A Note on Factorizations of Singular M-Matrices

I-wen Kuo
Department of Applied Mathematics
National Chengchi University
Taipei, Taiwan 116, Republic of China

Submitted by David Carlson

Abstract

Supposing that M is a singular M-matrix, we show that there exists a permutation matrix P such that $P M P^{T}=L U$, where L is a lower triangular M-matrix and U is an upper triangular singular M-matrix. An example is given to illustrate that the above result is the best possible one.

I. INTRODUCTION

A real square matrix $A=\left(a_{i, j}\right)$ is called an M-matrix if $a_{i, j} \leqslant 0$ whenever $i \neq j$ and all principal minors of A are positive. We will write $B=\left(b_{i, j}\right) \geqslant 0$ if $b_{i, j} \geqslant 0$ for each pair (i, j). For a real square matrix A with nonpositive off-diagonal elements, it is known (e.g., [1, Theorem 4.3]) that A is an M-matrix if and only if A is nonsingular and $A^{-1} \geqslant 0$. Following Fiedler and Ptak [1], we shall denote by K the class of all M-matrices and by K_{0} the class of all real square matrices $A=\left(a_{i, j}\right)$ with $a_{i, j} \leqslant 0$ for $i \neq j$, which have all principal minors nonnegative. A singular matrix in K_{0} is called a singular M-matrix.

It is well known (e.g., [1, Theorem 4.3]) that an M-matrix may be written in the form $L U$, where $L \in K$ is lower triangular and $U \in K$ is upper triangular.

In [3], G. Poole and T. Boullion mentioned the possibility of the $L U$-factorizations for singular M-matrices. An example is given in Sec. 2 to show that not every matrix in K_{0} can be factored as $L U$. However, for any matrix A in K_{0}, we show that $P A P^{T}=L U$ for a suitable permutation matrix P, where $L \in K$ is lower triangular and $U \in K_{0}$ is upper triangular.

The following result will be useful in our work.

Theorem A [2, Theorem 4, p. 47]. If a rectangular matrix R is represented in partitioned form

$$
R=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

where A is a square nonsingular matrix of order n, then the rank of R is equal to n if and only if $D=C A^{-1} B$.

II. RESULTS

Theorem 1. Let $M \in K_{0}$. If M can be partitioned into the form

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

such that A is nonsingular and $\operatorname{rank} M=\operatorname{rank} A$, then $M=L U$, where $L \in K$ is lower triangular and $U \in K_{0}$ is upper triangular.

Proof. We note first that $D=C A^{-1} B$ by Theorem A. Since $A \in K_{0}$ and A is nonsingular, we have $A \in K$. Thus, $A=L_{1} U_{1}$, where $L_{1} \in K$ is lower triangular and $U_{1} \in K$ is upper triangular. L_{1} and U_{1} are nonsingular; moreover, $L_{1}^{-1} \geqslant 0$ and $U_{1}^{-1} \geqslant 0$. Now let

$$
L=\left[\begin{array}{ll}
L_{1} & 0 \\
C U_{1}^{-1} & I
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{ll}
U_{1} & L_{1}^{-1} B \\
0 & 0
\end{array}\right]
$$

where I is the identity matrix of appropriate order. Since $C \leqslant 0$ and $B \leqslant 0$, we have $C U_{1}^{-1} \leqslant 0$ and $L_{1}^{-1} B \leqslant 0$. Clearly, all principal minors of L are positive and all principal minors of U are nonnegative. Hence, $L \in K$ and $U \in K_{0}$, and $M=L U$.

Corollary. Let $M \in K_{0}$ be irreducible. Then $M=L U$, where L and U are the same as in Theorem 1.

Proof. If $M \in K$, then the statement is true. So we assume that M is singular. By Theorem 5.7 of [1], all proper principal minors of M are positive.

Thus, we can partition M into the form

$$
M=\left[\begin{array}{ll}
M_{n-1} & b \\
c & d_{n, n}
\end{array}\right]
$$

where $M_{n-1} \in K$ and $\operatorname{rank} M=\operatorname{rank} M_{n-1}$. Therefore, the corollary follows from Theorem 1.

Next, we prove a lemma.
Lemma. Let $M \in K_{0}$ be partitioned into the form

$$
M=\left[\begin{array}{cc}
A & B \\
0 & D
\end{array}\right]
$$

such that A and D are irreducible. Then $M=L U$, where L and U are the same as in Theorem 1.

Proof. It is clear that $A \in K_{0}$ and $D \in K_{0}$. By the above corollary $A=A_{1} A_{2}$ and $D=D_{1} D_{2}$, where A_{1} and D_{1} are lower traingular matrices in K, and A_{2} and D_{2} are upper triangular matrices in K_{0}. Let

$$
L=\left[\begin{array}{ll}
A_{1} & 0 \\
0 & D_{1}
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{cc}
A_{2} & A_{1}^{-1} B \\
0 & D_{2}
\end{array}\right]
$$

Then, $L \in K$ is lower triangular and $U \in K_{0}$ is upper triangular, and $M=L U$.

Our main result is the following.

Theorem 2. Let $M \in K_{0}$. Then there exists a permutation matrix P such that $P M P^{T}=L U$, where $L \in K$ is lower triangular and $U \in K_{0}$ is upper triangular.

Proof. It is sufficient to consider the case that $M \neq 0$ is singular and reducible. Let P be a permutation matrix such that PMP^{T} can be partitioned into the form

$$
P M P^{T}=\left[\begin{array}{cc}
A & B \\
0 & D
\end{array}\right]
$$

where A is irreducible. If D is also irreducible, then $P M P^{T}=L U$ by the Lemma. If D is reducible, then the proof is completed by using induction.

It is clear that we can obtain another factorization for matrices in K_{0}, i.e., for any $M \neq 0$ in K_{0}, there exists a permutation matrix P such that $P M P^{T}=$ $L U$, where $L \in K_{0}$ is lower triangular and $U \in K$ is upper triangular. Also, we can obtain similar results for factorizations of type $U L$.

Example. The following example will show that Theorem 2 is the best possible result. Let

$$
M=\left[\begin{array}{rrr}
0 & 0 & -1 \\
-1 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

If

$$
M=\left[\begin{array}{lll}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \cdot\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
0 & b_{22} & b_{23} \\
0 & 0 & b_{33}
\end{array}\right],
$$

then we get $a_{11} b_{11}=0, a_{11} b_{13}=-1$, and $a_{21} b_{11}=-1$, which is impossible. Thus, there is no factorization of the type $L U$ for M. But if we let

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

then

$$
P M P^{T}=\left[\begin{array}{rrr}
0 & -1 & -1 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]=I \cdot\left[\begin{array}{rrr}
0 & -1 & -1 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right] .
$$

REFERENCES

1 M. Fiedler and V. Ptak, On matrices with non-positive off-diagonal elements and positive principal minors, Czech. Math. J. 12 (87) (1962), 382-400.
2 F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1959.
3 G. Poole and T. Boullion, A survey on M-matrices, SIAM Review, 16 (No. 4 1974), 419-427.

