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ABSTRACT
Stationary probabilities are fundamental in response to var-
ious measures of performance in queueing networks. Solving
stationary probabilities in Quasi-Birth-and-Death(QBD) with
phase-type distribution normally are dependent on the struc-
ture of the queueing network. In this paper, a new comput-
ing scheme is developed for attaining stationary probabilities
in queueing networks with multiple servers. This scheme
provides a general approach of considering the complexity
of computing algorithm. The result becomes more signifi-
cant when a large matrix is involved in computation. The
background theorem of this approach is proved and provided
with an illustrative example in this paper.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—queueing theory, Markov processes

General Terms
Performance

Keywords
Phase-type distribution, multiple servers, stationary proba-
bility.

1. INTRODUCTION
The Markovian arrival process (MAP) is a generalization

of the Poisson process, where the arrivals are governed by a
Markov chain [10]. We consider a semi MAP/M/n queueing
system, where customers arrive at the system according to
a phase-type process but may leave the system without ser-
vices. The family of phase-type distributions is widely used
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in algorithmic probability [5]. A continuous time phase-type
distribution is the distribution of the time until absorption
in an absorbing Markovian process. We assume the inter-
arrival time follows a typical MAP but the arrival rate is
smaller since the renege occurs. All n servers of the system
are identical, and their service times are independent and
identically distributed (i.i.d.) random variables following
exponential distributions. Each incoming customer receives
service immediately if he/she finds an idle server upon ar-
rival.

Although MAP/M/n queues have been studied exten-
sively by many researchers, analytical solutions for the sta-
tionary probability have not yet been studied comprehen-
sively in the literature [5]. In this paper, we study the
stationary distribution of such a semi MAP/M/n queue-
ing system with multiple servers. We compute the station-
ary probability by applying the matrix geometric procedure
in [8], which will be combined with Ramaswami’s formula
[7] and block LU factorization [6] in this paper. The main
contribution in the paper is to present a matrix decomposi-
tion approach for the stationary probability in a phase-type
MAP/M/n queueing model. Through solving the system of
submatrices by using Matrix-Geometric Method, we obtain
the stationary probability.

Matrix analytic methods are popular as modeling tools
because they give one the ability to construct and analyze
a wide class of queueing models in a unified and algorith-
mically tractable way [7]. The Matrix-Geometric Method
[5, 8] relies on identifying two parts within the structure of
the underlying continuous time Markov chain, including the
initial/boundary part and the repetitive part. The initial
part has a non-regular structure and each component in it
must be represented in detail [8]. The repetitive part has a
regular structure and can be represented in stochastic pro-
cess algebras as a composition of several components. In
Matrix-Geometric Method, the infinitesimal generator ma-
trix is decomposed into submatrices, with each one of them
representing the transition rates in a particular area within
a given part, or between them [5, 8]. The size of the state
space would be reasonably small compared with the size of
the infinitesimal generator matrix of the Markovian process
even if the system is infinite [3].

The remainder of the paper is organized as follows. Sec-



tion 2 introduces a queueing model with phase-type Marko-
vian arrival process. In Section 3, we present a matrix
decomposition approach for the stationary probability in
a phase-type MAP/M/n queueing model by applying the
Matrix-Geometric Method combined with Ramaswami’s for-
mula and LU factorization. Numerical results of MAP/M/n
queueing systems with multiple servers are given in Sec-
tion 4, and numerical results of the stationary distribution
are compared with approximation methods and simulations.
Concluding remarks are to be given in Section 5.

2. PROBLEM DEFINITIONS

2.1 Markovian arrival process with phase-type
distributions

We consider a single queueing station and model the queue-
ing network as a semi MAP/M/n queue shown in Fig. 1,
where n servers are all identical. The mean service times of
each server is exponentially distributed with rate μ. Let S1

and S1o represent a transition of service that customer stays
with the server and finishes the service, individually, i.e.,

S1 =
[ −μ

]
, S1o =

[
μ

]
.

The queueing network has two independent and identical
arrival streams, where there are two phases for each arrival
stream [?]. For the first arrival stream, the time spent in
the first phase is exponentially distributed with rate λ1, and
the time spent in the second phase is also exponentially dis-
tributed with rate λ2. Similarly, for the other arrival stream,
the time spent in the first phase is exponentially distributed
with rate γ1, and the time spent in the second phase is also
exponentially distributed with rate γ2. After the first phase
of arrival stream, the incoming arrival goes to the queueing
system (and is to be served) with probability 0 ≤ p ≤ 1;
otherwise, it jumps to the second phase and then departs
directly with probability (1−p). All arrival streams operate
in a similar manner.

Figure 1: A semi MAP/M/n queueing model

Hence, customers arrive at the system according to a phase-
type process with mean arrival rate λ > 0, where the mean
arrival rate is defined as

λ = p[(
1

λ1
p+(

1

λ1
+

1

λ2
)(1−p)]−1+p[(

1

γ1
p+(

1

γ1
+

1

γ2
)(1−p)]−1.

These two arrival processes are independent to each other,
and parameters are given by (λ1, p, λ2) and (γ1, p, γ2), indi-
vidually. Namely, arrival processes of this queueing model

are characterized by

T1 =

[ −λ1 (1 − p)λ1

λ2 −λ2

]
, T1o =

[
pλ1

0

]
,

T2 =

[ −γ1 (1 − p)γ1

γ2 −γ2

]
, T2o =

[
pγ1

0

]
,

Note that matrices Tm, for m = 1, 2 correspond to phase
transitions, and Tmo corresponds to the rate as arrivals enter
the system. Both arrival processes are MAP distributed
inter-arrival times denoted by (e1,Tm,Tmo), for m = 1, 2,
where e1 is an 2 × 1 vector with the first element equals to
1 and another element equals to 0.

The advantage of phase-type distributions is their gener-
ality and versatility, which permits the calculation of perfor-
mance measures of stochastic models with a high degree of
accuracy [3]. The Matrix-Geometric Methods allows us to
deal with the models whose activities are not necessarily ex-
ponentially distributed, while at the same time overcoming
the problem of the rapid growth of the state space intro-
duced by the need to explicitly construct the infinitesimal
generator matrix of the underlying Markovian process.

The one-step transition matrix embedded in the Markov
chain of the arrival process is given by

Φ =

⎡
⎢⎢⎢⎣

B00 C 0 0 · · ·
0 B00 C 0 · · ·
0 0 B00 C · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎦ , (1)

where there exist nonnegative off-diagonal and negative di-
agonal elements in the matrix B00 = [bij ], and the elements
of matrix C = [cij ] are nonnegative. Since Φ is the infinites-
imal generator of the MAP, we have

(B00 + C)1 = 0,

where 1 is an 4 × 1 vector with all its elements equal to 1.
Since (B00 + C) is the infinitesimal generator, there exists
a stationary probability vector

θ = (θ1,1, θ1,2, θ2,1, θ2,2),

where θi,j is the stationary probability that an arrival is
in the i-th phase of the first stream and the other arrival
is in the j-th phase of the second stream. The repetition of
the state transitions for vector processes implies a geometric
form where scalars are replaced by matrices. Such Marko-
vian processes are called Matrix-Geometric processes. To
determine the stationary probability, we need to solve the
following balance equations

θ(B00 + C) = 0, θ1 = 1.

In the following section, we recall a special phase-type
distributions.

2.2 A Phase-type queueing model
In general, the embedded Markov chain is ergodic if the

stability condition of the system is λ/(nμ) < 1.

Lemma 1. Given the mean arrival rate λ > 0 and λ/(nμ) <
1, the effective range of p is 0 � p < w, where

w = min{1,
−b −√

b2 − 4ac

2a
},



a = γ1γ2λ1 + λ1λ2γ1 + nμλ1γ1,

b = −(λ1λ2γ2 + γ1γ2λ1 + λ1λ2γ1 + γ1γ2λ2

+nμλ2γ1 + 2nμλ1γ1 + nμλ1γ2),

and

c = nμ(λ1 + λ2)(γ1 + γ2).

Proof. Because λ/(nμ) < 1, we have

λ = p[(
1

λ1
p + (

1

λ1
+

1

λ2
)(1 − p)]−1

+p[(
1

γ1
p + (

1

γ1
+

1

γ2
)(1 − p)]−1

< nμ. (2)

It implies that

λ1p

λ1 + λ2 − λ1p
+

γ1p

γ1 + γ2 − γ1p
< nμ. (3)

By using the form ap2 + bp + c > 0, we can combine the
above inequality, and then solve the inequality. It gives

p >
−b +

√
b2 − 4ac

2a
,

or

p <
−b −√

b2 − 4ac

2a
,

where a = γ1γ2λ1 + λ1λ2γ1 + nμλ1γ1,

b = −(λ1λ2γ2 + γ1γ2λ1 + λ1λ2γ1 + γ1γ2λ2

+nμλ2γ1 + 2nμλ1γ1 + nμλ1γ2),

and c = nμ(λ1 + λ2)(γ1 + γ2). Because the probability p
satisfies 0 � p � 1, we have 0 � p < w if

w = min{1,
−b−

√
b2−4ac

2a
}.

Let A(t) denote the number of customers arriving in (0, t]
and J(t) be the state of the Markov chain at time t with
state space {(1, 1), (1, 2), (2, 1), (2, 2)}. Then {A(t), J(t)}
is a three-dimensional Markovian process with state space
{(k, i, j) : k ≥ 0, i, j = 1, 2}, where k is the number of
customers in the system, i is the phase of the first arrival
stream, and j is the phase of the second arrival stream.

The state {(k, 1, 1), (k, 1, 2), (k, 2, 1), (k, 2, 2)} is called the
level k of the system, for k � 0. Then, there exists an integer
n such that the levels 0 up to n − 1 from the boundary,
and those for k � n are repeating. Transitions between
the repeating states have the property that the rates from
(k, i, j) to the state (k + v, i′, j′) for 0 � v � ∞ and i′, j′ =
1, 2 are independent of the value k for k � n. From that
n onwards, the behavior of the system for all k � n is the
same as the behavior of the system for n, where k is the
number of queued customers. Such similarity need not for
(0, 1, · · · , n − 1). We define the vector of probabilities that
there are k customers in the system as

πk = lim
t→∞

Pr{A(t) = k, J(t) = (i, j)}
= (πk,1,1 πk,1,2 πk,2,1 πk,2,2), (4)

where π can be partitioned into blocks which correspond to
state 0, state 1, state 2, etc., e.g., π = (π0, π1, π2, · · · ).

Recall that the Kronecker product of any two matrices L
and M is defined as

L ⊗ M = [LijM]

for all i, j. In addition, the Kronecker sum of any two ma-
trices L and M is given by

L ⊕ M = L ⊗ IM + IL ⊗ M.

By applying Kronecker matrix operations, Then we obtain

B00 = T1 ⊕ T2

and

C = (T1o ⊗ eT
1 ) ⊕ (T2o ⊗ eT

1 ).

Using the arrival and service process parameters in terms
of the Kronecker product and sum. We obtain submatrices
A(i)(i−1), A. An arrival is in the server, finishes the service,
and departs the system.

A(i)(i−1) = IT ⊗ (S1o ⊕ · · · ⊕ S1o︸ ︷︷ ︸
i

),

for 1 � i � n − 1 and

A = IT ⊗ (S1o ⊕ · · · ⊕ S1o︸ ︷︷ ︸
n

),

where IT is an identity matrix of dimensions equal to the
sum of the dimensions of the two arrival processes, i.e., IT =
I4×4.

Next, we define submatrices Bii, and B as follows, where
the internal phase changes for the composite arrival process.
That is,

Bii = T1 ⊕ T2 ⊕ S1 ⊕ · · · ⊕ S1︸ ︷︷ ︸
i

,

for 0 � i � n − 1,

B = T1 ⊕ T2 ⊕ S1 ⊕ · · · ⊕ S1︸ ︷︷ ︸
n

,

and

C = (T1o ⊗ eT
1 ) ⊕ (T2o ⊗ eT

1 ),

where C represents an arrival goes into the queueing system.
Hence, in our queueing model, there exists the infinitesi-

mal generator matrix of a continuous time Markovian pro-
cess with the structure Q =⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B00 C 0 · · · 0 0 0 · · ·

A10 B11 C

. . . 0 0 0 · · ·

0 A21 B22

. . . · · · 0 0 · · ·
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0

. . . B(n−1)(n−1) C 0 · · ·

0 0 0

. . . A B C · · ·
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where n is the number of servers in the system. The matrix
Q is composed of submatrices.

3. MATRIX-GEOMETRIC SOLUTIONS

3.1 State balance equations
The stationary probabilities for the queue satisfy πQ = 0,

π1 = 1, and π � 0. We can find the πi’s by solving the
following state balance equations (6)-(10):

π0B00 + π1A10 = 0, (6)



π0C + π1B11 + π2A21 = 0, (7)

π1C + π2B22 + π3A32 = 0, (8)

...

πn−2C + πn−1B(n−1)(n−1) + πnA(n)(n−1) = 0. (9)

The equation for the repeating states of the process is
given by:

πi−1C + πiB + πi+1A = 0, i = n, n + 1, n + 2, · · · .(10)

Using (10), the matrix geometric procedure gives the vec-
tor solution πn+k−1 = πn−1R

k, for k = 0, 1, 2, · · · , where R
is the matrix solution of the equation C + RB + R2A = 0.
Neuts [8] showed that the iteration

Rk+1 = −(C + R2
kA)B−1

converges to the solution R starting with R0 = 0.
We rewrite the above equations (6)-(10) in matrix form

as follows [
π0 π1 · · · πn−1 πn

] · Q1 = 0, (11)

where Q1 =

⎡
⎢⎢⎣

B00 C 0 0 · · · 0 0
A10 B11 C 0 · · · 0 0
0 A21 B22 C · · · 0 0

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
0 0 0 · · · A(n−1)(n−2) B(n−1)(n−1) C

0 0 0 · · · · · · A B + RA

⎤
⎥⎥⎦ .

In addition, by using the normalization condition, we ob-
tain

π0 + π1 + · · · + πn(I − R)−1 = 1. (12)

Then the solution for the probabilities π0, π1..., πn can be
determined by[

π0 π1 · · · πn−1 πn

] · Q2 = [1,0], (13)

where Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 B00 C 0 · · · 0 0
1 A10 B11 C · · · 0 0

1 0 A21 B22

. . . 0 0

.

.

.
. . .

. . .
. . .

. . .
. . .

(I − R)−1 · 1 0 0 · · · · · · A B + RA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

by adding the first column into Q1.
By the stability assumption, the infinitesimal generator

matrix is irreducible. The necessary condition for this is
that matrices B and Bii, for i = 0, 1, 2, · · · , n − 1, are non-
singular, which implies that inverses of those matrices can be
determined. The computation of the matrix R is by means
of the iterative procedure [5].

The sequence {Rk}k is entry-wise nondecreasing and con-
verges monotonically to a nonnegative matrix R. This fol-
lows the fact that B−1 is a nonnegative matrix. The number
of iterations needed for convergence increases as the spec-
tral radius of R increases. We terminate the iteration and
return with the solution of R when

‖Rk+1 − Rk‖∞ � ε,

where ε is a given small constants.

3.2 An algorithm for matrix decomposition
Consider computing π = (πi)i∈N , such that πQ = 0.

That is,

[
π∗ πn+1 πn+2 · · · ]

⎡
⎢⎢⎢⎣

B0 B1 0 0 · · ·
B−1 B C 0 · · ·
0 A B C · · ·
. . .

. . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ = 0,

where π∗ = [π0, π1, ..., πn],

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B00 C 0 · · · 0 0

A10 B11 C
. . . 0 0

0 A21 B22

. . . 0 0
...

. . .
. . .

. . .
. . .

. . .

0 0 · · · A(n−1)(n−2) B(n−1)(n−1) C
0 0 · · · · · · A B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B−1 =
[

0 · · · 0 A
]
4×4(n+1)

,

B1 =

⎡
⎢⎢⎢⎣

0
...
0
C

⎤
⎥⎥⎥⎦

4(n+1)×4

.

It also gives⎡
⎢⎣

B C 0 · · ·
A B C · · ·
. . .

. . .
. . .

. . .

⎤
⎥⎦ = VW,

where

V =

⎡
⎢⎢⎢⎣

V0 V1 0 · · ·
0 V0 V1 · · ·
0 0 V0 · · ·
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ ,W =

⎡
⎢⎢⎢⎣

I 0 0 · · ·
−H I 0 · · ·
0 −H I · · ·
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ .

Then we have

[
π∗ πn+1 πn+2 · · · ]

⎡
⎢⎢⎢⎣

B0 B1 0 · · ·
B−1

0 VW
...

⎤
⎥⎥⎥⎦ = 0,

which is equivalent to

[
π∗ πn+1 πn+2 · · · ]

⎡
⎢⎢⎢⎣

B0 B∗
1 0 · · ·

B−1

0 V
...

⎤
⎥⎥⎥⎦ = 0.

As we know

W−1 =

⎡
⎢⎢⎢⎣

I 0 0 · · ·
H I 0 · · ·
0 H I · · ·
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ , and

[
B∗

1 0 0 · · · ]
=

[
B1 0 0 · · · ]

W−1.
Then, we have B∗

1 = B1 · I.



Next, to determine H and V0, we solve the following equa-
tions:

V0 − V1H = B, (14)

V1 = C, (15)

and

−V0H = A. (16)

From the first two equations, it yields

[
π∗ πn+1

] [
B0 B1

B−1 V0

]
= 0.

Then, by solving the following equations

π∗(B0 − B1V
−1
0 B−1) = 0

and

π0 · 1 + π1 · 1 + · · · + πn(I − R)−1 · 1 = 1,

we get π∗ = [π0, π1, ..., πn].

LU factorization
Considering the matrix Q1. Here, we assume that π∗Q1 =
0. The equations are of the homogeneous system. We use
LU factorization to obtain π∗ in the following steps.

Step 1: Let the first column of Q1 be replaced by the
column vector

(1, · · · ,1, (I − R)−1 · 1)T .

Then, the modified Q1 is rewritten as a new matrix Q3,
and we have

π∗Q3 =
[

y 0 · · · 0
]
,

where

y =
[

1 0 0 0
]
.

Step 2: If we transpose π∗Q3, it gives

(π∗Q3)
T = QT

3 π∗T
=

⎡
⎢⎢⎢⎣

yT

0
...
0

⎤
⎥⎥⎥⎦ .

Then, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BT
00

∗
A10

∗ Ω · · · Ω Ω

C B11
T A21 · · · 0 0

0 C BT
22 · · · 0 0

.

.

.
. . .

. . .
. . .

. . .
. . .

0 0 0 · · · BT
(n−1)(n−1) A

0 0 0 · · · C (B + RA)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π0
π1
π2
.
.
.

πn−1
πn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT

0
0

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

BT
00

∗
=

⎡
⎢⎢⎣

1 1 1 1
(1 − p)γ1 −λ1 − γ2 0 λ2

(1 − p)λ1 0 −λ2 − γ1 γ2

0 (1 − p)λ1 (1 − p)γ1 −λ2 − γ2

⎤
⎥⎥⎦ ,

A10
∗ =

⎡
⎢⎢⎣

1 1 1 1
0 μ 0 0
0 0 μ 0
0 0 0 μ

⎤
⎥⎥⎦ , Ω =

⎡
⎢⎢⎣

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Ω =

⎡
⎢⎢⎣

(I − R)−1 · 1
0
0
0

⎤
⎥⎥⎦ .

Step 3: Applying Gaussian elimination, we transform Ω
and Ω into a zero matrix.

Then it gives

Zn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

BT
00

∗∗
A10

∗∗ 0 · · · 0 0

C BT
11 A21 · · · 0 0

0 C BT
22 · · · 0 0

.

.

.
. . .

. . .
. . .

. . .

0 0 0 · · · BT
(n−1)(n−1) A

0 0 0 · · · C (B + RA)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where BT
00

∗∗
, A10

∗∗, are obtained by Gaussian elimination.

Theorem 1. Zn is a nonsingular matrix.

Proof. By Step 1, we know

π∗Q3 =
[

y 0 · · · 0
]
,

where

y =
[

1 0 0 0
]
.

The solution of π∗ is unique by Matrix Geometric So-
lution, and Q3 is a nonsigular matrix. We transpose the
matrix Q3 to QT

3 . By Step 3, we determine Zn. Q3 is a
nonsigular matrix, so is Zn.

Theorem 2. (Roger and Charles [9] ) Let Z ∈ Mm×m,
a set of m×m matrices. There exists permutation matrices
D, E ∈ Mm×m, a lower triangular matrix L ∈ Mm×m, and
an upper triangular matrix U ∈ Mm×m such that

Z = DLUE.

If Z is nonsingular, one may take E = I and Z may be
written as

Z = DLU.

Proof. If rank Z=k, Z has a k-by-k nonsingular sub-
matrix, which may, by permutation of rows and columns,
be permuted into the upper left corner. Now apply Theo-
rem D in Appendix B to the upper left corner and apply
Theorem LU in Appendix A to achieve a factorization. If
Z is nonsingular, Theorem D in Appendix B indicates that
permutation on the right is unnecessary in order to apply
Theorem D in Appendix B, which verifies the second factor-
ization and completes the proof.

Step 4:
By

Zn · π∗T
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yT

0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and according to above Theorems 1 and 2, we can infer
that as follows Remark 1 and Remark 2. Let Zn({i}),
i = 1, · · · , 4(n + 1) be formed with the first i rows squared
matrix of Zn. Zn({1, 2, · · · , i}) denote a series of matrices
Zn({1}), Zn({2}), · · · , Zn({i}).
Remark 1. Zn is a 4(n + 1) × 4(n + 1) matrix and nonsin-
gular, and

det(Zn)({1, · · · , j}) 
= 0, ∀j = 1, · · · , 4(n + 1),



which implies Zn = LU.
Because Zn = LU, we can slove [π0, π1, ..., πn] by

LU · π∗T
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yT

0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

It gives the LU factorization of Zn as follows:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 · · · 0 0
L1 I 0 · · · 0 0
0 L2 I · · · 0 0

.

.

.
. . .

. . .
. . .

. . .
. . .

0 0 · · · Ln−1 I 0

0 0 · · · · · · Ln I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0 F1 0 · · · 0 0
0 U1 F2 · · · 0 0
0 0 U2 · · · 0 0

.

.

.
. . .

. . .
. . .

. . .
. . .

0 0 · · · 0 Un−1 Fn
0 0 · · · · · · 0 Un

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The following algorithm is given for Li and Ui:

Algorithm LU factorization:

Input U0 = BT
00

∗∗

for i = 1 : n

do Li = CU−1
i−1

do Ui = BT
ii
∗ − LiFi

end

After completing the LU factorization, the vector π can
be obtained via block forward and backward substitution:

Algorithm Forward and backward substitution:

Input y0 = [1, 0, 0, 0]T

for i = 1 : n

do yi = −Liyi−1

end

do πn = U−1
n yn

for i = n − 1 : −1 : 0

do πi = U−1
i (yi − Fi+1πi+1)

end

According the above algorithm, we obtain the stationary
probability π∗ = [π0, π1, ..., πn].
Remark 2. If Zn is a 4(n + 1) × 4(n + 1) matrix and non-
singular with some 1 ≤ j ≤ 4(n + 1) such that

det(Zn)({j}) = 0,

then by Theorem 2 there exists a permutation matrix D ∈
M4(n+1)×4(n+1) matrix such that

det(DT Zn)({1, · · · , j}) 
= 0, j = 1, · · · , 4(n + 1)

which implies DT Zn = LU and Zn = DLU.

Because Zn = DLU, we can slove π∗ by

DLU ·π∗T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yT

0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⇒ LU ·π∗T = DT ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yT

0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

After completing the LU factorization, the vector π can
be obtained via block forward and backward substitution:

Algorithm Forward and backward substitution:

Input y0 = [DT ({4})][1, 0, 0, 0]T

for i = 1 : n

do yi = −Liyi−1

end

do πn = U−1
n yn

for i = n − 1 : −1 : 0

do πi = U−1
i (yi − Fi+1πi+1)

end

In the above Algorithm, DT ({4}) is the first four rows
and columns composed a 4 × 4 matrix.

According to the above algorithm, we obtain the station-
ary probability π∗ = [π0, π1, ..., πn].

4. NUMERICAL EXAMPLES

4.1 A queueing model with two servers
In this section we present three sets of numerical exam-

ples to demonstrate the matrix decomposition approach for
stationary probabilities of phase-type queueing models with
multiple servers. First, we consider the system with two
servers, where parameters of arrival processes are given by
(λ1, p, λ2) = (10, 0.4, 10), (γ1, p, γ2) = (20, 0.4, 5), and let
μ = 10.

The stationary probabilities of the states of the arrival
process, θ, are obtained from its Markov arrival process
representation. By solving the following equations θ(B00 +
C) = 0 and θ1 = 1 with Matlab [13], we have

θ = (0.1838, 0.4412, 0.1103, 0.2647).

For comparison of estimated values θ, we also use a sim-
ulation programming of queueing models, Promodel [14].
From the stationary probabilities obtained by simulation
with Promodel, the results are shown in Table 1. we have
the values ( 0.1860, 0.4340, 0.1110, 0.2590). We can find
that the value is close to π0 + π1 + π2 + π3 + . . . = π0 +
π1 + π2(I − R)−1 = (0.1838, 0.4412, 0.1103, 0.2647).

By the matrix geometric procedure of the vector solution,
we use πQ = 0, π1 = 1, and π � 0 to determine π. It gives
π0 = (0.0873, 0.2798, 0.0612, 0.1962),

π1 = (0.0608, 0.1187, 0.0332, 0.0529),

and

π2 = (0.0230, 0.0295, 0.0105, 0.0106),



which are consistent with the numerical results of simulation
in Promodel.

With Ramaswami’s formula [7], we have

π0 = (0.0875, 0.2800, 0.0615, 0.1965),

π1 = (0.0608, 0.1181, 0.0333, 0.0526),

and

π2 = (0.0227, 0.0287, 0.0104, 0.0102),

which will be compared with simulation, LU approach in
the next section. Next, by applying the algorithm of LU
factorization, it gives

π0 = (0.0872, 0.2794, 0.0611, 0.1959),

π1 = (0.0607, 0.1185, 0.0332, 0.0528),

and

π2 = (0.0229, 0.0294, 0.0105, 0.0106).

Here, we observe the numerical results of changing val-
ues of p, and other variables are fixed. That is, it gives
(λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) = (20, p, 5), μ = 10, and
0 � p < 0.8840, where p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

The numerical results are compared in three different ap-
proaches, G represents matrix geometric procedure, R rep-
resents Ramaswami’s formula, and LU represents LU factor-
ization. Let π̄i be the probability of i customers in system,
i.e., π̄i = πi1. Table 2 and Table 3 shows the comparison of
numerical results.

In order to estimate the π0, π1 and π2 accurately. By
simulation in Promodel [14], it gives the queue empty rates
which are shown in Table 4. We find that the sum

∑2
k=0 πk

is equal to the queue empty rate obtained with simulations,
where (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) = (20, p, 5), 0 �
p < 0.8840, p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and μ = 10. The
comparison results are shown in Table 4 .

Consider a classic model of multiple servers for a further
comparison and validate our model. Here, we present a
numerical example of M/M/2 queueing models. The pa-
rameters of two arrival processes (λ1, p, λ2) and (γ1, p, γ2)
are given as (λ1, p, λ2) = (10, 1, 10), (γ1, p, γ2) = (5, 1, 20),
μ = 10.

By applying the matrix geometric procedure, it gives the
vector solution π0 = (0.1429, 0.0000, 0.0000, 0.0000),

π1 = (0.2143, 0.0000, 0.0000, 0.0000),

and

π2 = (0.1607, 0.0000, 0.0000, 0.0000).

Then we take the example as an M/M/2 queueing. We
find the probability of idle system is 0.142857. The value is
the same as the sum of the π0.

In M/M/2 queues, we find that the busy rate of the queue-
ing is (λ1 + γ1)/2μ = 15/20 = 0.75. We estimate the values
by using 1 − π0 − 1

2
π1. The busy rate of the queueing is

1 − 0.1429 − 1
2
× 0.2143 = 0.74995 � 0.75. All results are

consistent with the standards of the classic model.

4.2 A queueing model with three servers
Here, we present numerical results of queueing systems

with three servers, where two arrival processes are given

with (λ1, p, λ2) = (10, 0.4, 10) and (γ1, p, γ2) = (20, 0.4, 5),
and let μ = 10.

From the matrix geometric procedure, we solve πQ = 0,
π1 = 1, and π � 0 to estimate π. Then, it gives the vector
solution π0 = (0.0888, 0.2839, 0.0622, 0.1989),

π1 = (0.0621, 0.1203, 0.0339, 0.0534),

π2 = (0.0240, 0.0297, 0.0109, 0.0102),

and

π3 = (0.0065, 0.0055, 0.0025, 0.0017).

By applying Ramaswami’s formula, we have

π0 = (0.0888, 0.2838, 0.0622, 0.1989),

π1 = (0.0621, 0.1203, 0.0339, 0.0533),

π2 = (0.0240, 0.0297, 0.0109, 0.0102),

and

π3 = (0.0065, 0.0055, 0.0025, 0.0017).

LU factorization
By using LU factorization given in previous section, we ob-
tain

π0 = (0.0888, 0.2839, 0.0622, 0.1989),

π1 = (0.0621, 0.1204, 0.0339, 0.0534),

π2 = (0.0240, 0.0298, 0.0109, 0.0103),

and

π3 = (0.0066, 0.0056, 0.0026, 0.0017).

We observe the effect of changing p on the numerical re-
sults obtained from three methods. Here, we have (λ1, p, λ2) =
(10, p, 10), (γ1, p, γ2) = (20, p, 5), μ = 10,

0 � p < w = 1, (17)

for p = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Tables 5-7 show the
comparison of numerical results.

We compare the values of
∑3

k=0 πk with the queue empty
rate obtained by using simulation in Promodel. The vari-
able values are given as (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) =
(20, p, 5), and p varies from 0.2 to 0.9, with μ = 10. Table 8
shows the comparison of numerical results.

We present a numerical example of M/M/3 queues to ver-
ify the results. Here, two arrival processes (λ1, p, λ2) and
(γ1, p, γ2) are given with (λ1, p, λ2) = (10, 1, 10), (γ1, p, γ2) =
(5, 1, 20), and μ = 10. By applying the matrix geometric
procedure, it gives the solution

π0 = (0.2105, 0.0000, 0.0000, 0.0000),

π1 = (0.3158, 0.0000, 0.0000, 0.0000),

π2 = (0.2368, 0.0000, 0.0000, 0.0000),

and

π3 = (0.1184, 0.0000, 0.0000, 0.0000).

In this example, we find the probability of idle system
is 0.210526, which is the same as the sum of the π0. In
M/M/3 queues, we know that the busy rate of the queueing
is (λ1+γ1)/3μ = 15/30 = 0.5. By using 1−π0− 2

3
π1− 1

3
π2,

it gives the busy rate of queues as follows

1 − 0.2105 − 1

3
× 0.3158 − 2

3
× 0.2368 � 0.5263 � 0.5.



4.3 A queueing model with twenty servers
Here, we present numerical results of queueing systems

with twenty servers. The parameters of two arrival pro-
cesses are given with (λ1, p, λ2) = (10, 0.4, 10), (γ1, p, γ2) =
(20, 0.4, 5), and let μ = 0.8. Then, it gives the solutions in
Table 9.

According to the above four forms, we can find that the
values calculated by three methods are almost equal.

Next, we consider the system with twenty servers, where p
varies from 0 to 0.75. Here, parameters of arrival processes
are given by (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) = (20, p, 5),
and let μ = 0.8.

By Lemma 1, we have

0 � p < w = 0.8098, (18)

Table 10 shows the comparison of numerical results with
three different methods.

We compare the values of
∑20

k=0 πk with the queue empty
rate obtained by using simulation in ProModel. The vari-
able values are given as (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) =
(20, p, 5), and p varies from 0.4 to 0.75, μ = 0.8. Table 11
shows the comparison of numerical results.

Accorrding to two Figures 5.1-2, we can find that when p is
close to its upper bound (0.9206), the relative error becomes
large.

4.4 A queueing model with twenty-five servers
Here, we present numerical results of queueing systems

with twenty-five servers. The parameters of two arrival pro-
cesses are given with (λ1, p, λ2) = (10, 0.5, 10), (γ1, p, γ2) =
(20, 0.5, 5), and let μ = 0.9. Then, it gives the solutions in
Table 12.

According to the above three forms, we can find that the
values calculated by three methods are almost equal.

Next, we consider the system with twenty-five servers,
where p varies from 0 to 0.85. Here, parameters of arrival
processes are given by (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) =
(20, p, 5), and let μ = 0.9.

By Lemma 1, we have

0 � p < w = 0.9206. (19)

Table 13 shows the comparison of numerical results with
three different methods.

We compare the values of
∑25

k=0 πk with the queue empty
rate obtained by using simulation in ProModel. The vari-
able values are given as (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) =
(20, p, 5), and p varies from 0.5 to 0.85, μ = 0.9. Table 14
shows the comparison of numerical results.

Accorrding to two Figures 5.3-4, we can find that when p is
close to its upper bound (0.9206), the relative error becomes
large.

4.5 A queueing model with thirty servers
Here, we present numerical results of queueing systems

with thirty servers. The parameters of two arrival pro-
cesses are given with (λ1, p, λ2) = (10, 0.6, 10), (γ1, p, γ2) =
(20, 0.6, 5), and let μ = 1. Then, it gives the solutions in
Table 15.

According to the above three forms, we can find that the
values calculated by three methods are almost equal.

Next, we consider the system with thirty servers, where p
varies from 0 to 0.95. Here, parameters of arrival processes

are given by (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) = (20, p, 5),
and let μ = 1.

By Lemma 1, we have

0 � p < w = 1. (20)

Table 16 shows the comparison of numerical results with
three different methods.

We compare the values of
∑30

k=0 πk with the queue empty
rate obtained by using simulation in ProModel. The vari-
able values are given as (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) =
(20, p, 5), and p varies from 0.6 to 0.95, μ = 1. Table 17
shows the comparison of numerical results.

Accorrding to two Figures 5.5-6, we can find that when p
is close to its upper bound (1), the relative error becomes
large.

5. CONCLUSION
In this paper, we present a new computing scheme for

the stationary probabilities of a phase-type queueing model
with multiple servers. The matrix geometric procedure has
been developed by using Ramaswami’s formula and blocks
LU factorization. With LU factorization, an efficient al-
gorithm for solving stationary probabilities is provided to
deal with the complex computation of large matrices due
to a large number of system states. Through a number of
smaller matrices, the state balance equations of a phase-type
MAP/M/n queue are solved. Numerical examples are given
to demonstrate the proposed matrix geometric procedure.
Performance measures of these models are also illustrated
with a number of approximation and simulation results. As
the traffic is light, we find that the stationary probabilities
obtained from our approaches and simulations are almost
the same.
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Table 1: Arrival processes of two phases simulated
in Promodel.
arrival phase 1 phase 2 phase 1 phase 2

in stream 1 in stream 1 in stream 2 in stream 2
average content 0.62 0.37 0.30 0.70

state (k, 1, 1) (k, 1, 2) (k, 2, 1) (k, 2, 2)
stationary probability 0.1860 0.4340 0.1110 0.2590

Table 2: Probabilities obtained from three methods
with p = 0.1, 0.2, 0.3.
p 0.1 0.2 0.3

M R LU M R LU M R LU
0.0976 0.0976 0.0976 0.0949 0.0949 0.0949 0.0916 0.0916 0.0915

π0 0.3732 0.3732 0.3732 0.3448 0.3448 0.3447 0.3139 0.3140 0.3137
0.0910 0.0910 0.0910 0.0816 0.0816 0.0815 0.0717 0.0718 0.0717
0.3477 0.3477 0.3477 0.2963 0.2963 0.2962 0.2458 0.2458 0.2456

π̄0 0.9095 0.9095 0.9095 0.8176 0.8176 0.8173 0.7230 0.7232 0.7226
0.0153 0.0153 0.0153 0.0308 0.0308 0.0308 0.0461 0.0461 0.0461

π1 0.0364 0.0364 0.0364 0.0690 0.0690 0.0690 0.0969 0.0968 0.0969
0.0111 0.0111 0.0111 0.0206 0.0206 0.0206 0.0281 0.0281 0.0281
0.0219 0.0219 0.0219 0.0381 0.0381 0.0381 0.0485 0.0484 0.0485

π̄1 0.0847 0.0847 0.0847 0.1585 0.1585 0.1585 0.2196 0.2194 0.2196
0.0013 0.0013 0.0013 0.0055 0.0055 0.0055 0.0127 0.0126 0.0127

π2 0.0021 0.0021 0.0021 0.0081 0.0081 0.0081 0.0176 0.0174 0.0175
0.0008 0.0008 0.0008 0.0031 0.0031 0.0031 0.0065 0.0064 0.0065
0.0010 0.0010 0.0010 0.0036 0.0036 0.0036 0.0070 0.0069 0.0070

π̄2 0.0052 0.0052 0.0052 0.0203 0.0203 0.0203 0.0438 0.0433 0.0437

Table 3: Probabilities obtained from three methods
with p = 0.4, 0.5, 0.6.
p 0.4 0.5 0.6

M R LU M R LU M R LU
0.0873 0.0875 0.0872 0.0815 0.0820 0.0813 0.0730 0.0738 0.0727

π0 0.2798 0.2800 0.2794 0.2410 0.2413 0.2404 0.1956 0.1957 0.1948
0.0612 0.0615 0.0611 0.0500 0.0506 0.0499 0.0379 0.0391 0.0377
0.1962 0.1965 0.1959 0.1478 0.1485 0.1475 0.1014 0.1028 0.1010

π̄0 0.6245 0.6255 0.6236 0.5203 0.5224 0.5191 0.4079 0.4114 0.4052
0.0608 0.0608 0.0607 0.0739 0.0738 0.0737 0.0832 0.0825 0.0829

π1 0.1187 0.1181 0.1185 0.1321 0.1304 0.1318 0.1336 0.1295 0.1331
0.0332 0.0333 0.0332 0.0354 0.0355 0.0353 0.0338 0.0341 0.0336
0.0529 0.0526 0.0528 0.0512 0.0506 0.0511 0.0436 0.0425 0.0434

π̄1 0.2656 0.2648 0.2642 0.2926 0.2903 0.2912 0.2942 0.2896 0.2930
0.0230 0.0227 0.0229 0.0360 0.0352 0.0359 0.0505 0.0480 0.0503

π2 0.0295 0.0287 0.0294 0.0423 0.0401 0.0422 0.0533 0.0479 0.0530
0.0105 0.0104 0.0105 0.0145 0.0142 0.0145 0.0173 0.0167 0.0172
0.0106 0.0102 0.0106 0.0133 0.0124 0.0133 0.0142 0.0125 0.0142

π̄2 0.0736 0.0720 0.0732 0.1061 0.1019 0.1050 0.1353 0.1251 0.1347



Table 4: Comparison of queue empty rate.
p 0.1 0.2 0.3 0.4 0.5 0.6
π0+π1+π2 0.9996 0.9963 0.9863 0.9637 0.9192 0.8373
(Matrix geometric method)
Queue empty rate 0.9996 0.9964 0.9877 0.9675 0.9139 0.8448
(Promodel 20 hours)

Table 5: Probabilities obtained from three methods
with p = 0.2, 0.3, 0.4.
p 0.2 0.3 0.4

M R LU M R LU M R LU
0.0950 0.0950 0.0950 0.0921 0.0921 0.0921 0.0887 0.0888 0.0888

π0 0.3452 0.3452 0.3452 0.3155 0.3155 0.3156 0.2838 0.2838 0.2839
0.0817 0.0817 0.0817 0.0721 0.0721 0.0721 0.0622 0.0622 0.0622
0.2967 0.2967 0.2967 0.2469 0.2470 0.2470 0.1988 0.1989 0.1989

π̄0 0.8186 0.8186 0.8186 0.7266 0.7267 0.7268 0.6335 0.6337 0.6335
0.0308 0.0308 0.0308 0.0465 0.0465 0.0465 0.0621 0.0621 0.0621

π1 0.0691 0.0691 0.0691 0.0974 0.0974 0.0974 0.1204 0.1203 0.1204
0.0207 0.0207 0.0207 0.0283 0.0283 0.0283 0.0339 0.0339 0.0339
0.0381 0.0381 0.0381 0.0486 0.0486 0.0486 0.0534 0.0533 0.0534

π̄1 0.1587 0.1587 0.1587 0.2208 0.2208 0.2208 0.2698 0.2697 0.2698
0.0056 0.0056 0.0056 0.0130 0.0130 0.0130 0.0240 0.0240 0.0240

π2 0.0081 0.0081 0.0081 0.0176 0.0176 0.0176 0.0297 0.0297 0.0298
0.0031 0.0031 0.0031 0.0066 0.0066 0.0066 0.0109 0.0109 0.0109
0.0035 0.0035 0.0035 0.0069 0.0068 0.0069 0.0103 0.0102 0.0103

π̄2 0.0203 0.0203 0.0203 0.0441 0.0440 0.0441 0.0749 0.0748 0.0750
0.0007 0.0007 0.0007 0.0026 0.0026 0.0026 0.0066 0.0065 0.0066

π3 0.0007 0.0007 0.0007 0.0024 0.0024 0.0024 0.0056 0.0055 0.0056
0.0003 0.0003 0.0003 0.0011 0.0011 0.0011 0.0026 0.0025 0.0026
0.0003 0.0003 0.0003 0.0008 0.0008 0.0008 0.0017 0.0017 0.0017

π̄3 0.0020 0.0020 0.0020 0.0069 0.0069 0.0069 0.0165 0.0162 0.0165

Table 6: Probabilities obtained from three methods
with p = 0.5, 0.6, 0.7.
p 0.5 0.6 0.7

M R LU M R LU M R LU
0.0847 0.0848 0.0848 0.0796 0.0801 0.0798 0.0728 0.0738 0.0730

π0 0.2493 0.2496 0.2495 0.2112 0.2119 0.2116 0.1679 0.1696 0.1685
0.0519 0.0520 0.0519 0.0411 0.0415 0.0412 0.0299 0.0319 0.0300
0.1527 0.1529 0.1528 0.1091 0.1098 0.1093 0.0690 0.0707 0.0693

π̄0 0.5386 0.5393 0.5390 0.4410 0.4433 0.4419 0.3396 0.3450 0.3408
0.0775 0.0776 0.0776 0.0921 0.0922 0.0923 0.1044 0.1045 0.1048

π1 0.1366 0.1364 0.1367 0.1440 0.1436 0.1443 0.1392 0.1382 0.1396
0.0369 0.0370 0.0370 0.0370 0.0372 0.0371 0.0335 0.0342 0.0336
0.0525 0.0524 0.0525 0.0462 0.0462 0.0463 0.0352 0.0355 0.0353

π̄1 0.3035 0.3034 0.3038 0.3193 0.3192 0.3200 0.3123 0.3124 0.3133
0.0390 0.0388 0.0390 0.0581 0.0576 0.0582 0.0809 0.0793 0.0811

π2 0.0434 0.0431 0.0435 0.0567 0.0566 0.0568 0.0663 0.0637 0.0665
0.0154 0.0154 0.0154 0.0194 0.0193 0.0194 0.0215 0.0216 0.0216
0.0130 0.0129 0.0130 0.0142 0.0139 0.0142 0.0131 0.0129 0.0131

π̄2 0.1108 0.1102 0.1107 0.1484 0.1464 0.1486 0.1818 0.1773 0.1824
0.0138 0.0136 0.0138 0.0256 0.0248 0.0257 0.0435 0.0409 0.0436

π3 0.0106 0.0102 0.0106 0.0171 0.0160 0.0172 0.0243 0.0216 0.0244
0.0047 0.0046 0.0047 0.0074 0.0074 0.0074 0.0100 0.0095 0.0100
0.0028 0.0027 0.0028 0.0038 0.0038 0.0038 0.0043 0.0038 0.0043

π̄3 0.0319 0.0311 0.0319 0.0539 0.0515 0.0541 0.0821 0.0758 0.0823



Table 7: Probabilities obtained from three methods
with p = 0.8, 0.9.
p 0.8 0.9

M R LU M R LU
0.0625 0.0645 0.0625 0.0446 0.0483 0.0428

π0 0.1173 0.1210 0.1173 0.0568 0.0653 0.0544
0.0184 0.0205 0.0184 0.0072 0.0108 0.0069
0.0344 0.0379 0.0344 0.0090 0.0148 0.0087

π̄0 0.2326 0.2439 0.2326 0.1176 0.1382 0.1129
0.1106 0.1103 0.1105 0.0984 0.0979 0.0943

π1 0.1165 0.1152 0.1165 0.0672 0.0653 0.0644
0.0255 0.0272 0.0255 0.0125 0.0164 0.0120
0.0208 0.0220 0.0208 0.0065 0.0095 0.0062

π̄1 0.2734 0.2747 0.2734 0.1846 0.1901 0.1769
0.1042 0.0996 0.1042 0.1134 0.1032 0.1087

π2 0.0662 0.0613 0.0662 0.0453 0.0410 0.0435
0.0200 0.0204 0.0200 0.0120 0.0139 0.0115
0.0093 0.0093 0.0093 0.0035 0.0047 0.0033

π̄2 0.1997 0.1906 0.1997 0.1742 0.1628 0.1670
0.0676 0.0600 0.0676 0.0890 0.0713 0.0853

π3 0.0292 0.0236 0.0291 0.0240 0.0173 0.0230
0.0112 0.0105 0.0112 0.0082 0.0080 0.0079
0.0038 0.0032 0.0037 0.0017 0.0019 0.0017

π̄3 0.1118 0.0973 0.1116 0.1229 0.0984 0.1179

Table 8: Queue empty rate versus a number of prob-
abilities p.
p 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
π0+π1+π2+π3 0.9997 0.9985 0.9945 0.9846 0.9625 0.9158 0.8174 0.5993
(Matrix geometric method)
Queue empty rate 0.9997 0.9985 0.9954 0.9854 0.9633 0.9214 0.8255 0.6017
(Promodel 20 hours)

Table 9: Stationary probabilities of a queueing
model with twenty servers
π̄i π̄0 π̄1 π̄2 π̄3 π̄4 π̄5 π̄6

M 0.0040 0.0202 0.0525 0.0939 0.1303 0.1491 0.1464
R 0.0040 0.0202 0.0525 0.0939 0.1303 0.1491 0.1465
LU 0.0040 0.0202 0.0525 0.0939 0.1302 0.1490 0.1464

π̄i π̄7 π̄8 π̄9 π̄10 π̄11 π̄12 π̄13

M 0.1269 0.0989 0.0703 0.0461 0.0281 0.0161 0.0087
R 0.1269 0.0989 0.0703 0.0461 0.0281 0.0161 0.0087
LU 0.1269 0.0988 0.0703 0.0461 0.0281 0.0161 0.0087

π̄i π̄14 π̄15 π̄16 π̄17 π̄18 π̄19 π̄20

M 0.0045 0.0022 0.0010 0.0005 0.0002 0.0000 0.0000
R 0.0045 0.0022 0.0010 0.0005 0.0002 0.0000 0.0000
LU 0.0045 0.0022 0.0010 0.0005 0.0002 0.0000 0.0000

Table 10: The queue empty rate of twenty servers
versus probabilities p.
p 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Matrix geometric method 1.0000 0.9998 0.9990 0.9953 0.9822 0.9430 0.8421 0.6122
Ramawami 1.0000 0.9998 0.9990 0.9954 0.9838 0.9526 0.8794 0.7098
LU factorization 1.0000 0.9998 0.9990 0.9952 0.9818 0.9417 0.8381 0.6023



Table 11: Comparison of queue empty rate of twenty
servers.
p 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
π0+π1+· · ·+π20 1.0000 0.9998 0.9990 0.9953 0.9822 0.9430 0.8421 0.6122
(Matrix geometric method)
Queue empty rate 1.0000 1.0000 0.9998 0.9974 0.9899 0.9636 0.8569 0.6025
(Promodel 20 hours)

Table 12: Stationary probabilities of a queueing
model with twenty-five servers
π̄i π̄0 π̄1 π̄2 π̄3 π̄4 π̄5 π̄6

M 0.0015 0.0084 0.0251 0.0521 0.0841 0.1124 0.1294
R 0.0015 0.0084 0.0251 0.0521 0.0841 0.1124 0.1294
LU 0.0015 0.0084 0.0251 0.0521 0.0841 0.1124 0.1294

π̄i π̄7 π̄8 π̄9 π̄10 π̄11 π̄12 π̄13

M 0.1317 0.1208 0.1014 0.0786 0.0569 0.0387 0.0249
R 0.1317 0.1208 0.1014 0.0786 0.0569 0.0387 0.0249
LU 0.1317 0.1208 0.1014 0.0786 0.0569 0.0387 0.0249

π̄i π̄14 π̄15 π̄16 π̄17 π̄18 π̄19 π̄20

M 0.0152 0.0088 0.0049 0.0026 0.0013 0.0007 0.0003
R 0.0152 0.0088 0.0049 0.0026 0.0013 0.0007 0.0003
LU 0.0152 0.0088 0.0049 0.0026 0.0013 0.0007 0.0003

π̄i π̄21 π̄22 π̄23 π̄24 π̄25

M 0.0001 0.0000 0.0000 0.0000 0.0000
R 0.0001 0.0000 0.0000 0.0000 0.0000
LU 0.0001 0.0000 0.0000 0.0000 0.0000

Table 13: The queue empty rate of twenty-five
servers versus probabilities p.
p 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
Matrix geometric method 1.0000 1.0000 0.9998 0.9988 0.9942 0.9769 0.9201 0.7562
Ramawami 1.0000 1.0000 0.9998 0.9988 0.9946 0.9803 0.9392 0.8302
LU factorization 1.0000 1.0000 0.9998 0.9988 0.9945 0.9775 0.9204 0.7498

Table 14: Comparison of queue empty rates of
twenty-five servers.
p 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
π0+π1+· · ·+π25 1.0000 1.0000 0.9998 0.9988 0.9942 0.9769 0.9201 0.7562
(Matrix geometric method)
Queue empty rate 1.0000 1.0000 0.9999 0.9998 0.9945 0.9772 0.9241 0.7547
(Promodel 20 hours)



Table 15: Stationary probabilities of a queueing
model with thirty servers
π̄i π̄0 π̄1 π̄2 π̄3 π̄4 π̄5 π̄6

M 0.0005 0.0032 0.0110 0.0258 0.0474 0.0723 0.0953
R 0.0005 0.0032 0.0110 0.0258 0.0474 0.0723 0.0953
LU 0.0005 0.0032 0.0110 0.0258 0.0474 0.0723 0.0953

π̄i π̄7 π̄8 π̄9 π̄10 π̄11 π̄12 π̄13

M 0.1113 0.1175 0.1136 0.1018 0.0853 0.0672 0.0501
R 0.1113 0.1175 0.1136 0.1018 0.0853 0.0672 0.0501
LU 0.1113 0.1175 0.1136 0.1018 0.0853 0.0672 0.0501

π̄i π̄14 π̄15 π̄16 π̄17 π̄18 π̄19 π̄20

M 0.0355 0.0240 0.0156 0.0097 0.0058 0.0033 0.0019
R 0.0355 0.0240 0.0156 0.0097 0.0058 0.0033 0.0019
LU 0.0355 0.0240 0.0156 0.0097 0.0058 0.0033 0.0019

π̄i π̄21 π̄22 π̄23 π̄24 π̄25 π̄26 π̄27

M 0.0010 0.0005 0.0003 0.0001 0.0000 0.0000 0.0000
R 0.0010 0.0005 0.0003 0.0001 0.0000 0.0000 0.0000
LU 0.0010 0.0005 0.0003 0.0001 0.0000 0.0000 0.0000

π̄i π̄28 π̄29 π̄30

M 0.0000 0.0000 0.0000
R 0.0000 0.0000 0.0000
LU 0.0000 0.0000 0.0000

Table 16: The queue empty rate of thirty servers
versus probabilities p.
p 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Matrix geometric method 1.0000 1.0000 0.9999 0.9995 0.9973 0.9860 0.9377 0.7493
Ramawami 1.0000 1.0000 0.9999 0.9995 0.9974 0.9882 0.9546 0.8412
LU factorization 1.0000 1.0000 1.0000 0.9996 0.9973 0.9856 0.9316 0.7089

Table 17: Comparison of queue empty rates of thirty
servers.
p 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
π0+π1+· · ·+π30 1.0000 1.0000 0.9999 0.9995 0.9973 0.9860 0.9377 0.7493
(Matrix geometric method)
Queue empty rate 1.0000 1.0000 0.9998 0.9998 0.9979 0.9846 0.9526 0.7707
(Promodel 20 hours)



Figure 2: The queue empty rate determined by four
different methods

Figure 3: Relative errors of three methods com-
pared with Promodel

Figure 4: The queue empty rate determined by four
different methods

Figure 5: Relative errors of three methods com-
pared with Promodel

Figure 6: The queue empty rate determined by four
different methods

Figure 7: Relative errors of three methods com-
pared with Promodel


