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ABSTRACT 

While search plays an important role 
in the efficient market hypothesis (EMH), 
the traditional formalization of the EMH, 
based on probabilistic independence, fails 
to capture it. Due to this failure, re­
cent findings of nonlinear tests misled us 
into concluding that the EMH is rejected. 
Even though most economists are reluctant 
to make this conclusion, the traditional 
formalization leaves us no other choice. 
This paper reformalizes the EMH with a 
biologically-based search program, i.e., ge­
netic programming (GP) . The GP-based 
search enables us to model search in the 
EMH explicitly. Through this, serach cost 
as well as search intensity can be measured 
objectively, and the notion of predictabil­
ity and profitability can then be formal­
ized. The GP-based notion of the EMH will 
be exemplified by testing the EMH with a 
small, medium and large sample of the S&P 
500 stock index. 

1 Introduction 

Thus, investors cannot device an investment 
strategy to yield abnormal profits on the basis of 
an analysis of past price patterns. (Malkiel, 1987, 
p.127) 

In his survey article, Malkiel gave the intuitive notion 
of the efficient market hypothesis cited above. Based on 
this intuitive notion, to formalize the EMH, two tech­
nical notions are needed, namely, a technical notion of 
predictability and a technical notion of profitability. How­
ever, despite its long history, the formalization of the 
EMH has been built solely on a technical notion of pre­
dictability and it proceeded as if an appropriate techni­
cal notion of unpredictability would automatically defy 

profitability in any sense. In the history of the EMH, 
there is only one technical notion of predictability been 
formalized and it was constructed in terms of probabilis­
tic independence in probability theory. Mathematically 
speaking, considering the rate of returns Rt a random 
variable (function) defined in the L2 probabilistic Hilbert 
space and Qt-i the <r-algebra generated by the history 
of rate of returns {Rj})'!1^^, then the EMH simply says 
that Rt is independent of any random variables in the 
Qt-i- Based on the different information sets Qt-i, one 
could have different versions of the EMH (Malkiel, 1987). 
The one introduced above is called weak-form efficiency. 
Furthermore, considering the expected rate of returns 
the conditional expectation E{Rt | fit-i), then the EMH 
also implies that 

E(Rt | n«_i) = 0. (1) 

Since Equation (1) is also a consequence of the ran­
dom walk defined in a discrete-time stochastic process, 
the EMH is often used interchangeably with the random 
walk hypothesis in finance, even though the former is far 
from equivalent to the latter. 

While this formalization is precise, Chen and Yeh 
(1995) argued that it is not computable in the sense that 
we can not test it with an effective algorithm. Never­
theless, this problem had not been fully recognized until 
recently when a series of nonlinear tests failed this hy­
pothesis, e.g., Brock, Dechert and Scheinkman (1987), 
Savit (1988, 1989), Hinich and Patterson (1989), Hsieh 
(1989), Frank, Gencay and Stengos (1988), Scheinkman 
and LeBaron (1989), Peters (1991), and Willey (1992). 
These tests either tell us that there exists nonlinear de­
pendence between Rt and Clt-i or that {Ri}l=^oo *s a 

chaotic time series which looks random but is in fact 
deterministic. 

What do these tests imply? If we take Equation (1) as 
the formalization of the EMH, then the rejection of the 
EMH naturally follows from the statistical rejection of 
Equation (1). Unfortunately, this is a certainly a very 
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negative result for the mainstream economists and an 
unacceptable one too. However, there may be hope of 
solving this conundrum if we can interpret these results 
in a different way. For example, Fogler (1995) had the 
following remarks: 

...whether a chaotic process or a complex nonlin­
ear process generates a pattern is irrelevant unless 
one knows the exact functional form generating 
the process. Even if tests indicate a high embed­
ding dimension, forecasting is impossible unless a 
specific function form is assumed, (p. 16) 

Accordingly, the rejection of Equation (1) based on 
any nonlinearity test does not authorize us to say that 
the market is not efficient unless we are able to show 
the underlying data generating process. Fogler's remarks 
powerfully separated the nonlinearity tests from the effi­
cient market hypothesis. But, that also means Equation 
(1) has to be given up and a new technical notion of un­
predictability is needed. To be consistent with Fogler's 
remarks, the new notion must be search oriented. More 
precisely, to formalize Fogler's notion of unpredictability, 
a search algorithm must be included so that the decision 
of predictability can be made based on search results. 
Moreover, since we are searching for the potential reg­
ularity in L2 space and the cardinality of this space is 
infinite, the design of this search algorithm cannot be 
limited to only a finite number of functions or any special 
subclass of functions. However, the theoretical technol­
ogy to design the search algorithm of this sort was not in 
the classical toolbox of economists. That also partially 
explains why the search-based notion of unpredictability 
was not formalized over the last 90 years, while it was 
already captured by economists' intuition, e.g., Malkiel 
(1987). 

Given the introduction above, the contribution which 
genetic programming can make to the EMH is clear. 
Using the novel idea of incorporating the evolutionary 
operation into the automatic search over the space of 
programs {I? space), genetic programming provides fi­
nancial economists with a theoretical technology to de­
sign a search algorithm and to formalize the notion of 
unpredictability. This formalization also enables us to 
define search intensity and to give us an objective mea­
surement of search costs and the chance of success in the 
search. Based on that, the expected profits of search can 
be derived and the other aspect of the EMH, i.e., the 
profitability aspect, can also be formalized. 

This contribution also distinguishes the application of 
genetic programming from other applications of biologi­
cally inspired computational models to finance. For ex­
ample, artificial neural nets are mainly used in finance as 
a problem-solving technique for the nonlinear estimation 
and forecasting of the asset price or for the computa­
tion of option pricing. Regardless, ANNs per se pro­
vide little to change or advance our understanding of the 

fundamental concepts in finance. In contrast, genetic 
programming not only enriches the finance toolbox, but 
also enhances our understanding of finance theory from 
its very root. 

Chen and Yeh (1995) conducted a pioneer study to 
demonstrate the GP-based notion of unpredictability. 
This formalization of unpredictability was illustrated 
with examples of predicting chaotic dynamic systems. 
They applied GP to predict the time series generated by 
three chaotic dynamic systems which are represented by 
the LISP S-Expression and depicted as a rooted, pointed-
labeled tree (GP-tree). They have shown that if the 
rates of return are generated by a simple deterministic 
chaotic dynamic system, then GP may actually discover 
it. Here, "simple" refers to the depth of the GP-tree and 
has nothing to do with the embedding dimension. Their 
study illustrated how genetic programming can provide 
us with an explicit search program upon which an objec­
tive measure for predictability can be constructed. Also, 
it indicated that the use of Lyapunov exponents to esti­
mate the predictability of a chaotic time series might not 
be appropriate. 

In the same study, the EMH based on the GP-based 
notion of unpredictability was exemplified by an appli­
cation to a mini-size sample of S&P 500 index (sample 
size = 50). It was found that, while linear models can­
not predict better than the random walk, a GP-based 
search can beat random walk by 50%. However, Chen 
and Yeh (1995) did not explicitly show how the GP-based 
notion of unpredictability can be related to the other as­
pect of the EMH, i.e., the notion of profitability. While 
they could show to Fogler how to find the underlying 
data generating process given the existence of nonlinear 
dependence, they certainly have not answered the essen­
tial question whether predictability implies profitability. 
Therefore, their work, at best, only formalized the first 
half of Malkiel's intuitive notion of the EMH. 

This paper will extend Chen and Yeh (1995) to the 
second half. To do this, we exemplify the notion of 
profitability by comparing long-range forecasting with 
large samples and short-range forecasting with small 
samples. Since different forecasting strategies involve 
different search cost, i.e., direct computational cost and 
indirect risk cost, the GP-based notion of profitability 
enables us to check whether the better prediction by a 
certain search strategy was made at high search cost. In 
other words, we can test the no-free-lunch property in 
Malkiel's intuition of the EMH. This work will be done 
in Sections 2 and 3. Section 2 will describe the choice of 
data. Section 3 will present the results of the GP-based 
search over different sizes of sample along with the anal­
ysis. 

Section 4, which is motivated by Koza (1992) (pp.245-
255), provides an knowledge-discovery perspective to 
study the GP-based formalization of the EMH. In this 
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section, the EMH represented by Equation (1) is re­
garded as a benchmark. We then evaluate the competi­
tiveness of this benchmark by observing how well it can 
fight against its potential competitors. If, during the 
evolution, it is beaten by a competitor, then this bench­
mark is considered not competitive; otherwise, we say it 
is competitive. It is this sense that we will show that the 
EMH is not competitive in the small sample but is quite 
competitive in the large sample. Concluding remarks are 
given in Section 5. 

2 The Design of the Data Environment 

2.1 The Sample Size 

The data environment in which the GP-based search is 
implemented concerns the daily rate of return of the S&P 
500 Index, from 1/2/62 to 9/6/95. There are totally 
8,478 observations in this dataset. This dataset is rich 
enough for us to test the EMH in the long run as well as 
in the short run. Distinguishing between short-run tests 
and long-run tests is motivated by the recent studies of 
the time series of stock prices which seem to indicate that 
even though nonlinear regularities might exist, they are 
not stable over time. For example, Peters (1991) made 
an excellent note on this. 

For too long, we seem to have been divided be­
tween "technicians" who believe that the market 
follows a regular cycle and "quants" who believe 
there is no cycle at all. The truth lies somewhere 
in between. There are cycles, but they are not 
regular, hence may be invisible to standard sta­
tistical techniques, (p.62) 

LeBaron (1992) also came up with a similar observa­
tion. 

Some out-of-sample forecast improvements are 
demonstrated for the weekly S&P 500 series. The 
evidence shows that these improvements are dif­
ficult to detect since they only occur during cer­
tain time periods. ... Although forecast improve­
ments appear significant, they are extremely small 
and occur only for a fraction of the weeks tested. 
Stock returns remain, as they should, a relatively 
difficult series to forecast, (p.381) 

Therefore, the application of GP to different sizes of 
sample does require lots of thought. Suppose that the 
stock market encounters a sequence of short-term time-
variant nonlinear relations, a large sample size may aver­
age out all these relations. In this case, a smaller sample 
size is desirable, whereas for the time-invariant long-term 
nonlinear relation, a large sample size is needed. In an 
earlier study, Chen and Yeh (1995) conducted large-scale 
experiments for a sample with sample-size 50 (about ten 

weeks). In this paper, we extend the study by testing 
the EMH with a short-term (sample size=200), medium-
term (1000) and long-term (2000) sample of S&P 500. 
The short-term sample corresponds to data about 10 
months long, the medium-term about 4 years and the 
long-term about 8 years. It will be interesting to see how 
the validity of the EMH will be affected by the sample 
size. 

2.2 Selecting Data with the MDL 

In a data set with 8478 observations, there are many 
subsets associated with different sample sizes. To test 
all of them seems to be time-consuming. The alternative 
is to test a few of them which are representative. If these 
representative datasets can reject the GP-based test of 
the EMH, so can the rest. For this purpose, the sub­
sets considered are the ones with the highest complexity. 
Since there is no unified definition or criterion for com­
plexity (Horgan, 1995), our adherence to any particular 
style is, more or less, arbitrary. Of course, this weak­
ness can be consolidated by simultaneously using differ­
ent styles of complexity measure. However, in this paper, 
we only consider the most popular style used in statistics 
and econometrics, i.e., Rissanen's minimum description 
length (MDL). 

Rissanen's MDL (minimum description length) is an 
approximation for Kolmogorov complexity which mea­
sures the complexity of a set of data by the length of 
the shortest universal Turing machine program that will 
generate the data. The measure is well-defined, but not 
practically computable. The MDL developed by Rissa-
nen (1982) is a way to approximate this uncomputable 
measure by replacing the universal Turing machine with 
a class of probabilistic models. 

A detailed description of the MDL algorithm used in 
this paper can be found in Chen and Tan (1996). Briefly 
speaking, we first transform the original sequence of {Rt} 
from 1/2/62 to 9/6/95 into a 0-and-l sequence based on 
the sign of Rt. Then the MDL is computed for each of 
the 200, 1000 and 2000 consecutive observations in the 
0-and-l sequence by choosing the Bernoulli class and 
Markov class as our model classes. The MDL(x?000) of 
S&P 500 is given in Figure 1. From Figure 1, we can see 
that, in terms of the 2000-day MDL, the second half of 
the time series is more complex than the first half. It is 
consistent with what we have been told in finance that 
complexity has a tendency to increase with time. Based 
on the maximum MDL criterion, the periods for different 
sizes of chosen samples are given in Table 1. The S&P 
500 time series of the chosen period for the sample with 
sample size 1000 and 2000 are drawn in Figures 2 and 3. 

Once the in-sample data series are given, the next issue 
is how to determine the length of the post-sample series. 
In this paper, we arbitrarily set the in-sample data to be 
ten times the size of the post-sample data. The periods 
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to the Maximum MDL S&P 500 (2000 Daily Returns) 

of post-sample series are also given in Table 1. 

Table 1: MDL-Based Data Selection: S&P 500 
Sample 
size 
200 
1000 
2000 

Whole Sample Period (Post-
Sample Period) 
1/3/92 - 10/16/92 (9/21/92 - ) 
3 /1 /82 -2 /11 /86 (9 /19 /85 - ) 
2/5/81 - 1/4/89 (88/3/22 - ) 

MDL 

142.472 
697.794 
1387.579 

3 The Empirical Results 

To implement genetic programming, the program GP-
Pascal is written in Pascal 4.0 by following the instruc­
tions given in Koza (1992). A detailed description of 
this program can be found in Chen, Lin and Yeh (1995). 
The chosen parameters to run GP-Pascal are given in 
Table 2. % and RLOG appearing in the function set are 
the protected division function and the protected natural 
logarithm function (Koza, 1992, pp.82-83). In this pa­
per, all simulations conducted are based on the terminal 
set, which includes the ephemeral random floating-point 
constant R ranging over the interval [-9.99, 9.99] and the 
rate of return lagging up 10 periods, i.e., iZ<_i,...iJt_io. 

M A P E (Mean Absolute Percentage Error) is defined 
as follows: 

JMW.g 1*^*1. (2) 

where m is the sample size and Ri is the prediction value 
of Ri. The choice of the mean absolute percentage er­
ror as the fitness function is attributed to Makridakis 
(1993), who suggested a modified form of MAPEs as 
the most appropriate measure satisfying both theoretical 
and practical concerns while allowing meaningful relative 
comparisons. Since the prediction made by the random 

walk hypothesis is always 0, the corresponding MAPE is 
always 1. So, GP is said to beat the RW if its MAPE is 
less than J. In addition, we define ^i(n) as the proba­
bility that GP can beat the RW in Generation n in the 
in-sample data and n^in) the probability that GP can 
beat the RW in the holdout sample. 

Table 2: Tableau for Predicting Rates of Return 
Population size 
Number of trees created by 
complete growth 
Number of trees created by 
partial growth 
Function set 

Terminal set 

Number of trees generated by 
reproduction 
Number of new lives 
(immigrants) 
Number of trees generated by 
mutation 
Probability of mutation 
Maximum length of the tree 
Probability of leaf selection 
under crossover 
Number of generations 
Maximum number in the do­
main of Exp 
Criterion of fitness 

500 
50 

50 

{ + , - , x , % , 
Sin, Cos, 
EXP, RLOG} 
{Rt-i,Rt-2, •••, 
Rt-io,R} 
50 

50 

100 

0.2 
17 
0.5 

200 
1700 

MAPE 

Based on those control parameters, multiple runs of 
simulations were executed for each sample. For each of 
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the simulations, the MAPE is calculated for the in-
sample period and the post-sample period. Statistics 
show that the sample 7Ti(n) are 100% in Generations 50, 
100, 150 and 200 for the small and medium sample (sam­
ple size=200 and 1000). Moreover, when evolution takes 
longer, limited improvement can always be made. For 
example, in the small sample, the MAPE in the best 
and worst case of these simulations in Generation 50 is 
0.9698 and 0.9904 respectively, and in Generation 200, it 
is improved to 0.9452 and 0.9842. These results are also 
reported in Table 3. 

Table 3: The In-Sample MAPE of the Best Case and 
the Worst Case 

Sample Size/Gen 
Mini-Best 
Small-Best 
Medium-Best 
Large-Best 
Mini-Worst 
Small-Worst 
Medium-Worst 
Large-Worst 

50 
0.7925 
0.9698 
0.9970 
0.9983 
0.9348 
0.9904 
0.9999 
1.0000 

100 
0.6979 
0.9613 
0.9964 
0.9980 
0.9268 
0.9904 
0.9977 
1.0000 

150 
0.6955 
0.9567 
0.9964 
0.9980 
0.9077 
0.9870 
0.9977 
1.0000 

200 
0.6919 
0.9452 
0.9964 
0.9974 
0.8985 
0.9842 
0.9977 
1.0000 

From Table 3, there are a couple of points worth notic­
ing. First of all, as the sample size gets larger, the differ­
ence in the in-sample MAPE between GP-based search 
and the random walk hypothesis becomes more and more 
negligible. The difference is particularly striking when 

-GEN=50 
•GEN=150 
'Random Walks 

GEN=100 
GEN=200 

s-:\ 

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 

Figure 5 : Post-Sample MAPEs RANK 
(S&P 500) 

we compare the in-sample MAPE performance of the 
mini sample (sample size = 50) with that of larger sam­
ples. To get a more general flavor of the MAPE perfor­
mance under the GP-based search, the best in-sample 
and post-sample MAPEs of the mini sample of each sim­
ulation in Gen (generation) 50, 100, 150, and 200 are 
ranked from the lowest to the highest and are shown in 
Figures 4 and 5 (See Chen and Yeh (1995) for details). 

Secondly, the range of the MAPE, i.e., the difference 
in the MAPE bewteen the best and the worst search 
tends to narrow as the sample size increases. It may be 
reasonable to summarize these results by the following 
asymptotic-like hypothesis, 

MAPEgP(n,m) —• 1, as m —• oo, (3) 

where n is the number of evolution and m is the size of 
the training sample. 

This hypothesis clarifies some confusing points around 
the EMH, in particular, the time horizon of the EMH. 
Starting with the pessimistic side, it says that large sam­
ple training is not going to be very helpful. In fact, our 
simulations show that it is easier to search for patterns 
from a smaller sample than from a larger one. This is 
consistent with the old truism in economics that "if there 
is a dollar bill on the ground, it is soon picked up.". Some 
econometricians such as White (1988) suggest that large 
sample training with recurrent neural nets might give 
the EMH a real challenge. Our hypothesis says exactly 
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the opposite: it is the large sample that makes the EMH 
easily acceptable. Turning to the optimistic side, this 
hypothesis does imply that there is room for profits for 
short-range forecasting with the small sample; but then it 
also implies that the rule used to forecast is preferred to 
be updated on a weekly basis rather than on a monthly 
or yearly basis. As a result, the computational cost asso­
ciated with this highly frequent revision must be higher 
than that for long-range forecasting with the large sam­
ple, and it may be so high that, in terms of net profits, 
there is no significant difference between long-range and 
short-range forecasting. 

The computational cost is the physical cost. Another 
important cost concerning forecasting is the risk cost 
which is not directly derived from the physical side but 
from the utility (psychological) side. In economics and 
finance, investors are assumed to be risk aversers. This 
being the case, risk can be counted as another cost for 
them. So, let us turn to the risk side of forecasting strate­
gies, and use the difference in the post-sample MAPE 
between the best GP-based search and the worst one as 
a measure of risk. Table 4 summarizes the results on the 
risk of different styles of the GP-based search. 

Table 4: The Post-Sample MAPE of the Best Case 
and the Worst Case 

Sample Size/Gen 
Mini-Best 
Small-Best 
Medium-Best 
Large-Best 
Mini-Worst 
Small-Worst 
Medium-Worst 
Large-Worst 

50 
0.6712 
0.9987 
0.9962 
1.0000 
2.8223 
1.2021 
1.0239 
1.0019 

100 
0.6680 
0.9987 
0.9952 
1.0000 
2.7109 
1.0391 
1.0383 
1.0019 

150 
0.6680 
1.0000 
0.9951 
1.0000 
3.0470 
1.0383 
1.0337 
1.0019 

200 
0.6680 
0.9919 
0.9951 
1.0000 
5.9289 
1.0389 
1.0333 
1.0075 

From Table 4, we can see that the risk under long-
range forecasting with large-sample training is much 
less than that under short-range forecasting with short-
sample training. In particular, if we examine the mini 
sample studied by Chen and Yeh (1995), the risk can be 
five times higher than that with the large sample. Thus, 
even though GP-based data mining can be useful for the 
short-term data, after taking into account the computa­
tional cost and the risk cost, its advantages may not be 
that great. 

4 On The Competitiveness of the Ran­
dom Walk Hypothesis 

To get a better grasp of the GP-based notion of the EMH, 
we propose in this section another perspective to study 
the EMH by raising the following issues: 

• If the efficient market hypothesis is true, can genetic 
programming automatically discover this truth? In 

fact, we are asking whether genetic programming can 
be used to prove the EMH. 

• Can the random walk hypothesis survive well in the 
competitive environment generated by genetic pro­
gramming? 

As to these questions, the major result of our simula­
tions is that when the sample size is large enough, e.g., 
sample size = 2000, genetic programming can actually be 
used to prove the EMH by discovering the random walk 
hypothesis as the most competitive model. We shall illus­
trate this based on Simulation 2000-1, which is the first 
simulation for the 2000-observation sample. The best 
model chosen from Gen. 0 is: 

F b e s t = L ° g ( R t - l - R t - l ) (4) 

Since Log(0) is defined as 0 in the program, the best 
model found by GP in the initial generation is exactly 
the random walk hypothesis. In other words, the RW 
hypothesis was discovered at the very beginning of the 
evolution. Still, if the random walk hypothesis is not 
competitive, then during the evolution, one could expect 
that other better models will be discovered and replace 
the RW. However, this was not the case observed in Sim­
ulation 2000-1. The RW hypothesis kept on dominating 
the evolution till the end while it appeared in different 
styles. For example, the best model from Gen. 16 is: 

F bes t = (((R t -10 - Rt-10)%ExpR t_3)% - 8.163083) 
(5) 

Since Rt-io cancels itself in Equation (2), F™st is in 
fact the zero function. The evolution might generate 
seemingly complicated functions. After cancellation and 
reduction, however, they can always be simplified to a 
zero function. For example, the best model from Gen. 
195 is: 

F b2 t t = LogMExpBt.j - (*t-8%Rt-10)) ~ (ExpRt_3 
-(R t_ 8%R t_ 1 0 ) ) )%Log((R t_ 1 0 - Cos(R t_1 - R t _i) ) 
%(((Rt-l " R t - l ) % * t - l ) % ( * t - l - Rt-10)))) (6) 

Considering the zero function an equivalent class, then 
we can see from the evolution in the large sample that 
the members of the class of zero function dominated the 
whole evolution. In other words, the random walk hy­
pothesis is very competitive in the large sample. GP 
could not easily find anything better than the RW hy­
pothesis. However, this result does not hold for the small 
sample. In particular, when the sample size is 200, the 
random walk hypothesis can be the best only in the ini­
tial generation (Gen. 0). It would be quickly replaced by 
other models once the evolution started. For example, 
the best model from Gen. 0 in Simulations 200-2 and 
200-3 are given in Equations (4) and (5) respectively. 

Gbest = ( R t - 7 * ( R t - 6 - R t - 6 ) ) (7) 
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H g e s t = Sin((Rt_3 + Rt_ 2) * (Rt_4 - R t_ 4)) (8) 

Clearly, both G°be,t and H$es t are the members of the 
equivalent class of zero function, hence they represent the 
random walk hypothesis. However, in Gen. 1, they were 
defeated by the G\est and H\ett (given below) separately. 

G bes t = ( R t - 5 * ( R t - 7 * R t - l ) ) (9) 

Hbest = Sin(Sin(CosLogRt_8 * (Rt_l - Rt_6))%((Log 
R t . 4 - (4.522217%R t_3)) + CosExpRt_2)) (10) 

Therefore, the random walk hypothesis is not compet­
itive in the small sample and combined with the finding 
of Chen and Yeh (1995), we can conclude that the learn-
ability of the financial data (Sk,P 500) is only restricted 
to the small sample. When the sample gets large, noth­
ing can be learned from it except that it is random. 

This conclusion can also be justified by the complexity 
of the best discovered model. That is, instead of asking 
what rules are discovered by GP, we are inquiring how 
complex those rules are which are discovered by GP. The 
length of the LISP program is used to measure complex­
ity. The complexity of the best model chosen by GP in 
Gen 50, 100, 150 and 200 in a few selected simulations 
is given in Table 5. It is interesting to note that when 
the sample size is small, in-sample fitness can always be 
improved by searching for a bigger LISP tree. For exam­
ple, when the sample size is 200, the length of the best 
LISP program has a positive relation to the number of 
generation of the evolution. However, when the sample 
size is large, the relation disappears. 

Table 5: The Length of the Best Model (LISP 
Program) 

Simulation/Gen 
200-2 
200-3 
200-4 
200-7 
1000-1 
1000-3 
1000-5 
2000-1 
2000-3 

50 
75 
24 
48 
210 
309 
198 
114 
111 
24 

100 
243 
24 
54 
300 
387 
108 
186 
69 
42 

150 
303 
53 
210 
333 
330 
111 
162 
191 
153 

200 
315 
126 
465 
339 
360 
117 
198 
168 
84 

5 Concluding Remarks 

The attempts to formalize the EMH as a consis­
tent, analytical economic theory have met with 
less success than the empirical tests of the hy­
pothesis. (Ross, 1987, p.7) 

Needless to say, at this moment, any conclusion about 
the validity of the EMH is premature and this paper 
should not leave readers any impression that we are pro 
or against the EMH. After all, the validity of the EMH 

is not the major concern of this paper. However, the pa­
per does have a purpose. It attempts to convince read­
ers that over the last 90 years the EMH has not been 
formalized in an appropriate way, and that biologically 
inspired approaches, in particular, genetic programming, 
hopefully can make it right. Right not only in terms of 
formalization but also about questions and analysis. 

For example, the right question is not whether there 
is evidence of nonlinear independence but whether such 
nonlinear patterns can be discovered at reasonable cost. 
The right analysis is not to test the large sample with 
asymptotic econometrics but to do a cost-effective anal­
ysis of forecasting different ranges of market with differ­
ent sizes of sample. Similarly, the right question is not 
whether there will be a sequence of advanced techniques 
which can beat the random walk but whether the retrain­
ing or updating price of these techniques is competitive; 
the right analysis is not to test whether the random walk 
can be beaten by one recurrent neural net once but to 
check whether the random walk can be beaten by evo­
lutionary neural nets continuously with reasonable cost. 
All the right questions with their corresponding analyses 
have an economic sense. Malkiel's intuition of the EMH 
is also an economic one rather than a statistical one. It is 
the absence of this economic sense in the traditional anal­
ysis that has divided us between technicians and quants. 
To capture the economic sense, we need the theoretical 
technology which, to some extent, can standardize the 
search activity so that search intensity and search cost 
can be communicated among different searchers. Genetic 
programming is just the candidate we are looking for. 

This concludes the summary of what this paper in­
tends to do. The purpose is very limited and the attempt 
is far from mature. There is little doubt that there are 
lots of imperfections to be fixed and details to be fig­
ured out in the follow-up research. But, if the relevance 
of genetic programming to the EMH is clear, the next 
non-trivial issue, which is motivated by Maarten Keijzer, 
is what is the relationship between different styles of GP 
with different computing environments and the validity of 
the EMH. For example, will the EMH be rejected if the 
computer power is doubled? Will the conclusion about 
the EMH differ if we are using supercomputer system to 
find the pattern instead of a single processor machine? 
Will the EMH be rejected if it is tested by parallel genetic 
programming with tick-by-tick data? List of questions of 
this sort can go on and on. But what are the answers? 
At the end of his survey article, Malkiel seemed to offer 
some insight into such an intriguing issue. 

Undoubtedly with the passage of time and with 
the increasing sophistication of our data bases and 
empirical techniques, we will document further 
departures from efficiency and understand their 
causes more fully. But I suspect that the end 
result will not be an abandonment of the profes-
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sion's belief that stock market is remarkably effi­
cient in its utilization of information, (p.133) 

Acknowledgments 

The authors are indebted for the research support from 
NSC grant No.85-2415-H-004-001. This paper was re­
vised from its original version by taking the advice and 
comments of Christian Johnson, Maarten Keijzer and 
three other anonymous referees in the GP '96 program 
committee. The authors are very grateful for their 
painstaking review of this paper. Of course, all remain­
ing errors are the authors' sole responsibility. 

Bibliography 

Brock, W., W. Dechert, and J. Scheinkman 1987. A Test 
for Indepedence Based on the Correlation Dimension. 
Working Paper, University of Wisconsin at Madsion, 
University of Houston, and University of Chicago. 

Chen, S., C. Lin and C. Yeh 1995. On the Model Se­
lection and its Stability of the Natural Vacancy Rate 
of Housing: An Application of Genetic Programming. 
Journal of Housing Studies. 3. Pages 73-98. 

Chen, S. and C. Yeh 1995. Toward a Computable Ap­
proach to the Efficient Market Hypothesis: An Appli­
cation of Genetic Programming. Working Paper Se­
ries, No. 9502. Department of Economics, National 
Chengchi University. 

Chen, S. and C. Tan 1996. Measuring Stock Market Effi­
ciency by Rissanen's MDL. Paper presented at the Pa­
cific Rim Allied Economic Organizations 2nd Biennial 
Conference coordinated by Western Economic Asso­
ciation International. Jan. 10-15, 1996. Hong Kong. 

Diebold, F. X. and J. A. Nason 1990. Nonparametric 
Exchange Rate Prediction?. Journal of International 
Economics. 28. Pages 315-332. 

Fogler, H. R. 1995, Investment Analysis and New Quan­
titative Tools. Paper presented at the 1995 East­
ern Finance Association Meeting. Hilton Head Island, 
South Carolina. 

Frank, M. Z., R. Gencay, and T. Stengos 1988. Interna­
tional Chaos?. European Economic Review. 32. Pages 
1569-1584. 

Hinich, M. J. and D. M. Patterson 1985. Evidence of 
Nonlinearity in Daily Stock Returns. Journal of Busi­
ness and Economic Statistics. Vol. 3, No. 1. Pages 69-
77. 

Horgan, J. 1995, From Complexity to Perplexity. Scien­
tific American. June, Pages 104-109. 

Hsieh, D. A. 1989. Testing for Nonlinear Dependence in 
Daily Foreign Exchange Rates. Journal of Business. 
62. Pages 339-368. 

Koza, J. 1992. Genetic Programming: On the Program­
ming of Computers by Means of Natural Selection. 
Cambridge, MA: The MIT Press. 

LeBaron, B. 1992. Nonlinear Forecasts for the S&P Stock 
Index. In M. Casdagli and S. Eubank (eds.). Nonlinear 
Modeling and Forecasting. Pages 381-393. Addison-
Wesley Press. 

Makridakis, S. 1993, Accuracy Measure: Theoretical and 
Practical Concerns. International Journal of Forecast­
ing. 9. Pages 527-529. 

Malkiel, B. G. 1987. Efficient Market Hypothesis, in J. 
Eatwell, M. Milgate and P. Newman (eds.). The New 
Palgrave: Finance. Pages 127-134. Norton. 

Peters, E. E. 1991. A Chaotic Attratcors for the S&P 
500. Financial Analysis Journal. March-April. Pages 
55-62. 

Rissanen, J. 1982. A Universal Prior for Integers and 
Estimation by Minimum Description Length. Annals 
of Statistics. 11. Pages 416-431. 

Ross, S. 1987. Finance. In J. Eatwell, M. Milgate and P. 
Newman (eds.). The New Palgrave: Finance. Pages 
1-34. Norton. 

Savit, R. 1988. When Random Is Not Random: An Intro­
duction to Chaos in Market Prices. Journal of Futures 
Markets. 8. Pages 271-290. 

Savit, R. 1989. Nonlinearities and Chaotic Effects in Op­
tion Prices. Journal of Futures Markets. 9. Pages 507-
518. 

Scheinkman, J. A. and B. LeBaron 1989. Nonlinear Dy­
namics and Stock Returns. Journal of Business. 3. 
Pages 311-337. 

White, H. 1988. Economic Prediction Using Neural Net­
works: The Case of IBM Daily Stock Returns. Pro­
ceedings of the IEEE International Conference on 
Neural Networks. II. Pages 451-458. 

Willey, T. 1992. Testing for Nonlinear Dependence in 
Daily Stock Indices. Journal of Economics and Busi­
ness. Vol. 44, No. 1. Pages 63-74. 

53 




