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Abstract
This work deals with the existence of positive solutions of convection—diffusion equations Au + f (x, u, Vi) = 0 in an exterior
domain of R (n > 3).
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1. Introduction

We consider the nonlinear second-order elliptic equation
(E) Au+ f(x,u,Vu) =0. x € Ga,

in an exterior domain G4 = {x € R"||x| > A}, where n > 3 and A > 0. We try to prove, under a quite general
assumption on function f, that the equation (E) has a positive solution in Gg = {x € R"||x| > B} for some
B > A, that is, there exists a function u € C%(Gp) such that u satisfies (E) at every point x € Gp. A subsolution
of (E) is a function u that satisfies Au + f(x, u, Vu) > 0, and a supersolution of (E) is a function u that satisfies
Au + f(x,u, Vu) < 0; these are defined similarly.

In 1997, Constantin [1,2] proved the existence of the equation

(E*)  Au+ p(x,u)+q(xDx - Vu =0
in the exterior domain G 4 as follows:

Theorem A. Assume that p is locally Holder continuous in G 4 x R [3] and q is of C'. If

0<px,0)<a(xDw@), teRy, xeR?,
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where a € C(Ry, Ry) and w € CH (R, Ry) with w(0) = 0, then there is a positive solution u(x) to (E*) on G g for
some B > A with lim|y| o0 u(x) = 0 provided that q is bounded and

o
/ sla(s) + |g(s)|lds < oo.
0
We shall extend this theorem to a more general result in the next section.
2. Main results

Define Sp = {x € R"||x| = B} for B > A.
In order to prove our main result, we need the following excellent lemma; see Noussair and Swanson [5].

Lemma B. Assume that f is locally Holder continuous in G 4 x R x R". If there are a positive subsolution w and a
positive supersolution v to (E) in Gp such that w(x) < v(x) forall x € Gg U Sp, then (E) has a solution u in Gp
satisfying w(x) < u(x) <v(x)in Gp U Sp and u(x) = v(x) on Sp.

We are now in a position to state and prove our main result.

Theorem C (Existence Theorem). Suppose that f is locally Holder continuous in G 4 X R x R" and satisfies
0=<fCx.t,2) <k(x.H)+g(xl.x-2) teR;y, xeR" zeR",
where k and g satisfy:

(A1) k € CRy x R, Ry) with k(-, 0) = O satisfies a Lipschitz condition with respect to the second variable, that
is, there exists a function M € L' (R ; (0, 00)) such that |k(a, b)| < Mi(a)|b| on Ry x [-2,2],

(A2) g € C(Ry xR, Ry) with g(-,0) = 0 satisfies a Lipschitz condition with respect to the second variable, that
is, there exists a function My € L' (R.; (0, 00)) such that |g(a, b)| < Ma(a)|b| on Ry x R.

Then there is a positive solution u(x) to (E) on Gp for some B > A with limy| oo u(x) = 0 if fooo s[Mi(s) +
M>(s)]ds < oo.

Proof. Let us consider the differential equation
YY" ko y) + " go(r Y)Y =0, 7> 1, (1

_ Jk(a,b) if b >0, g(a,b) if b > 0,
whereko(a,b)—{fkm,m ity <o, and go(a, b) = {7g(a.\b|) ifh <0.

Clearly, ko and g still satisfy (A1) and (A3). The change of variables

1
1 =
r=ﬂ(s>=(n_ s) L) = sy(B)

2
transforms (1) into
" L h)\ , _B6)’ (n=2W'(s)  hs) \ _
h™(s) + - 2/3 (s)B(s)ko (ﬁ( )s ) 2% </3( )s B(s) - ﬂ(s)”—1> =0.
It follows from (A;) and (A») that, for each s € R4, we have

h h
o (0. ")) O g |12

< Mi(B(s)) ‘—
S
n —2)h'(s) h(s) (n —2)K'(s) h(s)
, M — . 3
£ (’3(” Bls) By~ ‘)' 2P6) { B(s) By } @

From (1)—(3), it is natural to consider

<2, ()

for ’

and

h'(s) + —/3 (s)B(s)M1(B(s)) ’— + Ma(B(s)) {h (s) — }ﬁ( )B(s) = 0.
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Let

b(s) = 12/3’(5)/3(S)SM1 (B(s) n ﬂ’(S)ﬁ(S)SMz(ﬂ(S))’

c(s) = B (B MaB(s)), s> 1.

It follows from [;°s[M;(s) + Ma(s)lds < oo that [[“c(s)ds < oo and [{"sb(s) < oo, which yields
I [ b(s)dsdr < oo.

Let Ty > max{1, (n — 2) A" 2} satisfy 2e2 /15 €©)d f}i}o [ b(s)dsdr < 1.
Now, we will show that

B'(s) + c()h'(s) + b(s)h(s) =0, s=>Tp 4)

has a solution /(s) such that |h(s) — 1| < 1 forall s > Ty and limg_, o 2(s) = 1.
Consider the Banach space X = {x € C([Tp, o0), R)|x(¢) is bounded} with superemum norm. Let K = {x €
X||lx() — 1] < 1,t = To} and define the operator

F:K— X
by

oo o0 oo (o]
Fx(t)=1— f el c®)ds / eIy C®%pyx(rydrds, 1> To.
t

N

Since 0 < x(t) <2forx € K andt > Ty,

oo .. o0 o
0= / el c@)k f eI % pr)x(r)drds
t

N

00 o0 o0
< 2¢/% C@)dg/ f b(rydrds < 1. t> Tp.
t s

Thus F(K) C K.

Next, we prove that F is compact. Let {x,}°°

n— be a sequence in K. Define

o0 00 {oe]
fu(s) = els c(E)dS/ e ) C(S)déb(r)xn(r)dr, fors > Tp.
N
Then f, € LY([Ty, 00), R) satisfies lim,_, o f;o | fn(s)|ds = 0 and

00 0 00 poo
/ | £a(s)]ds < 2¢2/70 C@)‘E/ / b(s)dsdr <1, n>1.
Ty To t

By the Lebesgue dominated convergence theorem,

[ee) s+48 o
lim / / e~ C®pydrds =0
Ty

§—0 s
and
oo 00 00 o
lim [ |elis @ _ of7 @ / b(r)drds = 0.
§—0Jr, s

Therefore, for any given € > 0, there is a y > 0 such that
0o | 0o ps+8 o
2¢m L(é)dS/ / e ) @b drds < S, 18] <y,
To K 2

and

00 o 00 00 o0
2¢ /1y ) / s O _ [T e@)de / b(r)drds < g 18] < .
T() N
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Since 0 < x,(¢) < 2forall + > Tp and n > 1, the previous choice of y enables us to deduce that

* IRe@ds [0 g 00 >
/ [ fu(s +8) = fuls)] < 20° / et @ _ el e(®)d) / b(r)drds
s

To To
—+—26:j;0O c@)d /OO |efsoi5 c®)dE _ o c(§)dg /oob(r)drds
To s
<€, n>118 <vy.

By Riesz’s theorem (see [4]), the sequence {f,},2 | is compact in L' ([Ty, o0), R).
It follows from

(o)
Fx,(t)=1 —/ fu(@s)ds, t>Tp, n>1
t

that { F'x,}7° | is compact in K. This implies that F is a compact mapping.

By the Schauder fixed point theorem, the mapping F has a fixed point 2z € K. It is easy to verify that & is a
nonnegative solution of (4) in [Ty, 0o) and satisfies limy_, o, i(s) = 1.

Take Ty > Tp so that h(s) > O fors > Tj and let B = (-1571)72 > A. Define v(x) = y(r) = "2 for
r = |x| > B, where r = B(s).

Since limg_, o0 (s) = 1, lim)y |5 00 v(x) = 0.

Hence, v(x) > 0Oon Sp U Gp and

Av + f(x,v(x), Vo) < ") + "k, y) + g y)
1 h
= 1'(5) + —— B (s)B(s)ko (ﬁ(s), ﬂ)
n—2 s
B(s)? ( a5y, = Dh'(s)  h(s) )

n—2)25° B(s) Bs)y]
< h"(s) + c(s)h'(s) + b(s)h(s) =0, r>B

_I_

which implies that v is a supersolution of (E) on Gp.
Clearly, w(x) = 0 satisfies

Awx) + f(x, wx), Vw(x)) >0, x € Gp.

By the Lemma B we see that (E) has a solution u(x) in Gp with w(x) < u(x) < v(x) for |x| > B and u(x) = v(x)
for |x| = B.
Finally, we will show that u is positive. We choose a positive number k >
For any given € > 0, we define

_n_
2B2°

ue = inf (u(x)} +ee ¥ x € SpUGE,
xXeSp

where u(x) is a solution of (E) in G . If x € G, then it follows from
(Aue)(x) = e(@k2|x)* — 2kn)e k1T’
> 0> —f(x,u, Vu)
= (A +ee ™)) (),

that (A(u + ce kB _ ue))(x) < 0.
On the other hand, by using the fact that |x| > B, we get

u(x) +ee_k32 —u(x) >0, xe€Gp.
Since u(x) > 0 on Gp and u.(x) is bounded on G g, the function
2e() = u(x) +ee B —u.(x), xeGpUSy

has a finite infimum in Gg U Sp.
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For any C > B,
infze(x) = minze(x) on Gpc = {x|B < |x| < C}.

If there exists a xg € {x|B < |x| < C} with z¢(x9) = minyeg e {ze(x)}, then (Aze)(xg) > 0, which is a contradiction.
Thus minyeg - ze(x) lies on {x||x| = B} for all C > B. It follows from

inf  zc(x) = min z¢(x) >0
xeGpUSp xeSp

2 . . . .
that ue (x) < u(x) + ee *8° x € Gp U Sp. Letting in the previous relation € — 0, we get

h((n —2)B"72) _ h(T)
n—2B"2 1

u(x) > inf u(x) = inf v(x) = y(B) = 0, xeGgp
xESB xGSB
and this shows that u(x) is positive in G p.
It follows from u(x) < v(x) for |x| > B and lim|y|— o v(x) = O that limy— o u(x) = 0. This completes the
proof. [

Remark. f(x,u, Vu) = p(x,u) + q(|x])x - Vu, where p is locally Holder continuous in G4 x R satisfying
0<pkx,t) <a(xDw@), teRy, xeR"
Herea € C(Ry,Ry), w € C'(R4, Ry) with w(0) = 0, ¢ is of C! with a bound and fooos[a(s) + g (s)|1ds < oo.

Moreover, if k(|x|, t) = a(Jx])w(¢) and g(|x|, x - z) = g(]x])x - z, then our Theorem C is reduced to Theorem A.
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