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concerning a second order functional differential equation by using the Krasnoselskii fixed
point theorem on cones in Banach spaces. Moreover, we also apply our results to establish
several existence theorems of multiple positive solutions for some functional differential
equations.
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1. Introduction

In this paper, we deal with the existence of positive solutions to the functional differential equation

u′′(t)+ F(t, ut) = 0, t ∈ (0, 1).

The solutions umust satisfy the initial function

u(s) = φ(s), −r ≤ s ≤ 0, for certain given φ,

and boundary condition of Sturm–Liouville’s type

(BC)
{
u(0) = 0,
γ u(1)+ δu′(1) = 0,

where

γ , δ ≥ 0 and γ + δ > 0.

Our notations are defined as follows.We denote the set of all real numbers and the set of all nonnegative real numbers by
R andR+, respectively. For any fixed r ∈ R+, let Cr denote the Banach space of all continuous functionsφ : [−r, 0] ≡ J → R
endowed with the suprenorm

‖φ‖J = sup
s∈J

|φ(s)|,

and let

Cr,0 = {ψ ∈ Cr | ψ(0) = 0}.
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The notation ut above denotes a function in Cr defined by

ut(w) = ut(w;φ) :=

{
u(t + w) if t + w ≥ 0,
φ(t + w) if t + w ≤ 0,

where the given φ is an element of the space Cr,0.
From now on, we denote our problem as (BVP). Moreover, if w ∈ [−r, 0] is fixed, by a solution of the (BVP) we mean a

function u ∈ C2
[0, 1] such that u satisfies the boundary condition (BC), and for a given φ, the relation

u′′(t)+ F(t, ut(w;φ)) = 0

holds for all t ∈ [0, 1].
There has recently been an increased interest in studying boundary value problems for functional differential equations,

see, e.g. the books by Hale [1], Kolmanovskii and Myshkis [2] and Henderson [3]. Furthermore, as pointed out in [4], these
problems have arisen from problems of physics and variational problems of control theory, as well as from much applied
mathematics which appeared early on in the literature [5,6].We refer the reader tomore detailed treatment in the following
interesting research [7–19], and the references therein.

In Section 2, we state the key tool for establishing our main results, that is, the well-known Krasnoselkii fixed point
theorem [20,21] and give a lemma that will be used to define a positive operator in a cone. Then, in some function space, we
construct an appropriate cone on which we apply the fixed point theorem to our positive operator, this yields our existence
results. Moreover, some remarks in Section 3 will imply several corollaries of existence of multiple positive solutions,
including the reduction to general ordinary differential equations with boundary condition. Finally, in the last section we
give an example as an application.

2. Preliminaries and existence results

In order to abbreviate our discussion, throughout this paper, we assume the following assumptions hold:

(C1) k(t, s) is the Green’s function of the differential equation{
u′′

= 0,
(BC);

(C2) F : [0, 1] × Cr → R+ is a continuous functional.

We now state the Krasnoselkii fixed point theorem [20,21] and a useful lemma which are required for the main result.

Theorem A ([20,21]). Let E be a Banach space, and let K ⊂ E be a cone in E. Assume Ω1,Ω2 are open subsets of E with
0 ∈ Ω1,Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \Ω1) → K

be a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \Ω1).

Lemma 1. Suppose that k(t, s) is defined as in (C1). Then, for any p1, p2 with 0 ≤ p1 < p2 ≤ 1, we have the following results:
k(t, s)
k(s, s)

≤ 1, for t ∈ [0, 1] and s ∈ [0, 1],

k(t, s)
k(s, s)

≥ min
{
(1 − p2)γ + δ

γ + δ
, p1

}
, fort ∈ [p1, p2] and s ∈ [0, 1].

Proof. It is well known that

k(t, s) =

{
(γ + δ − γ t)s, 0 ≤ s ≤ t ≤ 1,
(γ + δ − γ s)t, 0 ≤ t ≤ s ≤ 1,

which implies

k(t, s)
k(s, s)

=


γ + δ − γ t
γ + δ − γ s

, 0 ≤ s ≤ t ≤ 1,

t
s
, 0 ≤ t ≤ s ≤ 1.
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Hence, we obtain the desired results:

k(t, s)
k(s, s)

≤ 1 for t ∈ [0, 1],

and

k(t, s)
k(s, s)

≥


(1 − p2)γ + δ

γ + δ
, 0 ≤ s ≤ t ≤ p2,

p1, p1 ≤ t ≤ s ≤ 1. �

From Lemma 1, we define a number

M = M(p1, p2) := min
{
(1 − p2)γ + δ

γ + δ
, p1

}
and next, state and prove our main results.

Theorem 2 (Existence Result for −1 < w ≤ 0). Suppose the following hypotheses hold:

(H1) there exists a positive constant λ such that

F(t, ψ) ≤ λ

(∫ 1

0
k(s, s)ds

)−1

, for t ∈ [0, 1] and ψ ∈ Cr with ‖ψ‖J ≤ λ,

and
(H2) there exist p1, p2 with 0 ≤ −w ≤ p1 < p2 ≤ 1 and a positive constant η 6= λ such that

F(t, ψ) ≥ η

(∫ p2

p1
k
(
p1 + p2

2
, s

)
ds

)−1

, for t ∈ [p1, p2] and ψ ∈ Cr with Mη ≤ ‖ψ‖J ≤ η.

Then for any given φ ∈ Cr,0 with ‖φ‖J ≤ λ, (BVP) has at least one positive solution u such that ‖u‖ between λ and η.

Proof. Without loss of generality, we assume λ < η. It is clear that (BVP) has a solution u = u(t) if and only if u is the
solution of the operator equation

u(t) =

∫ 1

0
k(t, s)F(s, us(w;φ))ds := Aφu(t), u ∈ C[0, 1].

Let K be a cone in C0[0, 1] := {u ∈ C[0, 1] | u(0) = 0} defined by

K =

{
u ∈ C0[0, 1] | u(t) ≥ 0, min

t∈[p1,p2]
u(t) ≥ M‖u‖

}
.

Following from the definition of K and Lemma 1 we have

min
t∈[p1,p2]

(Aφu)(t) = min
t∈[p1,p2]

∫ 1

0
k(t, s)F(s, us(w;φ))ds

≥ M
∫ 1

0
k(s, s)F(s, us(w;φ))ds

≥ M
∫ 1

0
k(t, s)F(s, us(w;φ))ds.

Thus, mint∈[p1,p2](Aφu)(t) ≥ M‖Au‖, which implies AφK ⊂ K . Furthermore, it is easy to check Aφ : K → K is completely
continuous. To complete the proof, we separate the rest of proof into the following two steps:
Step 1. LetΩ1 := {u ∈ K | ‖u‖ < λ}. It follows from (H1) and Lemma 1 that for u ∈ ∂Ω1,

(Aφu)(t) =

∫ 1

0
k(t, s)F(s, us(w;φ))ds

≤

∫ 1

0
k(s, s)F(s, us(w;φ))ds

≤ λ

(∫ 1

0
k(s, s)

)−1 (∫ 1

0
k(s, s)ds

)
‖u‖
λ

= ‖u‖.
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Hence,

‖Aφu‖ ≤ ‖u‖ for u ∈ ∂Ω1 ∩ K .

Step 2. LetΩ2 := {u ∈ K | ‖u‖ < η}. It follows from the definitions of ‖u‖ and K that{
u(t) ≤ ‖u‖ = η for t ∈ [0, 1],
u(t) ≥ min

t∈[p1,p2]
u(t) ≥ M‖u‖ = Mη for t ∈ [p1, p2],

for u ∈ ∂Ω2, which implies

Mη ≤ u(t) ≤ η for t ∈ [p1, p2].

Moreover, it follows from 0 ≤ −w ≤ p1 < p2 ≤ 1 that s + w ≥ 0 for s ∈ [p1, p2]. This implies us(w;φ) = u(s + w) for
s ∈ [p1, p2]. Hence,

(Aφu)
(
p1 + p2

2

)
=

∫ 1

0
k
(
p1 + p2

2
, s

)
F(s; us(w, φ))ds

≥

∫ p2

p1
k
(
p1 + p2

2
, s

)
F(s; us(w, φ))ds

≥ η

(∫ p2

p1
k
(
p1 + p2

2
, s

)
ds

)−1 (∫ p2

p1
k
(
p1 + p2

2
, s

)
ds

)
‖u‖
η

= ‖u‖,

which implies

‖Aφu‖ ≥ ‖u‖ for u ∈ ∂Ω2.

Therefore, by Theorem A, we complete this proof. �

Note this givenw may not belong to (−1, 0], hence, we can only conclude the following.

Theorem 3 (Existence Result for −r ≤ w ≤ 0). Suppose the following hypotheses hold:

(H1) there exists a positive constant λ such that

F(t, ψ) ≤ λ

(∫ 1

0
k(s, s)ds

)−1

, for t ∈ [0, 1] and ψ ∈ Cr with ‖ψ‖J ≤ λ,

and
(H3) there exist p1, p2 with 0 ≤ p1 < p2 ≤ 1 and a positive constant η 6= λ such that

F(t, ψ) ≥ η

(∫ p2

p1
k
(
p1 + p2

2
, s

)
ds

)−1

, for t ∈ [p1, p2] and ψ ∈ Crwith‖ψ‖J ≤ η.

Then for any given φ ∈ Cr,0 with ‖φ‖J ≤ min{λ, η}, (BVP) has at least one positive solution u such that ‖u‖ between λ and η.

Proof. This proof follows in similar fashion to that of Theorem 2. One just needs to modify Step 2 in the process of the
demonstration of Theorem 2 as the following:
Step 2. LetΩ2 := {u ∈ K | ‖u‖ < η}. It follows from the definitions of ‖u‖ and K that{

u(t) ≤ ‖u‖ = η for t ∈ [0, 1],
u(t) ≥ min

t∈[p1,p2]
u(t) ≥ M‖u‖ = Mη for t ∈ [p1, p2],

for u ∈ ∂Ω2, which implies

Mη ≤ u(t) ≤ η for t ∈ [p1, p2].

Moreover, for s ∈ [p1, p2],

us(w;φ) :=

{
u(s + w) if s + w ≥ 0,
φ(s + w) if s + w ≤ 0,

Which implies,

‖us(w;φ)‖ ≤ η.
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Hence,

(Aφu)
(
p1 + p2

2

)
=

∫ 1

0
k
(
p1 + p2

2
, s

)
F(s; us(w, φ))ds

≥

∫ p2

p1
k
(
p1 + p2

2
, s

)
F(s; us(w, φ))ds

≥ η

(∫ p2

p1
k
(
p1 + p2

2
, s

)
ds

)−1 (∫ p2

p1
k
(
p1 + p2

2
, s

)
ds

)
‖u‖
η

= ‖u‖,

which implies

‖Aφu‖ ≥ ‖u‖ for u ∈ ∂Ω2. �

3. Applications

Remark 4. Assume that F(t, ψ) satisfies the following property P:
If maxt∈[0,1] F(t, ψ) is unbounded, then, there exists a φ with ‖φ‖J large enough such that for any ψ ∈ Crwith‖ψ‖J ≤

‖φ‖J , we have maxt∈[0,1] F(t, ψ) ≤ maxt∈[0,1] F(t, φ).

Given p1, p2 with 0 ≤ p1 < p2 ≤ 1 and let

max F0 := lim
‖ψ‖J→0

max
t∈[0,1]

F(t, ψ)
‖ψ‖J

,

min F0 := lim
‖ψ‖J→0

min
t∈[p1,p2]

F(t, ψ)
‖ψ‖J

,

max F∞ := lim
‖ψ‖J→∞

max
t∈[0,1]

F(t, ψ)
‖ψ‖J

,

and

min F∞ := lim
‖ψ‖J→∞

min
t∈[p1,p2]

F(t, ψ)
‖ψ‖J

.

Since (∫ 1

0
k(s, s)ds

)−1

:= A =
6(γ + δ)

γ + 3δ
,

and (∫ p2

p1
k
(
p1 + p2

2
, s

)
ds

)−1

:= B =
16(γ + δ)

(p2 − p1)(L1L2 + L3L4)
,

where

L1 := p2 + 3p1, L2 := 2γ − p1γ − p2γ + 2δ,
L3 := 4γ + 4δ − 3γ p2 − γ p1, L4 := p1 + p2,

we have the following results:
Suppose that max F0 := C1 ∈ [0, A). Taking ε = A − C1, there exists a λ1 > 0 (λ1 can be chosen arbitrarily small) such

that for any ψ ∈ Cr with ‖ψ‖J ≤ λ1,we have

max
t∈[0,1]

F(t, ψ)
‖ψ‖J

≤ ε + C1 = A.

Hence,

F(t, ψ) ≤ A‖ψ‖J ≤ Aλ1, for t ∈ [0, 1] and ψ ∈ Cr with ‖ψ‖J ∈ [0, λ1],

which satisfies the hypothesis (H1) of Theorem 2.
Suppose that min F∞ := C2 ∈ ( B

M ,∞]. Taking ε = C2 −
B
M > 0, there exists an η1 > 0 (η1 can be chosen arbitrarily

large) such that for any ψ ∈ Cr with ‖ψ‖J ≥ Mη1,we have

min
t∈[p1,p2]

F(t, ψ)
‖ψ‖J

≥ −ε + C2 =
B
M
.
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Hence,

F(t, ψ) ≥
M
B

‖ψ‖J ≥
B
M

Mη1 = Bη1, for t ∈ [p1, p2] and ψ ∈ Cr with ‖ψ‖J ∈ [Mη1, η1]

which satisfies the hypothesis (H2) of Theorem 2.
Suppose that min F0 := C3 ∈ ( B

M ,∞]. Taking ε = C3 −
B
M > 0, there exists an η2 > 0 (η2 can be chosen small enough)

such that for any ψ ∈ Cr with ‖ψ‖J ≤ η2,we have

min
t∈[p1,p2]

F(t, ψ)
‖ψ‖J

≥ −ε + C3 =
B
M
.

Hence,

F(t, ψ) ≥
B
M

‖ψ‖J ≥
B
M

Mη2 = Bη2, for any t ∈ [p1, p2] and ψ ∈ Cr with ‖ψ‖J ∈ [Mη2, η2]

which satisfies the hypothesis (H2) of Theorem 2.
Suppose that max F∞ := C4 ∈ [0, A). Taking ε = A − C4 > 0, there exists a θ > 0 (θ can be chosen arbitrarily large)

such that for any ψ ∈ Cr with ‖ψ‖J ≥ θ,we have

(∗) max
t∈[0,1]

F(t, ψ)
‖ψ‖J

≤ ε + C4 = A.

Now we have the following two cases:
Case 1. Assume that maxt∈[0,1] F(t, ψ) is bounded, that is,

F(t, ψ) ≤ L, for t ∈ [0, 1] and ψ ∈ Cr .

Taking λ2 =
L
A , hence,

F(t, ψ) ≤ L = Aλ2, for t ∈ [0, 1] and ψ ∈ Cr with ‖ψ‖J ∈ [0, λ2].

Case 2. Assume that maxt∈[0,1] F(t, ψ) := Gt(ψ) is unbounded. Then, by property P, there exists a φ with ‖φ‖J := λ2 ≥ θ
such that for any ψ ∈ Crwith‖ψ‖J ∈ [0, λ2],we have

max
t∈[0,1]

F(t, ψ) = Gt(ψ) ≤ Gt(φ) = max
t∈[0,1]

F(t, φ).

This implies

F(t, ψ) ≤ F(t0, φ), for t ∈ [0, 1] and ψ ∈ Cr with ‖ψ‖J ∈ [0, λ2].

It follows from λ2 ≥ θ and (∗) that

F(t, ψ) ≤ F(t0, φ) ≤ A‖φ‖J = Aλ2, for t ∈ [0, 1] and ψ ∈ Cr with ‖ψ‖J ∈ [0, λ2].

By Cases 1 and 2, the hypothesis (H1) of Theorem 2 is satisfied.
It follows from Remark 4 that the following corollaries hold.

Corollary 5. Assume that F satisfies property P and suppose there exist p1 and p2 with 0 ≤ −w ≤ p1 < p2 ≤ 1, A and B are
defined as in Remark 4. Then in the case

(H4) max F0 = C1 ∈ [0, A) andmin F∞ = C2 ∈ ( B
M ,∞], or

(H5) min F0 = C3 ∈ ( B
M ,∞] andmax F∞ = C4 ∈ [0, A),

we have following corresponding results (i) and (ii) respectively.

(i) For any given φ ∈ Cr,0 with ‖φ‖J small enough, (BVP) has at least one positive solution.
(ii) For any given φ ∈ Cr,0, (BVP) has at least one positive solution.

Proof. It follows from Remark 4 and Theorem 2 that the desired result holds, immediately. �

Corollary 6. Assume that F satisfies property P and suppose there exist p1 and p2 with 0 ≤ −w ≤ p1 < p2 ≤ 1, A and B are
defined as in Remark 4. If the following hypotheses hold:

(H6) min F∞ = C2,min F0 = C3 ∈ ( B
M ,∞],

(H7) there exists λ∗ > 0 such that

F(t, ψ) ≤ Aλ∗, for t ∈ [0, 1] and ψ ∈ Cr with ‖ψ‖J ∈ [0, λ∗
],

then, for any given φ ∈ Cr,0 with ‖φ‖J ≤ λ∗, (BVP) has at least two positive solutions u1 and u2 such that 0 < ‖u1‖ <
λ∗ < ‖u2‖.
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Proof. It follows form Remark 4 that there exist two real numbers η1 and η2 satisfying

0 < η2 < λ∗ < η1,

F(t, ψ) ≥ Bη1, for t ∈ [p1, p2] and ψ ∈ Cr with ‖ψ‖J ∈ [Mη1, η1],

and

F(t, ψ) ≥ Bη2, for t ∈ [p1, p2] and ψ ∈ Cr with ‖ψ‖J ∈ [Mη2, η2].

Thus, by Theorem 2, we see for any given φ ∈ Cr,0 with ‖φ‖J ∈ [0, λ∗
], (BVP) has two positive solutions u1 and u2 such that

η2 < ‖u1‖ < λ∗ < ‖u2‖ < η1. Hence, we complete this proof. �

Corollary 7. Assume that F satisfies property P and suppose there exist p1 and p2 with 0 ≤ −w ≤ p1 < p2 ≤ 1, A and B are
defined as in Remark 4. If the following hypotheses hold:

(H8) max F0 = C1,max F∞ = C4 ∈ [0, A),
(H9) there exists η∗ > 0 such that

F(t, ψ) ≥ Bη∗, for t ∈ [p1, p2] and ψ ∈ Cr with ‖ψ‖J ∈ [Mη∗, η∗
],

then, for any given φ ∈ Cr,0 with ‖φ‖J small enough, (BVP) has at least two positive solutions u1 and u2 such that 0 < ‖u1‖ <
η∗ < ‖u2‖.

Proof. It follows from Remark 4 that there exist two real numbers λ1 and λ2 satisfying

0 < λ1 < η∗ < λ2,

F(t, ψ) ≤ Aλ1, for t ∈ [0, 1] and ψ ∈ Cr with ‖ψ‖J ∈ [0, λ1],
F(t, ψ) ≤ Aλ2, for t ∈ [0, 1] and ψ ∈ Cr with ‖ψ‖J ∈ [0, λ2].

Thus, by Theorem 2, we see for any given φ ∈ Cr,0 with ‖φ‖J ∈ [0, λ1], (BVP) has two positive solutions u1 and u2 such that
λ1 < ‖u1‖ < η∗ < ‖u2‖ < λ2. Hence, we complete this proof. �

Remark 8. We note that in the limiting case r = 0, Cr is reduced to R. Then (BVP) can be reduced to a general boundary
value problem as follows:

(BVP∗)

{
u′′(t)+ F(t, u(t)) = 0, t ∈ (0, 1),
(BC)

where F : R×R → R+ is continuous. It is easy to check that our Theorems can appropriately apply to (BVP∗). Furthermore,
in this case, property P automatically holds for this function F(t, u) on [0, 1] × [0,∞). Hence, all corollaries are applicable
to (BVP∗). Note that for many source terms, we can easily compute corresponding ‘‘max F0,min F0,max F∞,min F∞’’ in
appropriate ranges, for example, F(t, u) :=

eu−1
1+t2

(max F0 = 1andmin F0 =
1
2 ), F(t, u) := u + t2e−u(max F0 = ∞,min F0 =

max F∞ = min F∞ = 1).

To illustrate the use of our results, we present the following example.

Example 9. Consider the boundary value problem

u′′(t)+ p(t)

√
u

(
t −

1
3

)
+ C = 0, t ∈ [0, 1],

and

u(t) = φ(t), t ∈

[
−

1
3
, 0

]
(BC)

{
αu(0)− βu′(0) = 0,
γ u(1)+ δu′(1) = 0,

where p(t) is a positive continuous function on [0, 1], C > 0, φ ∈ C([− 1
3 , 0],R) is arbitrarily given, α, β, γ , δ ≥ 0 and

ρ := γ β + αγ + αδ > 0.
Then, we have

F(t, ψ) := p(t)

√
ψ

(
−

1
3

)
+ C,
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which implies that F satisfies property P. One can compute

max F∞ = 0

and for any p1 and p2 with 0 ≤ −
1
3 ≤ p1 < p2 ≤ 1,

min F0 = ∞.

Applying Corollary 5 to this example, we can conclude that there is at least one positive solution to this boundary value
problem.
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