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1. INTRODUCTION 

According to a general principle established by the first author [ 121, 

any linear recurring sequence in a finite field which hes a sufficiently 
long period is almost equidistributed, in the sense that each element of 
the field occurs about equally often in the full period of the sequence. 
This raises the question of characterizing those linear recurring sequences 
for which we have exact equidistribution. We settle this problem for 
linear recurrences of low order. Although the pattern of a general method 
emerges clearly from the ensuing investigation, a detailed discussion 
becomes increasingly complex for higher-order linear recurring sequences. 
Therefore we restrict the attention to linear recurrences of order at most 4. 
We note that distribution properties of linear recurring sequences are of 
interest for applications to coding theory (compare with [13]). 

Related work concerning the distribution of second-order linear re- 
curring sequences in residue class rings Z,/mZ has been carried out recently. 
The first results were obtained for special classes of sequences, such as 
Fibonacci numbers and Lucas numbers, considered modulo prime powers 
([6], [7], [ll]). Further work dealt with somewhat more general second- 
order linear recurring sequences of integers ([5], [8], [15], [IS]). Finally, 
several authors obtained a complete characterization of the second-order 
linear recurring sequences with the equidistribution property in Zjm7, 
([l], [2], [lo], [17]). For prime moduli, we recapture this characterization 
in a very easy manner (see Theorem 2). 

2. DEFINITIONS AND GENERAL FACTS 

Let Fp. be a finite field with q elements and of characteristicp. A sequence 
(x7&), n=o, 1, . ..) of elements of Fg is said to be equidistributed (or uniformly 
distributed, abbreviated zc.d.) in Fg if 

lim A(c, N, ’ - = - for all c E F,, 
N-CO iv q 

where A(c, N)=A(c, N, (x~)) denotes the number of n, OfngN- 1, for 



which X@=C (compare with [4, p. 331, Exercise 3.51). For a periodic 
sequence (z,), this definition is obviously equivalent to the requirement 
that each element of Fq occurs equally often in the full period of (x,). 

LEMMA 1. Two sequences (zn) and (yn) in F, have the same distribution 
of elements among the first N terms if and only if x:t x(xn) = x:i ~(3~) 
for all nontrivial additive characters x of Fq. 

PROOF. The condition is obviously necessary. To show the converse, 
we note that for any c f Fq, 

where x runs through all additive characters of FQ. An analogous formula 
holds for A(c, N, (y,)). From the given identity, which is also valid for 
the trivial additive character, it follows that A(c, N, (x,)) = A(c, N, (y,J) 
for all c E Fq. 

COROLLARY 1. A sequence (xn) in Fq with period t is u.d. in Fq if 
and only if x:i x(x~) = 0 for all nontrivial additive characters x of Fq. 

LENMA 2. Let (x,) and (yn) be two sequences in Fg. Then A(c, N, (x~)) 

= 4, N, (~4) (mod P) f or all c E Fq if and only if 2:: f =x1: yi 
for 1 <j<q- 1. 

PROOF. The condition is easily seen to be necessary. Conversely, we 
note that A(c, N, (x~)), viewed as an element of F,, is given by 

N-l 

A(c, N,(x,))= 2 (l-(xn-CC)@-l)=N-N(-c)q-I- 
n-0 

Q-1 q-1 N-l 
- 

zc > j-1 
j (-cp-1-J 2 xi* 

n-0 

An analogous formula holds for A(c, N, (y*)). It follows then from the 
given hypothesis that A(c, N, (xn))=A(c, N, (y,)) as elements of El*, and 
so A(c, N, (xn)) = A(c, N, (y,)) (mod p) as integers. 

COROLLARY 2. Let (x%) be a sequence in Fq with period dq, where d 
is an integer with 1 <d<p - 1. Then (x,) is u.d. in Fq if and only if 

(1) f’+ 0 for l<jgq-2, 

n-o d for j=q-1. 
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PROOF. Since 

(2) 2 =I CJ 
0 for l<j<q-2, 

CIF* -1 for j=q-1, 

by [9, p. 191, Lemma 8.241, it follows from Lemma 2 that (1) is equivalent 
to A(c, dq, (x~)) = cl (mod p) f or all c E Fq. Therefore, (1) is necessary 
for the equidistribution of (2,) in F,. Conversely, because of 1 gdgp - 1, 
the above congruence implies A(c, dq, (x~)) > cl for all c E P,, and so 
A(c, dq, (xa)) =d for all c E F,. 

A sequence (u,), n = 0, 1, . . . . of elements of F, is called a kth order 
linear recurring sequence if it satisfies a linear recurrence relation of the 
form 

(3) unfk =ak-l%+k-l-t... +alu,+l+aOu, for n=O, 1, . . . . 

where the coefficients as, al, . . ., ok-1 are fixed elements of Fq and k 2 1. 
We can assume, without loss of generality, that (3) is the linear recurrence 
relation of lowest order satisfied by the sequence (un). In this case, the 
polynomial m(x) = xk - ak-ixk-’ - . . . - six -as E FJx] associated with (3) is 
called the minimal polynomial of (u,). 

For the purpose of investigating the equidistribution of (u,), we can, 
and will, also aaaume that m(O)#O. For if m(0) =0, then either m(x) =xk 
or m(x) =xhg(x), where h> 1 and g(x) E F,Jx] is manic of positive degree 
with g(0) # 0. In the first case, we have un = 0 for all n 2 k, and so (u,) 
cannot be u.d. in F,. In the second case, the sequence (un+h), n = 0, 1, . . . , 
has the minimal polynomial g(x), and (u,) is ud. in F, if and only if 
(uD+h) is u.d. in Fq. Therefore, it suffices to consider linear recurrence 
relations for which the coefficient as in (3) is nonzero. In this case, however, 
the sequence (u,) is periodic (in the general case, the sequence may have 
a preperiod). 

In the following lemma, we collect some standard facts about linear 
recurring sequences in finite fields. We refer to [14] and [18] for a detailed 
treatment of these matters. 

LEMMA 3. Let m(x) = (x- ~ll)rl . . . (x---~l~)~s be the canonical factori- 
zation of m(x) in a suitable finite extension E of F,, so that 011, . .., 01~ 
are distinct nonzero elements of E. Then any linear recurring sequence 
(u,) in F, with minimal polynomial m(x) is periodic with period ept, 
where e is the smallest positive integer with o(! = 1 for 1 gj<s and pt 
is the smallest integral power of p with pt> max (ri, . . . . r8). Furthermore, 
if max (ri, . . . . rs) <p, then the terms of (u,) are given explicitly by 

(4) un= iQj(n)ay for n=O, 1, . . . . 
i-l 

where Q(x) E E[x] has degree at most rj-- 1. 
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From the above lemma one easily deduces some important necessary 
conditions for the equidistribution of (un). We note that since Fg is of 
characteristic p, we can write q=pf with an integer f > 1. 

LEMMA 4. If q=pf and the linear recurring sequence (un) is u.d. in 
Fq, then necessarily f gt, where t is as in Lemma 3. 

PROOF. If E is the field from Lemma 3, then at-1 = 1 for 1 <j< s, 
where ph is the number of elements of E. Therefore, the integer e in 
Lemma 3 divides ph- 1. Now if (Us) is u.d. in F,, then q must divide 
the length of the period of (u,), which is ept by Lemma 3. But q and e 
are relatively prime by the previous remark, so that q divides pt and 
hence f < t. 

COROLLARY 3. If the linear recurring sequence (h) is u.d. in Fg, then 
its minimal polynomial m(z) must necessarily have a multiple root. 

PROOF. By Lemma 4 we must have t> 1, and so the definition of t 
in Lemma 3 shows that max (~1, . . . . rs)>2. 

Because of Corollary 3, we shall only consider minimal polynomials m(x) 
with at least one multiple root. If m(x) has a special type of factorization, 
then a result for linear recurring sequences of any order can be established. 

THEOREM 1. Let (Us) be a linear recurring sequence in F, with minimal 
polynomial m(z) = (x - a)smi(x), where a E Fg, ml(x) E F,Jx] has only simple 
roots, and mi(a)#O. Then (u,) is u.d. in F* if and only if q is prime. 

PROOF. In the notation of Lemma 3, we have max (~1, . . ., rs) = 2, and 
so t = 1. Therefore, q =p is a necessary condition for the equidistribution 
of (u,) because of Lemma 4. Conversely, suppose q=p and let ml(x) = 
=(x--c4 . . . (x-LX~), where as, . . . . as are distinct elements of a suitable 
finite extension of F,. By (4) we have 

un = (co + cin)an + csocg + . . . + c& for all n > 0. 

Here cr# 0, for otherwise (un) would satisfy a linear recurrence relation 
of lower order. If e is as in Lemma 3, then for any j > 0 and n > 0 we get 

(5) un+je = (CO + qn + clje)a% + c2d + . . . + c&f = un fjclean. 

Since e is not divisible by p (see the proof of Lemma 4), it follows in 
particular that cl E FP. Furthermore, the period of (u,) is ep by Lemma 3. 
For each fixed n, 0 Q n < e - 1, the finite sequence (ulz+je), j = 0, 1, . . . , p - 1, 
runs exactly once through F, because of clean#O and (5). Therefore, 
among the first ep terms of (un) each element of F, appears e times, and 
so (u,) is u.d. in FP. 
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3. SECOND AND THIRD-ORDER RECURRENCES 

Obviously, a first-order linear recurring sequence in PQ can never be 
u.d.. in P,. Therefore, we can proceed to consider second-order linear 
recurring sequences. 

THEOREM 2. A linear recurring sequence (Us) in F, with minimal 
polynomial m(z) of degree 2 is ud. in Fq if and only if q is prime and 
m(z) has a multiple root. 

PROOF. This is an immediate consequence of Corollary 3 and Theorem 1 
For third-order linear recurring sequences, one has to distinguish two 

cases depending on the form of the canonical factorization of m(x). The 
corresponding criteria for equidistribution are enunciated in Theorems 3A 
and 3B. 

THEOREM 3A. Let (Us) be a linear recurring sequence in F, with 
minimal polynomial m(z) = (x-a)s(x-- b), where a, b E Fq and a# b. Then 
(u,,) is u.d. in Fq if and only if q is prime. 

PROOF. This is a special case of Theorem 1. 

THEOREM 3B. Let (u,) be a linear recurring sequence in Fq with 
minimal polynomial m(x) = (x--)3, a E F,. If p> 3, then (u,) is u.d. in 
F, if and only if q=p, a is not a square in F,, and (~2 - 4azci + a$)2 = 
=4a2uou2. If p=2, then (2~~) is u.d. in F, if and only if either (i) q=2; 
or (ii) q= 4, a = 1, and zig, ui, uz are distinct; or (iii) q= 4, a # Fz, and 
exactly one of u~u~(u~+u%~)-~ and aui(us+as~)-1 is in Fz. 

PROOF. In the notation of Lemma 3, we have max (~1, . .., rS) = 3. 
Therefore, if p > 3, then t = 1, and so q =p is a necessary condition for the 
equidistribution of (un) in P, because of Lemma 4. Furthermore, (u,) 
has period ep and by (4), 

(6) un = (co + tin + c2n2)an for all n > 0, 

where CO, cl, c2 E F,. We have c2# 0, for otherwise (Us) would satisfy a 
linear recurrence relation of lower order. For n > 0 and i > 0, we get 

un+tp = (co + cl72 + cyn2)an+Q = (cg + cln + c2n2)aAd = dun. 

Thus, if (ula) is u.d. in F,, then exactly one term among 210, ~1, . . ., up-i 
must be 0. It follows from (6) that the polynomial g(x) =CO+C~X+C~X~ E 
E Fp[x] has one root in F, of multiplicity 2, and so the discriminant 
~‘4 - 4cocz of g(z) is 0. Now (6) leads to ug = CO, u1 = c@ + cla + cza, us = coa2 + 
+ 2~1~2 + 4csa2. Solving this system, we find cl = (2&)-1( - us + 4uui - 3asuo), 
cz = (2a2)-l(u2 - 2aui + a%~). By substituting into the equation c’: = 4.~~2 
and simplifying, we obtain (uz - 4oul+ &w)s = 4a2UoU2, which is therefore 

21 Indagationes 
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a necessary condition for (u,) to be u.d. in F,. We thus have g(x) = cz(x - c)s 
for a suitable c E F,, and so u, =cs(n -c)san for all n > 0. If a were a 
square in F,, then (u,) would run only through squares or only through 
nonsquares and 0, depending on whether cs is a square or a nonsquare. 
Thus, (u,) can only be u.d. in F, if a is a nonsquare in F,. Now suppose 
that all those necessary conditions are satisfied. Since a is a nonsquare 
in F,, the multiplicative order e of a is even. Furthermore, un+je= 
= cs(n -c +je)san for n > 0 and j > 0. Transforming summation variables, 
we get for every nontrivial additive character x of F,, 

CR-1 e-1 P-l e-l 11-l 

z. X&d = nzo jz X(Un+d = n20 ,z x(c2an(n-c+.ie)2) 

= lz 12 x(c2anj2) = “>i’ [x X(c2a2”j2) + :x x(c2a2n+1j2)) 

and so (u,) is u.d. in F, by Corollary 1. 
Now let p = 2. Since max (ri, . . . . rs) = 3, we have t = 2 in this case, and 

so Lemma 4 shows that (Us) is u.d. in Fg only if q= 2 or 4. If q= 2, one 
shows by inspection that all 4 linear recurring sequences in F2 with minimal 
polynomial m(x) = (x- 1)s are u.d. in Fz. For q= 4, we first consider the 
case where m(x)= (x- 1)s. A linear recurring sequence (u,) in Fq with 
this minimal polynomial has period 4, and so it will be u.d. in Fd if and 
only if UO, ~1, us, us run through all elements of Fa. Then UO, ui, uz are 
necessarily distinct, but this is also sufficient since us=zcs +ui+us always 
gives the remaining element of Fd. Finally, let m(x) = (x - a)3 with a E$ F2. 
Then as +a+ 1= 0 and (un) has period 12. If d= us +a%o, then d # 0, 
for otherwise (u,) would satisfy the second-order linear recurrence relation 
Un+2 = a2Un for n > 0. By calculating the terms us, ui, . . ., ~11 in the full 
period of (u,), one finds the following elements : us, asuo + d, ~1, asui + ad, 
as well as those elements obtained by multiplying these 4 elements by 
a and a2. Therefore, one sees easily that (un) is u.d. in Fd if and only if 
exactly one of the 4 elements listed is 0. This condition can be transformed 
readily into the condition given in the theorem. 

4. FOURTH-ORDER RECURRENCES 

The methods in the previous section can be adapted to work for fourth- 
order linear recurring sequences as well. However, the procedure becomes 
very technical and cumbersome, so that we will only outline the results 
here. 

For fourth-order linear recurring sequences, one has to distinguish four 
cases depending on the form of the canonical factorization of m(x). The 
simplest case is already contained in Theorem 1. 
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THEOREM 4A. Let (un) be a linear recurring sequence in F, with 
minimal polynomial m(z) = (z - a)s(~ - /?)(z - y), where a E F,, p, y E F,z, 
and a, ,8, y are distinct. Then (u,) is u.d. in Fp if and only if q is prime. 

THEOREM 4B. Let (Us) be a linear recurring sequence in F, with 
minimal polynomial m(x) = (X - a)2(~- /?)2, where cy, @ E F,z and LY # #?. 
Then (Us) is u.d. in F, if and only if q is prime and the element 

[&9uo- (012+ ~afQw+ (2a+p)u2 -u3][ - apuo+ pa$+p2)Ul- 

- (a + 2@2 + u31-l E &2 

is not a power of a/l-l. 
In the third case, one has to discuss p= 2 separately (compare with 

Theorem 3B). For p > 3, one obtains the following criterion. 

THEOREM 4C. Let (u,) be a linear recurring sequence in Fg with 
minimal polynomial m(x) = (z -a)a(z-b), where a, b E F, and a#b. If 
p> 3, then (u,) is u.d. in F, if and only if q=p, a is not a square in F,, 
and 

for all j with 1 cj~p- 1 and j = e3/2(mod e3/e1), where ei is the multi- 
plicative order of k-1 in F,, es=l.c.m.(ei, e2) with e2 being the multi- 
plicative order of b in F,, hj is an integer with (ba-l)Q = - b3, and c = VW-~ 
with 

v = S&[( 3&b - 3ab2 + b3)uo - 3a2ul + 3aug - u3][&buo - (a2 + 2ab)ul + 
+ (2a + b)u2 - us] - [( - 5&b + 3a2b2)uo + (5~3 + 5&b - 4ab2)ul+ 
+ ( - 8a2 + ab + b2)u2 + (3a - b)u# 

and 

w = 8&[&buo - (a2 + 2ab)ul+ (2~ + b)uz - u3]( - U%Q + 3a%l- 3au2 + ~3). 

In the proof, one shows first that q =p and a being a nonsquare in F, 
are necessary conditions. Then one proves that (un) is u.d. in F, if and 
only if an auxiliary sequence (w,) of the form wn =~a% + abn, n= 0, 1, . . ., 
with Q, u E F, has the property that the two subsequences (~2~) and 
(WZn+i) have the same distribution of elements. On the basis of Lemma 2, 
this can be reduced to the condition (7) in the theorem. 

The last case requires a separate discussion for p = 2 and p = 3. The 
criterion for p> 5 employs the following notion. We note that for 
g(x) E Fp[x] there exists a unique polynomial g”(s) E Fp[x] of degree at 
most p- 1 with g(x) = g”(x)(mod (xp -x)); then the reduced degree of g(z) 
is defined to be the degree of g”(x). 
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THEOREM 4D. Let (u,) be a linear recurring sequence in Fg with 
minimal polynomial m(x) = (x--)4, where a. E Fg. Suppose p > 5, and let 
f(x) =x3+ &x2 + dix + do with 

do = - 6u3t4&3Uo - 3a2,, + 3U’U2 -?&3)-l, 
a1 = (11&&j - 18a%r + 9auz - 2us)(usuc - 3usur + 3UU3 - u3)-1, 

d3 = ( - 6~32~ + 1 5u2ul - 12uus + 3u3) (u3Uo - 3u2ul + 3UU3 - ?&3)-l. 

Then (ula) is u.d. in F, if and only if g =p, the polynomial f(x) has exactly 
one root in Fp, and the reduced degree of (f (x))“J is at most p - 2 for each 
j with 1 <j<(p- l)/ e, where e is the multiplicative order of a. 

The proof is based on Corollary 2. An interesting connection with 
classical problems arises for a = 1 and q =p. In this case, we have un = h(n) 
for n=O, 1, . . . . where h(x) is a cubic polynomial over F, which differs 
from f(x) by a nonzero constant factor. Therefore, (u,) is u.d. in Fp if 
and only if f(x) is a permutation polynomial over F, (compare with 
[9, Ch. 4, Sec. 81). The cubic permutation polynomials over F, have 
been characterized by Dickson [3]. 
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