
Patching Vulnerabilities with Sanitization Synthesis ∗

Fang Yu
National Chengchi University
yuf@nccu.edu.tw

Muath Alkhalaf
UC Santa Barbara

muath@cs.ucsb.edu
Tevfik Bultan
UC Santa Barbara

bultan@cs.ucsb.edu

ABSTRACT
We present automata-based static string analysis techniques
that automatically generate sanitization statements for patch-
ing vulnerable web applications. Our approach consists of
three phases: Given an attack pattern we first conduct a vul-
nerability analysis to identify if strings that match the attack
pattern can reach the security-sensitive functions. Next, we
compute vulnerability signatures that characterize all input
strings that can exploit the discovered vulnerability. Given
the vulnerability signatures, we then construct sanitization
statements that 1) check if a given input matches the vul-
nerability signature and 2) modify the input in a minimal
way so that the modified input does not match the vul-
nerability signature. Our approach is capable of generating
relational vulnerability signatures (and corresponding sani-
tization statements) for vulnerabilities that are due to more
than one input.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model Checking, Reliability

General Terms
Verification, Security

Keywords
Sanitization Synthesis, String Analysis, Automata

1. INTRODUCTION
Web applications are notorious for security vulnerabilities

that can be exploited by malicious users. Due to global
accessibility of web applications, malicious users all around
the world can exploit a vulnerable web application and cause

∗This research is funded by the NSC grant 99-2218-E-004-
002-MY3, and the NSF grants CCF-0716095 and CCF-
0916112.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

serious damage. So, it is critical that vulnerabilities are not
only discovered fast, but they are also repaired fast.

In this paper, we present techniques for automatically de-
tecting and patching string related vulnerabilities in web
applications. We start with a set of attack patterns (regular
expressions) that characterize possible attacks (either taken
from an attack pattern specification library or written by
the web application developer). Given an attack pattern,
our string analysis approach works in three phases:

Phase 1: Vulnerability Analysis: First, we use
automata-based static string analysis techniques to deter-
mine if the web application is vulnerable to attacks charac-
terized by the given attack pattern and generate a charac-
terization of the potential attack strings if the application is
vulnerable.

Phase 2: Vulnerability Signature Generation: We
then project these attack strings to user inputs and compute
an over-approximation of all possible inputs that can cause
an attack. This characterization of potentially harmful user
inputs is called the vulnerability signature for a given attack
pattern.

Phase 3: Sanitization Generation: Once we have the
vulnerability signature, we automatically synthesize patches
that eliminate the vulnerability using two strategies:
• Match-and-block: We insert match statements to vulnera-
ble web applications and halt the execution when an input
that matches a vulnerability signature is detected.

• Match-and-sanitize: We insert both match and replace
statements to vulnerable web applications. When an input
that matches a vulnerability signature is detected, instead
of halting the execution, the replace statement is executed.
The replace statement deletes a small set of characters from
the input such that the modified string no longer matches
the vulnerability signature.

For vulnerability analysis, we use a forward symbolic reach-
ability analysis that computes an over-approximation of all
possible values that string variables can take at each pro-
gram point. We use deterministic finite automata (DFAs)
to represent values that string expressions can take. In-
tersecting the results of the forward analysis at sinks (i.e.,
sensitive functions that can cause a vulnerability) with the
attack pattern gives us the potential attack strings if the
program is vulnerable. If the intersection is empty, then the
program is not vulnerable with respect to the given attack
pattern.

We use two different techniques for vulnerability signature
generation. In the first one, we start with the DFA that
represents the attack strings at the sink, and then use a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00

251

backward symbolic reachability analysis to compute an over-
approximation of all possible inputs that can generate those
attack strings. The result is a DFA that characterizes the
vulnerability signature for the given attack pattern.

However, this approach does not work for vulnerabilities
that are due to more than one input. For example, if an at-
tack string is generated by concatenating two input strings,
it might not be possible to prevent the attack by block-
ing only one of the inputs, since a string coming from one
input can lead to an attack if it is concatenated with a suit-
ably constructed string coming from another input. In such
cases the vulnerability signature can include all possible in-
put strings. Using such a vulnerability signature for auto-
mated patch generation would mean blocking or erasing all
the user input, which would make the web application unus-
able. However, if we can do an analysis that keeps track of
the relationships among different string variables, then we
can block only the combinations of input strings that lead
to an attack string.

We present a relational vulnerability signature genera-
tion algorithm based on multi-track deterministic finite au-
tomata (MDFA). An MDFA has multiple tracks and reads
one symbol for each track in each transition. I.e., an MDFA
recognizes tuples of strings rather than a single string. We
use a forward symbolic reachability analysis where each gen-
erated MDFA has one track for each input variable and
represents the relation between the inputs and the string
expression at a particular program point. Intersecting the
MDFA at a sink with the attack pattern and projecting the
resulting MDFA to the input tracks gives us the vulnerabil-
ity signature. The vulnerability signature MDFA accepts all
combinations of inputs that can exploit the vulnerability.

Once we generate the vulnerability signature we gener-
ate match and replace statements based on the vulnera-
bility signature. The match statement basically simulates
the vulnerability signature automaton and reports a match
if the input string is accepted by the automaton. In the
match-and-block strategy this is all we need, and we halt
the execution if there is a match. In the match-and-sanitize
strategy, however, we also generate a replace statement that
will modify the input so that it does not match the vulner-
ability signature. Since inputs that match the vulnerability
signature may come from normal, non-malicious users (who,
for example, may have accidentally typed a suspicious char-
acter), it is preferable to change the input in a minimal way.
We present an automata theoretic characterization of this
minimality and show that solving it precisely is intractable.
We show that we can generate a replace statement which is
close to optimal in practice by adopting a polynomial-time
min-cut algorithm.

We implemented all the techniques mentioned above for
PHP programs on top of our string analysis tool called
Stranger (STRing AutomatoN GEneratoR) [17]. Stranger
uses the front-end of Pixy [11], a vulnerability analysis tool
for PHP that performs taint analysis to identify potentially
vulnerable sinks (sinks that depend on external inputs) and
generates dependency graphs that show how the external
inputs flow into the sinks. Stranger then performs string
analysis on the dependency graphs. Stranger also uses the
automata package of MONA tool [3] to store the automata
constructed during string analysis symbolically.

Related Work: Due to its importance in security, string

1 <?php
2 $name = $_GET["name"];
3 $out = "NAME : " $name;
4 echo $out;
5 ?>

Figure 1: A Simple Example

analysis has been widely studied. One influential approach
has been grammar-based string analysis that statically com-
putes an over-approximation of the values of string expres-
sions in Java programs [4] which has also been used to check
for various types of errors in Web applications [8, 13, 15,
9]. In [13, 15], multi-track DFAs, also known as transducers,
are used to model replacement operations. There are also
several recent string analysis tools that use symbolic string
analysis based on DFA encodings [14, 7, 18]. Some of them
are based on symbolic execution and use a DFA represen-
tation to model and verify the string manipulation opera-
tions in Java programs [14, 7]. HAMPI [12] is a bounded
string constraint solver that searches for a string that satis-
fies a given set of string constraints by bounding the string
length. This type of bounded analysis cannot be used for
sound string analysis whereas the string analysis techniques
we present in this paper are sound. In our earlier work,
we have used single-track DFA based symbolic reachability
analysis to verify the correctness of string sanitization op-
erations in PHP programs [18, 17]. Our preliminary results
on generating (non-relational) vulnerability signatures us-
ing single-track DFA were reported earlier [16]. Recently,
we also reported our results on foundations of string analy-
sis using multi-track automata [19]. These earlier results do
not address the sanitization synthesis problem we discuss in
this paper. Moreover, to the best of our knowledge this is
the first paper that presents a relational vulnerability signa-
ture (i.e., a vulnerability signature that involves more than
one input) generation technique for strings.

There has been previous work on automatically generating
filters for blocking bad input [6]. Although this is similar to
our match-and-block strategy, there are several significant
differences with our work. First, earlier work [6] focuses on
buffer-overflow vulnerabilities which are different than the
string vulnerabilities we investigate here. Second, in ear-
lier work [6] the generation of filters is done starting with
an existing exploit, whereas we start with an attack pat-
tern. Finally, unlike prior results, in this paper, we gen-
erate sanitization statements that repair bad inputs using
the match-and-sanitize strategy. We also give an automata-
theoretic characterization of the match-and-sanitize strat-
egy, prove that generating optimum modifications is an in-
tractable problem, and present a heuristic approach based
on a min-cut algorithm.

2. AN OVERVIEW
Consider the PHP script shown in Figure 1. This script

starts with assigning the user input provided in the _GET ar-
ray to the variable name in line 2. It concatenates a constant
string with variable name and assigns it to another variable
out in line 3. Then it simply outputs the variable out using
the echo statement in line 4.

The echo statement in line 4 is a sink statement since it
can contain a Cross Site Scripting (XSS) vulnerability. For
example, a malicious user can provide an input that contains
the string constant <script and execute a command leading
to a XSS attack. In order to prevent this vulnerability, it
is necessary to sanitize the user inputs before using them

252

in an echo statement. In the rest of this section we give
an overview of how our approach automatically detects this
vulnerability and generates the sanitization statement. Let
us assume that the attack pattern for this vulnerability is
specified using the following regular expression Σ∗ < Σ∗

(where Σ denotes any ASCII character).

Vulnerability Analysis: We first perform a forward sym-
bolic reachability analysis that uses one DFA for each vari-
able at each program point to represent the set of values that
the variables can take. During forward analysis we itera-
tively update these DFAs by computing post-conditions (for-
ward image) of program statements. For example our post-
condition computation for an assignment statement takes
a set of DFAs characterizing the values of the string vari-
ables at the right-hand-side of the assignment (before the
assignment is executed) as input, and returns a DFA char-
acterizing the possible values of the left-hand-side variable
after the assignment statement is executed.

During forward analysis we characterize all the user input
as Σ∗, i.e., the user can provide any string as input. Any
variable that is assigned an input is represented by a DFA
that accepts the language Σ∗ at the next program point af-
ter the assignment. For example for the small script shown
in Figure 1, our forward analysis will generate a DFA for
the variable name at the beginning of statement 3 that ac-
cepts the language Σ∗. Computing the post-condition of
the statement 3 will generate a DFA for the variable out

at the beginning of statement 4 that accepts the language
NAME : Σ∗. When our symbolic reachability analysis reaches
a fixpoint each string variable at each program point is as-
sociated with a DFA that characterizes all possible values
that variable can take at that program point. Our analysis
is conservative in the sense that the resulting DFAs accept
an over-approximation of all possible values of the variables
they represent. Note that approximation is inevitable since
string analysis problem is undecidable [19].

When our forward analysis converges, we take the inter-
section (using automata product) of the language of the DFA
that corresponds to the string expression at the sink state-
ment with the attack pattern. In our running example state-
ment 3 is a sink statement, and the DFA that corresponds to
the string expression at line 4 (which is simply the variable
out) accepts the language NAME : Σ∗. When we take the in-
tersection of this language with the attack pattern we obtain
an automaton that accepts the language NAME : Σ∗ < Σ∗.
This automaton characterizes all possible attack strings at
the sink statement. Since the language of this automaton is
not empty, we know that the program is vulnerable.

Vulnerability Signature Generation: Next, we figure
out which input values can create the attack strings at the
sink statement. In our single-track DFA based approach,
this is done with a backward symbolic reachability analy-
sis. We start with the DFA that characterizes the attack
strings (i.e, the DFA we compute at the end of the vulnera-
bility analysis) and propagate the results backwards until we
reach an input. During backward analysis we iteratively up-
date these DFAs by computing pre-condition (backward im-
age) of program statements. For example our pre-condition
computation for an assignment statement takes a DFA char-
acterizing the values of the string variable at the left-hand-
side of the assignment (after the assignment is executed) as
input, and returns a set of DFAs characterizing the possi-

1 <?php
1.1 if (preg_match(

’/([=-\xfd]|[\x00-;])*<([\x00-\xfd])*/’,$_GET["name"]))
1.2 die("Invalid input");
2 $name = $_GET["name"];
3 $out = "NAME : " . $name;
4 echo $out;
5 ?>

(a) Patch 1 using match-and-block strategy

1 <?php
1.1 if (preg_match(

’/([=-\xfd]|[\x00-;])*<([\x00-\xfd])*/’,$_GET["name"]))
1.2 $_GET["name"] =

preg_replace(’/</’,"",$_GET["name"]);
2 $name = $_GET["name"];
3 $out = "NAME : " . $name;
4 echo $out;
5 ?>

(b) Patch 2 using match-and-sanitize strategy

Figure 2: Patches for the example in Figure 1

1 <

- <

min cut

2

1
(<,)

(,)(- <,) min cut

2

(,)

(, - <)

(, - <)

(,)(,<)

(,<)

3

4

(a) (b)

Figure 3: Vulnerability signatures

ble values of the variables that are at the right-hand-side of
the assignment before the assignment statement is executed.
For the example shown in Figure 1, our backward analysis
computes the pre-condition for the assignment statement in
line 3 and generates a DFA for the variable name at the end
of statement 3 that accepts the language Σ∗ < Σ∗. When
we compute the pre-condition of the assignment statement
in line 2 we reach an input and generate the vulnerability
signature for the input _GET["name"] as a DFA that accepts
the language Σ∗ < Σ∗.

Sanitization Generation: The last phase of our analysis
generates a patch that removes the vulnerability. The vul-
nerability signature gives an over-approximation of all pos-
sible input values that can exploit the vulnerability. Hence,
if we do not allow input values that match the vulnerabil-
ity signature then we can remove the vulnerability. In our
match-and-block strategy we generate a patch that simply
checks if the input string matches the vulnerability signa-
ture. If it does, it halts the execution without executing
the rest of the script. The patch generated for the small
example in Figure 1 based on the vulnerability signature
Σ∗ < Σ∗ and using the match-and-block strategy is shown
in Figure 2(a). Note that the patched script will block any
input string that contains the symbol <.

In our match-and-sanitize strategy, instead of blocking the
execution, we modify the input in a minimal way to guar-
antee that the modified input cannot lead to any attack
strings. We do this by analyzing the vulnerability signa-
ture DFA. Consider the DFA for the vulnerability signature
Σ∗ < Σ∗ shown in Figure 3(a) (we use Σ − < to indicate
any symbol other than <). Our goal is to find a minimal set
of characters, such that if we remove those characters from a
given string, the resulting string will not be accepted by the
DFA. As we discuss in Section 3, this corresponds to finding

253

1 <?php
2 $title = $_GET["title"];
3 $name = $_GET["name"];
4 $out = "NAME : " . $title . $name;
5 echo $out;
6 ?>

Figure 4: Another Simple Example

a cut in the graph defined by the states and the transitions
of the DFA, i.e., finding a set of edges such that when we
remove them, there are no paths left in the graph from the
initial state of the DFA to a final state. Note that each edge
of the DFA is labeled with a symbol. After we find a cut, if
we take the union of the symbols of the edges in the cut, we
obtain a set of symbols such that any string accepted by the
DFA must include at least one of the symbols in that set.

We use a min-cut algorithm to compute a cut that con-
tains minimum number of edges. Then we generate a patch
that deletes all the characters from the input that appear
on the edges included in the cut set. For the DFA shown in
Figure 3(a), the min-cut algorithm returns the single edge
labeled with the symbol <. So we generate a patch that
deletes all the < symbols from the input as shown in Fig-
ure 2(b). Note that, unlike the patch shown in Figure 2(a),
the patch generated based on the match-and-sanitize strat-
egy continues to execute the script after the sanitization.

Relational Vulnerability Signature Generation: Con-
sider the simple script shown in Figure 4. This example is
similar to the one shown in Figure 1 with one significant dif-
ference: there are two input variables that both contribute
to the string expression used at the sink statement at line 5.

Assume that we use our single-track automata based anal-
ysis described above to analyze this script. The set of at-
tack strings generated for the sink statement at line 5 will
again be: NAME : Σ∗ < Σ∗. However, the result of the back-
ward analysis will be different. The crucial step is the pre-
condition computation for the statement in line 4. The in-
put to this pre-condition computation will be a DFA that
accepts the attack strings characterized by the regular ex-
pression given above. The result of the pre-condition com-
putation will generate two DFAs, one for the variable name

and one for the variable title, and these DFAs will char-
acterize all possible values these two variables can take just
before the execution of statement in line 4 that can lead to
generation of an attack string at the sink statement in line
5. When we do this pre-condition computation we get two
DFAs that accept the same language Σ∗, i.e., any value of
either variable can lead to an attack string. Although this
is a sound approximation it fails to capture the information
that at least one of these variables should contain the char-
acter <. Note that this condition cannot be expressed as a
constraint on an individual variable, it identifies a relation
between the two string variables.

Our relational analysis uses a single multi-track automa-
ton (MDFA) for each program point to capture the relation-
ship between the input values and possible values of string
expressions in the program. We use a forward analysis that
operates on the dependency graph. We show the depen-
dency graph for the example from Figure 4 in Figure 5. We
write the string expression in the program that corresponds
to each node in the dependency graph to the left side of
the node and also give the line number. Our analysis starts
from the input nodes and traverses the dependency graph
while generating one MDFA for each internal node of the de-

i1 $_GET[“name”]$_GET[“title”]

$name
(line 3)

$title
(line 2)

i2

n1 n2n1 = i1 n2 = i2

n3 n3 = i1 . i2$title . $name
(line 4)

“NAME : “ . $title . $name
(line 4)

n5 n5 = “NAME : “ . i1 . i2

n4“NAME : “
(line 4)

n6 n6 = “NAME : “ . i1 . i2$out
(lines 4, 5)

Figure 5: Dependency graph

pendency graph. Each MDFA has one track for each input
variable and one track for the string expression that corre-
sponds to that node, and represents the relation between
them. In Figure 5 we show a string constraint on the right
side of each internal node. That string constraint character-
izes the set of strings accepted by the MDFA for that node.
For example, for node n3, the string constraint is n3 = i1.i2
which indicates that the string expression that corresponds
to node n3 is equal to the concatenation of input i1 and
input i2.

When the analysis reaches a sink node, we intersect the
track that corresponds to the string expression for the sink
node (in our example this would be the track that corre-
sponds to node n6) with the attack pattern DFA (by ex-
tending the attack pattern DFA to an MDFA by adding
extra tracks that accept all strings). After the intersection,
we project away the track for the sink node, leaving only
the tracks for the input nodes. The resulting MDFA rep-
resents the relational vulnerability signature. For our ex-
ample, the vulnerability signature MDFA is shown in Fig-
ure 3(b) (where each transition is marked with two symbols,
one for each track, and if a track is marked with the sym-
bol λ then that means that no symbol from that track is
consumed when that transition is taken). Note that this
automaton accepts tuples of strings, where either the first
string in the tuple or the second string in the tuple contains
at least one < symbol.

The patches shown in Figure 2 for the single input case are
generated by converting the standard DFA representation
to a regular expression and then using the PHP preg_match

function to generate the match part of the patch. For the re-
lational case, when we generate two regular expressions, one
for each input, from the automaton shown in Figure 3(b),
we again get Σ∗ for both inputs, so all inputs match. This is
acceptable if we use the match-and-sanitize strategy since,
although all the input strings will be considered potentially
vulnerable, only a small set of symbols that relate to the
vulnerability will be replaced. For example, the patch gen-
erated using this approach for the example in Figure 4 is
shown in Figure 6. However, if we use the match-and-block
approach using the regular expression Σ∗, we will block all
the inputs which is not acceptable. As we discuss in Sec-
tion 3, in such cases it is necessary to generate match state-
ments that use automata simulation instead of automata to
regular expression conversion.

In order to generate the sanitization statements from re-
lational vulnerability signatures, we find a min-cut in the
vulnerability signature MDFA as we did for the single-track

254

1 <?php
1.1 if (preg_match(’/([\x00-\xfd])*/’, $_GET["title"])

and preg_match(’/([\x00-\xfd])*/’, $_GET["name"])) {
1.2 $_GET["title"] =

preg_replace(’/</’,"",$_GET["title"]);
1.3 $_GET["name"] =

preg_replace(’/</’,"",$_GET["name"]); }
2 $title = $_GET["title"];
3 $name = $_GET["name"];
4 $out = "NAME : " . $title . $name;
5 echo $out;
6 ?>

Figure 6: Patch for the example from Figure 4

case. Then, for each track, we take the union of the symbols
on that track for all the edges in the min-cut. In order to san-
itize the input we need to remove the symbols for each track
from the input that corresponds to that track. For exam-
ple, based on the min-cut shown in Figure 3(b), we need to
delete the symbol < both from the inputs _GET["name"] and
_GET["title"]. The automatically generated replace state-
ments for this example are shown in Figure 6.

3. SANITIZATION GENERATION
In this section we describe how we generate sanitization

statements given a vulnerability signature that is character-
ized either as a standard single-track automaton (DFA) or
a multi-track automaton (MDFA). We discuss the details of
vulnerability signature generation in later sections.

In order to implement the match-and-block and match-
and-sanitize strategies we need to generate code for the match
and replace statements.

Match Generation: There are two ways of doing match-
ing: 1) Regular-expression-based matching: Generate a reg-
ular expression from the vulnerability signature automa-
ton and then use the PHP function preg_match to check if
the input matches the generated regular expression, or 2)
Automata-simulation-based matching: Generate code that,
given an input string, simulates the vulnerability signature
automaton to determine if the input string is accepted by the
vulnerability signature automaton, i.e., if the input string
matches the vulnerability signature.

We first tried the regular-expression-based matching ap-
proach. However, this approach ends up being very ineffi-
cient due to the implementation of preg_match in PHP. The
alphabet of the vulnerability signature automata consists of
the 256 ASCII characters and the vulnerability signature
automata can have a large number of states if there are a
lot of complex string manipulation operations in the code.
In one of the examples we analyzed the vulnerability sig-
nature automaton consists of 811 states. The size of the
regular expression generated from the vulnerability signa-
ture automaton can be exponential in the number of states
of the automaton [10]. Hence, we may end up with very
large regular expressions. Moreover, the preg_match func-
tion in PHP does not only check if a given input matches
the given regular expression but it also computes all the sub-
strings that match the parenthesized subexpressions of the
given regular expression. Since the DFA to regular expres-
sion conversion algorithm can generate a lot of parenthesized
subexpressions, this means that the preg_match function will
do a lot of unnecessary extra work during the match, result-
ing with an inefficient match implementation.

In order to do efficient matching we use the DFA simula-
tion algorithm which has linear time complexity [10]. Given

the vulnerability signature DFA, we generate a function that
takes a string as input, simulates the DFA, and returns true
if the DFA accepts the string or false otherwise. We in-
sert the match function instead of the preg_match statements
shown in the patches in Figures 2 and 6.

For the relational vulnerability signatures, we use a similar
approach. Given a relational vulnerability signature char-
acterized as an MDFA, we generate code that simulates the
MDFA during the match generation. The MDFA simulation
algorithm is similar to the DFA simulation algorithm, it just
keeps a separate pointer for each input string to keep track
of how much of each track is processed at any given time
and advances the state of the MDFA based on the tuples
of input symbols and the transition relation of the MDFA.
The simulation time for MDFA is linear in the total length
of the input strings.

Replace Generation: For the match-and-sanitize strat-
egy, our automated sanitization generation algorithm takes
the vulnerability signature automaton as input, and it gen-
erates a replace statement that modifies a given input string
in such a way that the modified string is not accepted by
the the vulnerability signature automaton (meaning that
the modified string cannot cause an attack). We modify
the input strings by just deleting a set of characters using
the preg_replace function (our approach can be extended so
that escape characters can be inserted in front of a set of
characters rather than deleting them). In order to prevent
extensive modification to the input, the set of characters to
be deleted should be as small as possible. The question is
how can we identify the set of characters to be deleted?

First, we will formalize this problem in automata-theoretic
terms. Let M = 〈Q,Σ, δ, q0, F 〉 denote a DFA where Q is
the set of states, Σ is the alphabet, δ ⊆ Q × Σ × Q is the
transition relation, q0 ∈ Q is the initial state, and F ⊆ Q
is the set of accepting states. L(M) denotes the language
accepted by M . We say S ⊆ Σ is an alphabet-cut of M , if
L(M)∩LS̄ = ∅, where LS̄ = (Σ \S)∗ is the set of all strings
that do not contain any character in S. The min-alphabet-
cut problem is finding the alphabet-cut Smin, such that for
any other alphabet-cut S, |Smin| ≤ |S|. For the example
automaton in Figure 3(a) the min-alphabet-cut is {<}.

The min-alphabet-cut problem can also be stated in graph-
theoretic terms. Given a DFA M , an edge-cut of M is a set
of transitions E ⊆ δ such that, if the set of transitions in E
are removed from the transition relation δ, then none of the
states in F are reachable from the initial state q0. Let SE

denote the set of symbols of the transitions in E. If E is an
edge-cut of M then SE is an alphabet-cut of M . Hence, find-
ing the min-alphabet-cut is equivalent to finding an edge-cut
with minimum set of distinct symbols. For the example au-
tomaton in Figure 3(a) the min-edge-cut is {(1, <, 2)}, which
also corresponds to the min-alphabet-cut.

Note that, if the vulnerability signature DFA accepts the
empty string, then there will not be any edge (or alphabet)
cut since the initial state would be an accepting state. For
the rest of our discussion we will assume that the DFA for
the vulnerability signature does not accept the empty string
(we can easily handle the cases where it accepts the empty
string by first testing if the input string is empty and then
inserting a single character to the input if it is).

Theorem: The min-alphabet-cut problem is NP-hard.
We prove this by a reduction from the vertex cover problem.

255

A vertex cover of a graph G = (V, E) is a set of vertices such
that each edge of the graph is incident to at least one vertex
of the set. The problem of finding a minimum vertex cover
is known to be NP-complete. Vertex cover problem can be
reduced to the min-alphabet-cut problem as follows. Given
G = (V, E) we build an automaton M = 〈Q,Σ, δ, q0, F 〉 with
the set of states Q = E ∪ {q0, qF }, the initial state q0, set of
final states F = {qF }, alphabet Σ = V , and the transition
relation δ defined as follows: e = (v, v′) ∈ E ⇒ (q0, v, e) ∈
δ ∧ (e, v′, qF) ∈ δ. The min-alphabet-cut for the automaton
M is the minimum vertex cover for the graph G.

Since the min-alphabet-cut problem is intractable, rather
than trying to find the optimum solution, we can consider
using efficient heuristics that give a reasonably small cut
that is not necessarily the optimum solution. In fact, there
is a very good candidate for a heuristic solution. Given
a DFA M , a min-edge-cut of M is an edge-cut Emin such
that for any other edge-cut E, |Emin| ≤ |E|. Note that the
min-edge-cut minimizes the number of edges in the edge-cut
whereas the min-alphabet-cut minimizes the set of symbols
on the edges in the edge-cut. Interestingly, even though
the min-alphabet-cut problem is intractable, there is an ef-
ficient algorithm for computing the min-edge-cut. We use
the Ford-Fulkerson’s max-flow min-cut algorithm [5] to find
a min-edge-cut Emin where the complexity of the algorithm
is O(|δ|2). Note that |Smin| ≤ |Emin|, i.e., the min-edge-
cut provides and upper bound for the min-alphabet-cut. So
if the min-edge-cut is small, then the set of distinct sym-
bols on the edges of the min-edge-cut will give us a good
approximation of the Smin.

Once we compute an alphabet-cut S using our heuristic,
we generate a preg_replace statement that deletes the sym-
bols in S from the input, making sure that the resulting
string does not match the vulnerability signature.

The definition of the min-alphabet-cut problem is different
for multi-track automata. Given an n-track MDFA M over
(Σ ∪ λ)n, we say an n-tuple S = (S1, . . . Sn), where Si ⊆ Σ,
is an alphabet-cut of M , if L(M) ∩ LS̄ = ∅, where LS̄ =
(((Σ \ S1) ∪ λ) × . . . ((Σ \ Sn) ∪ λ)))∗ is the set of all strings
whose ith track does not contain any character in Si. Let
|S| = |S1| + . . . + |Sn|. The min-alphabet-cut problem for a
MDFA M is finding the alphabet cut Smin of M , such that
for any alphabet cut S of M , |Smin| ≤ |S|.

Since min-alphabet-cut is intractable for single-track DFA,
it is also intractable for MDFA. We use min-edge-cut also as
an approximation for min-alphabet-cut for MDFA. When we
find a min-edge-cut, we compute the corresponding multi-
track alphabet-cut by computing a set of symbols for each
track by collecting the set of distinct symbols (other than
λ) on each track on the edges in the min-edge-cut. The re-
sulting alphabet cut is an n-tuple S = (S1, . . . , Sn), where
each Si is the set of symbols for track i, i.e., input i. For
the example automaton in Figure 3(b), the min-edge-cut is
{(1, (<,λ), 3), (1, (λ, <), 4), (2, (λ, <), 4)}, which also corre-
sponds to the min-alphabet-cut ({<}, {<}).

Once we compute the alphabet-cuts, we generate one
preg_replace statement for each input variable i, that deletes
every symbol in Si from the input i so that the resulting in-
put strings do not match the vulnerability signature.

4. VULNERABILITY ANALYSIS
In this section we first define the dependency graphs and

then describe our vulnerability analysis. A dependency graph

G = 〈N, E〉 is a directed graph, where N is a finite set of
nodes and E ⊆ N × N is a finite set of directed edges. An
edge (ni, nj) ∈ E identifies that the value of nj depends
on the value of ni, e.g., assign the value of the variable as-
sociated with ni to the variable associated with nj in the
program. Each node n ∈ N can be (1) a normal node in-
cluding input, constant, variable, or (2) an operation node
including concat and replace.

An input node identifies the data from untrusted parties,
e.g., an input from web forms. A constant node is associated
with a constant value. Both nodes have no predecessors.

A concat node n has two predecessors: the prefix node
(n.p) and the suffix node (n.s), and stores the concatenation
of any value of the prefix node and any value of the suffix
node in n.

A replace node has three predecessors: the target node
(n.t), the match node (n.m), and the replacement node
(n.r). For each value of n.t it: (1) identifies all the matches,
i.e., any value of n.m, that appear in n.t, (2) replaces all
these matches in n.t with any value of n.r, and (3) stores
the result in n.

For n ∈ N , Succ(n) = {n′ | (n, n′) ∈ E} is the set
of successors of n. Pred(n) = {n′ | (n′, n) ∈ E} is the
set of predecessors of n. For a dependency graph G, we
also define Root(G) = {n | Pred(n) = ∅} and Leaf(G) =
{n | Succ(n) = ∅}.

Our vulnerability analysis takes the following inputs: a
dependency graph (G), a set of sink nodes (Sink), and an
attack pattern (Attk). Sink denotes the nodes that are as-
sociated with sensitive functions that might lead to vulner-
abilities. Attk is a regular expression represented as a DFA.

Our vulnerability analysis approximates the set of string
values as a regular language and represents them symbol-
ically as a DFA that accepts that language. To associate
each node with its automata, we create two automata vec-
tors POST and PRE. The size of both is bounded by |N |.
POST[n] is the DFA accepting all possible values that node
n can take. PRE[n] is the DFA accepting all possible values
that node n can take to exploit the vulnerability. Initially,
all these automata accept nothing, i.e., their language is
empty. V ul ⊆ Sink is the set of vulnerable program points
and initially is set to an empty set.

We use a forward symbolic reachability analysis based on
a standard work queue algorithm. We iteratively update the
automata vector POST until a fixpoint is reached. At line
7, construct(n) returns a DFA that: (1) accepts arbitrary
strings if n is an input node, (2) accepts an empty string if
n is a variable node, or (3) accepts the constant value if n
is a constant node. At lines 9 and 11, we incorporate two
automata-based string manipulating functions [18]:
• concat(DFA M1, DFA M2) returns a DFA M that accepts
{w1w2 | w1 ∈ L(M1), w2 ∈ L(M2)}.

• replace(DFA M1, DFA M2, DFA M3) returns a DFA M
that accepts {w1c1w2c2 . . . wkckwk+1 | k > 0,
w1x1w2x2 . . . wkxkwk+1 ∈ L(M1), ∀i, xi ∈ L(M2), wi does
not contain any substring accepted by M2, ci ∈ L(M3)}.

At line 15, we incorporate the automata widening operator
∇ [2] to accelerate the fixpoint computation, which ensures
termination and returns the least fixpoint under certain con-
ditions. Upon termination of the while loop (lines 4 to 20)
POST[n] records the DFA whose language includes all pos-
sible values that n can take.

256

Algorithm 1 vulAnalysis(G,Sink, Attk)

1: Init(POST, PRE);
2: queue WQ := NULL;
3: WQ.enqueue(Root(G));
4: while WQ != NULL do
5: n := WQ.dequeue();
6: if n ∈ Root(G) then
7: tmp := construct(n);
8: else if n is concat then
9: tmp : = concat(POST[n.p], POST[n.s]);

10: else if n is replace then
11: tmp : = replace(POST[n.t], POST[n.m], POST[n.r]);
12: else
13: tmp : =

S

n′∈Pred(n) POST[n′];

14: end if
15: tmp := (tmp ∪ POST[n])∇POST[n];
16: if tmp !⊆ POST[n] then
17: POST[n] := tmp;
18: WQ.enqueue(Succ(n));
19: end if
20: end while
21: set V ul := {};
22: for each n ∈ Sink do
23: tmp: = POST[n] ∩ Attk;
24: if L(tmp) != ∅ then
25: V ul := V ul ∪ {n};
26: PRE[n] := tmp;
27: end if
28: end for

29: return V ul;

In the for loop (lines 22 to 28), for each node n ∈ Sink, we
generate a DFA tmp by intersecting the attack pattern and
the possible values of n. If L(tmp) is not empty, we identify
that n is a vulnerable program point and add it to V ul at line
25. In fact, tmp accepts the set of reachable attack strings at
node n that can be used to exploit the vulnerability. Hence,
we assign tmp to PRE[n] at line 26. This information is then
passed to our vulnerability signature generation algorithm.

5. VULNERABILITY SIGNATURES
In this section we present our non-relational vulnerabil-

ity signature generation algorithm (Algorithm 2) which is a
backward symbolic reachability computation based on single-
track DFAs. For n ∈ V ul, PRE[n] is set to the intersection of
POST[n] and Attk during the vulnerability analysis phase
before the backward analysis starts. The predecessors of
n ∈ V ul are the starting points of the backward analysis.
Similar to the forward analysis, the computation is based
on a standard work queue algorithm.

We first put the predecessors of n ∈ V ul into the work
queue as shown at line 2-4. We iteratively update the PRE
array (by adding pre-images) until we reach a fixpoint. If the
successor of n is an operation node, the pre-image (tmp) of
n is computed in lines 11, 13 and 17 by calling the defined
automata-based functions: preConcatPrefix, preConcat-

Suffix, and preReplace which we define below. Otherwise,
the pre-image of n is directly derived from the successor of n
(line 20). Note that POST[n] records all possible values that
n can take. We use this information during the pre-image
computation by restricting the arguments of operations such
as replace. We union the pre-images of n as tmp′ at line 22.

Since we are interested only in reachable values of n, i.e.,
PRE[n] ⊆ POST[n] by definition, we intersect tmp′ with
POST[n] at line 24. Similar to the forward analysis, we
widen the result at line 25 to accelerate the fixpoint com-
putation. At line 26, we intersect tmp′ with POST[n] again
to remove unreachable values (that might have been intro-

Algorithm 2 VulSigGen(G,POST, PRE, V ul)

1: queue WQ = NULL;
2: for each n ∈ V ul do
3: WQ.enqueue(Pred(n));
4: end for
5: while WQ != NULL do
6: n := WQ.dequeue();
7: tmp′ := NULL;
8: for each n′ ∈ Succ(n) do
9: if n′ is concat then

10: if n is n′.l then
11: tmp := preConcatPrefix(PRE[n′], POST[n′.r]);
12: else
13: tmp := preConcatSuffix(PRE[n′], POST[n′.l]);
14: end if
15: else if n′ is replace then
16: if n is n′.t then
17: tmp := preReplace(PRE[n′], POST[n′.m],

POST[n′.r]);
18: end if
19: else
20: tmp := PRE[n′];
21: end if
22: tmp′ := tmp′ ∪ tmp;
23: end for
24: tmp′ := tmp′ ∩ POST[n];
25: tmp′ := (tmp′ ∪ PRE[n])∇PRE[n];
26: tmp′ := tmp′ ∩ POST[n];
27: if tmp′ !⊆ PRE[n] then
28: PRE[n] := tmp′;
29: WQ.enqueue(Pred(n));
30: end if
31: end while

32: return PRE;

duced due to widening) at node n. If tmp′ accepts more
values than PRE[n], we update PRE[n] at line 28 and add
the predecessors of n to the working queue at line 29. Upon
termination, PRE[n] records the DFA that accepts all possi-
ble values of n that may exploit the identified vulnerability.

Pre-image Computation: Below, we explain how we com-
pute the following pre-image functions:
• preConcatPrefix(DFA M , DFA M2) returns a DFA M1

so that M = concat(M1, M2).

• preConcatSuffix(DFA M , DFA M1) returns a DFA M2

so that M = concat(M1, M2).

• preReplace(DFA M , M2, M3) returns a DFA M1 so that
M = replace(M1, M2, M3).

Concatenation: To compute the pre-image of concate-
nation nodes, we introduce concatenation transducers to
specify the relation among its output and two input nodes.
Transducers are multi-track automata we use for image com-
putation (these are different than the multi-track automata
we use for relational vulnerability signature generation in
the next Section). A concatenation transducer is a MDFA
over the alphabet that consists of 3 tracks. The 3-track
alphabet is defined as Σ3 = Σ × (Σ ∪ {λ}) × (Σ ∪ {λ}),
where λ 0∈ Σ is a special symbol for padding. We use w[i]
(1 ≤ i ≤ 3) to denote the ith track of w ∈ Σ3. All tracks
are aligned. w[1] ∈ Σ∗, w[2] ∈ Σ∗λ∗ is left justified, and
w[3] ∈ λ∗Σ∗ is right justified. We use w′[2], w′[3] ∈ Σ∗ to
denote the λ-free prefix of w[2] and the λ-free suffix of w[3].
We say w is accepted by a concatenation transducer M if
w[1] = w′[2].w′[3]. Since a concatenation transducer binds
the values of different tracks character by character it is able
to identify the prefix and suffix relations precisely.

Here we only consider how to compute the pre-image of

257

the prefix node, i.e., Y in X := Y Z, given regular sets char-
acterizing possible values of the output node X and the suffix
node Z. The pre-image of the suffix node can be computed
in a similar way. Let Mx and Mz, accept values of X and Z
respectively. preConcatPrefix(Mx, Mz) returns My which
is constructed using the following steps:
• Extend Mx to a 3-track DFA M ′, so that M ′ accepts
{w | w[1] ∈ L(Mx)}.

• Construct the concatenation transducer M that accepts
{w | w[1] = w′[2].w′[3], w′[3] ∈ L(Mz)}.

• Intersect M ′ with M . The result accepts {w | w[1] =
w′[2].w′[3], w[1] ∈ L(Mx), w′[3] ∈ L(Mz)}. We then project
away the first and the third tracks.

• Remove λ tails if any to construct My.

Replacement: Recall that a replace node has three input
nodes: target, match, and replacement. Let us consider the
pre-image of the target node given regular sets character-
izing possible values of the output node, the match node,
and the replacement node. Let Mx = replace(Mt, Mm,
Mr), then our goal is to compute Mt, given Mx, Mm, and
Mr. We conservatively model preReplace(Mx, Mm, Mr) as
replace(Mx, Mr, Mm ∪ Mr). The result is an over approx-
imation of the pre-image of the target node.

6. RELATIONAL SIGNATURES
A relational vulnerability signature M of n inputs is a

MDFA over the n-track alphabet Σn, defined as (Σ×{λ})×
. . .× (Σ× {λ}) (n times), where λ 0∈ Σ is the special symbol
for padding. We further restrict M , so that all tracks are
aligned and for any w ∈ L(M), w[i] ∈ λ∗Σ∗λ∗ (1 ≤ i ≤ n).
Let w′[i] denote the longest λ-free substring of w[i].

Given a dependency graph G, a set of input nodes In, a
sink node sink, and an attack pattern Attk, our goal is to
generate a relational vulnerability signature M such that:
(1) M is a |In|-track MDFA. Each track is associated with
an input variable Xn, n ∈ In. (2) For any word w (w[i] ∈
λ∗Σ∗λ∗), we have w ∈ L(M) if the following condition holds:
if we set w′[i] as the initial value of the input node i and
propagate the values of the nodes along with G accordingly,
the value of the node sink matches the pattern Attk. I.e.,
w identifies the malicious inputs whose combination may
exploit the vulnerability.

The algorithm to generate a relational vulnerability signa-
ture is shown in Algorithm 3. We perform forward fixpoint
computation on the dependency graph where replace nodes
are ignored. Our relational vulnerability signature algorithm
is not capable of handling replace statements. However,
since we run the vulnerability signature generation after a
vulnerability is detected, we argue that it is reasonable to
ignore the sanitization statements in the code (which is the
typical use for the replace statements). After we generate
the relational vulnerability signature, the existing sanitiza-
tion statements can be commented out and replaced with
the automatically generated sanitization statements.

Similar to the other analyses we presented, we use a stan-
dard work queue algorithm incorporating the automata widen-
ing operator. Each node is associated with a signature, a
i+1-track MDFA where the first i tracks are associated with
some input variables, e.g., Xn, n ∈ In, and the last track
(output track) is associated with Xo used to represent the
values of the current node. More specifically, i (0 ≤ i ≤ |In|)
is the number of the input variables whose values have been

used to construct the values of the current node. We use a
MDFA vector S where S[n] is the signature associated with
node n and it specifies the relations among the values of the
input variables and the values of n.

Initially, for each input node n ∈ In, S[n] is a 2-track
MDFA (associated with Xn and Xo) that accepts the iden-
tity relation on Xn and Xo, i.e., the value of the current
node is equal to the value of the input variable Xn. For a
node n ∈ Root(G) \ In, S[n] is a single-track DFA (associ-
ated with Xo) that either accepts Σ∗ if n is a variable node,
or accepts a constant value if n is a constant node. I.e., the
current value of the node is an arbitrary string or a constant.
In both cases, it is not related to any input variable. For
the rest, i.e., n 0∈ Root(G), S[n] accepts an empty set.

After we initialize S at line 1, we perform the fixpoint
computation. Between lines 6 and 18, we iteratively update
the signature at each node until the queue is empty (reaching
a fixpoint). To deal with the union or widening operator on
S1 and S2 that may be associated with the different sets of
input variables, say X1 and X2, we extend both tracks to
X1 ∪ X2 and Xo by padding λs in the added tracks. We
then apply standard union or widening to these extended
MDFAs.

Below we describe how to concatenate two signatures:
ConcatSignature(S1, S2), where S1 is the signature of the
prefix node and S2 is the signature of the suffix node. Let
S1 = 〈Q1,Σ1, δ1, I1, F1〉 be a MDFA whose tracks are as-
sociated with the set of input variables X1 and Xo where
Σ1 = (Σ ∪ λ)|X1| × Σ. Let S2 be a MDFA whose tracks are
associated with the set of input variables X2 and Xo where
Σ2 = (Σ ∪ λ)|X2| × Σ. We first extend S1 and S2 to two
MDFA Sλ

1 and Sλ
2 that are associated with X1 ∪ X2 and

Xo. We extend S1 (prefix) to Sλ
1 by adding λ in the added

tracks, while we extend S2 (suffix) to Sλ
2 by adding λ in

both the added tracks and the common tracks that are also
associated with S1. ConcatSignature(S1, S2) returns the
(|X1 ∪X2|+1)-track MDFA that accepts the concatenation
of Sλ

1 and Sλ
2 .

After reaching a fixpoint, at line 19, we intersect the sig-
nature of sink with the attack pattern on the output track.
Let MAttk accepts {w | w[Xo] ∈ Attk}. This is done by
the standard intersection of S[sink] and MAttk. After the
intersection, the output track identifies the reachable attack
strings, and the input tracks identify all the malicious inputs
whose combination can yield an attack string. At line 20,
we project away the output track from M , and return the
result at line 21 as the relational vulnerability signature of
〈G, In, sink, Attk〉.

7. EXPERIMENTS
We first evaluated our approach for XSS vulnerabilities

using five known examples. Then we applied our analysis to
three open source web applications to search for XSS and
SQLI vulnerabilities. In our experiments we used an Intel
machine with 3.0 GHz processor and 4 GB of memory run-
ning Ubuntu Linux 8.04. We used 8 bits to encode each
ASCII character. For the XSS vulnerabilities the sinks in-
clude the printf and echo functions, and for the SQLI vul-
nerabilities the sinks include the mysql_query function. We
used the attack pattern Σ∗<SCRIPTΣ∗ (indicating an embed-
ded script) for the XSS vulnerability and the attack pattern
Σ∗’ or 1=1Σ∗ (indicating a true condition in a query) for
the SQLI vulnerability. Our approach can deal with any

258

Algorithm 3 RelSigGen(G, In, sink, Attk)

1: Init(S, G, In);
2: queue WQ := NULL;
3: for n ∈ In ∪ Root(G) do
4: WQ.enqueue(Succ(n));
5: end for
6: while WQ != NULL do
7: n := WQ.dequeue();
8: if n is concat then
9: tmp : = ConcatSignature(S[n.p], S[n.s]);

10: else
11: tmp : =

S

n′∈Pred(n) S[n′];

12: end if
13: tmp := (tmp ∪ S[n])∇S[n];
14: if tmp !⊆ S[n] then
15: S[n] := tmp;
16: WQ.enqueue(Succ(n));
17: end if
18: end while
19: M := S[sink] ∩ MAttk ;
20: Project the output track away from M ;

21: return M ;

attack pattern specified as a regular expression.
For sanitization synthesis our tool generates match state-

ments as a C extension to PHP that simulates the vulnera-
bility signature automaton. For replace statements, it gen-
erates a PHP function preg_replace to delete characters
that are identified by the alphabet-cuts generated from the
vulnerability signature automata.

Patching Known Vulnerabilities We first analyzed five
benchmarks manually extracted from (1) MyEasyMarket-4.1
(a shopping cart program), (2) BloggIT-1.0 (a blog engine),
and (3) proManager-0.72 (a project management system).
Each benchmark represents a known XSS vulnerability [1]
containing a single sink. The dependency graphs of these
benchmarks are rather small (around 20-30 nodes) but in-
clude loops, concatenations with large constants, and nested
replacements (from customized or PHP built-in sanitization
routines) and represent typical string manipulation opera-
tions in PHP web applications.

As expected, our vulnerability analysis reported that all
benchmarks are vulnerable and returned the corresponding
vulnerability signature for each input. Benchmark 3 has
two user inputs contributing to the vulnerability and we
generated both single-track (denoted as 3S) and multi-track
signatures (denoted as 3R). Table 1 shows the number of
edges in the min-edge-cut for the vulnerability signature au-
tomata we computed, and the alphabet-cuts that correspond
to these min-edge-cuts.

Sig. 1 2 3S 3R 4 5

#edges 1 8 4 3 4 4
alp.-cut {<} {S,′ , ”} Σ, Σ {<}, {<} {<,′ , ”} {<,′ , ”}

Table 1: Minimum Edge and Alphabet Cuts

Our results show that our techniques are very effective.
As we can see, the min-edge-cut results in a very small
alphabet-cut, and many of them (1 and 3R) are the opti-
mum solutions. For benchmark 3, using single-track signa-
tures (3S), gives the alphabet-cut Σ for both inputs. I.e.,
we need to delete all characters. As we discussed earlier,
this is due to the fact that single track signatures can not
keep the relation among inputs, and are too coarse (in this
case, Σ∗) to synthesize practical sanitization code. On the
other hand, the relational signature (3R) gives the optimum
solution deleting only ’<’ from input 1 and input 2.

We favored non-alphanumeric characters while generating
the alphabet-cuts by increasing the weights of the alphanu-
meric characters during the min-cut algorithm (we assume
that alphanumeric characters are more likely to represent
normal user input and we prefer not to delete them unless
necessary), This resulted in having non-alphanumeric char-
acters in all the cuts but one. Finally, existing sanitization
routines in the analyzed applications can add some addi-
tional characters to the alphabet-cut due to the conservative
nature of our analysis that over-approximates the vulnerabil-
ity signatures. For example, in 2 ’‘’ and ’”’ are introduced by
the PHP sanitization routine mysql_real_escape_string.

Analyzing and Patching Open Source Applications:
We applied our analysis to three open source PHP web ap-
plications: (1) Webchess 0.9.0 (a server for playing chess
over the internet) (2) EVE 1.0 (a tracker for players activity
for an online game), and (3) Faqforge 1.3.2 (a document
management tool). The sizes of these applications are shown
in 2. These applications are downloaded from sourceforge
and are directly analyzed using the techniques presented in
this paper without any manual modification.

Application # of PHP files total loc # of sinks
XSS SQLI

1 Webchess 0.9.0 23 3375 421 140
2 EVE 1.0 8 906 114 17
3 Faqforge 1.3.2 10 534 375 133

Table 2: The Sizes of Analyzed Applications

Table 3 summarizes the results of our XSS and SQLI vul-
nerability analyses respectively and the performance for sig-
nature generation. Stranger discovered 55 XSS and 61
SQLI vulnerabilities in these applications. In Table 3, (sin-
gle, 2, 3, 4) indicates the number of detected vulnerabilities
that have single input, two inputs, three inputs and four in-
puts, respectively. For example, there are 20 vulnerabilities
detected in Faqforge and they all have single input (denoted
as (20, 0, 0, 0)). That is, for each vulnerable sink, we have
only one input contributing a value to the sink. We auto-
matically generate multi-track signatures for vulnerabilities
that have multiple inputs, and single-track signatures for
vulnerabilities that have single input. There are three SQLI
vulnerabilities for which we were not able to synthesize san-
itization patches due to the large number of inputs and due
to a bound in the MONA DFA package implementation that
limits the number of tracks we can declare for a given DFA.
During the SQLI vulnerability analysis of Faqforge the taint
analysis phase does not report any sinks that depend on
user inputs, so our tool does not execute any of the string
analysis phases and does not report and vulnerabilities.

Based on the results shown in Table 3, the analysis cost
seems affordable: the total time indicates the total time
to analyze all PHP files in these applications from start
to the end, which includes pre-processing (parsing, depen-
dency and taint analyses) time and string analysis (vulnera-
bility analysis and vulnerability signature generation) time.
It ranges from 8 seconds to 290 seconds. The fwd time indi-
cates the total time to detect vulnerabilities from all tainted
sinks (determined by first running a taint analysis) in all
PHP scripts. The bwd time indicates the total time to gen-
erate single track signatures for all detected vulnerabilities
that have single input, and the relational time indicates the
total time to generate multi track signatures for all detected
vulnerabilities that have multiple inputs.

259

of Vul. Time (seconds) Mem (Kb)
(single, 2, 3, 4) total fwd bwd relational average

XSS Vulnerability Analysis
1 (24, 3, 0, 0) 46.08 1.73 0.92 6.30 16850
2 (0, 0, 8, 0) 288.50 6.80 − 127.80 125382
3 (20, 0, 0, 0) 7.87 0.22 0.22 − 9948

SQLI Vulnerability Analysis
1 (43, 3, 1, 2) 110.7 4.87 12.04 38.03 136790
2 (8, 3, 0, 0) 23.9 1.5 8.47 5.2 17280
3 (0, 0, 0, 0) 6.7 − − − < 1

Table 3: XSS/SQLI Vulnerability Analysis Results

Replace performance: The average time spent in gen-
erating the alphabet-cut from the vulnerability signature
automata for XSS (SQLI) was 0.06 (0.07) seconds per au-
tomaton for Webchess, 0.3 (0.1) seconds per automaton for
EVE, and 0.05 seconds per automaton for Faqforge. We
notice that mincut for XSS analysis results for EVE took
the largest time as it contains only three-input signature
automata as apposed to mostly single-input signature au-
tomata in the other two.

All of the generated alphabet-cuts contain only a single
character per each input. For each XSS single track au-
tomata the cut is only the character ’<’ which is the opti-
mum cut (consequently the optimum sanitization with re-
spect to the attack pattern). Similarly, for the XSS rela-
tional signature automata we obtained ’<’ for each input.
The automatically generated sanitization (replace) state-
ments from our analysis were almost the same as the ones
that are manually written except that they delete the ’<’
character instead of replacing it with the HTML entity ”<”
as is typically done in manual sanitization. For the SQLI
vulnerabilities, the results were similar, where the reported
cuts contained only the character ’=’ instead of ’<’.

Our analysis produces two artifacts: a PHP extension
that contains a stranger_match_* function for each vulner-
able input, and a set of preg_replace statements, one for
each vulnerable input. In PHP, user inputs from $_GET and
$_POST are always available at the first program point in the
script. This means that we can sanitize the inputs at the
first PHP line of the target script. Inserting these calls can
easily be automated as we have the file names for each of
the input variables along with the variables’ names from the
parsing phase. Note that we are analyzing PHP scripts stat-
ically in a sound manner where we only deal with one script
at a time along with all the files it includes. We used the re-
sult of our analysis to sanitize the three applications above
by placing the automatically generated sanitization state-
ments at the beginning of each vulnerable script. Then we
ran our forward vulnerability analysis which reported zero
vulnerabilities with regard to the attack pattern mentioned
above demonstrating that our analysis sound and guarantees
that after the sanitization statements are inserted, sensitive
functions will not receive any input that matches the attack
pattern.

8. CONCLUSIONS
Most critical security vulnerabilities in web applications

are caused by inadequate manipulation of input strings. In
this paper we presented a set of techniques that 1) iden-
tify vulnerabilities that are due to string manipulation, 2)
generate a characterization of inputs that can exploit the
vulnerability, and 3) generate sanitization statements that
eliminate the vulnerability.

9. REFERENCES
[1] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,

C. Kruegel, E. Kirda, and G. Vigna. Saner:
Composing Static and Dynamic Analysis to Validate
Sanitization in Web Applications. In S&P, pages
387–401, 2008.

[2] C. Bartzis and T. Bultan. Widening arithmetic
automata. In CAV, pages 321–333, 2004.

[3] BRICS. The MONA project.
http://www.brics.dk/mona/.

[4] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Precise analysis of string expressions. In SAS, pages
1–18, 2003.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 1990.

[6] M. Costa, M. Castro, L. Zhou, L. Zhang, and
M. Peinado. Bouncer: securing software by blocking
bad input. In SOSP, pages 117–130, 2007.

[7] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and
L. Tao. A static analysis framework for detecting sql
injection vulnerabilities. In COMPSAC, pages 87–96,
2007.

[8] C. Gould, Z. Su, and P. Devanbu. Static checking of
dynamically generated queries in database
applications. In ICSE, pages 645–654, 2004.

[9] G.Wassermann and Z. Su. Static detection of
cross-site scripting vulnerabilities. In ICSE, pages
171–180, 2008.

[10] J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[11] N. Jovanovic, C. Krügel, and E. Kirda. Pixy: A static
analysis tool for detecting web application
vulnerabilities. In S&P, pages 258–263, 2006.

[12] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and
M. D. Ernst. Hampi: a solver for string constraints. In
ISSTA, pages 105–116, 2009.

[13] Y. Minamide. Static approximation of dynamically
generated web pages. In WWW, pages 432–441, 2005.

[14] D. Shannon, S. Hajra, A. Lee, D. Zhan, and
S. Khurshid. Abstracting symbolic execution with
string analysis. In TAICPART-MUTATION, pages
13–22, 2007.

[15] G. Wassermann and Z. Su. Sound and precise analysis
of web applications for injection vulnerabilities. In
PLDI, pages 32–41, 2007.

[16] F. Yu, M. Alkhalaf, and T. Bultan. Generating
vulnerability signatures for string manipulating
programs using automata-based forward and backward
symbolic analyses. In ASE, pages 605–609, 2009.

[17] F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An
automata-based string analysis tool for php. In
TACAS, pages 154–157, 2010.

[18] F. Yu, T. Bultan, M. Cova, and O. H. Ibarra.
Symbolic string verification: An automata-based
approach. In SPIN, pages 306–324, 2008.

[19] F. Yu, T. Bultan, and O. H. Ibarra. Relational string
verification using multi-track automata. In CIAA,
2010.

260

