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Abstract In this paper, we continue the pursuit of the self-coordination mechanism as
studied in the El Farol Bar problem. However, in addition to efficiency (the optimal use
of the public facility), we are also interested in the distribution of the public resources
among all agents. Hence, we consider variants of the El Farol Bar problem, to be
distinguished from many early studies in which efficiency is the only concern. We
ask whether self-coordinating solutions can exist in some variants of the El Farol Bar
problem so that public resources can be optimally used with neither idle capacity nor
congestion being incurred and, in the meantime, the resources can be well distributed
among all agents. We consider this ideal situation an El Farol version of a “good
society”. This paper shows the existence of a positive answer to this inquiry, but the
variants involve two elements, which were largely left out in the conventional literature
on the El Farol Bar problem. They are social networks and social preferences. We first
show, through cellular automata, that social networks can contribute to the emergence
of a “good society”. We then show that the addition of some inequity-averse agents
can even guarantee the emergence of the “good society”.

Keywords El Farol Bar problem · Social preferences · Social networks ·
Inequity aversion · Cellular automata

1 Introduction

The El Farol Bar problem, introduced by Arthur (1994), has over the years become
the prototypical model of a system in which agents, competing for scarce resources,
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inductively adapt their belief models (or hypotheses) to the aggregate environment
they jointly create. The bar’s capacity is basically a resource subject to congestion,
making the El Farol Bar problem a stylized version of the central problem in pub-
lic economics represented by the efficient exploitation of common-pool resources.
Real-world examples of this problem include traffic congestion and the congestion
of computer networks. On the one hand, we hope that the resources can be utilized
without too much idle capacity left; on the other hand, we do not want them to be
overused which leads to congestion. When, for some reasons, solving this problem
by means of central intervention is either infeasible or undesirable, then it has to be
solved in a bottom-up manner as the El Farol problem describes.

1.1 El Farol Bar problem: from efficiency to equity

In the literature, most of the studies addressed this problem from the perspective
of learning; hence, the answers depend on how agents learn. Briefly put, there
are two kinds of learning mechanism being studied in the literature. The first one
is best-response learning (Arthur 1994; Edmonds 1999; Fogel et al. 1999; Chal-
let et al. 2004; Atilgan et al. 2008) and the second one is reinforcement learn-
ing (Bell and Sethares 1999; Franke 2003; Zambrano 2004; Whitehead 2008).1

The typical results are as follows. The best-response learning model tends to have
fluctuations, sometimes quite severe, around the threshold (switching between the
idle and congestion states), but the steady state where the aggregate bar’s atten-
dance is always equal to the bar’s maximum capacity is very hard to reach. The
reinforcement learning model, however, shows that perfect coordination is pos-
sible and that it is, indeed, the long-run behavior to which the system asymp-
totically converges (Whitehead 2008). However, it is an equilibrium character-
ized by complete segregation (a bimodal distribution of participation): the popula-
tion split into a group of agents who always go or frequently go (filling the bar
up to its capacity at all times) and another group of agents who seldom go or
never go.

This latter result has led to a new problem which has rarely been addressed in the
literature, namely, the inequity issue. The group of people who have been discouraged
by previous unsuccessful attempts and decide to quit obviously share very little or
none of the public resources, which may further make them the disadvantaged class in
the society. In fact, if we consider attending a bar as a social-engagement opportunity
to gain more information and social connections, then the quitting can imply social
exclusion or isolation. Therefore, the El Farol Bar problem is not narrowly just an
economic distribution problem, it may become a social segregation problem charac-

1 This distinction is suggested by Franke (2003), who distinguished best-response learning from stimulus-
response learning (reinforcement learning). The essential feature of the former is to keep track of numerous
belief models and to respond to the best of them. Later on, various evolutionary algorithms have been
applied to keeping track of these models (see Sect. 2 for the literature review). Therefore, another way to
distinguish these two strands of the literature by using the standard taxonomy, as suggested by Duffy (2006),
is evolutionary algorithms vs reinforcement learning. The former is applied to a large set of forecasting
models (beliefs), whereas the latter is applied to a rather small set of actions only.
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terized by a group of people who fully occupy the available public resource and a
group of people who are discouraged, ignored and completely marginalized.2

In this paper, we continue the pursuit of the self-coordination mechanism of the El
Farol Bar problem. However, in addition to the efficiency concern (the optimal use of
the public facility), we are also interested in the distribution of the public resources
among citizens. Hence, we study two variants of the El Farol Bar problem, which
are distinguished from many earlier studies that are only concerned with efficiency.
We ask whether self-coordinating solutions can exist in these variants of the El Farol
Bar problem so that the public resources can be optimally used with neither idle
capacity nor congestion being incurred and, in the meantime, the resources can be
well distributed among all agents. We may call this ideal situation with both efficiency
and equity the El Farol version of a “good society”.3

1.2 Social networks and social preferences

Through agent-based simulation, we shall show in this paper that the answer is sur-
prisingly yes,4 but the likelihood of the emergence of a good society, in addition to
learning, also depends on two other elements which have not yet been incorporated
in the El Farol Bar literature. These two additional elements are social networks and
social preferences. Before we move further, let us first make one remark on these two
elements. It should come to us as no surprise that these two elements can be significant
in agent-based modeling. In fact, more and more agent-based models have taken these
two elements explicitly into account, realizing their importance in emergent dynam-
ics. The former one, social networks, is obvious because agent-based modeling relies
heavily on interactions, and social network topologies are what underpin these interac-
tions.5 The latter one, social preference, is less obvious but can be well expected when

2 In the literature on minority games, a similar problem to the inequity issue is known as the trapping state,
as first well addressed by Dhar et al. (2011) and Sasidevan and Dhar (2014). In the trapping state, both the
majority and the minority have no incentive to change their choices (moving to the other restaurant), which
are all locked into a Nash equilibrium. Under an expected utility maximization framework, Sasidevan and
Dhar (2014) develop a co-action equilibrium as an alternative solution concept and show that there are ways
out of the trap toward the co-action equilibrium.
3 Probably under the impact of the recent financial crisis and the social turbulence, economists are chal-
lenged by a very general and fundamental issue on whether our economics can actually help build a good
society at large. These reflections can be best exemplified by some recent events, including plenary speeches
and organized sessions, in the Allied Social Science Association (ASSA) and American Economic Asso-
ciation (AEA) annual meetings (Marangos 2011; Shiller 2012).
4 Surprising in the sense that the generic procedure or algorithm for programming individuals which can
lead to the desirable emergent patterns is generally unknown. This challenge is well-known in the study
of complex systems. Since the El Farol Bar problem has been constantly modeled as a kind of complex
adaptive system, and in this paper it will be modeled via cellular automata (Wolfram 2002), this challenge,
therefore, remains.
5 There are two bodies of literature related to this development. One is network-based agent models, and
the other is the agent-based modeling of (social) networks. The former refers to the agent-based models
which explicitly involve networks, mainly for the purpose of interactions and decision-making; hence it can
also be termed as the network-based decision model. A number of earliest agent-based economic models
are of this type (Albin 1992; Albin and Foley 1992). More recent surveys can be found in Wilhite (2006).
The latter, the agent-based models of networks, considers agent-based models as formation algorithms of
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agent-based modeling is extended to the areas involving various pro-social behaviors,
which have been examined under intensive interdisciplinary studies across evolution-
ary biology, the humanities and the social sciences (Chen 2008; Xianyu 2010).

Nevertheless, recognizing their potential significance does not automatically imply
that we can predict what will happen. In the vein of the “new kind of science” or
computational irreducibility (Wolfram 2002), we can probably only learn the rest
from computer simulation, and it is this part where surprise may show up. In this
paper, it is the combined force of social networks and social preferences which can
solve the even harder efficiency-and-equity El Farol problem that surprises us.

1.2.1 Social networks

In this paper, we sequentially introduce two variants of the original El Farol Bar model,
both of which represent a step towards the development of a ‘socially oriented’ version
of the El Farol Bar problem. Through a series of simulations, we assess the effect
of these socially-grounded assumptions on the macro-dynamics of the El Farol Bar
problem and on the kind of equilibria that the system eventually reaches.

The first of these variants concerns the structure of the agents’ interaction and is
represented by the introduction of a social network connecting the agents and through
which the agents can access the information regarding their neighbors’ choices and
strategies. Therefore, in addition to the bar’s aggregate attendance, in this variant,
agents can also obtain access to local information. While in the original setup the
agents base their decisions on global information, represented by the bar’s aggregate
attendance, a feature that is likely to cause herding behavior, making it very difficult
for them to coordinate their activities, we may wonder whether coordination will be
improved if, instead, the agents base their decisions on only local information, repre-
sented by the attendance of their closest neighbors.6 As we shall see later, this alteration
motivates the simulations of bar attendance dynamics through cellular automata.

It is found that the introduction of social networks coupled with neighbor-based
decision rules, in a form of cellular automata, allows the system to always reach
an equilibrium characterized by perfect coordination, that is, a state where the bar’s
attendance is always equal to the bar’s capacity, but there is a great diversity of these
equilibria. The one of most interest to us, the “good society” (all the agents going
to the bar with equal accessibility), is one of them. The one normally found with
reinforcement learning (a group of agents always going and another group always
staying at home) is also one of them. These two, however, are not exhaustive; as we
shall see, there are many others, which, to the best of our knowledge, have never been
found in the literature before. The effect of social networks can then be concisely
represented by the resultant empirical distribution over these equilibria.

Footnote 5 continued
networks, to be separated from sociological models, sociophysical models, and game-theoretic models
(Eguiluz et al. 2005; Hamill and Gilbert 2009). In this paper, we are mainly concerned with the first type.
6 As we will see in Sect. 2.2, agents can still gain access to global information (the bar’s aggregate atten-
dance), but it is only used to enable agents to determine when to start searching (to learn from neighbors)
and when to stop.
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1.2.2 Social preferences

After having assessed the effect of this first variant, we introduce a second variant
concerning the agents’ preferences for fairness. In the original version of the El Farol
Bar problem the agents did not care about their attendance frequency (that is, how
often they were going to the bar). The only thing that mattered to them was to make
the right choice, even if it implied staying all the time at home. In this paper we
assume, instead, that some or all agents are characterized by a preference for fairness
or inequity aversion. With this fairness or inequity-averse preference, agents expect
a fair share or a minimum attendance frequency and take it as one of their satisfying
criteria. If their decision rule does not lead to this fair share, they will react upon it
and search for changes.

The inequity-averse preference is one of the essential ideas in the recent literature on
the study of pro-social behavior. The agent with the inequity-averse preference does not
only care about his own payoff, but also cares about the distribution of payoffs among
agents. This idea originated from the attempt to have a coherent framework which can
explain the co-existence of selfish behavior in some games but other-regarding behav-
ior in some other games, as repeatedly demonstrated in human-subject experiments.

Our answer to this question is affirmative if one is willing to assume that, in
addition to purely self-interested people, there are a fraction of people who are
also motivated by fairness consideration. . . We show that in the presence of some
inequity-averse people “fair” and “cooperative” as well as “competitive” and
“noncooperative” behavioral patterns can be explained in a coherent framework.
(Fehr and Schmidt (1999), pp. 818–819.)

The economic model of the inequity-averse preference was initiated by Bolton (1991),
and was refined and established by Fehr and Schmidt (1999) and Bolton and Qcken-
fels (2000).7 There is still a heated discussion on the reconciliation between inequity
preference and the conventional rational choice theory, but that is beyond the scope
of the paper.8 In this paper, we simply take this preference either as exogenously
given or as endogenously evolving. For the former case, the inequity-averse agents
are characterized by a parameter, called the minimum attendance threshold; for the lat-
ter case, the awareness of inequity is endogenously formed through interactions with
neighbors in the familiar ‘keeping-up-with-the-Joneses’ manner, i.e., the agents’ mini-
mum attendance threshold is represented by the average of their neighbors’ attendance
frequencies.

The incorporation of social preference significantly increases the likelihood of the
emergence of the “good society” to the extent that its appearance is always the most
likely outcome. The likelihood increases with the size (number) of inequity-averse
agents and the degree of their inequity-aversion. However, the emergence of the “good
society” does not require all agents to be sensitive to inequity. Our simulation shows

7 A survey of various similar attempts can be found in Fehr and Schmidt (2006). The model has been under
intensive examination in experimental economics for more than a decade; see, for example, Fehr et al.
(2006), Blanco et al. (2011), and Dreber et al. (2014).
8 The interested reader is referred to Gintis (2008) and Hetzer and Sornette (2013).
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that for even a minority of them, up to 20 or 25 %, having this kind of awareness, the
emergence of the good society is already guaranteed.

The remainder of the present paper is organized as follows. In Sect. 2, we will
present a brief review of the literature on the El Farol Bar problem. Section 3 describes
our locally-interacted El Farol Bar model, a model with two-dimensional cellular
automata, and the resultant adaptive behavior of agents. Section 4 presents the simula-
tion results with respect to different settings of social networks and social preferences.
Section 5 provides a simple analysis and a detailed look at the formation of the perfect
coordination in light of our simulation results. Section 6 then concludes the paper with
remarks on its current limitations, implications and future work.

2 Literature review

In this section, after introducing the original versions of the El Farol Bar problem
and of the closely related minority game (Sect. 2.1), we will consider some of the
papers that have extended these two seminal models in various directions. In particular,
we will focus on introducing different learning models to the El Farol Bar problem
(Sect. 2.2) and local interaction (Sect. 2.3) in the Minority Game.9 In the first case,
our aim is to provide a review of the macro-dynamics emerging from the models
introduced so far, in order to have a background against which to compare the results
obtained with the model we introduce in this paper. On the other hand, the papers that
consider local interaction in the Minority Game show how the introduction of novel
interaction structures has received considerable attention in previous works and, at the
same time, allow us to see the crucial importance of the interaction structure to the
macro-dynamics generated by these kinds of models.

2.1 The seminal models

In the original El Farol Bar problem (Arthur 1994), N people decide independently,
without collusion or prior communication, whether to go to a bar. Going is enjoyable
only if the bar is not crowded, otherwise the agents would prefer to stay home. The
bar is crowded if more than B people show up, whereas it is not crowded, and thus
enjoyable, if attendees are B or fewer. If we denote the agent’s decision “to go” by
“1” and “not to go” by “0”, and the actual number of attendees by n (n ≤ N ), then the
agent’s payoff function has the general form (1).

U (x, n) =

⎧
⎪⎪⎨

⎪⎪⎩

u1, if x = 0 and n ≥ B,

u2, if x = 0 and n < B,

u3, if x = 1 and n > B,

u4, if x = 1 and n ≤ B.

(1)

9 Quite surprisingly, examples of the adoption of local interaction in the former and of different learning
mechanisms in the latter are much rarer.
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The payoffs have either the order u4 = u1 > u2 = u3 or the order u4 > u1 = u2 >

u3.10

Arthur assumes that all the agents know the attendance figures in the past m periods
and each of them has a set of k predictors or hypotheses, in the form of functions that
map the past m periods’ attendance figures into next week’s attendance. After each
period, the predictors’ performance indexes are updated according to the accuracy with
which the various predictors forecasted the bar’s attendance. Then, the agent selects
the most accurate predictor and uses the relative forecast to decide whether to go to
the bar or to stay at home the next period. Although the competitive process among
predictors never comes to rest, it still produces a remarkable statistical regularity: at
the macro level, the number of attendees fluctuates around the threshold level B, while,
at the micro level, each agent goes B/N percent of the times, in the long run.

Challet and Zhang (1997) proposed an alternative version of the El Farol Bar prob-
lem, known as the minority game (MG). The minority game has a very similar structure
to the El Farol Bar problem. There is a binary choice: “go” (1) or “not go” (−1). The
three key parameters, namely, the number of agents (N ), the memory size (m) and the
size of the strategy pool (k), are carried on. The maintenance of performance scores
of the strategies in the agent’s pool and the use of them is also carried out in a similar
manner. The basic finding is that the attendance frequency or the size of the winners
fluctuate around the threshold, in this case, 50%. Further studies have shown that the
degree of the fluctuation, widely used as a measure of efficiency, can further depend
on the three parameters collectively.

Despite their similarity, the El Farol Bar problem and the minority game differ
on one fundamental point. The minority games always assign the winners to the less
crowded side (those who make a less popular choice) and the losers to the more
crowded side. Hence, there is always a majority side that makes the wrong choice,
while, in the El Farol Bar problem, there is the possibility of hitting exactly the target B,
a situation where all the agents, no matter what they decided, made the right choice.11

Compared to the reception of the El Farol Bar problem in economics, the minority
game is much better received in econophysics (Challet et al. 2005; Coolen 2005). It
has been further extended into a model of financial markets (Challet et al. 2005); in
particular, when the financial market is considered from its gambling feature, some
can be winners only conditional on others being losers. However, as stated in the
introductory section, the kind of problem that concerns us is coordination, and good
coordination can lead to a win-win situation. Therefore, we keep this feature of the
payoff structure of the original El Farol problem in our model (see Sect. 3.2 for
the details). Nonetheless, given the similarity between the two, some studies on the

10 These two versions of the payoff inequality will be discussed in Sect. 2.2.
11 Because of this, there comes an additional difference. To ensure that there is always a minority side,
in the minority game it is explicitly assumed that N is an odd number, an assumption which is not made
in the El Farol Bar problem. As a result, the two games are characterized by different dynamics of the
average long-term payoff per agent, as N increases. While in the MG the average long-term payoff per
agent improves, as N grows larger, and asymptotically goes to zero from below, in the case of the El Farol
problem it stays around zero, as the positive effect of the decreased fluctuation around the threshold is offset
by the negative effect of the decreased probability of hitting the threshold, a possibility which in the MG is
precluded by construction.
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minority game can certainly shed light on the study of the El Farol Bar problem. As we
shall see in Sect. 2.3, the inclusion of social networks and the use of cellular automata
is actually borrowed from what we learn from the minority game.

2.2 Learning in the El Farol Bar problem

Among the studies introducing novel learning mechanisms in the El Farol Bar prob-
lem, we can distinguish two lines of development: those that retain the best-response
behavior of Arthur’s El Farol Bar problem and those introducing reinforcement learn-
ing mechanisms. While one essential difference between the two is that the latter
attempts to reduce the agents’ cognitive loading of the former, there is an addition
concern to distinguish the two, which is pertinent to the information requirement and
hence to payoff inequalities (Eq. 1).

Two different payoff inequalities have been, implicitly or explicitly, considered
in the literature. Based on Eq. (1), these two are (a) u4 = u1 > u2 = u3 and (b)
u4 > u1 = u2 > u3. The choice of the payoff structure (a) implies that that the
agents who did not go to the bar can still ascertain whether the bar was crowded
or not, since it clearly distinguishes the payoff to the right decisions (forecasts) (u4
and u1) from that to the wrong decisions (forecasts) (u2 and u3). This is the typical
setting of works adopting the best-response behavioral model. The payoff, in these
models, is represented by the amount by which the strategies’ fitness is increased
(decreased) after a right (wrong) forecast. To be precise, in some of these models
(as the one proposed by Arthur) the strategy fitness is updated by an amount that is
inversely proportional to the difference between the strategy’s forecast and the actual
aggregate attendance. On the other hand, the choice of the payoff structure (b) implies
that those agents staying at home have no possibility of ascertaining whether the bar
was too crowded or not, and the payoff as a result of staying at home is independent
of the bar attendance (u1 = u2). This is the typical payoff setting of works adopting
reinforcement learning.

In the first line of development, Edmonds (1999) proposes an extension of the El
Farol Bar problem where agents can change their strategies set by means of genetic
programming and are given the chance to communicate with other agents before
making their decision as to whether to go to the El Farol Bar. Simulations show that, as
in the original model, the attendance at the bar fluctuates around the threshold level, and
does not seem to settle down into any regular pattern. Another work where the agents’
strategies are allowed to co-evolve is that of Fogel et al. (1999). In the model they
propose, the agents are endowed with 10 predictors that take the form of autoregressive
models with the number of lag terms and the relative coefficients being the variables
that evolve over time using evolutionary programming. Their simulations show that
the system demonstrates a similar pattern to the original model (Arthur 1994), except
with a larger fluctuation. Other more technical aspects of managing a pool of strategies
have been studied by Atilgan et al. (2008). Specifically, the differential effects of a
kind of slow learning (sticky learning) and a fast learning upon the convergence to the
threshold have been found.

Partially due to its computational demands, the other line of this research has aban-
doned best-response behavior to adopt the more basic reinforcement learning frame-
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work. One of the first works where the best-response behavior of Arthur’s original
model has been replaced by reinforcement learning is that of Bell and Sethares (1999).
In this paper, the authors present an agent-based model where the agents’ strategies
are represented by an integer c determining the agents’ attendance frequency: if c = 2
the agent goes to the bar once every 2 periods; if c = 3 he goes once every 3 periods,
and so on. Every time an agent goes to the bar and has a good time (because the bar
was not too crowded), he decreases c and goes more often, whereas, in the opposite
case, he increases c and goes less often. No change in the attendance frequency takes
place if the agent stays at home, as it is assumed that he cannot assess whether he
made the right choice or not.

Subsequently, Franke (2003) proposed a reinforcement learning model in which
each agent goes to the bar with a probability p. If the bar is not crowded he increases
p, while if the bar turns out to be too crowded, he decreases p. If the agent stays
at home, a parameter u determines the extent to which the attendance probability is
updated according to the bar’s aggregate attendance.

In both Bell and Sethares (1999) and Franke (2003), simulations show that the
populations tend to be split in two groups: a group of frequent bar-goers and a group
of agents who very seldom go to the bar. This result has been analytically obtained
by Whitehead (2008). By applying the Erev and Roth (1998) model of reinforcement
learning to the El Farol Bar framework, he shows that the long-run behavior converges
asymptotically to the set of pure strategy Nash equilibria of the El Farol stage game.

To sum up, in the best-response models, the aggregate attendance fluctuates around
an average value that falls between B/N and a lower bound represented by the mixed
strategy that maximizes the aggregate payoff. The point within this range where the
average aggregate attendance falls depends on the values assigned to the many para-
meters characterizing the best-response behavior and induction process. On the other
hand, in the reinforcement learning model, two classes of agents emerge: those who
often go and those who seldom go. The learning process will asymptotically lead to a
state of perfect coordination with complete segregation, where a fraction B/N of the
population will always go and the fraction 1 − B/N will always stay at home.

2.3 Local interaction in the minority game

While the literature on the El Farol Bar problem focused on the effect of the intro-
duction of various learning mechanisms by retaining the interaction structure of the
original model, within the literature on the minority game some works have analyzed
the effect of different interaction structures, and in particular local interaction, on the
system’s macro-dynamics.

The literature on the MG with explicit local interactions or social networks can
be divided in two strands characterized by two alternative ways in which the agents
make use of local information.12 In the models of the first strand (Kalinowski et al.

12 Here, we would like to add a remark to draw a distinction between the minority game with local
information (Kalinowski et al. 2000) and the local minority game (Moelbert and De Los Rios 2002).
In the former case, the minority game is played globally, i.e., the minority is defined globally, but information
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2000; Paczuski et al. 2000; Galstyan and Lerman 2002; Chau et al. 2004; Caridi and
Ceva 2004), the agents make their decision on the basis of the best strategy in the set
of strategies with which they are endowed, as in the standard MG setup. However,
differently from the latter, the input is not represented by the past aggregate outcomes
but by the action taken by the agents’ neighbors in the past period. In other words,
the variable m, which in the traditional MG represents the number of the past global
outcomes, in these models represents the number of agents each agent looks at in order
to make a decision (i.e., the network degree). The general result of this setup is that
the system can reach levels of coordination higher than the coordination obtained in
the standard MG.

In the models characterizing the second strand (Slanina 2000; Anghel et al. 2004;
Lo et al. 2004; Lavicka and Slanina 2007; Shang and Wang 2007) each agent can
decide whether to follow his own strategies, as in the standard MG setup, or imitate
the action of one of his neighbors. Of course he will decide to imitate if the performance
of the best performing agent among his neighbors is better than his own performance.
Also in this case, these works show that through imitation it is possible to reduce the
system’s variance to a level lower than the lowest variance reachable with the standard
MG and that the best coordination is reached with networks characterized by small
degrees (usually, in the order of 2).

In the model we present in this paper, we develop a behavioral model which inte-
grates these two approaches: in our model, the agents’ strategies are represented by
lookup tables defining the agents’ actions for every combination of their neighbors’
past choices (like the works in the first strand), but these strategies change over time as
the strategies of the best performing agents are imitated (with mutation) by the other
agents in the population (like the works in the second strand). As we shall see in the
subsequent sections, this way of introducing social networks and local interaction to
the model turns out to have an equally, if not more, dramatic effect in the case of the
El Farol Bar problem. Not only does the efficiency (coordination) reached by the sys-
tem depend on the interaction structure, but local interaction leads to new phenomena
such as the emergence of attractors of various lengths and the emergence of different
clusters of agents.

3 The model

3.1 Model sketch

The review above has pretty much motivated the model to be presented in this section.
Let us first give a quick sketch of it. Briefly, in this model, we shall introduce the
spatial structure or social networks from the literature on minority games, as reviewed
in Sect. 2.3, to the El Farol Bar problem. As already mentioned in the introductory
section, this is our first step to explore the effect of social network topologies on the

Footnote 12 continued
used for decision making is mainly obtained from local neighbors. In the latter case, the minority game is
simply played locally, i.e., the minority is defined locally. Our paper belongs to the former.
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coordination problem. Hence, we do not consider just one social network, but two as
a minimum for comparison purposes. Again, as a starting point, we do not complicate
the situation with those state-of-the-art networks, but the standard regular network
(circular network) and von Neumann networks.

This choice brings us closer to the beginning of agent-based modeling, namely,
cellular automata, which are rather locally-based. In our applications, that means
agents acquire information and learn, mainly, from their neighbors. This locally-based
social learning, like general social learning, significantly reduces the cognitive loading
of each individual for maintaining a pool of strategies as assumed by most best-
response models reviewed in Sect. 2.2. In fact, in our setting, the pool of strategies
is widely shared and maintained by the entire society of agents, and each agent only
holds one for his own sake at each point in time.

With this reduction in cognitive loading, we do not further consider individual-style
reinforcement learning since our setting already facilitates social learning. We, how-
ever, do allow for the individual’s learning but in the usual discovery manner through
mutation. The rest of his learning is then through imitation from neighbors. Hence, it
is a simple imitation-plus-mutation model for learning. While the agents’ motive for
imitating and mutating is driven, as usual, by the fitness of their held strategies, we
shall later on further differentiate this motive by their preference for equity, and then
complete our agent-based El Farol Bar model with both social networks and social
preferences.

3.2 The model

3.2.1 Utility and information

As reviewed in Sects. 2.1 and 2.2, early models which characterize the El Farol Bar
problem as a prediction game implicitly assume the inequality u4 = u1 > u2 = u3 for
Eq. (1). However, in our case the El Farol Bar game is not just a prediction game, but
more a congestion game or a coordination game, as it has been motivated in Sect. 1.
In fact, in his original version of the ELB game, Arthur (1994) states the following:

The problem was inspired by the bar El Farol in Santa Fe which offers Irish music
on Thursday nights; but the reader may recognize it as applying to noontime
lunch-room crowding, and to other commons or coordination problems with
limits to desired coordination. (Ibid, p. 408; Italics added)

In this aspect of the game, even though the agents’ prediction still matters, that does not
mean that they have no demand for food, sociality, the Internet, and easy transportation.
In all these situations, the agent wants to avoid congestion, but at the same time he
prefers to ‘go to the bar’ instead of ‘staying at home’. Therefore, an appropriate payoff
inequality for Equality (1) to reflect this feature of the game is u4 > u1 > u2 = u3,

which is the one applied in this paper.13

13 It should be noted that since we assume that agents are bounded rational agents following search heuristics
rather than expected-utility maximizing agents, only ordinal utility is relevant here.
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Fig. 1 Circular (a) and von Neumann (b) neighborhoods

Furthermore, we modify the standard settings by adopting the informational struc-
ture introduced by the works on the MG with local interaction; more specifically, we
study a game in which agents know what their neighbors did on earlier days and make
their current decisions based on this information. As in the original El Farol Bar prob-
lem, we consider a population composed of N = 100 agents and set the attendance
threshold B/N = 0.6. Each agent, in addition to the bar’s aggregate attendance (global
information), can ‘see’ the actions, the strategies and the strategic performances of
their neighbors (local information), which are determined by the given social network.

In this paper, we investigate two network typologies as shown in Fig. 1: the circular
network (circular neighborhood), where each agent is connected to the two agents to
his left and the two agents to his right, and the von Neumann network (von Neumann
neighborhood), with the agents occupying a cell in a bi-dimensional grid covering the
surface of a torus. Hence, in each of the two networks, the agent is connected to four
neighbors, denoted by N1, N2, N3 and N4.

The reason why we start with the circular network and the von Neumann network
rather than the typical social networks is because these chosen networks have a topol-
ogy that is very similar to those of the elementary cellular automata studied by Wolfram
(Wolfram 2002; Zenil 2013). It therefore endows us with a basic theoretical under-
pinning which may make it easier to recast the classical El Farol Bar problem into a
familiar environment of cellular automata, as a step toward more complex situations.14

3.2.2 Strategy representation

Contrary to the prototypical El Farol Bar problem and MG settings, each agent is
assigned, at the beginning of the simulation, only one strategy z, randomly chosen from
the whole strategy space. Our representation of the strategy is based on the binary string
as normally used in cellular automata. The idea is that each agent will first look at what
his four neighbors did in the previous period and only then decide what he will do in

14 Specifically, there are four types of dynamics being established under various rules studied by Wolfram
(2002). As we shall see, in our El Farol setting, the pursuits for the types of dynamics that we may
have and what are the rules supporting the emergent dynamics are very much motivated by the cellular-
automata underpinning. Compared to the case of Wolfram (2002), we have two additional settings, namely,
heterogeneity and learning: we start with agents using different rules and then learning in order to coordinate
themselves in the sense that they collectively find the rule that generates the type of dynamics that is
consistent with the pattern characterizing the ‘good society’.
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Fig. 2 The agents’ strategy (example)

the current period, i.e., a mapping from the neighbors’ previous decisions to his current
decision. Denote the action “going to the bar” by 1 and “staying at home” by 0. Then
there are 24 possible states, each corresponding to one combination of the decision “1”
or “0” made by the four neighbors. Each strategy is composed of 16 rules specifying
the action D the agent has to take in the current period, one rule for each state, as is
shown in Fig. 2. Each strategy can then be represented by a 16-bit long string. If we fix
the numbering order of the 16 states as indicated in Fig. 2, then the corresponding 16-
bit representation for the strategy exemplified there is simply “0010001110101110”,
i.e., an array of the decisions corresponding to each of the sixteen states, respectively.
All together, there are 216 possible strategies in the strategy space.

3.2.3 Decision accuracy and attendance frequency

We define the variable di (t) as the action taken by agent i in period t : it takes the
value 1 if the agent goes to the bar and the value 0 otherwise. Moreover, we define the
variable si (t) as the outcome of agent i’s decision in period t : it takes the value 1 if the
agent took the right decision (that is, if he went to the bar and the bar was not crowded
or if he stayed at home and the bar was too crowded) and it takes the value 0 if the agent
took the wrong decision (that is, if he went to the bar and the bar was too crowded or
if he stayed at home and the bar was not crowded). The agents are endowed with a
memory of length m. This means that they store in two vectors, d and s of length m,
the last m values of d and s, respectively. So, at the end of any given period t , agent i’s
vectors di and si , are composed, respectively, of di (t), di (t − 1), . . . , di (t + 1 − m),
and of si (t), si (t − 1), . . . , si (t + 1 − m).

Agent i’s attendance frequency over the most recent m periods, ai , is defined by (2):

ai = 1

m

t∑

j=t=1−m

di ( j). (2)

The attendance frequency’s value can go from 1, if the agent always went to the
bar, to 0, if the agent never went to the bar, in the last m periods. Moreover, agent i’s
decision accuracy rate, fi , is given by (3):
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fi = 1

m

t∑

j=t+1−m

si ( j). (3)

The decision accuracy rate can go from 1, if the agent always made the right
decision, to 0, if the agent always made the wrong decision, in the last m periods. We
define the duration of agent i’s current strategy (the number of periods the agent is
using his current strategy) as ri . In order for the average attendance and the decision
accuracy associated with any strategy to be computed, it has to be adopted for a number
of periods equal to the agents’ memory size m: so, we can think of m as the trial period
of a strategy. We will set this value to 10 for all the agents in all our simulations.

3.2.4 Inequity-averse preference

As mentioned in the introductory section, agents in our model may have an inequity-
averse preference, which is characterized by a parameter called the minimum atten-
dance threshold, denoted by αi , that is, a fair share of the access to the pubic resources
or a fair attendance frequency expected by the agent. It can take any value from 0, if
the agents do not care about their attendance frequency, to 0.6. We do not consider
a higher value than 0.6 because these agents with equity concern do not claim to go
with an attendance frequency higher than the threshold B/N (= 0.6).

The inclusion of the inequity-averse preference can change the original payoff
structure of the game (Eq. 1). Let Uα(x, n, αi ) be the utility function of agent i , who
has the inequity-averse preference. Then Uα(x, n, αi ) can be formally modified as
follows.

Uα(x, n, αi ) = U (x, n) − ε, (4)

where

ε =
{

0, if ai ≥ αi ,

ε+, if ai < αi .
(5)

ε+ is positive and satisfies the inequality u1 > u4 − ε+ > u1 − ε+ > u2. The agent
with the inequity-averse preference has the same utility function as the agent without
it when his ‘fair-share’ attendance is satisfied (ai ≥ αi ); otherwise, a displeasure with
inequity, ε+, is subtracted from the regular utility function.

3.2.5 Learning and search heuristics

Differing from the traditional El Farol Bar problem setup, the agents’ strategies are not
fixed, but they evolve through both social learning (imitation) and individual learning
(mutation). So, the social network plays a role both in the agents’ decision process,
allowing the agents to gather information regarding their neighbors’ choices, and, in
the agents’ learning process, allowing the agents to imitate their neighbors’ strategies.
In any given period, an agent i imitates the strategy of one of his neighbors if the
following six conditions are met:
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(a) fi < 1 and/or ai < αi

(b) ri ≥ mi

and the agent has at least one neighbor j for which the following conditions are
verified:

(c) f j > fi

(d) a j ≥ αi

(e) r j ≥ m j

(f) z j �= zi

Condition (a) is quite obvious. It simply states that the agent will have the tendency
to imitate if he is not satisfied with his current situation (strategy). There are two
possibilities which may cause this dissatisfaction. First, there are errors in his decision
( fi < 1) so there is room for an improvement, and, second, he is not satisfied with his
attendance frequency (ai < αi ). Notice that, by this later qualification, the agent may
still look for change even though all his decisions are accurate ( fi = 1). Condition (b)
shows that the agent will not change his strategy frequently and will consider doing so
only if the strategy has been tested long enough, i.e., after or upon the completion of the
trial period with a given duration of mi . When imitating neighbors, agent i will only
consider those strategies which not only lead to more accurate outcomes, but also lead
to a satisfactory attendance frequency (Condition (c) and (d)). The above promising
strategy should be based on long testing, with a duration of m j periods, rather than
sheer luck (Condition (e)). Finally, agent i will not imitate the same strategy which he
is currently using. Condition (f) is to avoid this repetition.

If the first two conditions are met but at least one of the last four is not, or, alterna-
tively put, if the agent has not yet reached the optimal strategy and in the current period
he cannot imitate any of his neighbors, then the agent, with a probability p (p << 1),
will mutate a randomly chosen rule on its strategy while with probability 1 − p he
will keep using his present strategy. While the imitation process ensures that the most
successful strategies are spread in the population, the mutation process ensures that
new, eventually better, strategies are introduced over time. Once the agent has adopted
a new strategy (either through imitation or mutation) he will reset his memory to zero
and will start keeping track of the new strategy’s fitness. The agent stops both the
imitation and the mutation processes if the following two conditions are met:

(a) fi = 1
(b) ai ≥ αi

When these two conditions are verified for all the agents, the system reaches the
equilibrium: no further change in the agents’ behavior takes place after this point as
the agents always make the right decision and go to the bar with a satisfying attendance
frequency.

Under the influence of Simon’s notion of bounded rationality, behavioral econo-
mists characterize each decision process with three main stays, namely, a search rule,
a stopping rule, and a decision rule (Gigerenzer and Gaissmaier 2011). The proposed
learning process above can basically be read with this Simonian framework. Con-
ditions (b)–(f) give the search rule, including when to start searching, (a) gives the
stopping criteria, and the rest give the decision rule. Notice that the inequity-averse
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preference, together with the forecasting accuracy, in this model plays exactly the role
of the stopping criteria. Hence, agents in our model are bounded rational in the sense
of the Simonian satisfying agents, rather than the expected-utility maximizing agents.

3.3 Simulation settings

In the next section, we will show the results of simulations based on two variants of the
El Farol Bar problem. In the first version (Sect. 4.1) we introduce the social network
only but no inequity-averse preference. In this version, the agents, as in the original
model, do not care about their attendance frequency. In this case, the same learning
mechanism applies but with the minimum attendance threshold set to 0 (αi = 0,∀i).
Accordingly, the agents decide whether or not to imitate their neighbors only on the
basis of the strategies’ accuracy rates. In this way, we are able to assess how the out-
comes are affected by the introduction of social networks and, in particular, the effect
of different network structures on the kinds of equilibria reached by the system, the
equilibrium distribution, and, in particular, the emerging likelihood of a ‘good society’.

Then, in Sect. 4.2, we introduce a second variant where all or some agents are
inequity averse, in the context of a network structure represented by the von Neumann
neighborhood.15 This version is further differentiated into three scenarios. We first start
with a homogeneous population of agents (Sect. 4.2.1) where all agents are inequity
averse with the same threshold, i.e., αi = α,∀i . We then consider a heterogeneous case
(Sect. 4.2.2) where only a fixed number of agents are inequity averse with a threshold
of 0.6. Denote this parameter by Nα,0.6, and the rest of the population are not inequity
averse at all. The last scenario (Sect. 4.3) is the same as the second except that the
thresholds of the inequity-averse agents are determined endogenously and socially in
a ‘keep-up-with-the-Joneses’ (KUJ) manner. Denote this number of agents by NKU J .
Step by step we are moving toward a more natural setting to address the question: what
is the minimum degree of inequity aversion, in terms of α, Nα,0.6, NKU J , required for
the emergence of the “good society” equilibrium?

4 Results of simulations

Simulation results are presented in this section. The first series of simulations show
the contribution of the social network and local interactions to the emergence of the
“good society” equilibrium (Sect. 4.1), and the second series of simulations show the
significance of social preference in the form of inequity aversion (Sect. 4.2). They will
both be presented in histograms (distributions) based on multiple runs.

4.1 Social networks without inequity aversion

We begin with the simulation of the El Farol Bar system with both the circular neigh-
borhood and the von Neumann neighborhood. Each setting is run 1000 times. The

15 In this second set of simulations, we will not consider the circular neighborhood as in this part our aim
is to assess the effect of the inequity-averse preference on the equilibrium distribution.
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Fig. 3 The attendances dynamics in a typical run (with the von Neumann neighborhood)

results show that each simulation of both settings always reaches perfect coordina-
tion, that is, the state where the bar attendance is always equal to the threshold and,
consequently, the agents never make the wrong choice. Figure 3 shows the attendances
for a typical run with the von Neumann neighborhood. We can see that, in this example,
the equilibrium is reached at around period 5000.16

While the El Farol Bar in both networks eventually converges to the same aggregate
outcome (a 60 % attendance rate all the time), from the mesoscopic viewpoint, they
differ from run to run. To effectively characterize these equilibria at the mesoscopic
level, we shall focus on the attendance frequency of agents when the perfect coordina-
tion is formed, a∗

i . In this way, our equilibrium can be represented by the heterogeneity
in this attendance frequency over all agents. More precisely, the perfect coordinating
equilibrium of the El Farol Bar problem is given by the set which shows the observed
attending frequencies, b∗

j , and the share of the agents with b∗
j , π∗

j .

Ξ ≡
{(

b∗
j , π

∗
j

)}c

j=1
≡ {(

b∗
1, π∗

1

)
,
(
b∗

2, π∗
2

)
, . . .

(
b∗

c , π∗
c

)}
, (6)

where b∗
1 > b∗

2 > · · · > b∗
c .

In (6), “c” refers to the number of clusters, and π∗
j is the size of the corresponding

cluster. Taking the bimodal perfect coordination equilibrium as an example, we have
two clusters of agents, one which always goes (b∗

1 = 1) and one that never goes
(b∗

2 = 0); 60 % of agents are of the first kind, and 40 % agents are of the second kind.
Hence, this equilibrium is characterized by

ΞBi ≡ {(1, 0.6), (0, 0.4)} (7)

Alternatively, the “good society” is an equilibrium characterized as

ΞG ≡ {(0.6, 1)} (8)

For convenience, we shall call these equilibria, based on the number of emerging
clusters, 1C equilibrium, 2C equilibrium, etc. Hence the “good society” equilibrium,

16 One may wonder about the noticeable discontinuity appearing in this figure. Why does it make the
fluctuation suddenly stop? We shall come back to this point in Sect. 5.
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ΞG , is a 1C equilibrium, and the segregated equilibrium, ΞBi , is a 2C equilibrium.
Then one way to present our simulation result is to show the histogram of each of these
C equilibria over our 1000 runs.17 Figure 4 shows the histogram of the C equilibria
from C = 1, 2, . . . , 8 for both the circular network (CN) and the von Neumann
network (vNN).18

From Fig. 4 we can see that, while the literature on the El Farol Bar problem had
identified only one kind of equilibrium, that is, ΞBi in (7), the introduction of social
networks associated with the use of local information leads to the emergence of many
different kinds of equilibria. While the 2C equilibria remain the most likely outcome
in both networks, with the von Neumann network the system has a non-negligible
probability (18 %) of reaching the 1C equilibrium (the “good society” equilibrium),
ΞG . The fact that the system has relatively good chances to reach the perfectly equitable
equilibrium is a quite interesting result considering that, in this version, agents have
no minimum attendance thresholds; yet, it is the second most likely equilibrium, with
a probability up to almost one third of the probability of the 2C equilibria. Different
network structures are, however, characterized by different equilibria distributions: for
example, the probability of reaching ΞG declines to only 2 % in the circular network.

A finer look at the results further shows that, within the equilibria characterized by
the emergence of two clusters (2C), the great majority (over 90 %) are represented by
the ΞBi . The rest (less than 10 %) are represented by Ξ2 (see footnote 17). The great
majority of the 3C equilibria are represented by an equilibrium where some agents
never go to the bar, some always go and the rest go with an attendance frequency of
0.5, i.e., Ξ3−2 in (11). Another relatively frequent outcome is the emergence of the
5C equilibria. Within this case, the great majority is represented by a configuration
where, besides the three clusters mentioned for the 3C case, two more groups of
clusters, going to the bar respectively with a frequency of 0.4 and 0.6, emerge, such as

17 Here, we use equilibria because, except for the 1C equilibrium, we can have multiple equilibria for each
C (C ≥ 2). For example, for the 2C equilibria, in addition to ΞBi as shown in (7), the other observed 2C
equilibrium is:

Ξ2 ≡ {(1, 0.2), (0.5, 0.8)} (9)

Similarly, for C = 3, we can have

Ξ3−1 ≡ {(0.7, 0.1), (0.6, 0.8), (0.5, 0.1)} (10)

or

Ξ3−2 ≡ {(1, 0.4), (0.5, 0.4), (0, 0.2)} . (11)

Furthermore, even for two equilibria having the same {b∗
j }, their {π∗

j } can still be different. For example,
one alternative for Ξ3−1 is

Ξ3−3 ≡ {(0.7, 0.3), (0.6, 0.4), (0.5, 0.3)} . (12)

18 The equilibrium with more than eight clusters of agents has not been found in any of our simulations.
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Fig. 4 Histogram of the C equilibria with the circular (CN) and the von Neumann (vNN) neighborhoods

Ξ5 ≡ {(1, 0.58), (0.6, 0.01), (0.5, 0.02), (0.4, 0.01), (0, 0.38)} . (13)

4.2 Introducing inequity-averse preference: exogenous settings

After seeing the significance of social networks in the emergence of the “good society”
equilibrium, in the following sections, we shall examine the effects of the inequity-
averse preference. To have a focus, here we only consider the von Neumann network.
Hence, in the following sections, agents expect a minimum bar attendance frequency,
and, if their actual attendance is below the threshold, they will find a way to change
their original decision rule. Within this framework, we further consider two versions
of this kind of inequity-averse preference: an absolute one which is given exogenously
(Sect. 4.2) and a relative one which is determined endogenously in a “keep-up-with-
the-Joneses” manner (Sect. 4.3).

4.2.1 Homogeneous population

For the exogenous settings, we further distinguish the case of a homogeneous popula-
tion from the case of a heterogeneous population by addressing two different but related
questions on the role of inequity aversion in the emergence of the “good society”. For
the homogeneous setting, since all agents are given the same minimum attendance
threshold (αi = α,∀i), we then look at the relationship between the likelihood of the
“good society” emerging and the degree of inequity aversion (the threshold) in this
homogeneous setting.

We simulate the El Farol Bar dynamics by assuming α = 0.1, 0.2, . . . , 0.6. For
each parameter value of α, an El Farol Bar dynamics with the von Neumann network
is run 100 times. Figure 5 shows the distribution over various C equilibria as the
counterpart of Fig. 4. To show how this distribution may change with the increase
in α, the diagram is demonstrated in a three-dimensional version by including the
minimum attendance threshold as one of the axes.

From Fig. 5, we can see that if all agents have the same threshold of 0.1 (that is,
the agents are satisfied if their attendance frequency is equal to or above 0.1), the 1C
equilibrium (the “good society”) is already the most likely outcome (around 40 %),
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Fig. 5 Histograms of the C equilibria for six different homogeneous thresholds: α = 0.1, 0.2, . . . , 0.6

followed by the 2C equilibrium (around 30 %). As we increase the minimum atten-
dance threshold, the frequency of the 1C equilibrium increases while the frequencies
of all the others decrease, at different rates. Then, with a minimum threshold level
of 0.6, the system reaches the 1C equilibrium 100 % of the time, as it is the only
equilibrium compatible with this satisfying level.

Hence, as we can see from this simulation, the early bimodal segregation as obtained
in many models using reinforcement learning can be significantly changed within a
society of agents with a minimal degree of inequity aversion. Presumably, one might
have thought that the addition of this inequity aversion might cause the use of the
public resource to become harder to coordinate, but this is not necessarily the case.
In fact, a more equitable but still well-coordinated outcome emerges. Therefore, in
this sense, citizens with the awareness of their rights and striving for that does indeed
facilitate the realization of the good society.

4.2.2 Heterogeneous population

From the previous simulation results, we know that if all the agents have the minimum
attendance threshold of 0.6, the system will surely converge towards the “good soci-
ety”. Nonetheless, making all agents have identically strong or weak inequity-averse
preferences is a strong assumption. Therefore, it would be interesting to know whether
the good society will emerge in a more “natural” setting. In the next simulation, we no
longer assume that all agents are inequity averse: some are, but some are not. Without
losing generality, we further assume that those agents with inequity-averse preferences
all have a threshold of 0.6. In this setting, we ask a different question: what would
be the minimum number of inequity-averse agents required for the emergence of the
“good society”?

We want, then, to see how the likelihood of the “good society” equilibrium changes
when starting from a population entirely composed of agents with no minimum atten-
dance thresholds, then followed by increasing the number of agents with an α of 0.6.
In this simulation, the number of agents with a threshold of 0.6, Nα,0.6, is the key
parameter, and, we run each of the parameter settings (Nα,0.6 = 0, 1, 2, . . .) 100 times
so as to approximate the distribution by the respective histogram. Figure 6 shows the
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Fig. 6 Evolution of the distribution over 1C, 2C and other equilibria with the increase in the number of
inequity-averse agents

evolution of the distribution over various C equilibria. To make this diagram easy to
see, we group all equilibria with more than two clusters of agents together, called the
more-than-2C (>2C) equilibria, and hence only present the distribution over the three
major equilibria, i.e., the 1C , 2C and >2C.

From Fig. 6, as expected, when the number of agents with inequity aversion is small,
the bimodal segregation equilibria dominates, but already with just 10 inequity-adverse
agents, the 1C equilibria (“good society”) becomes the most likely outcome and that
it indeed becomes the unique absorbing state when the population contains at least 20
inequity-adverse agents. In other words, it takes only a small minority of the society
(around 20 %) to lead the system to the perfectly equitable outcome.19

The two sequences of simulations above demonstrate two different approaches to
manipulate the degree of inequity-aversion, one directly through the threshold (α),
and one through the number of agents with a threshold of 0.6 (Nα,0.6). Both show that
the “good society” can be the most likely result with only a small degree of inequity
aversion: α is only required to be 0.1 in the first case, and Nα,0.6 is only required to
be 10 in the second case. The latter case further shows that, to surely have the “good
society” outcome, there is no need to have all agents with strong inequity-averse pref-
erences (Nα,0.6 = 100), for it is sufficient for only one fifth of the population to have
them. This latter result denotes the positive externality of inequity-averse preferences,
and hence makes the realization of the “good society” easier than what we thought in
the beginning.

4.3 Introducing the ‘Keeping-up-with-the Joneses’ behavior

Regarding the significance of the inequity-averse preference, the result will be more
convincing if it can emerge endogenously, instead of being imposed exogenously. In
the next simulation, we propose an alternative way of forming this inequity-averse
preference. The social behavior coined as “keeping up with the Joneses” (KUJ) has
recently caught the attention of many economists. It has been extensively incorporated

19 For this reason, Fig. 6 only shows the results up to Nα,0.6 = 23.

123



S.-H. Chen, U. Gostoli

Fig. 7 Evolution of the distribution over the 1C, 2C and other equilibria with the change in the number of
KUJ agents

into consumption, asset pricing and macroeconomic models (Gali 1994; Ljungqvist
and Uhlig 2000). We find that the same idea can be straightforwardly applied to our
model, in which agents’ decisions very much depend on those of their neighbors.

Hence, instead of the exogenously given threshold (α), agents will now find their
own reference based on the attendance frequency averaged over their neighbors, and
use that as their own minimum attendance threshold. In other words, the agents char-
acterized by the “keeping-up-with-the-Joneses” behavior do not want, among those
in their neighborhood, those going to the bar with a frequency lower than the average.
Since neighbors’ attendance frequencies change over time, this threshold, unlike the
previous two settings, is no longer fixed. We call agents in this new setting the KUJ
agents.

Like what we have done in Sects. 4.2.1 and 4.2.2, we could further distinguish the
case with a homogeneous population from the case with a heterogeneous population;
in the former, all agents are KUJ agents, whereas in the latter only part of them are
KUJ agents. For the former case, it is relatively easy to see that if all the agents in
the population try to ‘keep-up-with-the-Joneses’, the system will inevitably end up
reaching the “good society” equilibrium, equivalent to the case where all agents have
an α of 0.6 (Sect. 4.2.1). This is the only state where no agent goes to the bar with a
frequency lower than the average (that is, where all the agents go to the bar with the
same frequency). So, we will only be interested in the heterogeneous case and pose
the same question as the one in Sect. 4.2.2, i.e., where we inquire about the minimum
number of KUJ agents required for the emergence of the “good society”. Therefore,
we set the number of KUJ agents as a parameter, NKU J , and simulate the El Farol Bar
dynamics with NKU J = 0, 1, 2, . . . We run each NKU J 100 times so as to show the
histogram over different C equilibria.

Figure 7 shows the evolution of the distribution over the 1C , 2C and more-than-2C
equilibria with the increase in the number of KUJ agents. We can see that, by and
large, the evolution of the distribution is similar to the case with a different number of
Nα,0.6 (Sect. 4.2.2): in this case, with more than 11 KUJ agents, the 1C equilibrium
(“good society”) becomes the most likely outcome. Moreover, it takes only around
25 % of the KUJ agents to lead the system to the perfectly equitable outcome, slightly
more than the minimum number required for Nα,0.6, but still a small minority.
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Fig. 8 Emergent strategies characterizing the 1C equilibrium of the von Neumann neighborhood

5 Looking into the 1C equilibrium

5.1 Consistency between macro and micro emergence

We have shown that perfect coordination, which is not necessarily equitable, can be
always achieved in our limited explorations of social networks and social preferences.
This result is very atypical with respect to what has been found in the existing literature;
therefore, it is worth examining the unique dynamics which we experienced in the
simulations.

Without losing generality, we shall focus on the case of the 1C equilibrium (“good
society”) under the von Neumann network and give an intuitive description of the
underlying dynamics leading to it. As we described earlier, our agent-based model is a
kind of two-dimensional cellular automata (Wolfram 2002). The slight difference here
is that, instead of being homogeneous, our agents initially follow different strategies,
but the subsequent social learning through imitation helps increase the homogeneity
among them, and makes them eventually follow the same strategy. In other words, a
single strategy becomes the attractor under our learning dynamics. This final strategy
(attractor) then helps coordinate agents’ attendance in a way that in each single day
there are always 60 % of agents attending the bar (( n

N )t = 0.6,∀t ≥ T ∗), and for
each agent the attending frequency is 60 % of the time (ri,t = 0.6,∀i, t ≥ T ∗). Fully
specifying these attractors can be a daunting task; however, our simulations suggest
that the number of the attractors with a non-trivial domain of attraction can be rather
limited; as a matter of fact, throughout our simulations only four of this kind have
been found and they are all shown in Fig. 8.

These four strategies are presented in their effective version, i.e., the one keeping
only the active states. This is so because many states are idle when perfect coordination
is achieved with the emergence of rather well-structured social patterns (see Fig. 9).
The four strategies, as exemplified in Fig. 8, all have only three active states left and
three corresponding if-then rules. These three rules together do not require the agent
to look at the actions of all four of his neighbors. Take Strategy One as an example.
This strategy essentially requires the agent to look at neighbors N1 or N3 (shown in
bold in Fig. 8). If N1(N3) attended the bar in the previous period, he will then decide
to go (rules 11 and 16); otherwise, he will stay home (rule 6).20 Alternatively put, the

20 Notice that in equilibrium N1 and N3 are well aligned with the same action.
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Fig. 9 A snapshot of the rules adopted (left) and the actions taken (right) by the 100 agents once the
equilibrium has been reached. In the simulation we would see the diagonals ‘move’ one step eastward in
every period

strategy is simply “do what your neighbors N1 or N3 did in the last period”. The
similar simple interpretation applies to the three other strategies.

These simple rules echo well with the emergent well-structured patterns of bar
attendance as the joint force of the upward and downward causation. To see this,
Fig. 9 presents the snapshot of the social pattern of bar attendance for a typical run at
the 1C (“good society”) equilibrium. The specific 1C equilibrium shown in Fig. 9 is
characterized by Strategy Four (Fig. 8). The effective version of Strategy Four bases
the decision upon only one of the four neighbors, either N2 or N3. Basically, it imi-
tates what N2 or N3 did in the last period. With everyone following this same strategy,
in equilibrium each individual will be presented with a periodic cycle involving only
three input states, i.e., 0-1-1-0, 1-0-0-1, and 1-1-1-1. They are, respectively, the three
antecedents of Rules 7, 10, and 16.21 The left panel of Fig. 9 shows the spatial distri-
bution of the activated rules over the 100 agents for a typical run, and the right panel
shows the corresponding attendance distribution.

From the left panel, one can clearly observe the diagonals of the three activated
rules, each extending from northeast to southwest, and they are aligned together like a
wave which moves one step eastward for each iteration.22 The right panel demonstrates
the same pattern in terms of a wave of diagonals of “0” and “1”. The diagonals of 0
correspond to the diagonals of Rule 10 in the left panel, whereas the diagonals of 1
correspond to those of Rules 7 or 16 there. As these diagonals of rules move eastward,
the diagonals of 0 and 1 also move eastward accordingly, and at any point in time only
60 % of the agents (gray shaded area in the right panel) attend the bar. At the aggregate
level, the bar is then fully utilized.

21 As shall be made clear below, each agent experiences the dynamics of his environment in equilibrium
as a 10-period cycle: 16-16-7-7-10-10-7-7-10-10.
22 This is because in the equilibrium each agent only looks at his neighbor to the west (N2) or to the north
(N3), and imitates his behavior.
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Fig. 10 The dynamics of the number of agents adopting the optimal strategy (strategy 4) and of the number
of ’optimal’ agents actually adopting one of the three rules of the optimal strategy (in this case, rules 7, 10
and 16)

At the micro level, let us look at the attendance behavior of each individual under the
1C equilibrium. We will continue assuming the equilibrium characterized by Strategy
Four as an illustration. Given the fact that each individual will encounter a periodic
cycle of his environment (the input states), his bar attendance becomes quite regular.
In this specific case, each individual will also follow a 10-period cycle as follows:
1-1-1-1-0-0-1-1-0-0 as we can easily see either from the last row (imitating N2) or the
last column (imitating N3) of Fig. 9. Hence, each individual attends the bar six times
every 10 days, and not only is the bar fully utilized, but it is also equally accessible for
each individual.23

5.2 Analysis: out-of-equilibrium

The analysis above rests upon the equilibrium only. One more interesting feature of
agent-based modeling is out-of-equilibrium analysis. This section, therefore, extends
the previous analysis into transition dynamics. We continue the previous example, but
now examine how the 1C equilibrium characterized by Strategy 4 is achieved. One
can perceive that in this case we initialize the system in the domain of attraction of
Strategy 4;24 hence, one natural thing to look at is the population of agents who actually
follow Strategy 4. The solid line of Fig. 10 plots the percentage of this population.
This figure increases over time but with some degree of fluctuation. Before it becomes
steady, it experiences a significant drop around period 500. Then it comes back and

23 It should be pointed out that there are another two periodic cycles also found in our simulation, a 5-period
cycle (1-1-1-0-0), and a 10-period cycle (1-1-0-0-1-1-0-1-1-0). All these three cycles can be generated by
any of the four strategies shown in Fig. 8. Obviously, they all lead to an attendance frequency of 60 %. One
qualification which we would like to add here is that all these emergent cyclical patterns do depend on some
subtle combinations of the number of agents and the threshold parameter. For example, under this specific
setting, one would not expect the appearance of this cyclical pattern when αi = 0.59 rather than 0.6.
24 Of course, since the system is not deterministic, small or large stochastic perturbations may still cause
the path to cross the border and also cause travel along the path in another domain of attraction.
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eventually climbs up, and, around period 1200, it almost successfully drives out all
other strategies. At this point, agents are becoming homogeneous by following the
same strategy.

However, adopting the same strategy is not sufficient for, when the perfect coor-
dination is reached, many input states will become transient, and there are only three
recurrent states left. In Fig. 10, we, therefore, also plot the number of agents, shown
by the dotted line, who not only adopt the optimal strategy, but actually fire one of the
three rules characterizing it, that is, Rule 7, Rule 10 and Rule 16. The number of these
agents also rises, but remains far from the number of agents who had adopted Strategy
Four (the solid line), and that distance has no clear tendency to be shortened until com-
ing to period 1,500, right before the system suddenly reaches the equilibrium. This
means that the inputs of the agents are different from those characterizing the equi-
librium. Consequently, even if they are already adopting Strategy 4, their behavior is
only incidentally determined by the three rules characterizing this strategy as in many
periods they end up firing other rules apart from rules 7, 10 and 16. Then, suddenly,
after period 1500, the system reaches the equilibrium, a state where not only do all
the agents adopt Strategy 4, but they also use the rules characterizing this strategy.

From Fig. 10 we can see that the process leading to the equilibrium is characterized
by a stage (in this case lasting up to period 1200) in which the necessary condition for
the system to reach the equilibrium (that is, the adoption of Strategy 4 by all the agents)
is gradually established by means of a ‘subterranean’ process having no immediate
effect on the population’s coordination level. However, once this process comes to an
end, the system is ‘ripe’ for the equilibrium: sooner or later, a minor event, such as a
mutation, triggers the emergence of coordination that, as we can see from Fig. 10, is
a very fast process occurring in less than 100 periods, looking much like spontaneous
self-ordering (Kauffman 1993).

5.3 Networks and information efficiency

Earlier in Sect. 4.1, we have seen the different performance in the likelihood of achiev-
ing the 1C equilibrium (the ‘good society’) between the circular network and the von
Neumann network (Fig. 4). Using the analysis provided in Sect. 5.1, in particular, the
emergent strategies characterizing the 1C equilibrium (Fig. 8), we attempt to provide
an intuitive explanation for this observed difference. In parallel to Fig. 8, the 1C equi-
librium in the case of the circular neighborhood is characterized by the emergence of
four different strategies, which are shown in Fig. 11.

We can see that, in this case, the strategies are characterized by five rules, instead of
the three rules of the strategies emerging in the von Neumann neighborhood (Fig. 8).
Moreover, each of the four strategies corresponds to the actions of just one neighbor
rather than two. For example, Strategy 1 in Fig. 11 corresponds to the actions of N1
only (shown in bold characters). We can say that the bi-dimensional structure of the
von Neumann neighborhood allows for a more efficient use of the information, com-
pared to the one-dimensional structure of the circular neighborhood. This is reflected
in the lower complexity of the strategies emerging in the former neighborhood struc-
ture (Fig. 8) as opposed to those in the latter (Fig. 11). The different complexities
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Fig. 11 Emergent strategies characterizing the 1C equilibrium of the circular neighborhood

between the strategies are, in all likelihood, related to the fact that it is more difficult
to reach the 1C equilibrium with the circular neighborhood than with the von Neu-
mann neighborhood (Fig. 4), as the number of rules the agent needs to get right is
higher in the first case compared to the latter.

6 Concluding remarks

The El Farol Bar problem is a highly abstract model suitable for addressing the funda-
mental issue of the use and the distribution of public resources. Early studies on this
problem have only centered on the efficiency aspect of this issue. The equity part of
the issue has been ignored. The contribution of this paper is that we integrate these two
aspects. While coordination in the El Farol Bar problem when taking both efficiency
and equity into consideration can be harder than when only efficiency is considered,
it still can be solved bottom-up.

However, to do so, our simulations have shown that under the specified circum-
stances both social networks and social preferences can play contributing roles. We
first show that social network topologies matter for the emergence of a “good soci-
ety” (1C equilibrium), a state where the bar attendance is always equal to its capacity
and all the agents go to the bar with the same frequency. This is exemplified by the
comparison made between the von Neumann network and the circular network. It is
found that it is much easier for the “good society” to emerge under the former (18 %)
as opposed to the latter (only 2 %).

We then show how the introduction of the social preference can further facilitate
the emergence of the good society. This depends on a specific group of people who are
sensitive to inequity or who have inequity-averse preferences. The emergence of the
good society can become increasingly likely with the increase in the degree of inequity
aversion. Various simulations, however, show that to surely have the “good society”
equilibrium the requirement for inequity aversion is rather mild. For example, even
a minority group of agents, like 20–25 % of the whole population, who are inequity
averse, is sufficient.

Is the result surprising? Leaving this issue temporally aside, we have to admit
that how to find the behavioral rules for each individual so that they can collectively

123



S.-H. Chen, U. Gostoli

generate the desirable aggregate pattern is in general a very challenging issue for
both the sciences and social sciences. This issue has long been studied in various
agent-based models, in particular, cellular automata. In this paper, the choice of the
social network for the society and the representation of the decision rules for the
individuals recast the classical El Farol Bar problem into a familiar environment of
cellular automata. When the central planner (model builder) has no single slice of the
idea as to what these rules should be, they are then left for the members of society
(cellular automata) to find out among themselves. The question, now posed bottom-up,
is actually a cruel test for the limit of self-coordination. Despite the possible inherent
difficulties, the self-coordination problem may become less hard to solve under some
social network topologies and some cultures. This general feature should not be a
surprise, but any concretization of it to see how it actually happens is not immediately
obvious. While in this paper we have started setting the social preference exogenously,
that preference can be generated through a culture of “keeping up with the Joneses”
under the given network. In essence, it is the KUJ culture and the network that together
facilitate the social search for the “right codes” for a “good society”.

To what extent, can the findings be generalized? An abstract model like the one
presented here, being far from any realistic settings, certainly has its limitations. The
specific analysis and answers which we obtain in this paper may no longer be applica-
ble in other general and realistic settings. For example, as we have demonstrated in
“Dominance of efficient but inequitable outcomes” of Appendix 2, achieving the ‘good
society’ equilibrium becomes increasingly difficult when the population size becomes
larger. Nonetheless, the wonder prompted by this paper remains, i.e., the potential of
using social networks, social preferences or cultures to enhance the self-coordination
of a society of agents with simple behavioral rules. Hence, from a comparative study
viewpoint, one can imagine that, in the case of societies (towns, countries,…) or
societies in different times with very different human interaction webs, social pref-
erences and culture, their self-coordination capabilities to solve some “tragedies of
the commons” may be different, although the “tragedies” may often be solved or
institutionalized in a top-down manner, too.
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Appendix 1: Heterogeneous strategies in the multiple clustering equilibria

In Sect. 5, we have provided a simple analysis of the selected strategies in the 1C
equilibrium. When the 1C equilibrium emerges, all the agents adopt the same strategy.
However, for equilibria with multiple clusters of agents, normally, agents will be
heterogeneous in the strategies adopted when the equilibrium is achieved. A brief
account of the heterogeneity is given in this Appendix.
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When the 2C equilibrium emerges, agents are frozen in their state (1 or 0). This
means that they only use one rule from their set of 16 rules, as they face the same situa-
tion period after period. In general, the equilibrium is characterized by the presence of
many different strategies; for example, in one run the equilibrium was characterized
by an ecosystem of 18 different strategies. However, if we consider only the rules
which happen to be fired by the population of agents, usually only 4 or 5, we observe
the presence of few different strategies, usually from 2 to 5 or 6. The vast majority
of the agents have the same strategy. As a concrete example, in one run where the
equilibrium was characterized by 5 strategies, the number of agents adopting each of
these strategies was 83, 10, 4, 2 and 1.

With the number of agents going to the bar in equilibrium equal to 60, this means that
in some cases the different behavior observed between the agents going to the bar and
those not going was not caused by different strategies, but by different environments
which led them to fire different rules of the same strategy. Conversely, agents with the
same behavior may have different strategies. However they either fire a different rule
because of their different surroundings, or they fire the same rule because they have
the same surroundings, prescribing the same action (in the latter case it means that
their strategies differ because of differences in the other rules).

When the 3C equilibrium emerges, there are agents going with a frequency of
0.5. However, the general picture is similar to that described for the 2C equilibrium.
Although we have agents with a different strategy, the vast majority of agents share the
same strategy, but they have different behavior because of their different environment,
i.e., their neighbors’ behavior.

Appendix 2: Sensitivity analysis

In this Appendix, we shall examine how our fundamental results, as demonstrated in
Sects. 4.1 and 4.2, are robust to some of the parameters used in the model. There are
basically two results to be examined under this sensitivity analysis. The first result
is the dominance of the efficient but inequitable outcomes under the von Neumann
network. As shown in Sect. 4.1, under the von Neumann network one can always
have perfect coordination. The probability of having a good-society (1C) equilibrium
is relatively minor. The dominating equilibria are the ones with many clusters, in
particular, the 2C equilibria, indicating that public resources are not equally shared
by all community members (some members dominate the use of the public resources,
but some are excluded). The second result is that the emergence of the 1C equilibrium
is ensured if there are a sufficient number of agents with social preferences in the
community.25

In this section, we test the two aforementioned results with three size-related para-
meters, namely, the network size (the number of agents), the neighborhood size (the
number of neighbors), and the memory size (the length of memory). Each of these

25 While the model has not been that analytical, a formal expression of this result is that the attraction
domain of the 1C equilibrium has a measure of one, whereas the attraction domains of other many-cluster
equilibria have a measure of zero.
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Fig. 12 Histogram of the C equilibria with different network sizes. The above figure is the histogram of
the C equilibria, which range from C = 1 to C = 8, with respect to three different network sizes (Ns):
from left to right, with different degrees of grayness, these are 25, 100, and 225

parameters can have its significance in economic modeling. First, for the network size
(N ), it is already known in agent-based computational economics that some simulation
results are not scale-free or cannot be scaled-up (Lux and Schornstein 2005). Second,
the number of neighbors (R) or the range of interactions can also matter because it
can affect the flow and the spread of the information (Lo et al. 2004). Third, memory
capacity has constantly been an important parameter in various models of learning. It
determines how frequently a strategy will be reviewed and revised, which may affect
the results obtained (LeBaron 2001; Chen et al. 2008). Specifically, the neighborhood
size and the memory size can have effects on the complexity of strategies (2R), the
size of the strategy pool (22R

), and, through the conditions of learning, (a) to (f), can
have effects on the activation and the frequency of learning. The combined effect of
this multi-faceted operation is hard to know a priori. We, therefore, design and run a
simulation to estimate the results.

Dominance of efficient but inequitable outcomes

To examine the robustness of the first result, what we plan to do is to take the original
values of parameters as a baseline, i.e., N = 100, R = 4, and m = 10, and then
perturb each of them with both a downward direction, i.e., N = 5 × 5, R = 3 and
m = 5, and an upward direction, i.e., N = 15 × 15, R = 5 and m = 20. When we
perturb, we do it one parameter at a time. As before, each setting is run 1000 times,
and the histograms of the C equilibria over these 1000 runs are shown in Fig. 12 for
N , Fig. 13 for R, and Fig. 14 for m.26

The sensitivity analysis needs to be addressed at three different levels: efficiency,
distribution of equilibria, and the emergence of the good society (1C equilibrium).
Since the results that we have from the three figures are similar, we shall mainly

26 We admit that this scale of sensitivity analysis is limited, but a thorough analysis of the effect of changing
the parameters may be beyond the scope and the size of this paper.

123



Coordination in the El Farol Bar problem

Fig. 13 Histogram of the C equilibria with different numbers of neighbors. The above figure is the histogram
of the C equilibria, which range from C = 1 to C = 8, with respect to three different numbers of neighbors
(Rs): from left to right, with different degrees of grayness, these are 3, 4, and 5

elaborate on the results of the parameter N , and, for R and m, we only highlight the
observed distinctions.

First, the result with regard to the perfect coordination (efficiency) is robust. For
each N (= 25, 100, 225), out of all the 1000 simulations, we always have the per-
fectly coordinated outcomes in the sense that the attendance rate is equal to the bar’s
threshold. In these simulations the society always segregates into different numbers
of clusters of agents (from one to eight, as shown in Fig. 12), who self-organize them-
selves well in their bar attendance schedules and frequencies. Second, while the exact
histogram will have some mild changes with respect to different numbers of agents,
the 2C (two-cluster) equilibria constantly play a dominating role in the histogram,
indicating that public resources are not equally shared by all community members.
Hence, this inequitable outcome is also robust to the number of agents.

Third, what, however, is not robust is the chance of having the 1C (good-society)
equilibrium. It is well noted that the chance of observing the 1C equilibrium declines
with the number of agents. Compared with the benchmark (N = 100), the likelihood
of the 1C equilibrium increases up to 40 % when N = 25 and decreases down to
zero when N = 225. Therefore, a large population size makes the coordination to the
‘good society’ equilibrium increasingly difficult, indicating that the core result, the
emergence of the good-society equilibrium, is not size independent.

Figure 13 shows the simulation result with respect to different Rs. We can see
that the neighborhood size has little qualitative effect. It has no effect on the efficient
outcome; all runs lead to perfect coordination, and the 2C equilibria remain to be the
major type. A smaller and a larger value of R (R = 3, 5) will lessen the chance of
observing the 1C equilibrium, and there will be a shift in distribution toward many-
cluster equilibria when R increases. For example, when R = 5, the likelihood of
reaching the equilibrium with more than three clusters becomes as high as 20 %.

Finally, Fig. 14 shows the simulation results of varying the length of memory
(m). It shows that m has no effect on the efficiency results. The perfect-coordination
result can always be achieved, and the 2C equilibria are still the dominating equilibria.
Furthermore, as in the case of R, both a smaller and a larger value of m (m = 5, 20) will
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Fig. 14 Histogram of the C equilibria with different lengths of memory. The above figure is the histogram
of the C equilibria, which range from C = 1 to C = 8, with respect to three different lengths of memories
(ms): from left to right, with different degrees of grayness, these are 5, 10, and 20

lessen the chance of observing the 1C equilibrium, and there is a shift in distribution
toward many-cluster equilibria when m decreases. For example, when m = 5, the
chance of having 3C equilibria is more than 20 %, and even for the 6C equilibria the
chance remains as high as 10 %.

In sum, our sensitivity analysis shows the robustness of the perfect-coordination
result. While different settings of the parameters may affect the distribution of equi-
libria with different clusters, the 2C equilibria are the dominating type. A small com-
munity can facilitate the emergence of the good-society (1C) equilibrium, and a large
community does just the opposite. In any case, the good-society (1C) equilibrium can
never dominate the segregating equilibria.

Significance of social preferences

With the robustness of the dominance of the efficient but inequitable equilibria, one
may find it easier to acknowledge the significance of the presence of agents with social
preferences. In this section, we continue to apply the previous sensitivity analysis to
the second result that the emergence of the 1C equilibrium is ensured as the number
of agents with social preferences is sufficiently large. As was the case in Sect. 4.2.2,
we vary the number of agents with the inequity-averse preference (Nα,0.6) from 1 to
40 with an increment of one, and now test their effect on the emergence of the 1C
equilibrium with the parameter values of N , R and m set in “Dominance of efficient
but inequitable outcomes” of Appendix 2. We then do the same thing using NKU J , the
number of agents with the KUJ preference, instead. We shall first present the results
under different values of R and m, which is more evident, and then move to the case
of N , which is not.

Figure 15 presents the results. The upper left panels show the effect of Nα,0.6 on the
emergence likelihood of the 1C equilibrium, whereas the upper right panel shows the
effect of NKU J . As we can see from these two sub-figures, the empirical probability
of having the 1C equilibrium increases with Nα,0.6 and NKU J , and tends to converge
to one. This pattern is also consistently observed in the lower left and right panels,
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Fig. 15 Social preferences and emergence of the good society. The three lines in the upper left panel show
the frequency of achieving the 1C equilibrium when Nα,0.6 increases from 1 to 40 under three different
neighborhood sizes: R = 3 (blue line), 4 (red), and 5 (green). The three lines in the upper right panel show
the same frequency except that Nα,0.6 on the x-axis is replaced by NKU J . The three lines in the lower left
panel show the frequency of achieving the 1C equilibrium when N0.6 increases from 1 to 40 under three
different lengths of memory: m = 5 (blue line), 10 (red), and 20 (green). The three lines in the lower right
panel show the same frequency except that Nα,0.6 on the x-axis is replaced by NKU J (color figure online)

which show the effect of Nα,0.6 and NKU J on the emergence likelihood of the 1C
equilibrium, respectively. Hence, from these four sub-figures, the second result is also
robust to these two size-related parameters.

However, when we come to the parameter N , we no longer have this second result
characterized by the increasingly converging pattern. Under the scenario N = 225,
the likelihood of emergence of the 1C equilibrium continues to be zero and does not
increase with Nα,0.6 or NKU J . Hence, the presence of the inequity-averse and the KUJ
agents can no longer ensure a convergence to the 1C equilibrium when the network
size is large.

To sum up, the two fundamental results obtained in the main text are robust to the
neighborhood size (R) and the memory size (m). The first result is largely robust to
the network size (N ), except that the empirical probability of the emergence of the
1C equilibrium degenerates to 0 when the network size is large. The second result,
however, no longer holds when N is large. Putting them together, when N is large,
convergence to the 1C equilibrium can become extremely difficult even with the
presence of agents with social preferences.
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