the percentage of good people among the C D and DD players. This
is so because taking defection action toward bad recipient means that they shall no
longer be assigned a good reputation. However, by reasoning along the tree depicted
in Fig. 10, one can easily work out the new dynamics for g2 and g4. They, together
with g1 and g3, are given in Eq. (15). Notice that the dynamics of g1 and g3 are the
same as those in Eq. (13).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g′
1 = 1

2 (1 − μ) + 1
2 g1

g′
2 = 1

2 [(1 − μ)g + μ(1 − g)] + 1
2 g2

g′
3 = 1

2 (1 − μ) + 1
2 g3

g′
4 = 1

2μ + 1
2 g4

(15)

The steady-state solution for the system of difference equations, (15), is shown in
Eq. (16). ⎧⎪⎪⎨

⎪⎪⎩

g∗
1 = 1 − μ,

g∗
2 = μ + (1 − 2μ)g∗,

g∗
3 = 1 − μ,

g∗
4 = μ.

(16)

The percentage of good people for the entire society is g∗ = (1−μ)(x1+x3)+μ(x2+x4)
1−(1−2μ)x2

.
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Appendix C: Expected payoff

In the main text, we have provided a simple introduction on how to calculate the
expected payoff of strategies with respect to an arbitrary given strategy distribution
using the example of the ‘CC’ strategy under the simple social norm (GGBG). The
detailed process of calculating the expected payoff from all strategies for a given
strategy distribution {xi }3 or 4

i=1 for all three social norms is provided here.

C.1 Simple social norm

For the simple social norm (GGBG), the calculation of the expected payoff of the CC ,
C D and DD strategies is illustrated in Fig. 3 in the main text. The expected payoff
of a CC player is already given in Sect. 2.2.2. In the following, we only derive the
expected payoffs of a C D and a DD player.

The expected payoff of a C D player differs from that of a CC player only in the
case when they are donors. This is so because the C D player will cooperate only when
the matched recipient is good; otherwise, there will be no donation (no cost). When
they both become recipients the expected payoff is the same since the chance of their
reputations being good are the same (g∗

1 = g∗
2 = 1 − μ, Sect. 2.2.1). Therefore, the

expected payoff of a player with strategy C D is p2 = 1
2 g∗(−c)+ 1

2 [bx1+bx2(1−μ)].
The DD player never donates. His payoff is, therefore, zero when he plays the role

of donor. With a 1
2 chance, the DD player will also be a recipient. Based on the payoff

trees shown in Fig. 3, one can see that the difference between the C D player and the
DD player lies in the branch when they meet a C D player, who only donates to the
good recipient. Hence, by simply replacing g∗

2 with g∗
3 , we can derive the expected

payoff for the DD player, p3 = 1
2 (0) + 1

2 [bx1 + bx2g∗
3 ].

To sum up, the expected payoffs of all three strategies for the simple social norm
(GGBG) are ⎧⎪⎨

⎪⎩
p1 = 1

2 (−c) + 1
2 [bx1 + bx2(1 − μ)],

p2 = 1
2 g(−c) + 1

2 [bx1 + bx2(1 − μ)],
p3 = 1

2 (0) + 1
2 [bx1 + bx2g∗

3)],
(17)

where g∗
3 = (1 − μ)[1 − 1−2μ

1+(1−2μ)x3
].

C.2 Weakly augmented social norm

The calculation of the expected payoff for the CC , C D, C P and DD strategies under
the weakly augmented social norm (GGBGBG) can be facilitated using the payoff
trees in Fig. 11. As for other similar ones, each of these trees has an upper branch (the
donor branch, with a 1

2 chance) and a lower branch (the recipient branch, with another
1
2 chance). The donor branch has a simpler structure, namely, to donate or not. The
recipient branch is more expansive because the payoff will depend on the strategies
adopted by the matched donor and the reputation of the recipient himself. For the
encounter with a CC or a DD player, this reputation is irrelevant, while it matters
for the encounter with the C D or C P players. When reputation matters, the stable
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Fig. 11 Calculation of the expected payoff of strategies for the weakly augmented social norm (GGBGBG)

reputation distribution of each kind of player g∗
i (i = 1, 2, 3, 4) (Sects. 2.2.1 and B.2)

will be applied to figure out the expected treatment received by the respective recipient.
By harnessing the structure of the payoff tree as outlined above, one can skip all

cumbersome algebra and easily see the expected payoff of the four strategies under
the weakly augmented social norm (GGBGBG), which is summarized as follows.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1 = 1
2 (−c) + 1

2 x3μ(−β) + 1
2 [bx1 + b(x2 + x3)(1 − μ)],

p2 = 1
2 g∗(−c) + 1

2 x3μ(−β) + 1
2 [bx1 + b(x2 + x3)(1 − μ)],

p3 = 1
2 g∗(−c) + 1

2 (1 − g∗)(−α) + 1
2 x3μ(−β) + 1

2 [bx1 + b(x2 + x3)(1 − μ)],
p4 = 1

2 [bx1 + b(x2 + x3)g∗
4 ] + 1

2 x3(1 − g∗
4)(−β),

(18)
where g∗ and g∗

4 are given in Eq. (14).

C.3 Strongly augmented social norm

For the strongly augmented social norm (GGBBBG), the calculation of the expected
payoffs of the CC , C D, C P and DD strategies is facilitated by using Fig. 12. With the
same basic understanding of these tree structures as described in C.2, one can easily
figure out the expected payoffs as summarized in Eq. (19).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1 = 1
2 (−c) + 1

2 x3μ(−β) + 1
2 [bx1 + b(x2 + x3)(1 − μ)],

p2 = 1
2 g∗(−c) + 1

2 x3(1 − g∗
2)(−β) + 1

2 [bx1 + bg∗
2(x2 + x3)],

p3 = 1
2 g∗(−c) + 1

2 (1 − g∗)(−α) + 1
2 x3μ(−β) + 1

2 [bx1 + b(x2 + x3)(1 − μ)],
p4 = 1

2 [bx1 + b(x2 + x3)μ] + 1
2 x3(1 − μ)(−β),

(19)

where g∗ and g∗
2 are given in Eq. (16).
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Fig. 12 Calculation of the expected payoff of strategies for the strongly augmented social norm (GGBBBG)

Appendix D: Replicator dynamics for the augmented social norms

In Sect. 2.2.3, we provide the full expression of the replicator dynamics for the three
kinds of players under the simple social norm (GGBG). The full expressions of that
under the other two social norms are quite lengthy and hence are articulated as follows.

Based on the normalization described in Sect. 2.2.3, the replicator dynamics asso-
ciated with the weakly augmented social norm (GGBGBG) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = − cx1 + cx2
1 + αx1x3

+

⎡
⎢⎢⎢⎢⎣

[(1 − 2μ)b + c]x1x2

+[(1 − 2μ)(b + β) + (c − α)]x1x3

−(1 − 2μ)b[x1 + x2]x1x2

+(1 − 2μ)(b + β)[x1 + x3]x1x3

+(1 − 2μ)(2b + β)x1x2x3

⎤
⎥⎥⎥⎥⎦

/[
2 − 1 − 2μ

1 − μ

3∑
i=1

xi

]

ẋ2 = − cx1x2 + αx2x3

+

⎡
⎢⎢⎢⎢⎣

−cx2 + [(1 − 2μ)b + c]x2
2+[(1 − 2μ)(b + β) + (c − α)]x2x3

−(1 − 2μ)b[x1 + x2]x2
2−(1 − 2μ)(b + β)[x1 + x3]x2x3

−(1 − 2μ)(2b + β)x2
2 x3

⎤
⎥⎥⎥⎥⎦

/[
2 − 1 − 2μ

1 − μ

3∑
i=1

xi

]

ẋ3 = −αx3 + cx1x3 + αx2
3

+

⎡
⎢⎢⎢⎢⎣

−(c − α)x3 + [(1 − 2μ)b + c]x2x3

+[(1 − 2μ)(b + β) + (c − α)]x2
3−(1 − 2μ)b[x1x2 + x2

2 + x2x3]x3

−(1 − 2μ)(b + β)[x1x3 + x2
3 ]x3

−(1 − 2μ)(2b + β)x2x2
3

⎤
⎥⎥⎥⎥⎦

/[
2 − 1 − 2μ

1 − μ

3∑
i=1

xi

]

(20)
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The replicator dynamics associated with the strongly augmented social norm
(GGBBBG) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −cx1 + cx2
1 + [(1 − 2μ)(b + β) + α]x1x3

+ (1 − 2μ)b[1 − x1 − x3]x1x2 − (1 − 2μ)(b + β)[x1 + x3]x1x3

−

⎡
⎢⎢⎢⎢⎣

− μc
1−2μ

x1x2 + μ(α−c)
1−2μ

x1x3 − cx2
1 x2

+μbx1x2
2 + [μ(b + β) − c]x1x2x3

+(α − c)[x1 + x3]x1x3

+(1 − 2μ)b[x1 + x3]x1x2
2+(1 − 2μ)(b + β)[x1 + x3]x1x2x2

3

⎤
⎥⎥⎥⎥⎦

/[
1

1 − 2μ
− x2

]

ẋ2 = cx2
1 + αx2x3 − (1 − 2μ)bx1x2

2

− (1 − 2μ)(b + β)[x1 + x3]x2x3 − (1 − 2μ)bx2
2 x3

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− μc
1−2μ

x2 − cx1x2 + μ[b + c
1−2μ

]x2
2

+[(μb + μβ − c) + μ(c−α)
1−2μ

]x2x3

+[(1 − 2μ)b + c]x1x2
2 − μbx3

2+[(1 − 2μ)(b + β) + (c − α)]x1x2x3

+[(1 − 2μ)b − μ(b + β) + c]x2
2 x3

+[(1 − 2μ)b + (c − α)]x2x2
3−(1 − 2μ)b(x1 + x3)x3

2−(1 − 2μ)(b + β)(x1 + x3)x2
2 x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/[
1

1 − 2μ
− x2

]

ẋ3 = − αx3 + cx1x3 + [(1 − 2μ)(b + β) + α)]x2
3

+ (1 − 2μ)b[1 − x1 − x3]x2x3 − (1 − 2μ)(b + β)[x1 + x3]x2
3

−

⎡
⎢⎢⎢⎢⎣

μ(c−α)
1−2μ

x3 − μc
1−2μ

x2x3 + μbx2
2 x3

−(c − α)x1x2
3 + [μ(b + β) − c]x2x2

3−(c − α)x3
3 + (c − α)(x1 + x3)x3

+(1 − 2μ)b(x1 + x3)x2
2 x3 − cx1x2x3

+(1 − 2μ)(b + β)(x1 + x3)x2x2
3

⎤
⎥⎥⎥⎥⎦

/[
1

1 − 2μ
− x2

]

(21)

Appendix E: Proofs of propositions one and two

Proposition 1 To prove Proposition 1, first, we realize that the origin, (x1, x2) = (0, 0)

(for the simple and weakly augmented social norms) and (x1, x2, x3) = (0, 0, 0) (for
the strongly augmented social norm), is a fixed point of the differential equations
(6), (20) and (21), respectively. Secondly, it can be shown that the eigenvalues of the
Jacobian matrix (J ) of the above three differential equations evaluated at the origin
are all negative. Hence, these origins are also locally stable.

The first point is straightforward. We simply evaluate the above three differential
equations at their origins and then obtain ẋ1 = ẋ2 = 0 under Eqs. (6) and (20) and
ẋ1 = ẋ2 = ẋ3 = 0 under Eq. (21).

To see the second point, the Jacobian matrix (J ) of the three differential equations
evaluated at the origin is given as follows.
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J∣∣ x1=0
x2=0

=
[−c 0

0 −c/2

]
(22)

J∣∣∣ x1=0
x2=0
x3=0

=
[−c 0 0

0 −c/2 0
0 0 −(c + α)/2

]
(23)

J∣∣∣ x1=0
x2=0
x3=0

=
[−c 0 0

0 −μc 0
0 0 −μc − (1 − μ)α)

]
(24)

Equations (22), (23) and (24) are the Jacobian matrix of the differential equations
(6), (20) and (21), respectively. The eigenvalues of the three matrices are

λ1,1 = −c, λ1,2 = −c/2,

λ2,1 = −c, λ2,2 = −c/2, λ2,3 = −(c + α)/2

λ3,1 = −c, λ3,2 = −μc, λ3,3 = −μc − (1 − μ)α),

where λi, j denotes the the j th eigenvalue of the (D.i)th equation. It is easy to see that
they are all negative given the sings of the parameters involved. ��
Proposition 2 To prove Proposition 2, we follow a similar procedure to that for the
proof of Proposition 1. The only difference is that we no longer use the origin as the
evaluation point. Instead, (x1, x2) = (0, 1), (x1, x2, x3) = (0, 1, 0), and (x1, x2, x3) =
(0, 0, 1) are chosen as the evaluation points for Eqs. (6), (20) and (21), respectively.
The rest is the same. First, these points are fixed points under the respective dynamics,
and, second, they are locally stable.

We skip the first as it is straightforward, and simply show the second by providing
the Jacobian matrix of each differential equation by evaluating the chosen points. The
three Jacobian matrices are

J∣∣ x1=0
x2=1

=
[ −μc 0
c − (1 − μ)(1 − 2μ)b (1 − μ)[c − (1 − 2μ)b]

]
(25)

J∣∣∣ x1=0
x2=1
x3=0

=
[ −μc 0 0

c−(1−μ)(1−2μ)b (1−μ)[c−(1−2μ)b] μα+(1−μ)[c−(1−2μ)b]
0 0 −μα

]
(26)

J∣∣∣ x1=0
x2=0
x3=1

=
[ −μ(c−α) 0 0

0 μα−μ(1−2μ)(b+β) 0
c−μ(1−2μ)(b+β) (1−μ)[c−μ(1−2μ)(b+β)] (1−μ)c+μα−(1−2μ)(b+β))

]
(27)

The eigenvalues of the three Jacobian matrices are given as follows:

λ4,1 = −μc, λ4,2 = (1 − μ)[c − (1 − 2μ)b],
λ5,1 = −μc, λ5,2 = (1 − μ)[c − (1 − 2μ)b], λ5,3 = −μα,

λ6,1 = −μ(c − α), λ6,2 = μα − μ(1 − 2μ)(b + β),

λ6,3 = (1 − μ)c + μα − (1 − 2μ)(b + β))
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Among these eigenvalues, the signs of λ4,1, λ5,1, λ5,3, λ6,1 are obviously nega-
tive given our basic assumptions regarding the involved parameters. What, however,
needs to be further delineated is λ4,2, which requires 1

1−2μ
c
b < 1, λ5,2, which requires

1
1−2μ

c
b < 1, λ6,3, which requires (1−μ)c+μα

(1−2μ)(b+β)
< 1, and, finally, λ6,2, which is auto-

matically negative if λ6,3 < 0. ��
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