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1. Introduction

Let A denote the mod 2 Steenrod algebra. In [1] Adams and Margolis proved the
following

Theorem 1.1. Let 0— M;— M,—> M,— 0 be an exact sequence of A-modules. If
any two of these modules are free A-modules then so is the third.

The purpose of this note is to prove the following “unstable version” of Theorem
1.1.

Theorem 1.2. Let 0— M,— M,— M;—(0 be an exact sequence of unstable A -
modules. If any two of these modules are free unstable A -modules then so is the third.

Theorem 1.2 settles a homological problem regarding unstable modules over A
which arises when we consider Massey and Peterson’s unstable Adams spectral
sequence [3,4].

Corollary 1.3. Let M be an unstable A-module. Then either M is a free unstable
A-module or M has infinite unstable homological dimension, i.e. there are no
resolutions of M by free unstable A -modules of finite length.

Corollary 1.3 is an immediate consequence of Theorem 1.2.

Theorem 1.1 was proved in [1] via an elegant criterion for an A-module to be
free over A. From some homological considerations one can also prove this
theorem by using

T,hedrem 1.4. Let M be an A -module and y € M be any homogeneous eleme” -uch
that the A -submodule of M generated by y is free over A. Then y& I(A)M where
I(A) is the augmentation ideal of A.
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Theorem 1.4 is an easy theorem since the algebra generated by any finite subset
of elements of A is always finite. It is equally true that the unstable version of
Theorem 1.4 implies Theorem 1.2.

Theorem 1.5. Let M be an unstable A-module and y € M be any homogeneous
element such that the A -submodule of M generated by y is a free unstable A -module
on the generator y (of dimension dimy). Then y& I(A)M.

We shall prove Theorem 1.2 by establishing Theorem 1.5.

2. A classical result and its consequences. The proof of Theorem 1.5

Let B(n) be the Z,-submodule of the mod 2 Steenrod algebra A generated by all
the Serre~Cartan basis elements Sq' with excess ¢(I)> n. It is proved in [5] that
B(n) is actually a left A-submodule of A. The module F(n) defined by (F(n)); =
(A/B(n)).-: is called a free unstable A -module on one generator of dimension n.
Any direct sum of these are called free unstable A -modules. (See [5] for details.)

Let P" be the n-fold product of the infinite real projective spaces RP”. The
(mod 2) cohomology H*(P") of P" is well known; it is a polynomial algebra over Z,
generated by x,, x», ..., X, of dimension 1. Let v, = x;-x;-- - x, € H"(P"). Define
an A-map ¢ : A — H*(P") by ¢(a) = av,. The following is well known. (See [5]
for example.)

Theorem 2.1. Im¢ = F(n) i.e. Imd¢ is a free unstable A-module on the generator v,
of dimension n.

Next we recall from [2] that A* = Z,[£,, &, ...] where A* is the dual Hopf
algebra of A. For any finite sequence I = (iy, i, . .., i») Of non-negative integers of
length I(I)=n define é(I)=¢&,-&,--- &, and x(I)=xi"-x3?---xi"€ H*(P").
The following formula expresses av, for any a € A.

Theorem 2.2. In H*(P") av, = Xyy-¢(I), a)x(I) for all a € A.

For the proof of this theorem see [2] or [5]. We shall use a consequence of
Theorem 2.1 and Theorem 2.2 to prove Theorem 1.5.

Leta € A, a# 0. Write a = 2, Sq’~ in terms of the Serre-Cartan basis elements.
Assign a number e(a) to a by e(a)=min.e(l.,) where e(I) is the excess of an
admissible sequence I. If we write a = 2, SqJs in terms of the Milnor basis
elements then assign to a another number w(a) by w(a) = mingw (Jg) where if
J=(r,r,..,n,0,0,... ) then w(J)=r+r,+:--+n.



W.H. Lin / Unstable modules over the Steenrod algebra 299
Theorem 2.3. For any a € A, a#0, e(a)= w(a).

Theorem 2.3 follows from Theorem 2.1 and Theorem 2.2. We leave the proof to
the reader.

Corollary 2.4. Let {a,, a., ..., a.} be any finite subset of non-zero elements of A and
let n =1 be any integer. Then there exists x € A such that e(x)=n and e(xa;) =
e(x)+e(a) all i

Proof. Let a, =2, SqJ., i =1,2,...,m where SqJ, are Milnor basis elements.
The set of all these basis elements is finite. Hence we can choose an integer ¢ big
enough so that if we let x = Sq(0,0,...,0,1, 1,..., 1 ,0,0,...) then for all i and

t ¢+l t+n-1

all v, xSqJ,, =Sq(ri™, r§”,...,ri20,0,..,,1,1,..., 1,0,0,...) where SqJ,, =

t t+1 t+n—1

Sq(r™, r$ .., ri?,0,0,...). It is clear that w(x) = n and w(xa;)= w(x)+ w(a:)

all i. Thus by Theorem 2.3 e(x)=w(x)=n and e(x;)=w(xa:))=w(x)+w(a)=
e(x)+e(a)alli Q.E.D.

We use Corollary 2.4 to prove Theorem 1.5.

Proof of Theorem 1.5. Suppose y € I(A)M, say y =3, ay where y; are
homogeneous elemeénts of M and a; are homogeneous elements of I(A). We prove
this would lead to a contradiction. For each i, dim a; > 0; hence dimy >dim y; all i.
We can find x € A such that e(x)=dimy and e(xa;) = e(x) + e(a;) by Corollary
2.4. Thus e(xa;) = e(x)+ e(a;) >dimy >dim y; all i. From the definition of e(xa;)
we see that xy = Z™,xay; =0. On the other hand since e(x)=dimy and
Ay CM is a free unstable A-module on the generator y it follows that xy # 0.
Thus we have got a contradiction. This proves that y& I(A)M. Q.E.D.
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