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Abstract In Software as a Service (SaaS) environments, designing and realizing mul-
titenant schema-mapping that supports a shared database with custom extensions is
a non-trivial task. Universal Table is one promising schema-mapping technique that
is commonly used. However, there has been little research devoted to the design and
realization of a query rewriting scheme for Universal Table. In this paper, we present
a collection of general query rewriting schemes for Universal Table that can transpar-
ently transform tenant-specific logical queries into corresponding physical queries.
Based on the design, we have developed a Java-based schema-mapping and query
rewriting middleware for Universal Table and a sample online shopping SaaS applica-
tion to verify its feasibility. Additionally, analytical results that can be used to predict
the overhead of our schemes are also reported. Finally, we conduct a series of experi-
ments and find that the results not only agree well with our analytical predictions but
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also show that our schemes are scalable to the number of tenants and the number of
concurrent database connections.

Keywords Schema-mapping · SaaS · Query rewriting ·Multitenant

1 Introduction

Software as a service (SaaS) is an emerging service model of cloud computing. Its
main characteristic is the ability for customers to use a software application on a pay-
as-you-go subscription basis. To be competitive, SaaS application providers typically
offer a price that is much lower than running the application in an unshared software
instance on dedicated hardware. As a result, SaaS applications must leverage resource
sharing to a greater extent to reduce prime costs by accommodating different users of
the application while making it appear to tenants that they have the application all to
themselves. In this way, SaaS providers are able to achieve economic scalability and
can therefore offer services at a much lower price than traditional vendors. This makes
the service more affordable for a greater number of small to medium-sized companies,
which gives SaaS providers exclusive access to an entirely new market. Chong and
Carraro (2006) called this market the “long tail”. Behind the scenes, the core technol-
ogy which enables the sharing of a SaaS application instance is called multitenancy.

Several attempts have been made to identify the multitenancy concerns of SaaS
applications, such as affnity (how tasks are transparently distributed), persistence,
performance isolation, QoS differentiation, and customization (Krebs et al. 2012).
Koziolek (2011) obtained similar results based on the software architecture point
of view. Among various multitenancy design concerns, it is generally agreed that
multitenant data architecture is one of the most important concerns when creating a
SaaS application since data are the most important asset of any enterprise (Chong et al.
2006). However, there is little investigation on modularizing data layer concerns in a
multitenant application.

In the design space of the data layout and management strategy for multi-tenant
applications, various alternative approaches form a continuum between an isolated
data style and a shared data style (Chong et al. 2006). Here we focus on one end of
the continuum, namely shared data. Common practice is to pool all of the tenants’
data together in the same set of tables in a shared database, and to equip all tables
with a tenant ID column that associates every data record with the appropriate tenant.
However, as pointed out by Aulbach et al. (2008), this kind of shared architecture, while
providing very good consolidation, lacks the schema extensibility that is so essential
for many SaaS applications. Indeed, it is highly desirable to have a multitenant data
architecture for SaaS applications that can support a shared database with custom
extensions. A systematic approach for addressing this requirement is to employ some
schema mapping techniques that support the separation of logical schemas, the ones
used in the application, from physical schemas, the ones implemented in the database
(Aulbach et al. 2008).

According to the evaluations conducted by Li et al. (2012), when compared to alter-
native schema-mapping techniques, Universal Table is the most promising solution
since it is very flexible and, if carefully designed, can achieve a reasonable level of per-
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formance. Originating from Universal Relation (Maier and Ullman 1983), Universal
Table schema-mapping consists of a single large, generally structured table, namely
the universal table, and a set of metadata tables that keeps track of meta-information
storage in the universal table. In this way, different tenants can store their data in the
universal table in different ways. Conceptually, the Universal Table approach “vir-
tualizes” the logical tables so that the data can be more physically consolidated and
consistently managed. The benefits are very similar to those of consolidating virtual
machines in a single physical machine in an IaaS environment. In addition to the cost
of hardware, the virtualized and consolidated entities can be managed at a lower cost
with higher flexibility. In fact, it is the approach adopted by Force.com, which is a suc-
cessful SaaS vendor best known for its CRM service that supports more than 55,000
tenants. Hence we think it is worthy of further investigation. Weissman and Bobrowski
(2009) present a high-level overview of the data architecture of the Force.com plat-
form. However, it is not clear how the Force.com SaaS applications leased by tenants
transparently transform logical schema query statements into physical schema ones.
Moreover, this also makes it hard to evaluate the approaches used by Force.com, and
thus equally difficult to investigate possible improvements.

Although it has been pointed out that a set of query rewriting schemes is essential
for realizing a multitenant schema-mapping, little research has been done in designing
and analyzing query rewriting issues (Pereira and Chiueh 2007; Aulbach et al. 2008).
Therefore, the objective of this work is to fill in the gaps by systematically investigating
the design of generic tenant-aware query rewriting schemes, analyzing performance
overhead incurred by Universal Table schema-mapping, and conducting experiments
against the proposed schemes. The results of this research will relieve SaaS application
developers from the burden of rewriting SQL statements manually, which is tedious and
error prone. These rewriting schemes are designed based on relational algebra so that
it can be easily analyzed and formally verified. Besides, we have implemented a Java-
based prototype based on DataNucleus and JDO (Russell 2010) as well as a simple
SaaS application prototype, Shopping-Force.com, to demonstrate the feasibility of
our approach. Finally, we also present analytical performance results of the rewriting
schemes that can be used to predict the I/O overhead and the experimental results that
verify the scalability with respect to the number of tenants as well as concurrency level.

2 Related work

Without loss of generality, we classify multitenant data architectures into one of four
styles by the desired levels of customization and consolidation: (1) Shared Table, Pri-
vate Schema, (2) Shared Table, Shared Schema, (3) Private Table, Shared Schema, and
(4) Private Table, Private Schema (see Fig. 1). Shared Table refers to a system in which
all tenants’ data reside in shared storage (e.g., a group of tables in a relational data-
base), whereas Shared Schema means that the tenants’ schematic definitions of data
are identical. Higher levels of customization allow a tenant to customize the original
data schema provided by the SaaS vendor to more closely fit tenant-specific business
needs. However, higher levels of customization also introduce more complexity to the
design of the data architecture. Meanwhile, the total maintenance cost can be greatly
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Fig. 1 A taxonomy of multitenant data architecture

reduced if a tenant surrenders some level of data isolation by consolidating data from
different tenants.

Among these architectural styles, the “Shared Table, Private Schema” style, the
focus of this work, is more attractive to small and medium-sized businesses since it is
capable of achieving greater flexibility at a lower cost (Aulbach et al. 2008). Although
Shared Table leads to lower data isolation, there are some data for most businesses
that are not highly sensitive, such as those businesses publicly available information,
and thus they can be put together to reduce costs. In other words, if a SaaS vendor is
able to provide part of its data service in “Shared Table, Private Schema” style, then
it is expected to increase revenue from a new market in the “long tail” (Chong and
Carraro 2006).

Several approaches have been proposed to realize the “Shared Table, Private
Schema” architectural style. Aulbach et al. (2008) conducted a comprehensive study
on representative “Shared Table, Private Schema” schema-mapping techniques such
as Extension Table, Universal Table, Pivot Table, Chunk Table, and Chunk Fold-
ing. Extension Table originates from the Decomposed Storage Model (Copeland and
Khoshafian 1985), which is widely used in realizing object-relational mapping. By In
Extension Table schema-mapping, common data are stored in a super table, whereas
the data with different schema are placed in extension tables. The main weakness
of Extension extension Table tables lies in the explosion explosive growth of in the
number of tables: . although Although some columns are stored in parent tables, it
still needs to create one an additional table is needed for each domain object that
requires customization, causing the number of tables to grow in proportion to the
number of tenants (Aulbach et al. 2008). A common way to alleviate this problem is
to store the extended data in a general-purpose column using XML so that no addi-
tional table is needed (Du et al. 2010). However, it is reported that when the number
of tenants increases, XML-based approaches lead to performance problems (Li et al.
2012). Recently, Yaish et al. (2011) have proposed a novel schema-mapping technique
called EET (Elastic Extension Tables) which stores the meta meta-information of the
extended data in a set of pre-defined tables. In this way, the tenant-specific extension
tables are virtualized, and can be composed on the fly based on the meta tables on-the-y
and thus they are “virtualized”. Nevertheless, it is hard to justify the performance of
EET in a multitenant environment since neither theoretical nor experimental analysis
nor experiments is has been provided.
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The Pivot Table is a flexible schema-mapping technique in which the values of
different data types are stored in different tables. The schema of a pivot table in a
multitenant environment is typically: (tenant_id, table_id, column_id, row_id, type),
where the t ype column is used to store the business data and other columns are used
to store the metadata used to index data values. As a result, a 4 out of 5, or 80 %, space
overhead has been incurred. Hence, the Pivot Table architecture is space-ineffcient.
Moreover, logical tables are recovered based on the query by dynamically joining these
tables. As a result, the Pivot Table architecture is also time-ineffcient. A logical table
with n data types require n−1 joins for each query. Aulbach et al. (2008) propose two
variations of the Pivot Table, Chunk Table and Chunk Folding, to improve time- and
space-effciency. Based on the evaluations reported by Li et al. (2012), in a 100-tenant
environment, Chunk Table and Chunk Folding are able to reduce response time by up
to 2000 milliseconds in a query with 1000 entities.

Originating from Universal Relation (Maier and Ullman 1983), Universal Table
is designed for generic data storage, usually consisting of a Global Unique Identifer
(GUID), a tenant ID, and a fixed number of generic data columns (e.g., Force.com
uses 500 generic data columns). The type of generic columns is usually defined as
STRING or VARCHAR so that the values of these columns can be easily converted to
their original type in the application. Based on the performance evaluation conducted
by Li et al. (2012), the response time of Universal Table architecture is much shorter
than Pivot Table, Chunk Table, Chunk Folding, and Extension Table architectures in
all experiments. The schema-mapping technique used by Force.com (Weissman and
Bobrowski 2009) falls into the category of Universal Table, which is the foundation
of this research.

Judging from the above, most of the current works have been devoted to the design
of new flexible multitenant schema-mapping techniques. There has been little research
devoted to the design and analysis of query rewriting schemes (Pereira and Chiueh
2007; Aulbach et al. 2008). The purpose of this work is therefore to systematically
explore the empirical design of generic tenant-aware query rewriting schemes and
to analyze the performance overhead incurred by Universal Table schema-mapping.
Some preliminary results have been reported in Liao et al. (2012). The major addi-
tions to the previous work include: (1) A rigorous reformulation of the theoretical
statements and analysis. (2) Identification and correction of theoretical errors with
the query rewriting schemes. (3) Several enhancements to the performance of the
transformed physical statements. (4) An in-depth investigation of the analyzed results
(see Sect.5.2.5). (5) Empirical experiments that verify performance in a real-world
environment and consistency with analytical results (see Sect.5.3).

3 Data definition and storage model

This section describes the underlying data definition and storage model used in our
work. As mentioned, the underlying data definition and storage model of our approach
is designed based on Universal Table schema mapping and is similar to the one used by
the Salesforce.com platform (Weissman and Bobrowski 2009). As indicated in Fig. 2,
the Data table is the Universal Table that stores all tenants’ data. To facilitate schema
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Fig. 2 Data definition and storage model used this work

mapping, we have additional tables such as Object, Fields, and Relationships to keep
track of the meta-information of logical tables, logical columns, and relationships,
respectively. This is a metadata-driven approach. Note that we also follow the con-
vention used in Weissman and Bobrowski (2009) which uses the terms “objects” and
“tables” as well as “fields” and “columns” interchangeably. For example, the objectId
field, or column, refers to the unique number associated with a specific table, or object,
in the logical schema, and a similar convention holds true for eldId. It is important to
point out that schema mapping involves overhead of additional database I/O access
since all of the meta-information for logical-physical mapping has to be stored in
physical storage. As a result, additional index tables such as Index and Uniqueelds are
provided to enhance query performance.

Figure 3 presents a multitenant architecture that is constructed based on the model
depicted in Fig. 2. The overall architecture consists of four layers. The bottom layer
is physical data and metadata used by all tenants based on Universal Table schema-
mapping. Above this layer is the middleware that realizes schema-mapping and tenant-
aware query rewriting. A multi-tenant SaaS application, which is able to host several
tenant-specific virtual applications, can be built on top of the middleware layer.

As an example of how schema-mapping and query rewriting middleware works,
consider a hypothetical SaaS application, ShoppingForce.com, that enables its tenants
to sell products and process orders online. Since dierent tenants have their own unique
needs in describing their products, ShoppingForce.com allows its tenants to create
their own customized schemas. Figure 4 illustrates this scenario. Here we have two
product tables(i.e. Producttenant=667 and Producttenant=604, where tenant denotes
the tenants identifier). The data in the two logical tables will be stored together in
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Fig. 3 Multitenant architecture
based on the model depicted in
Fig. 2

Fig. 4 The ShoppingForce.com example

the Data table via a schema mapping and query rewriting scheme. Figure 5 shows
how an instance of a logical “Product” object belonging to tenant 667 and its related
meta-information is stored physically using Universal Table schema mapping. Here
the tenant identifier (“667”) , object identifier (“1”), and the object name (“Product”)
are stored in the Object table whereas the field names of this object are stored in the
Field table indexed by objectId and tenantId (i.e. id, name, price, and description).
Thus, a full definition of the “Product” object can be obtained by joining the Data,
Object, and Fields tables on objectId and tenantId.

4 Tenant-aware query rewriting

We are now ready to introduce designs for query rewriting schemes for Universal Table
schema-mapping. Figure 6 depicts the overall query processing procedure and data
flow of the proposed approach, in which the solid rectangular blocks refer to processing
modules and the rounded rectangular blocks refer to input, output, or intermediate
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Fig. 5 Mapping an instance of “Product”

data. The inputs are Tenant Profile and the Query for Logical Schema (i.e., SQL
statements) whereas the outputs are the rewritten query statements for the physical
schema. Similar to typical DBMS (Database Management Systems), the overall query
processing procedure used in this work is initiated by scanning, parsing, and validating
the input query statements, and then breaking down the statements into basic units
called query blocks (Elmasri and Navathe 2011). A query block consists of an atomic
query statement such as projection, selection, or join. Next, a query tree, which is
composed of query blocks, is built. The rewriting module then transforms the logical
query statements hosted in the query block into new ones that fit the physical schema.
After that, the query processing module generates a new query tree based on the
generated statements. Finally, query optimizations can be performed before generating
physical query statements.

Before presenting the details of the rewriting engine, it is helpful to explain a
few notations, axioms and auxiliary functions that will be used repeatedly in further
discussions. In this paper, we follow the conventions of Relational Algebra and use
π, σ, ��, ρ to denote projection, selection, join, and rename operations, respectively.
Also, we use a “dot” notation to distinguish logical tables (objects) and columns (fields)
from physical ones. More concretely, the “dot” in Ẋ means the entity X is “logical”
and needs further transformations.

A projection, denoted π< f ield_names>(object_name), is an atomic query operation
that (1) selects certain columns (fields), and (2) discards others from a set of tuples in a
table (object). For example, the query “SELECT order Date, order Amount FROM
Order” denotes a projection πorder Date,order Amount Order . Likewise, a selection is
an atomic query operation that selects rows from a set of tuples fulfilling the con-
straints specified by a boolean expression (or called condition), which can be specified
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Fig. 6 Data flow of the proposed approach

by σ<condition>(object_name). For example, the query “SELECT * FROM Order
WHERE order Date > 1998-7-31” is a selection statement. Finally, a join opera-
tion, denoted by O1 ��<condition> O2, is used to combine sets of tuples coming from
different tables (O1 and O2) and is then filtered by the given condition.

The following rules are presented in Elmasri and Navathe (2011) and will be used
as axioms in the sequel without further proofs:

– Conjunctive σ conditions A selection (σ ) with a set of conjunctive conditions can
be rewritten to a sequence of simple selection operations:

σc1∧c2∧...cn (O) = σc1

(
σc2(...(σcn(O))...)

)
, (1)

where ck are selection conditions and O is a table (object).
– Commutativity of σ Selection operations are commutative:

σc1

(
σc2(O)

) = σc2

(
σc1(O)

)
. (2)

– Reduction of π All but the leftmost projection can be ignored:

πList1

(
πList2(...(πListn (O))...)

) = πList1 . (3)

– Commutativity between σ and π Selection (σ ) and Projection (π ) are commutative
if Aπ ⊆ Aσ , where Aπ and Aσ are the sets of columns involved in List and C ,
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respectively:

πList (σC (O)) = σC (πList (O)) , where Aπ ⊆ Aσ . (4)

Having introduced the basic transformation rules, we are now able to define and
explain important concepts that are useful in deriving rewriting schemes.

Definition 1 (Object Name Transformation) The object name transformation func-
tion, ξobject , that transforms a logical object name into a physical object name, is
defined as follows:

ξobject : L Obj Name × T enant I d → P Obj Name

ξobject (n, t) ≡ π<object I d>σobj Name=nσtenant I d=t (Objects), (5)

where n and t respectively denote input logical object name and tenant id.

In (5), L Objt Name is the set of logical object names and P Obj Name is the set
of physical object names; objectId, objName, and tenantId are column names in the
Objects table.

To show why the transformation of ξobject (n, t) is valid, let us start by examining
the schema definition of Objects depicted in Fig. 2):

Objects
(
object I d, tenant I d, object Name

)
.

The schema definition of Objects indicates that the system can lookup a physical object
name (objectId) by specifying a logical object name (objectName) and a tenant ID
(tenantId). The lookup process can be written in algebraic form:

π<object I d>

(
σobj Name=n∧tenant I d=t (Objects)

)
.

Next, using (1), the conjunctive conditions can be broken into a sequence of selec-
tions:

π<object I d>σobj Name=nσtenant I d=t
(
Objects

)
. (6)

By Eq. (2), σ is commutative. Hence, the statement can be optimized by arranging the
σ operations in the proper order. Typically, selection operations with more restrictive
selection conditions should be evaluated first so that the size of intermediate data can
be minimized. Here the “restrictiveness” of a selection operation is estimated by the
concept of selectivity, which is defined below.

Definition 2 (Selectivity of σ ) The selectivity of a selection operation σC on table
O , denoted θ [σC , O], is defined as the ratio of the number of records that satisfy the
selection condition(s) in C to the total number of records in the table O .
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Table 1 Notations and preset values used in performance analysis

Notation Description Preset value

m Number of tenants 1000

Ō Average number of logical objects per tenant 200

f̄ Average number of logical fields per logical object 15

r̄ Average number of instances(records) per logical object 5000

l̄ Average number of relationships defined by one tenants 100

θ̄ Average selectivity

b Blocking factor (the number of columns that can fit into a disk block) 137 †

† block size = 8192 bytes and column size = 60 bytes; �8192/60�= 137

Intuitively, the lower selectivity of a selection operation, the more restrictive it is,
since more records are filtered out by this operation. As a result, the selection operation
with the smallest θ should be evaluated first. Table 1 summarizes the notations and
chosen default values used in selectivity estimation and performance analysis, where
the number of tenants, the average number of logical objects held by each tenant, the
average number of logical fields per object, and the average number of records per
logical table are denoted as m, Ō, f̄ , and r̄ , respectively.

To estimate θ [σtenant I d=t , Objects], the number of records in Objects can be
obtained by multiplying the average number of logical objects per tenant by the number
of tenants, namely m · Ō; the number of records that satisfy tenant I d = t depend on
how many distinct objects a tenant has, which can be estimated by Ō . Therefore, the
average selectivity, denoted as θ̄ , of σtenant I d=t is:

θ̄
[
σtenant I d=t , Objects

] = Ō

m · Ō =
1

m
.

Estimating θ [σobj Name=n, Objects] is more tricky. One extreme case is that every
tenant has a logical object named n. In this case, there are m records that satisfy the
condition obj Name = n, so that we have m/(m · Ō). The other extreme case is that
if for all tenants there is only one logical object having the name n, then there is only
1 record that satisfies obj Name = n, thus the selectivity becoming 1/(m · Ō).

A general form can be obtained by combining the two extreme cases mentioned
above:

κ

m · Ō , where 1 ≤ κ ≤ m.

Here we choose κ = m/2 as an average case. Hence, the average selectivity of
σobj Name=n is:

θ̄
[
σobj Name=n, Objects

] = m/2

m · Ō =
1

2Ō
.

In practice, m > Ō , which means that the number of tenants is usually larger
than the number of objects per tenant so that σtenant I d=t should be evaluated first.
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Consequently, the order of selection operations in (6) is appropriate and does not
need further modification. If m happened to be smaller than Ō , then the order of
σobj Name=n and σtenant I d=t have to be exchanged to improve performance. Similar
selectivity estimation techniques will be used to guide the derivation of relational
algebra expressions presented in the following discussions.

Similar to the object name transformation function (Definition 1), the second trans-
formation function which is used to lookup the fields of an object is defined below.

Definition 3 (Field Name Transformation) The field name transformation function
ξ f ield that returns the physical field name based on an input logical object name, a
logical field name, and a tenant ID is defined as follows:

ξ f ield : L Obj Name × L Field Name × T enant I D→ P Field Name

ξ f ield(no, n f , t) ≡
π f ield Num

(
σ f ield Name=n f σtenant I d=tσobject I d=ξobject (no,t)(Fields)

)
, (7)

where no, n f and t denote input logical object name, input logical field name and
tenant id, respectively. Note that L Field Name is the set of logical field names and
P Field Name is the set of physical field names; objectId, fieldName, and tenantId
are column names.

Similar to object name transformation, we start by examining the schema definition
of Fields (see Fig. 2), and then derive an initial algebraic expression for looking up a
physical field name (the fieldId column) based on a physical object name (objectId),
a logical field name (the fieldName column) and a tenant ID (tenantId). As a result,
the physical object name can be obtained with the following expression:

π f ield Num
(
σobject I d=ξobject (no,t)∧ f ield Name=n f ∧tenant I d=t (Fields)

)
.

Using (1), the above equation can be split into a sequence of simple selections:

π f ield Num
(
σobject I d=ξobject (no,t)σ f ield Name=n f σtenant I d=t (Fields)

)
. (8)

The selection operations have to be arranged properly so that operations with
smaller selectivity are evaluated earlier. In (8), there are three selection operations:
σtenant I d=t , σ f ield Name=n f , and σobject I d=ξobject (no,t). Calculating the selectivity of
σtenant I d=t is straightforward: the number of records in Fields table is m · Ō · f̄ and
the average number of records stored in Fields for each tenant is Ō · f̄ . Thus, we have:

θ
[
σtenant I d=t , Fields

] = Ō · f̄

m · Ō · f̄
= 1

m
. (9)

The general form of the selectivity of σ f ield Name=n f can be derived with a similar
technique to the one used in Definition 1

θ
[
σ f ield Name=n f , Fields

] = κ

m · Ō · f̄
, where 1 ≤ κ ≤ m · Ō.
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The average selectivity can then be calculated by letting κ = m · Ō/2:

θ̄
[
σ f ield Name=n f , Fields

] = m · Ō/2

m · Ō · f̄
= 1

2 · f̄
. (10)

The selectivity of σobject I d=ξobject (no,t) is fixed but implementation dependent. As
the physical object name (objectId) is typically generated and assigned by the system.
For example, the system can use a GUID (Globally Unique Identifier) generator to
assign physical object names. In this case each value of objectId is unique in the Fields
table. Therefore,

θ
[
σobject I d=ξobject (no,t), Fields

] = 1

m · Ō · f̄
. (11)

Alternatively, the system can use a sequence number as a physical object name. In this
case, each tenant has the same set of physical object names, namely, 1, 2, ...n. Hence,

θ
[
σobject I d=ξobject (no,t), Fields

] = m

m · Ō · f̄
= 1

Ō · f̄
. (12)

Based on the results obtained from (9) to (12), we suggest that the following expres-
sion be used in cases where the number of tenants is not very large, namely, m > Ō · f̄ :

π f ield Num
(
σ f ield Name=n f σtenant I d=tσobject I d=ξobject (no,t)(Fields)

)
.

For example, if the system allows each tenant to hold up to 100 distinct objects (tables),
and each object has up to 50 fields, then the term σtenant I d=t in (7) can be moved to
the leftmost position to improve performance when there are more than 5000 tenants.

4.1 Overall approach

To sketch the overall idea of the proposed rewriting schemes, recall that in Universal
Table schema-mapping, all records belonging to a tenant specific logical table are
physically stored in the Data table which uses generic physical field names such as
“value1, value2, ...” instead of logical field names (see Fig. 5). Thus, the general rule
of thumb for transforming a tenant-aware logical statement into physical one is first to
reconstruct the logical table using a physical SQL statement, including the recovery
of physical filed names such as “value1, value2, ...” to logical field names, and then
arbitrary query operations can be applied to the reconstructed table. In the context of
multitenancy, we extend the original notation by specifying “tenant ID” in a square
bracket so that if the tenant ID is t , then [t](Ȯ) denotes the logical table held by tenant
t .

To explain the approach more clearly, consider the mapping of the logical table
Product shown in Fig. 5. Let us assume that the following logical SQL statement is
submitted by tenant 667:
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SELECT price, description FROM Product.

The algebraic from of the above SQL statement is

π<price,description>[667](Product
)
. (13)

As mentioned, we can find all records belonging to the logical table Product that also
belong to tenant 667 from the physical table Data by performing a physical selection
statement filtered by tenant I d and object I d. The value of physical field object I d
can be obtained by the object name transformation function ξobject (Product, 667)

which is assumed to be 1 in this example:

σobject I d=1∧tenant I d=667
(
Data

)
. (14)

The next step is to obtain the logical field names using the field name transformation
function ξ f ield(Product, n f , 667), where the logical field names id, name, price, and
description are obtained by substituting n f with value1, value2, value3, and value4,
respectively. As a result, the logical table Product can be reconstructed by appending
a rename and a projection operation in front of (14):

[667](Product
) = ρ(

id,name,price,description
) π<value1,value2,value3,value4>

σobject I d=1∧tenant I d=667
(
Data

)
.

(15)

Note that the projection operation π<value1,value2,value3,value4> is required since the
Data table has additional fields to keep track of the metadata of a record such as the
GUID, objectId and tenantId fields of the Data table in Fig. 5.

Now that we have reconstructed the logical table Product so that arbitrary query
operations can be applied to it, with (13) and (15), we have:

π<price,description>[667](Product
) = π<price,description>

ρ(
id,name,price,description

)

π<value1,value2,value3,value4>

σobject I d=1∧tenant I d=667
(
Data

)
. (16)

Then, the physical form of the tenant-aware logical projection statement can be derived:

SELECT price, description FROM (
SELECT value1 AS id, value2 AS name,

value3 AS price, value4 AS description
FROM Data
WHERE objectId=1 AND tenantId=667

).
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The above example brings us to the derivation of a general form of table reconstruction.
Again, we start by finding all records belonging to the logical table [t]Ȯ from Data
and then storing the outcomes in a temporary storage T :

T ← σ
object I d=ξobject

(
Ȯ,t

)
∧tenant I d=t

(
Data

)
. (17)

Next, let us denote the set of all logical fields of [t]Ȯ as Ḟ∗, then for each field ḟ ∈ Ḟ∗,
the corresponding physical field in T is projected and renamed. In this way, [t](Ȯ) is
reconstructed.

[t](Ȯ
)← ρḞ∗π<

{
ξ f ield

(
Ȯ, ḟ ,t

)
| ḟ ∈Ḟ∗

}
>
(T ). (18)

Finally, we can merge (17) and (18) to obtain the general form:

[t](Ȯ
) = ρḞ∗π<

{
ξ f ield

(
Ȯ, ḟ ,t

)
| ḟ ∈Ḟ∗

}
>

σ
object I d=ξobject

(
Ȯ,t

)
∧tenant I d=t

(
Data

)
. (19)

4.2 Projection rewriting

We are now ready to derive the rewriting schemes for projection. A projection πF (O)

is essentially a column filter on table O that discards all columns except the fields
where a ∈ F . In this way, the statement πḞ [t](Ȯ) stands for a logical projection on
the tenant-aware logical table [t](Ȯ) which is formally defined as follows.

Definition 4 (Tenant-Aware Logical Projection) A tenant-aware logical projection is
defined as πḞ [t](Ȯ), where Ḟ is a tuple of projected logical fields, t is the tenant ID,
and Ȯ is the logical object in the projection.

As mentioned, the overall approach is to reconstruct the logical table [t](Ȯ after
which the logical projection πḞ can be applied to the reconstructed table. Formally,
using the general form of logical table reconstruction (19), we can substitute [t](Ȯ)

with a physical query statement:

πḞ [t]
(
Ȯ

) = πḞρḞ∗π<
{
ξ f ield

(
Ȯ, ḟ ,t

)
| ḟ ∈Ḟ∗

}
>

σ
object I d=ξobject

(
Ȯ,t

)
∧tenant I d=t

(
Data

)
. (20)

Unfortunately, the logical table reconstruction approach does not produce an opti-
mized general form. The point to observe is that (17) is essentially for sieving out
desired records from the logical table T . However, building a logical table for each
query is inefficient both in time and in space. As a result, we can use the same tech-
nique as the one presented in Definitions 1 and 3, that is, arranging operations in proper
order so that the most selective operations are evaluated earlier.
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To move πḞ to the right side of ρ, all logical fields ḟ ∈ Ḟ have to be renamed.
Hence, πḞ is changed to π<{ξ f ield (Ȯ, ḟ ,t)| ḟ ∈Ḟ}> after πḞ is moved to the right side
of ρ. Using (3), the two projections π<{ξ f ield (Ȯ, ḟ ,t)| ḟ ∈Ḟ}> and π<{ξ f ield (Ȯ, ḟ ,t)| ḟ ∈Ḟ∗}>
can be merged. Note that Ḟ ⊆ Ḟ∗, so that π<{ξ f ield (Ȯ, ḟ ,t)| ḟ ∈Ḟ∗}> is dropped and ρḞ∗
is replaced by ρḞ :

ρḞπ
<
{
ξ f ield (Ȯ, ḟ ,t)| ḟ ∈Ḟ

}
>
σ

object I d=ξobject
(

Ȯ,t
)
∧tenant I d=t

(
Data

)
.

Then, using (1), the conjunctive conditions can be broken into two consecutive selec-
tions:

ρḞπ
<
{
ξ f ield (Ȯ, ḟ ,t)| ḟ ∈Ḟ

}
>
σ

object I d=ξobject
(

Ȯ,t
)σtenant I d=t

(
Data

)
.

The calculation of θ [σtenant I d=t , Data] and θ [σobject I d=ξobject (Ȯ,t), Data]will not
be elaborated on here, as the procedure and the results are similar to that of Def.3. The
results indicate that, unless m > Ō , the following statement should be used, where m
is the number of tenants and Ō is the average number of logical objects per tenant:

πḞ [t]
(
Ȯ

) = ρḞπ
<
{
ξ f ield

(
Ȯ, ḟ ,t

)
| ḟ ∈Ḟ

}
>
σtenant I d=tσobject I d=ξobject

(
Ȯ,t

)(Data
)
.

(21)

In other words, if there are a lot of tenants and each one owns relatively few tables and
records, then the positions of the two selection operations in (21) should be exchanged.

If one of the field names specified in Ḟ happened to be a primary key or an index
in the logical table Ȯ , then the query can be rewritten to take advantage of the index
specified in I ndex and UniqueFields. For example, by inspecting the Fields table,
it can be observed that order I d in the query πorder I d [1](Order) is a primary key in
the logical table Order . As a result, we can search for the set of data GUIDs (G) by
looking up UniqueFields, that is,

G ← πdataGuidσtenant I d=tσobject I d=ξobject
(

Ȯ,t
)(UniqueFields

)
.

The rewriting scheme then can be rewritten as:

πḞ [t]
(
Ȯ

) ≡ ρḞπ
<
{
ξ f ield

(
Ȯ, ḟ ,t

)
| ḟ ∈Ḟ

}
>
σdataGuid∈G

(
Data

)
. (22)

The rewriting schemes for non-primary key indexes can be obtained in a similar way
except that the table to look up is I ndex .

4.3 Selection rewriting

A selection, denoted σC (O), picks out records that fulfill the constraints specified in
a boolean expression C from a table O . We can extend this notation in the context
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of multitenancy by specifying the tenant ID t in a square bracket. In this way, the
definition of tenant-aware logical selection is given below.

Definition 5 (Tenant-Aware Logical Selection) A tenant-aware logical selection is
defined as σĊ [t](Ȯ), where Ċ is a list of assertions on logical fields, t is the tenant ID,
and Ȯ is the logical object name.

Similarly to rewriting logical projection statements, the overall approach is to recon-
struct the logical table [t](Ȯ so that logical selection σĊ can be applied to the logical
table produced by rewritten statements. Formally, using (19), we can substitute [t](Ȯ)

with physical statements:

σĊ [t]
(
Ȯ

) = σĊρḞ∗π<
{
ξ f ield

(
Ȯ, ḟ ,t

)
| ḟ ∈Ḟ∗

}
>

σ
object I d=ξobject

(
Ȯ,t

)
∧tenant I d=t

(
Data

)
. (23)

Like (21), the statement listed above can be further optimized by breaking apart the
conjunctive conditions and then arranging the conditions in the proper order:

σĊ [t]
(
Ȯ

) ≡ σĊρḞ∗π<
{
ξ f ield

(
Ȯ, ḟ ,t

)
| ḟ ∈Ḟ∗

}
>
σtenant I d=tσobject I d=ξobject

(
Ȯ,t

)(Data
)
.

(24)

The calculation of θ [σtenant I d=t , Data] and θ [σobject I d=ξobject (Ȯ,t), Data] is sim-
ilar to that of a tenant-aware logical projection and will not be re-iterated here. If one
of the logical field names specified in Ċ happened to be a primary key or an index in
the logical table Ȯ , then the query can be rewritten differently to take advantage of
the index specified in I ndex and UniqueFields. Hence, we can search for the set of
data GUIDs (G) by looking up the UniqueFields, that is,

G ← πdataGuidσtenant I d=tσobject I d=ξobject
(

Ȯ,t
)(UniqueFields

)
.

The above statement then can be rewritten as the statement shown below:

σĊ [t]
(
Ȯ

) ≡ σĊρḞ∗σ
(

dataGuid∈G
)(Data

)
. (25)

Taking the following query as an example:

SELECT ∗ FROM Product WHERE id=1,

In Fig. 5, the logical schema of Product is defined as follows:

Product
(
id, name, price, description

)
,

where the underline indicates that the field id is the primary key of the Product table. If
the tenant ID is 667, then the algebraic form is σid=1[667](Product). We can lookup
G in UniqueFields since order I d is a primary key. Hence, we have:
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G ← πdataGuidσtenant I d=667σobject I d=ξobject
(

Product,667
)(UniqueFields

)
.

The query can be rewritten as :

σid=1ρ
(

id,name,price,description
)σdataGuid∈G

(
Data

)
.

As a result, the generated query statement is:

SELECT ∗ FROM (
SELECT value1 AS id, value2 AS name,

value3 AS price, value4 AS description
FROM Data
WHERE objectId=1 AND

tenantId=667 AND
dataGuid IN (

SELECT dataGuid
FROM UniqueFields
WHERE objectId=1 AND tenantId=667

)
) WHERE id=1.

4.4 Join rewriting

The join operation, denoted by O1 ��C O2, is used to combine sets of tuples coming
from two tables. By convention, a join operation refers to an inner join which essentially
obtains a Cartesian product of joining tables, and then performs a selection based on
specific conditions, that is, σC (O1× O2). In the context of multitenancy, the notation
can be refined as follows:

Definition 6 (Tenant-Aware Logical Join) A tenant-aware logical join is defined as
Ȯ1 ��Ċ [t](Ȯ2), where Ċ is a list of condition on logical fields, t is the tenant ID, and
Ȯ is the logical object name.

Likewise, the overall strategy is to reconstruct logical tables Ȯ1 and Ȯ2 so the
logical conditions Ċ can be evaluated. The rewriting schemes for constructing logical
tables (i.e., Ȯ1 and Ȯ2) are already derived in (19) and (23). Consequently, we have:

O1 ← ρḞ∗σtenant I d=tσobject I d=ξobject
(

Ȯ1,t
)(Data

)
, and

O2 ← ρḞ∗σtenant I d=tσobject I d=ξobject
(

Ȯ2,t
)(Data

)
. (26)

Now that the physical field names are replaced by logical ones so that the join
operation can be performed directly on Ċ . The rewriting scheme can be summarized
below:

Ȯ1 ��Ċ [t](Ȯ2) ≡ O1 ��Ċ O2, (27)
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where O1 and O2 have been derived in (26).
Nevertheless, performing join operations are costly so that we can take advantage

of the index table maintained in the physical schema. The idea is similar to the one
used in Sect. 4.3 except that in a join operation, relationships is used as an index
table. The first step is to search for all GUIDs of O1 and O2 respectively:

G1 ← πdataGuidσ
sourceObject I d=ξobject

(
Ȯ1,t

)

σ
target Object I d=ξobjectσtenant I d=t

(
Ȯ2,t

)(Relationships
)

G2 ← πdataGuidσ
sourceObject I d=ξobject

(
Ȯ2,t

)

σ
target Object I d=ξobject

(
Ȯ1,t

)σtenant I d=t
(
Relationships

)
. (28)

In this way, (26) can be rewritten below:

O1 ← ρḞσdataGuid∈G1

(
Data

)

O2 ← ρḞσdataGuid∈G2

(
Data

)
. (29)

The θ values for the selection operations in (28) can be derived using the same
techniques as (9), (11), and (12). The selectivity for selection operations on Relation-
ship depends on the average number of relationships l̄ among objects defined by the
tenant. For example ,

θ
[
σtenant I d=t , Relationships

]
= l̄

l̄ · m =
1

m
.

Likewise,

θ
[
σ

sourceObject I d=ξobject
(

Ȯk ,t
), Relationships

]
= 1

m · l̄ ,

if objectName is assigned using GUID or

θ
[
σ

sourceObject I d=ξobject
(

Ȯk ,t
), Relationships

]
= 1

l̄
,

otherwise. In the second case,

θ
[
σtenant I d=t , Relationships

]
< θ

[
σtenant I d=t , Relationships

]

holds when m > l̄, so that we can consider exchanging the position of the terms
σtenant I d=t and σsourceObject I d=ξobject (Ȯk ,t)

in (28) if the number of tenants are larger
than that of average relationships a tenant defines.
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Fig. 7 The prototype implementation of the proposed approach

5 Evaluation

In this section, we verify the feasibility by implementing a transparent query rewrit-
ing engine prototype as well as a SaaS application, namely, the ShoppingForce.com.
In addition, a performance analysis is also conducted to estimate the I/O access
overhead.

5.1 Implementation

We study the feasibility of the proposed engine by developing a prototype based on an
open source Java universal data management platform called DataNucleus. As shown
in Fig. 7, this platform is constructed on top of a well-known service-oriented module
management standard called OSGi (The OSGi Alliance 2012) so that DataNucleus is
plug-in driven and highly extensible. The rewriting engine implements standard APIs
required by DataNucleus and is developed as an OSGi bundle. Then, the bundle is
registered as a service in the DataNucleus platform so that the rewriting engine is able
to perform transparent query rewriting for the application.

To verify the prototype, we implemented a simple SaaS application called
ShoppingForce.com on top of DataNucleus. ShoppingForce.com is basically a mul-
titenant enhanced JPetStore (Clinton 2004), which is a sample full-fledged three-tier
on-line shopping application widely used for educational and research purposes. The
ShoppingForce.com can now being customized to sell different products. Figure 8
shows three different on-line shopping applications hosted on ShoppingForce.com.
Technically speaking, the above mentioned applications are able to access the rewrit-
ing engine deployed on DataNucleus through JDO (Java Data Object) (Russell 2010),
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Fig. 8 Example on-line shopping applications hosted by ShoppingForce.com

which is one of the official Java-based ORM (Object-Relational Mapping) specifi-
cations. To access the physical schema, the application uses JDOQL (JDO Database
Query Language) (Russell 2010) and manipulates JDO API. Then, The JDOQL is
translated internally to SQL statements and then used as the inputs of the proposed
rewriting engine. To create a logical application, the tenant applies for an account
on-line and a tenant profile is then generated accordingly. Sometimes a tenant needs
to modify default logical schema such as adding tenant-specific columns. Currently,
the schema customization functionality has not been implemented yet. However, after
the CREATE statement is supported by the underlying rewriting engine, schema cus-
tomization can be realized by a schema customization page in the account management
page of ShoppingForce.com.

5.2 Analysis

In this research, we adopt query performance analysis techniques similar to those
presented in Jarke and Koch (1984), where queries are decomposed into atomic steps
and then the I/O access counts need to be carried over as each step is estimated. Note
that data distribution issues such as communication complexity (Lynch 1996) are out
of the scope of this research. The performance is estimated by the I/O access to the
secondary storage, namely the disk I/O, required by the rewriting modules. CPU costs,
memory accesses, and cache hits/misses are not taken into account, either, since total
cost is dominated by access time of the secondary storage.

Recall that the number of tenants, the average number of logical objects held by
each tenant, the average number of virtual fields per object, the average number of
records per logical table, and the average number of relationships defined by a tenant
are defined as m, Ō, f̄ , r̄ , and l̄, respectively. Then, the size of the tables (number of
records in a table) can be calculated, as shown in the second column of Table 2. For
instance, since there are m tenants, each of them has Ō tables that contain r̄ records
in average. Therefore, the size of Data table is m · Ō · r̄ records.

One important parameter for estimating the I/O count for a database operation is the
blocking factor (Elmasri and Navathe 2011), which is traditionally defined to be the
number of records that can fit into a disk block. This definition assumes that the size
of records for all tables are equal. Unfortunately, this is not true in Universal Table
schema-mapping, since the size of records in Universal Table (i.e., Data) is much
greater than that of other tables. Consequently, we take a fine-grained approach, that
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Table 2 I/O Count for
Universal Table
schema-mapping

Table name Table size
(records)

I/O capacity
(records/block)

I/O count per
table scan

Data m · Ō · r̄ b/504 �m ·Ō ·r̄ ·504/b�
Objects m · Ō b/3 �m · Ō · 3/b�
Fields m · Ō · f̄ b/7 �m · Ō · f̄ · 7/b�
UniqueFields m · Ō b/7 �m · Ō · 7/b�
Relationships m · l̄ b/5 �m · l̄ · 5/b�

is, we refine the original definition so that the blocking factor refers to the number of
columns that can fit into a disk block:

b (blocking factor) = � Block size

Average column size
�.

Depending on the blocking factor of the underlying storage, several records can
be accessed in one I/O operation. Column 3 of Table 2 shows the I/O capacity for
each table in context of Universal Table schema-mapping. For instance, consider the
Data table, which contains 504 columns (500 for Value1, Value2,... Value500 plus 4
additional columns, as shown Fig. 2), the number of records that can be accessed in
one I/O operation, namely the I/O capacity of a table, is b/504 records per block. From
this example, it can be observed that the I/O capacity of a table is mainly determined
by the number of columns as defined by the table schema. As shown in Column 4 of
Table 2, I/O count per table scan can then be derived from the size of the table (Table
2, Column 2) over the I/O capacity (Table 2, Column 3).

The actual I/O count for performing a query operation are implementation depen-
dent. As a baseline analysis, we assume that no parallel or interleaved I/O operations
are used and that one table scan is required for a sequence of selections on the same
table where the order of selections is taken into account by the underlying implemen-
tation. In addition, we also assume that the size of main memory is sufficiently large
enough that the system is able to reserve a sufficient buffer for storing records that
fulfill the selection conditions.

5.2.1 Object and field name transformation

From Definition 1, ξobject contains a sequence of selections so that it essentially
performs a table scan on Object (i.e., read: �3 · m · Ō/b�; write: 0, since the data are
transient). Likewise, ξ f ield defined in Definition 3 includes a sequence of selections
on Fields, so the I/O count is equal to performing a table scan on Fields, namely,

�m · Ō · f̄ · 7/b�.

The I/O count for writing is also zero since the results of ξ f ield are transient.
It is important to point out that both the ξobject and ξ f ield perform selections on

the tenantId field. Hence, we can configure the schema of Objects and Fields so that
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tenantId is an indexed field. Taking Objects as an example, one can perform an index-
assisted binary search to obtain all records belonging to a tenant as an intermediate
result with �log2(m · Ō) · 3/b� I/O accesses. The size of intermediate results is Ō on
average so that we need to scan through these Ō records. In this way, the I/O count
for ξobject becomes

�log2(m · Ō) · 3/b�.

Here the scanning of Ō records does not involve any I/O access since they are already
loaded into memory. Note that �log2(m · Ō) · 3/b� ≤ �m · Ō · 3/b� as m and Ō are
positive integers. Likewise, if the field tenantId is indexed in Fields table, then the
I/O count for ξ f ield becomes �log2(m · Ō · f̄ ) · 7/b� which is smaller or equal to
�m · Ō · f̄ · 7/b� as m, Ō , and f̄ are positive integers. It follows that it is usually
worthy to configure the tenantId as an index in Objects and Fields tables.

5.2.2 Tenant-aware logical projection

From (20), the rewriting involves a table scan on Data, a call to ξobject and a call to
ξ f ield . Therefore, the read counts are the sum of of these operations, all of which can
be obtained by looking up Table 2. Thus, the read counts for π are

m · Ō · r̄ + �m · Ō · 3/b�+ �m · Ō · f̄ · 7/b�.

The cost for performing table scans on Data is very high since the table has low I/O
capacity. Again, we can configure the schema of Data so that tenantId is indexed in
Objects and Fields and objectId is indexed in Data. Thus, all records with a specific
objectId can be loaded by

log2
(
m · Ō · r̄)+ �log2

(
m · Ō) · 3/b�+ �log2

(
m · Ō · f̄

) · 7/b�

I/O operations. As mentioned, if the projecting fields happen to be a primary key or an
index in the logical table, then the query can be rewritten to take advantage of logical
index tables such as UniqueFields or Index. In this case, the rewriting with indices
contains a search of the UniqueFields table as well as a call to ξobject . Assume that
objectId is indexed in Objects and UniqueFields, then the read count for searching
UniqueFields and ξobject are respectively �log2(m · Ō) ·7/b� and �log2(m · Ō) ·3/b�.
Finally, �Ō · r̄ · f̄ /b� is the cost of loading all dataGuid ∈ G from Data. GUIDs are
globally unique, so the dataGuid field can be implemented with a hash index. To sum
up, the read count of the indexed approach is

�log2
(
m · Ō) · 7/b�+ �log2

(
m · Ō) · 3/b�+ �Ō · r̄ · f̄ /b�.

On the other hand, the write count depends on the size of the results. Given that |Ḟ |
columns are selected, the write counts are �|Ḟ | · r̄/b�.
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5.2.3 Tenant-aware logical selection

It follows from (23) that σ has the same read access counts as π since it also involves
a table scan on Data, a call to ξobject , and a call to ξ f ield . Here σĊ does not cause
additional read count since the set of all logical fields in Ċ , denoted Ḟ , is a subset of
Ḟ∗, that is, Ḟ ∈ Ḟ∗, so that all of the required fields are loaded into memory before
the evaluation of σĊ . As a result, the read counts for σ is also

m · Ō · r̄ + �m · Ō · 3/b�+ �m · Ō · f̄ · 7/b�.

Likewise, for the indexed approach, the read count is also the same as π , namely,

�log2
(
m · Ō) · 7/b�+ �log2

(
m · Ō) · 3/b�+ �Ō · r̄ · f̄ /b�.

However, this is not the case for write access since the size of selection results depends
on selectivity θ [σĊ , Ȯ], where Ȯ is the logical table. For simplicity, let us assume that
the average selectivity of logical selections is θ̄ . Then, we can expect that each logical
selection obtains r̄ · θ̄ records on average. The write count is thus r̄ · θ̄/b. The higher
selectivity indicates more results will be produced and thus more write accesses.

5.2.4 Tenant-aware logical join

When analyzing tenant-aware logical join, we assume that the join is implemented by
the Nested–Block Join method (Elmasri and Navathe 2011) as it is general-purpose
and is the default algorithm for most database. Specifically, for each record o1 in O1,
we retrieve every record o2 in O2 and test whether the two fetched records match the
join condition, namely Ċ in (27). In this way, (27) can be rewritten as (26) and (26)
indicates a table scan on Data, a call to ξobject , and a call to ξ f ield , the read access
counts of O1 and O2 are also identical to that of π and σ . As a result, the outcome is
2 times the read access counts of π or σ .

When taking advantage of the Relationships index table, the join operation involves
searching the Relationships table as well as a call to ξobject . Assume that objectId is
indexed in Objects and Relationships, then the read count for searching Relationships
and ξobject are respectively �log2(m · l̄) · 5/b� and �log2(m · Ō) · 3/b�. Lastly, since
GUIDs are globally unique, �Ō · r̄ · f̄ /b� is the cost of loading all dataGuid ∈ G
from Data, and the dataGuid field can be implemented with a hash index. As a result,
the read count of tenant-aware logical join is

2 · (�log2(m · l̄) · 5/b�+ �log2(m · Ō) · 3/b�+ �Ō · r̄ · f̄ /b�
)
.

Similar to selection operations, the write count is r̄ ·θ̄/b. The higher selectivity indicates
more results will be produced and thus more write accesses. Based on the above results,
the analysis of I/O counts for ξobject , ξ f ield , π, σ , and �� are summarized in Table 3.
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Table 3 I/O count for logical query operations

Item Read Write

ξobject �m · Ō · 3/b� 0

ξobject * �log2(m · Ō) · 3/b� 0

ξ f ield �m · Ō · f̄ · 7/b� 0

ξ f ield * �log2(m · Ō · f̄ ) · 7/b� 0

πḞ m · Ō · r̄ + �m · Ō · 3/b�+ �m · Ō · f̄ · 7/b� �|Ḟ | · r̄/b�
πḞ∗ �log2(m · Ō) · 7/b�+ �log2(m · Ō) · 3/b�+ �Ō · r̄ · f̄ /b� �|Ḟ | · r̄/b�
σĊ m · Ō · r̄ + �m · Ō · 3/b�+ �m · Ō · f̄ · 7/b� �r̄ · θ̄/b� †

σĊ∗ �log2(m · Ō) · 7/b�+ �log2(m · Ō) · 3/b�+ �Ō · r̄ · f̄ /b� �r̄ · θ̄/b� †

��Ċ 2 · (m · Ō · r̄ + �m · Ō · 3/b�+ �m · Ō · f̄ · 7/b�) �r̄ · θ̄/b� †

��Ċ ∗ 2 · (�log2(m · l̄) · 5/b�+ �log2(m · Ō) · 3/b�+ �Ō · r̄ · f̄ /b�) �r̄ · θ̄/b� †

* specific fields are indexed; † 0 ≤ θ ≤ 1 is the selectivity the operation

5.2.5 Discussion

Having derived the general form of I/O counts, we are now able to discuss the impact
on the overall performance of several important parameters such as number of tenants,
block sizes, and average number of objects per tenant on the overall performance. The
parameters of the derived rewriting schemes (see Table 3) are first set to reasonable
default values (see Table 1). Then, we alternate one of the parameters and fix other
values to observe how the overall I/O count is affected.

The first interesting result worth noting is tenant-size scalability. Figure 9 shows the
relationship between the I/O count and the number of tenants using the indexed rewrit-
ing schemes (i.e. π ∗̇

F
, σ ∗̇

C
, and ��∗̇

C
). The I/O count for single tenant query operations

is depicted using the dotted line. The distance between the solid line and the dotted
line is therefore the overhead imposed by multitenancy using our approach. Although
the I/O count undergo a significant initial increase, after the number of tenants reaches
500, the I/O count increases very slowly. As a result, the proposed approach appears to
be scalable to the number of tenants for both projection/selection and join operations.
The reason is that for the indexed rewriting schemes, the I/O count for searching GUID
is independent of tenant size (see Table 3).

Similar results can be obtained by alternating Ō, f̄ , and r̄ . For instance, Fig. 10
shows the relationship between the I/O count and the average number of objects per
tenant using indexed rewriting schemes. As indicated in this figure, the I/O overhead
increases from 167 to 200 and from 258 to 310 using tenant-aware projection/selection
and tenant-aware join, respectively, where the I/O overhead is calculated by finding
the difference between tenant-aware operations and single-tenant ones. As a result,
the proposed approach is also scalable to the number of average objects per tenant for
both projection/selection and join operations.
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Fig. 10 I/O overhead in different average number of objects per tenant

5.3 Experiments

To study the consistency between analytical results and real-world experimental
results, we conducted experiments in a switched network to further investigate the
performance of the proposed rewriting schemes. The experiments consisted of two
parts: turnaround time and concurrency level. Turnaround time is evaluated by the
variation of average turnaround time as the number of tenants increases; concurrency
level means the influence of the turnaround time as the number of concurrent clients
increases. For comparison, Private Table schema layout, which implements the same
sets of logical schema, was also implemented and tested. In the Private Table schema
layout, each logical table is mapped to a physical table. The tenant id is added to the pre-
fix of each table to avoid a name conflict (e.g., T604_Product versus T667_Product).
As mentioned in Sect. 2, since logical queries can be performed directly on the phys-
ical tables with few transformations, namely adding the prefix to the table names,
Private Table can achieve the highest performance but also has the highest costs. On
the contrary, Universal Table has the lowest cost at the price of lower performance.
Theoretically, the performance of Universal Table must be worse than that of Private
Table since for the same logical SQL statement, the transformed physical SQL state-
ment for Universal Table is much more complex than Private Table. In this sense, a
rewriting mechanism for Universal Table is very effective if it causes the turnaround
time for Universal Table to approach that of Private Table.

Initially, our program generates the physical schema that realizes the Private Table
and Universal Table schema-mapping of the logical schema in JPetStore (Clinton
2004) automatically based on the scenario, and then for each tenant, each of its logical
tables is filled with 10,000 randomly generated test records. Therefore, depending on
different schema layout approaches, these records are distributed differently in the
physical schema. For instance, in the Private Table schema layout, each tenant has the
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Table 4 The turnaround time of
queries on Private Table with
caching and indexing are turned
off (in seconds)

Num. of
Tenants

Select Project Join

10 1.184 7.825 13.820

20 1.224 7.859 13.964

30 1.252 7.922 14.273

40 1.276 7.959 14.400

50 1.303 8.197 14.763

same set of physical tables so that the records are uniformly distributed. On the other
hand, all logical records are physically placed in the Data table in Universal Table
schema-mapping. In each experiment, the client issues query requests to the database
server and then receives query results. Each request and the results are correlated so
that the turnaround time of issuing the query can be measured.

After a few rounds of preliminary tests, we found that it is very hard to distinguish the
performance overhead caused by the rewriting schemes from the overhead caused by
other middleware components (e.g., DataNucleus or OSGi) if we perform experiments
using the prototype constructed in Sect. 5.1. As a result, in the following experiments,
overall evaluating process are driven directly by the Apache JMeter 2.9 (Halili 2008),
a well-known open source and general-purpose performance measurement platform,
which can be used to simulate arbitrary load types on the server or network to test
overall performance under different load types. We modified the source code of JMeter
JDBC (Java Database Connectivity) plug-in so that the rewriting module is able to
intercept the SQL requests and performs transformations. MySQL Community Server
5.7 with InnoDB engine on Ubuntu Linux 12.04 is used as the database server. The
client (JMeter and the rewriting module) and the server are deployed on two separate
PCs with Intel Core i7 3.4-GHz processors with 4 GB of memory connected by a
100 Mbps switch. For each test, based on pre-configured scenario settings, several
concurrent threads that issue SQL requests to the database server are initiated. Finally,
the JMeter platform is responsible for gathering responses and reporting the average
turnaround time.

5.3.1 Turnaround time

The objective of the first experiment is to measure the variation of average turnaround
time as the number of tenants increases. In each test, 200 threads are initialized, and
then each of them issue an SQL request concurrently. We performed experiments for
the Selection, Projection, and Join statements of Private Table and Universal Table
schema-mapping, respectively. Initially, we disabled the cache and index so that the
experimental results were easier to verify and compare to the analytical results. Tables
4 and 5 display the plain turnaround time for the schema mappings of Private Table
and Universal Table, respectively. To see the effects of caching and indexing, we also
tested the performance of cached, indexed, and mixed Selection statements for the two
schema-mappings mentioned above. As shown in Tables 6 and 7, the improvement

123



Autom Softw Eng

Table 5 The turnaround time of
queries on Universal Table with
caching and indexing are turned
off (in seconds)

Num. of
Tenants

Select Project Join

10 150.882 164.926 268.746

20 157.730 170.833 271.164

30 163.046 175.556 273.157

40 169.632 182.755 276.158

50 175.155 188.198 279.159

Table 6 The turnaround time of
select operations on Private
Table with caching and indexing
are turned on (in seconds)

Num. of
Tenants

Select Select
with cache

Indexed
select

Indexed
select with
cache

10 1.184 1.123 .284 .229

20 1.224 1.162 .302 .287

30 1.252 1.170 .316 .300

40 1.276 1.182 .337 .310

50 1.303 1.209 .353 .327

Table 7 The turnaround time of
select operations on Universal
Table with caching and indexing
are turned on (in seconds)

Num. of
Tenants

Select Select
with cache

Indexed
select

Indexed
select with
cache

10 150.882 4.275 1.542 .571

20 157.730 4.382 1.560 .585

30 163.046 4.491 1.590 .605

40 169.632 4.578 1.626 .638

50 175.155 4.611 1.664 .674

results for Private Table are little while those for Universal Table are significant.
Besides, regardless of caching or not, the results show that the proposed rewriting
scheme is scalable to the number of tenants.

By comparing the Select, Project and Join columns in Table 5, we can learn that
Universal Table induces a greater amount of overhead if caching and indexing are
disabled. As shown in Sect. 5.2, for Universal Table, a major portion of the overhead
comes from processing complex statements and local disk I/O operations. However, as
shown in Table 7, the performance of our approach is greatly improved when caching
are turned on. Moreover, if the fields appear in a location where the clauses are indexed,
than the turnaround time can be reduced further to be less than one second, which is
comparable with Private Table and is reasonable in practice. It is also worthy to point
out that the cache and indexing do not improve the performance of Private Table as
much as Universal Table since the queries are relatively simple compared to Universal
Table (see Tables 6 and 7).

The next interesting result to observe is that the ratios of turnaround time for Select,
Project, and Join statements for Private Table and Universal Table are different. For
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Private Table, the ratio is around 1:6:12 (see Table 4) whereas for Universal Table the
ratio is about 1:1:2 (see Table 5). To explain the underlying reason for this difference,
one has to note that the turnaround time consists of three parts: network delay, server
computation time, and local disk I/O time. There is no need to rewrite the queries
for Private Table, thus, unlike network delay, the statements cause very low server
computation and local disk I/O. In other words, the turnaround time for issuing queries
to Private Table is dominated by network delay, that is, the ratio reflects the data size
for the queries and larger data size causes more network traffic. The network delay of
Private Table for Select statements is lower since a lot of data are filtered out based
on the where clause. The ratio is depending on the selectivity of the WHERE clause.
On the other hand, the query processing is relatively more complex in Universal Table
schema-mapping. Therefore, it takes a longer time to process the statements and to
perform local disk I/O. The queries are performed by 200 threads concurrently so
that some data can be transmitted over the network while other data are still being
processed by the server. That is to say, the turnaround time in Universal Table is now
dominated by server computation and local disk I/O time. As a result, selectivity has
little impact in Universal Table. Since our analysis emphasizes local disk I/O overhead
(see Sect. 5.2), the ratio of disk I/O overhead in the analytical results (Fig. 10), for
example, roughly align with the experimental results for Universal Table, namely 1:1:2
for Select, Project and Join, respectively.

5.3.2 Concurrency level

The objective of the second set of tests is to study the influence of the turnaround time
as the concurrency level (i.e., the number of concurrent JDBC connections) increases.
Initially, a specific number of JDBC connections, ranging from 20 to 200, are initialized
without using the JDBC connection pool, and then each of them issue an SQL request
concurrently. We repeatedly perform experiments on Selection, Projection, and Join
statements with Universal Table schema-mapping for 10, 30 and 50 tenants. The cache
option is turned on and the SQL statements use the index in the experiments.

Figure 11 depicts the results of the experiments. Overall, the turnaround time
increases gradually when the concurrency level increases. The results are consis-
tent with our analysis, that is, the turnaround time is roughly the same for Select and
Project statements while the turnaround time of Join is nearly 2 times that of Select
and Project. Figure 11 also reveals tenant size scalability since the turnaround time
only increases a bit when the tenant size increases. One more thing to note is that the
gap between Select/Project and Join is smaller when the size of tenants is larger. We
believe that this is the effect of turning on the cache.

5.3.3 Comparison to the analytical result

By comparing experimental results with the analytical results, we can find that, con-
sistent with the analysis in Sect. 5.2.5, the turnaround time for indexed queries in
Universal Table also reveal good tenant scalability. Also, as pointed out in Sect. 5.3.1,
the ratio of local disk I/O overhead for Select, Project, and Join without caching and
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indexing in the analytical results is 1:1:2. This roughly aligns with the experimental
results.

In addition, the results of the Concurrency Level experiments are also consistent
with our analysis, that is, the turnaround time is roughly the same for Select and Project
statements while the turnaround time of Join is nearly 2 times of that of Select and
Project. Figure 11 also reveals tenant-size scalability since the turnaround time only
increases a bit when the tenant size increases.

5.3.4 Summary

In this subsection, we report the results of experiments on turnaround time and con-
currency level. The results not only agree well with the analytical predictions but also
show that the schemes are scalable to the number of tenants and number of concurrent
database connections. Overall, both analytical and experimental results indicate that
the performance of Universal Table is able to approach that of Private Table when
the index and cache are both available. This observation reveals that with appropriate
configuration of the underlying database and careful design of the logical schema, the
performance of Universal Table schema-mapping is reasonable in practice. That is to
say, in the application layer, it is very important to guide SaaS application developers
so that most of the logical SQL statements they use can be indexed. In addition, the
built-in caching mechanism of a database can be unapplicable to our approach when
the number of concurrent users is too large. In this case, high-performance caching
middleware such as memcached can be used since many popular databases such as
Oracle and MySQL have built-in supports for memcached. Nevertheless, it is impor-
tant to point out that caching is beneficial but not essential for our approach. Table 7
shows that the approach is still practical when cache is absent, namely, if indexing is
enabled and cache is absent, the performance can be also greatly improved. Finally, as
the rationale of Universal Table is to achieve lower costs at the price of performance, it
seems reasonable to say that the design of the proposed rewriting scheme is successful
since it is able to realize Universal Table within a reasonable standard of performance.

6 Conclusion

Multitenancy is helpful to reduce the cost of hardware equipments and software
licenses. With multitenancy, the virtualized and consolidated entities can be man-
aged at a lower price yet with higher flexibility. Nevertheless, the benefits come at the
price of performance. In this paper, we have investigated designs for query rewriting
schemes that support multitenant SaaS applications using a Universal Table-based data
architecture. Not only do we provide a theoretical design and analysis of these schemes,
we also present a prototype implementation and a sample multitenant SaaS application
based on the proposed schemes. Above all, we provide an empirical account of our
query rewriting schemes which shows that the proposed schemes are scalable to the
number of tenants and to the concurrency level. Through analytical and experimental
results, we learn that appropriate tuning of the physical database and careful design
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of the rewriting mechanisms can greatly improve the performance of Universal Table,
thus making it amenable to use in practical situations.

Currently, we focus mainly on the interactions between the middleware (i.e., rewrit-
ing schemes) and the database. In a real-world enterprise environment, performance
issues can be much more complex. As we have observed in the experimental results,
the turnaround time is greatly affected by database configuration, network latency, and
middleware facilities such as connection pools. To obtain more sophisticated results,
one can use advanced models such as the queuing model and discrete events sim-
ulation. However, as reported earlier, we still observe a strong consistency between
analytical and experiment al results. The present work also focuses on supporting core
operations such as σ, π, ρ, and ��, where a �� implies × followed by a σ . Indeed, to
construct a full-scale rewriting mechanism for SaaS applications, there is still much
work to be done. However, as far as we know, there are relatively few works which
focus on the design and analysis of such query rewriting mechanisms. Thus, we believe
that this work lays down a solid foundation for future research. From a relational alge-
bra perspective, it has been proved that {σ, π,∪, ρ,−,×} is a complete set, that is,
any of the other operations can be expressed as a sequence of operations from this set
(Codd 1972). In the future, we shall enhance the current work by supporting the ∪ and
− operations, and aggregation functions such as SUM or COUNT.
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