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This study derives an approximate pricing formula of floating range notes (FRNs)
within the multifactor LIBOR market model (LMM) framework. The LMM fea-
tures the ease for calibration procedure, and the resulting pricing formula is more
tractable. In addition, since the underlying rate of FRNs is usually the LIBOR
rate, the pricing of the FRNs under the LMM is more direct and full of intuition.
© 2008 Wiley Periodicals, Inc. Jrl Fut Mark 28:697–710, 2008

INTRODUCTION

The primary purpose of this study is to provide a general pricing formula for
floating range notes (FRNs) in the framework of the LIBOR market model
(LMM), which is more intuitive and tractable than other interest rate models.
An FRN is a variety of floating-rate notes that entitles the holder to receive (or
pay) periodically an interest payment at the end of each period. The payment is
calculated by multiplying the interest rate specified at the start of each period
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by the number of days that a reference interest rate (most commonly the
LIBOR rate) lies within a specified range. At maturity, the principal of the note
is paid back along with the last interest payment.

In contrast with the traditional floating-rate notes, FRNs offer higher rates
via the sale of embedded digital options. An investor can increase his interest
return by investing in FRNs when he has a keen view that the involved inter-
est rates will stay within a range. It is worth noting that the payment of FRNs
depends not only on the floating rate observed at the start of each period but
also on the daily level of the reference interest rates, and this feature compli-
cates the valuation procedure.

Some earlier researches have been conducted on the pricing of FRNs.
Turnbull (1995) derived a pricing formula for FRNs by using the one-factor
Gaussian HJM model (Heath, Jarrow, & Morton, 1992). In the same model
and in a more intuitive way, Navatte and Quittard-Pinon (1999) derived a pric-
ing formula for FRNs by employing the changing-numéraire technique. To
enhance the calibration capacity to the interest rate covariance matrix obtained
in the market, Nunes (2004) generalized the aforementioned results to a for-
mula under the multifactor Gaussian HJM model. Eberlein and Kluge (2006)
also provided a pricing formula for FRNs in the Lévy term-structure model of
Eberlein and Raible (1999).

The interest rate models used in the previous articles are based on the
HJM framework, which relies on the specification of the instantaneous forward
rates. The instantaneous forward rates are market-non-observable and abstract,
which leads to a complicated transformation from the instantaneous forward
rates to the LIBOR rates. Moreover, the pricing formulas of widely traded
interest rate derivatives, such as caps, floors, swaptions, etc., based on the
Gaussian HJM model are not consistent with market practice. This results in
some difficulties in the calibration procedure. Accordingly, pricing FRNs in the
LMM framework should be a better choice.

The LMM was developed by Brace, Gatarek, and Musiela (1997; BGM),
Miltersen, Sandmann, and Sondermann (1997), and Musiela and Rutkowski
(1997). The LMM is widely used by practitioners because of the advantage
that the cap pricing formula in the LMM framework is Black’s formula,
which is consistent with market practice and makes the calibration procedure
easier. Furthermore, the underlying interest rates in FRNs are usually the
LIBOR rates, and hence pricing FRNs in the LMM is more straightforward. 

As examined in Rogers (1996), the Gaussian HJM term-structure model
has an important theoretical limitation: The rate can attain negative values
with positive probability, which may cause some pricing error in many cases. In
contrast, one advantage of adopting the LMM is that the underlying LIBOR
rates are positive, which avoids the problem. 
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Navatte and Quittard-Pinon (1999) and Nunes (2004) assumed that the
bounds of ranges in FRNs can vary daily. However, from a theoretical point of
view, each embedded digital option with different bounds should have a differ-
ent spread to compensate for the abandoned payoff. Therefore, the spreads in
FRNs were allowed to vary daily to make the pricing formula more general for
practical implementation. 

This article is organized as follows. The second section briefly reviews the
LMM and some useful techniques for the approximate log-normalization and
the drift-adjustment when the measure is changed. In the third section, the
contracts of a general FRN and some preliminary financial products are intro-
duced and priced. The conclusions are made in the fourth section. 

PRESENTATION OF THE LMM

The LMM and some useful techniques for the approximate log-normalization
and the drift-adjustment while the measure is changed are reviewed in this 
section.

The fact that trading takes place continuously in time over an interval [0, T ],
0 � T � �, is assumed. The uncertainty is described by the filtered spot mar-
tingale probability space (�, F, Q, {Ft}t�[0,T]) and an m-dimensional independ-
ent standard Brownian motion W(t) � (W1(t),W2(t), . . .,Wm(t)) is defined on 
it. The flow of information accruing to all the agents in the economy is repre-
sented by the filtration {Ft}t � [0,T] that satisfies the usual hypotheses.1 Note that
Q denotes the domestic spot martingale probability measure. The notations are
listed as follows.

P(t, T) is the time t price of a zero-coupon bond (ZCB) paying one dollar at
time T, L (t, T; dT) is the forward LIBOR rate contracted at time t and applied
to the period [T, T � dT] with 0 � t � T � T � dT � T, QT is the forward mar-
tingale measure with respect to the numéraire P(.,T).

The relationship between L(t, T; dT) and P(t, T) can be expressed as follows:

(1)

On the basis of the results of HJM (1992), BGM model interest rate
behavior in terms of the forward LIBOR rates, their results are specified briefly
as follows.

Assumption 1 (The LIBOR Rate Dynamics Under The Measure Q): The dynam-
ics of the LIBOR rate L(t, T; dT) under the spot martingale measure Q is given
as follows:

L(t, T; dT) �
1
dT

 (P(t, T) � P(t, T � dT))�P(t, T � dT).

1 The filtration {Ft}t � [0,T] is right continuous and F0 contains all the Q-null sets of F.
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(2)

where 0 � t � T � T, s(t, .) is defined as follows:

(3)

where d is some designated length of time,2 d�1(T � t) denotes the greatest
integer that is less than d�1(T � t), and the deterministic function g :R2

� S Rm

is bounded and piecewise continuous.

Similar to the multifactor pricing formula used in Nunes (2004), a multi-
factor LMM to price FRNs was adopted. For greater flexibility, the number of
random shocks, m, is not precisely designated but rather depends on the sim-
plicity and the accuracy required by the user.3 In practice, if the duration of an
FRN is short, may be shorter than one year, one-factor model is enough to
specify the variability of interest rates. As the duration is lengthened, using of a
three-factor model, i.e. m � 3, which captures the shift and twist of the entire
forward rate curve, is suggested. The first two random shocks can be interpret-
ed, respectively, as the short-term and long-term factors causing the shift of dif-
ferent maturity ranges on the term structure. The correlation between the
short-term and long-term forward rates is specified by the third random shock.

According to the derivation procedure of the LMM in BGM (1997), 
{s(t, T)}t�[0,T] stands for the volatility process of the bond price P(t, T). Based
on the definition of the bond volatility process (3), in
(2) is found to be stochastic rather than deterministic. Thus, the stochastic dif-
ferential equation (2) is not solvable and the distribution of L(T, T; dT) is
unknown. However, given a fixed initial time, t, s(t, T) can be approximated by

, which is defined by

(4)

where 0 � t � T � T. It means that the calendar time of the process

 ∂a
:d�1(T�t);

j�1

dL(t,T � jd;d)

1 � dL(t,T � jd;d)
 g(t, T � jd), t �  [t, T � d]

& T � d � 0

0 otherwise

st(t, T) � µµ

st(t,T))

5s(t, T � dT)6t�[0,T�dT]

;:

a
:d� 1(T�t);

j�1

dL(t,T � jd;d)

1 � dL(t,T � jd;d)
 g(t, T � jd) t � [t, T � d]

& T � d � 0,

0 otherwise

s(t, T) � µ

dL(t, T; dT)

L(t, T; dT)
� g(t, T)s(t, T � dT)dt � g(t, T)dW(t)

2 For ease of computation of Equation (3), d � 0 (for example, d � 0.25 ) can be fixed.
3 For more details regarding the performance of one- and multi-factor models, please refer to Driessen,
Klaassen, and Melenberg (2003) and Rebonato (1999).
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{L(t, T�jd; d)}t�[0,T�jd] in (4) is frozen at its initial time t and thus the pro-
cess becomes deterministic. By substituting for 
s(t, T � d) in the drift term of (2), the drift and the volatility terms in (2) will
be deterministic; hence, it can be solved and the approximate distribution of
L(T, T; dT) was found to be log-normally distributed. This argument is the
Wiener chaos order 0 approximation, which is first used by BGM (1997) for
pricing interest rate swaptions. It was developed further in Brace, Dun, and
Barton (1998) and formalized by Brace and Womersley (2000). The approxi-
mation also appeared in Schlögl (2002). The accuracy of this approximation is
shown to be very accurate. 

Proposition 1 (The Approximate LIBOR Rate Dynamica Under the Measure Q):
The approximate dynamics of the LIBOR rate L(t,T;dT) under the spot martin-
gale measure Q is given as follows:

(5)

where t � t � T � T. 

The following proposition specifies the general rule under which the
LIBOR rate dynamics changes after the change of the underlying measure.
This rule is useful for deriving the pricing formulas of FRNs.

Proposition 2 (The Draft Adjustment Technique in Different Measure): The
dynamics of the forward LIBOR rate L(t, S, dS) under an arbitrary forward mar-
tingale measure QT, where T 	 S, is given as follows: 

(6)

where t � t � S.4

The rates described in the LMM are the forward LIBOR rates underlying
the caps and floors that are actively traded in financial markets; thus, 
the market data can be employed to calibrate the parameters in the model. There
are many different calibration methodologies. One approach is to calibrate the
model covariance matrix by simultaneously fitting the caps and swaptions (e.g.
BGM, 1997; Gaterek, 2000; Hull, 2000). Another approach takes the historical
interest rate correlation matrix as an input and engages in a simultaneous 

dL(t, S, dS)

L(t, S, dS)
� g(t, S)(st(t, S � dS) � st(t, T))dt � g(t, S) )dW(t)

dL(t, T; dT)

(L(t, T; dT)
� g(t, T)st(t, T � d)dt � g(t, T)dW(t)

st(t, T � d)5st(t, T)6t�[t,T]

4 W(t) was employed to denote an independent m-dimensional standard Brownian motion under an arbitrary
measure without causing any confusion.
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calibration of the LMM to the percentage volatilities and to the historical corre-
lation matrix of the underlying forward LIBOR rates (e.g. Pedersen, 1998;
Rebonato, 1999; Wu, 2002). See Brigo and Mercurio (2001) for more details.

Having briefly introduced the LMM, the pricing formulas of FRNs are
derived in the following section.

VALUATION OF FRNs

The main purpose of this section is to derive the approximate closed-form
pricing formulas for FRNs in the LMM. Before introducing a general FRN
contract, some notations are defined. t is the current time and the considered
time flow is 0 � T0 � t � T1 � T2 � . . . � Tn, C(t, Ti) is the time t value of the
FRN ith coupon paid at time Ti, is the upper (lower) bound of the range
employed at time Tij, Dj is the number of days in the year that contains the peri-
od (Ti, Ti�1], where (Ti, Ti�1] denotes the period from date Ti (excluding this
date) up to and including date Ti�1, n0 is the number of days for the period 
(t, T1], Ni is the number of days for the period (Ti, Ti�1], T0j is the date t� j
for j � 1, 2, . . ., n0 (T0,n0�T1), Tij is the date Ti � j for j � 1, 2, . . ., Ni and 
i � 1, 2, . . ., n�1 (Ti,N0 � Ti � 1), 
ij is the spread employed for the date Tij, �ij

is the length of the compounding period (in years) of the reference interest rate
observed at time Tij and T*ij the date Tij � �ij.

From now on, the third argument in L(t, Tij; �ij) is discarded, namely �ij,
with the hope of not causing any confusion, and still each LIBOR rate has its
own compounding period. 

Consider an FRN with reset dates {T0, T1, . . ., Tn�1} and payment dates
{T1, . . .,Tn}, where T0 is the latest reset date, T1 is the next reset date, and Tn is
the expiry date. The coupon payments of this FRN is defined as follows.

Definition 1: For the FRN, the coupon at date T1 is defined to be

(7)

where V(T0, t) denotes the realized-payoff amount in the period (T0, t] and 

(8)

for j �1, 2, . . . n0. The coupon at date Ti�1, for i � 1, . . ., n�1, is defined to be

(9)C(Ti�1, Ti�1) � c a
Ni

j�1
(L(Ti, Ti) � ¢ij) � I(Tij) d�Di

I(T0j) � e1, KL
0j � L(T0j, T0j) � KU

0j

0 otherwise

C(T1, T1) � £V(T0, t) � a
n0

j�1
(L(T0, T0) � ¢0j) � I(Toj) d�D0

KU
ij (K

L
ij)



Valuation of FRNs 703

Journal of Futures Markets DOI: 10.1002/fut

where

(10)

for j � 1, 2, . . ., Ni. The principal, assumed to be 1, is paid back at date Tn.

The pre-specified range for each observed date can vary daily or
across different compounding periods. As given in Nunes (2004), a more general
case that allows the range to vary daily is derived. In addition, the pre-specified
spread (
ij) is allowed to vary daily, which reflects the different compensation
arising from selling the digital options with different ranges. As the spreads in
each compounding period are set to a fixed level, the pricing formula degenerates
to the case considered in Nunes (2004), but in the multifactor LMM framework.

Before deriving the FRN pricing formula, the four preliminary financial
products, namely delayed digital options, delayed range digital options, delayed
interest-or-nothing digital options, and delayed interest-or-nothing range digi-
tal options are priced first. Then, an FRN is priced using the fact that an FRN
is a linear combination of these four products.

Delayed Digital Options (DO)

An interest rate delayed digital call (put) option (DC (DP)) pays one currency unit
at maturity Ti�1 if the reference interest rate L(Tij, Tij) that matured previously at
time Tij with the compounding period [Tij, T*ij] lies above (below) the strike rate
Kij. The final payoff of this option at time Ti�1 is precisely given as follows5:

where L(Tij, Tij) is a matured LIBOR rate for the period [Tij, T*ij], u set to 1
stands for a digital call and �1 for a digital put. 

Theorem 1: The value of the DO at time t is given as follows:

(11)

with

(12)d(Tij) �
ln(

L(t,Tij )
Kij

) � r(t, Tij; Ti�1) � 1
2V(t, Tij)

2  V(t, Tij)

DO(t, Ti�1; Tij; Kij) � P(t, Ti�1) N(ud(Tij))

DO(Ti�1, Ti�1; Tij; Kij) � 15uL(Tij,Tij)�uKij6

([KL
ij, K

U
ij ])

I(Tij) � e1, KL
ij � L(Tij, Tij) � KU

ij ,
0 otherwise,

5 1{} is an indicator function, defined as follows:

l5A6(v) � e1 if v� A
0 otherwise



704 Wu and Chen

Journal of Futures Markets DOI: 10.1002/fut

where

(13)

(14)

Proof: The proof is given in Appendix A.

Delayed Digital Range Options

A delayed range digital option (DRO) is similar to a DO except that the pay-
ment occurs as the reference rate lies inside a pre-specified range . The
final payoff of a general DRO at time Ti�1 is defined as follows:

. (15)

Based on the property in probability measure theory, the DRO payoff can be
expressed in terms of two DC payoffs. It means that (15) can be rewritten as
follows:

Theorem 2: The time t value of the DRO is equal to

(16)

Remark 1: For a DO, if the maturity date Tij of its reference rate equals Ti�1,
which is also the maturity date of the DO, then the DO becomes an ordinary
digital option without delaying its payoff. Similarly, as Tij � Ti�1, a DRO also
becomes an ordinary digital range option. 

Delayed Interest-or-Nothing Digital Options (DIO)

A delayed interest-or-nothing digital call (put) option (DIC (DIP)) pays a float-
ing interest payment L(Ti,Ti) at maturity date Ti�1 if the reference interest rate
L(Tij,Tij) is above (below) a pre-specified strike rate Kij. The contract can be
stated formally by specifying its final payoff at time Ti�1 as follows:

u � 1 stands for a digital call option and �1 for a digital put option.

DIO(Ti�1, Ti�1; Tij; Kij) � L(Ti, Ti)15uL(Tij,Tij)�uKij6

DRO(t, Ti�1; Tij; Kij) � DC(t, Ti�1; Tij; K
L
ij) � DC(t, Ti�1; Tij; K

U
ij ).

DRO(Ti�1, Ti�1; Tij; Kij) � DC(Ti�1, Ti�1; Tij; K
L
ij) � DC(Ti�1, Ti�1; Tij; K

U
ij ).

DRO(Ti�1, Ti�1; Tij; Kij) � 15KL
ij�L(Tij,Tij)�KU

ij6

[KL
ij, K

U
ij ]

V(t, Tij) � �
Tij

t

�g(t, Tij)�2dt.

r(t, Tij; Ti�1) � �
Tij

t

g(t, Tij) 
. (st(t, T*

ij) � (st(t, Ti�1))dt
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Theorem3: The time t value of the DIO is given as follows:

(17)

with

where

(18)

r(, Tij; Ti�1) and V(t, Tij) are defined in Equations (13) and (14).

Proof: The proof is given in Appendix B.

Delayed Interest-or-Nothing Range Digital Options

A delayed interest-or-nothing range digital option (DIRO) pays a floating inter-
est payment at maturity Ti�1 if the reference interest rate L(Tij, Tij) lies within a
pre-specified range [KL

ij, K
U
ij] The final payoff of the DIRO is defined as follows:

Similar to DROs, DIROs can also be expressed in terms of two DICs, i.e.

Thus, the pricing formula of the DIRO can be expressed in terms of the
pricing formulas of DICs, and the result is presented in the following theorem. 

Theorem 4: The time t value of the DIRO is equal to 

(19)

Remark 2: If the maturity date Tij of its reference rate equals Ti�1, which is also
the maturity date of the DIO and DIRO, then the DIO and DIRO become,
respectively, an ordinary interest-or-nothing digital option and an ordinary
interest-or-nothing range option without delaying its payoff.

DIRO(t, Ti�1; Tij; Kij) � DIC(t, Ti�1; Tij; K
L
ij) � DIC(t, Ti�1; Tij; K

U
ij ).

DIRO(Ti�1, Ti�1; Tij; Kij) � DIC(Ti�1, Ti�1; Tij; K
L
ij) � DIC(Ti�1, Ti�1; Tij; K

U
ij ).

DIRO(Ti�1, Ti�1; Tij; Kij) � L(Tij, Tij)15KL
ij�L(Tij,Tij)�KU

ij 6. 

(st(t, T*ij) � st(t, Ti�1) � g(t, Ti))dth(t, Ti; Tij; Ti�1) � �
Ti

t

g(t, Tij)

e(Tij) �
ln(

L(t,Tij )
Kij

) � h(t, Ti; Tij; Ti�1) � 1
2V(t, Tij)

2 V(t, Tij)

DIO(t, Ti�1; Tij; Kij) � P(t, Ti�1)L(t, Ti)exp(r(t, Ti; Ti�1) )N(ue(Tij) )
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Range Notes

As seen in Definition 1, an FRN is a linear combination of DROs, DIROs, and
a ZCB. With the above preliminary theorems, the pricing formula of the FRN
can be derived and is given in the following theorem.

Theorem 5: For the FRN as defined in Definition 1, the time t value of its first
coupon is equal to:

The time t value of other coupons is given as follows: 

for i � 1, 2, . . ., n � 1. The time t value of the principal, assumed to be 1, is
equal to P(t, Tn).

Thus, the time t value of the FRN is equal to:

(20)

Proof: According to Definition 1, an FRN is a linear combination of DROs,
DIROs, and a ZCB. Thus, the pricing formula of the FRN can be easily
obtained by employing Theorems 1–4.

Similar to the pricing formula as given in Nunes (2004), the formula is
derived in a multifactor LMM framework that has an advantage of enhancing
the model calibration to the interest rate covariance matrix observed in the
market. Because the LMM prices caps and floors consistently with Black’s for-
mula widely used in the market, the implied volatility quoted in the market is
consistent with the model volatility, which makes the calibration procedure of
the LMM to be easier than other interest rate models.

In addition, since the underlying interest rates of FRNs are usually the
LIBOR rates, modeling interest rate behavior based on LIBOR rates rather
than other abstract interest rates, such as instantaneous spot or forward rates,
can avoid a complicated transformation from abstract interest rates to the
LIBOR rates, which makes our pricing formula more intuitively clearer.
Therefore, all parameters in the pricing model (20) can be easily calibrated

FRN � a
n

i�1
C(t, Ti) � P(t, Tn).

C(t, Ti�1) � a
Ni

j�1

1
Di

[DIRO(t, Ti�1; Tij; Kij) � ¢ij � DRO(t, Ti�1; Tij; Kij)]

C(t, T1) � cV(T0, t)P(t, T1) � a
n0

j�1
(L(T0, T0) � ¢0j)DRO(t, T1; T0j; K0j)d�D0.
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from market data and the formula is more tractable and feasible for practical
implementation.

Unlike the Gaussian HJM term-structure model, the LMM has another
advantage that it can avoid the pricing error arisen from negative rates with
positive probability. Rogers (1996) indicated that the Gaussian HJM model
may cause some pricing error in many cases. However, since the LMM has a
log-normal volatility structure and the underlying LIBOR rates are positive, the
pricing error can be avoided, and thereby making the pricing more accurate.

CONCLUSIONS

This study has derived an approximate pricing formula of floating range notes
within the context of the multifactor LMM. As compared with the previous
researches within the HJM-type term-structure model, our pricing formulas
derived under the LMM have some advantages: easy and flexible to calibrate
the model parameters, more intuitively clearer, and avoiding the pricing error
resulting from negative rates. Therefore, the pricing formulas within a multi-
factor LMM are more suitable for practical implementation.

APPENDIX A: PROOF OF THEOREM 1

The DO under the forward measure is priced as follows: 

(A.1)

Applying Propositions 1 and 2, L(Tij, Tij) under the measure is given by

(A.2)

where

and r(t, Tij; Ti�1) and V(t, Tij) are defined, respectively, in (13) and (14).
As u � 1 and taking (A.2) into (A.1), the pricing formula of the DC is

defined as follows:

Zij � �
Tij

t

g(t, Tij)dW(t) � N(0, V(t, Tij))

L(Tij,Tij) � L(t,Tij)expar(t,Tij;Ti�1) �
1
2

V(t,Tij) � Zijb

QTi�1

 � P(t, Ti�1)QTi�1(uL(Tij, Tij) � uKij 0Ft).
 DO(t, Ti�1; Tij; Kij) � P(t, Ti�1)EQTi�1(15uL(Tij,Tij)�uKij6 0Ft)

QTi�1
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where d(Tij) is defined in (12).

Similarly, as u � 1, the pricing formula of the DP is defined as follows:

APPENDIX B: PROOF OF THEOREM 3

The DIO under the forward measure is priced as follows:

Applying Equation (A.2), DIO(t, Ti+1; Tij; Kij) can be rewritten as

where 

dRTi�1

dQTi�1
� exp° �

Ti

t

g(t, Ti)dW(t) �
1
2 �

Ti

t

�g(t, Ti)�2dt¢

P(t, Ti�1)L(t, Ti)exp(r(t, Ti; Ti�1))EQTi�1adRTi�1

dQTi�1
15uL(Tij,Tij)�uKij6 0Ftb.

DIO(t, Ti�1; Tij; Kij) � P(t, Ti�1)EQTi�1(L(Ti, Ti)15uL(Tij,Tij)�uKij6 0Ft).
QTi�1

 � P(t, Ti�1)N(�d(Tij)).

 � P(t, Ti�1)QTi�1° Zij

2V(t,Tij)
�

ln
L(t,Tij )

Kij
� r(t,Tij;Ti�1) � 1

2V(t,Tij)

2V(t,Tij)
0Ft¢

 � P(t, Ti�1)QTi�1ar(t, Tij; Ti�1) �
1
2

V(t, Tij) � Zij � ln
Kij

L(t,Tij)
0Ftb

 � P(t, Ti�1)QTi�1aL(t, Tij)expar(t, Tij; Ti�1) �
1
2

V(t, Tij) � Zijb � Kij 0Ftb
DP(t, Ti�1; Tij; Kij)

 � P(t, Ti�1)N(d(Tij))

 � P(t, Ti�1)QTi�1° �Zij

2V(t,Tij)
�

ln
L(t,Tij )

Kij
� r(t,Tij; Ti�1) � 1

2V(t,Tij)

2V(t,Tij)
0Ft¢

 � P(t, Ti�1)QTi�1ar(t, Tij; Ti�1) �
1
2

V(t, Tij) � Zij � ln
Kij

L(t,Tij)
0Ftb

 � P(t, Ti�1)QTi�1aL(t, Tij)expar(t, Tij; Ti�1) �
1
2

V(t, Tij) � Zijb � Kij 0Ftb
DC(t, Ti�1; Tij; Kij)
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denotes Radon-Nikodým derivative that defines a new equivalent measure 
on the same measurable space (�,F). Thus, one obtains

According to Girsanov’s Theorem, L(Tij, Tij) is derived under the measure
as follows:

where V(t, Tij), Zij, and h(t, Ti; Tij; Ti�1) are defined, respectively, in (14), (A.3),
and (18).

Similar to the deriving process of DC in Appendix A, the pricing formula 
of the DIC can be derived by setting u � 1 and by substituting (B.2) into (B.1).
In the same way, the pricing formula of the DIP can be derived by setting u� �1.
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