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Within the multijactor LIBOR market model, the

authors examine three types of interest rate spread

options: LIBOR us. LIBOR, LIBOR us. swap

rate, and swap rate vs. swap rate. These financial

products are widely traded in the marketplace or are

embedded in structured notes, such as CMS range

aaruals and steepeners. In theßrst case, the authors

show that the drift has an impact on the pricing

which dißersjrom the results oj previous research.

Tlie authors also present a new approach to approx-

imating the distribution of a forward swap rate under

the LIBOR market model and then employ it to

price CMS spread options. The numerical exam-

ples show that the approximate pricing formulas are

robustly accurate as compared with Monte Carlo

simulation using recent two-year data.

I
nterest rate spread options (IRSOs), also
known as interest rate difference options,
are contracts written on the ditTerence
between two interest rates. The subject

interest rates may be short rates, intermediate
rates, or long rates. For example, a 6-month
LIBOR rate contains information regarding
short-term interest rates while a lO-year or
20-year constant maturity swap (CMS) rate
describes the overall level of the yield curve.
Thus, IRSOs Function as instruments for prac-
titioners to view relative changes in the dif-
ferent ranges ofthe yield curve.

The emergence of IRSOs have two main
motivations. The first is to control the risk due
to changes in the shape ofthe yield cnrve.

intert'st rates have become more volatile during
the past decades and thus the issue of man-
aging the risk of interest rates has attracted
greater attention from financial institutions and
market participants. In order to hedge interest
rate risk, various types of financial instruments
have been implemented, such as interest rate
caps, floors, collars, swaps, and swaptions.

Though basis swaps can be used to hedge
exposure in the spread of two yields for finan-
cial institutions whose assets and liabilities are
dependent on difîerent floating reference rates,
as structured instruments they may be ineffi-
cient for a specific purpose. In contrast, IRSOs
can be tailored to hedge risk that depends on
whether the spread ot twt) interest rates is above
or below a specified level, or within or out-
side a specified range on a specific future date.
iRSOs can also be used as ancillary instru-
ments for basis swaps. For example, an end-user
can use a basis swap to capitalize on antici-
pated yield curve movements while purchasing
IRSOs to eliminate downside risk.

Second, IRSOs can be used to enhance
profits from a change in the spread between
two interest rates or to lock in a current spread.
For example, in October 2005 the spread
between the 2-year and 10-year U.S. dollar
CMS rate was around 80 basis points, which
is significantly narrow. {By comparison, the
spread reached 110 basis points in January 2005
and 160 basis points in January 2004.) Due to
the flatness ofthe yield curve, investors were
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able to generate attractive returns as the yield curve
steepened.

The most popular CMS spread option products are
stcepeners and range accruals. Steepeners pay a high
coupon the first year, and the investor is subsequently
paid a coupon based on the spread between two CMS
rates (for example, 2-year anci 1()-year CMS rates), mul-
tiplied by a specified leverage ratio. Range accruals pay a
high coupon if (for example) the 10-year CMS rate minus
the 2-year CMS rate remains within a pre-specified range
or is above (below) a certain barrier for every day of the
coupon period. According to the data given in Sawyer
|2OO51, a trading volume of $30 billion of CMS spread
options was recorded in 2005, and it has since increased.

There have been several studies on the pricing of
IRSOs. Longstart"[ 1990) examined an IRSO on .i yield
spread based on an extended version of the Cox, Ingersoll,
and Ross [1985| interest rate model. Both Fu 11996] and
Miyazaki and Yoshida |199iS| derived pricing formulas
for yield-sprcad options within the Gaussian Heath, Jarrow,
and Morton (1992, HJM) framework. Fu [1996] intro-
duceci a two-fiictor HJM model for pricing IRSOs. which
permits imperfect correlations tor interest rates ot dif-
ferent maturities.

Fu [1996] further priced an IRSO on the differ-
ence between two LIBOR rates with ditïerent com-
poiiiKÜng periods. His pricing formula showed that the
drift terms would not affect the option price. According
to the theory of the LIBOR market model (LMM).
however LIBC^R rates with different expiration dates
will not be martingales under the same probability mea-
sure; thus the drift terms actually have an impact on the
opticMi price.

The main purpose of this article is to provide closed-
form pricing formulas for IRSOs within the multifactor
LMM framework. Three types of IRSOs are considered:
an IRSO on the difference between two LIBOR rates
with different compounding periods, an IRSO on tlie
difference between a LIBOR rate and a swap rate, and an
IRSO on the difference between two swap rates with dif-
ferent tenors. The pricing formula of the first-type IRSO
is shown to have a drift effect which is different from the
result in Fu [1996J. The last two types of IRSOs are usu-
ally embedded in stcepeners and range accruals. It is well-
known that the LMM and the swap market model (SMM)
are not compatible and thus the distribution of swap rates
within the LMM framework is unknown. In this article,
we also present a new approach to approximate the

distribution cf swap rates in the multifactor LMM. The
resulting pricing formulas are shown to be sufficiently
accurate via Monte Carlo siniulation.

An additional contribution is to be able to speed up
computation. For example, CMS range accruals have been
widely traded in financial market and its component ele-
ments are CMS spread options. In practice, the prices of
CMS range ai cruals are computed based tin Monte Carlo
simulations. For financial institutions issuing hundreds of
CMS range accruals, it is too inefficient to provide daily
price quotaticns to customers. This problem can be solved
with the accurate closed-form pricing formulas presented
in this article

The LMM was developed by Musieia and Rutkowski
[1997|, Miltersen, Sandmann, .ind Sonderniann |1997],
and Brace, Gacarek. and Musieia [1997, B ( ; M | . It has been
widely used hv market practitioners because its underlying
interest rate is a LIBC^R rate, which is market-observable.
The cap and floor pricing formulas within the LMM franie-
work are in f ict the Black formula which has been con-
sistent with market practice and also makes the calibration
procedure easier. The iiiiderlj'ing distribution of the
LIBOR rate in the LMM is a lognormal distribution rather
than a Gaussi.in distribution, which avoids pricing errors
due to the negative rates with positive probabilities.' hi
addition, mo it popular and actively traded interest rate
products can be priced within the LMM fr.,iniework so
that interest rate risks can be managed consistently and
efficiently.

THE LIBOR MARKET MODEL
AND SOMi; RELATED TECHNIQUES

In tills srctioii, we briefly review tlie LIBOR liKuket
model, a drift-adjustment technique in different measure,
and a lognornialization technique for LIBC^R rates under
different meauire. We also introduce a new lognornial-
ization appro,icli for swap rates under the LMM.

Review oí the LIBOR Market Model

Assume that trading takes place continuously over
an interval [0, T | , (I < T < ^, The uncertainty is described
by the filtered spot iiKirtingale probability space (Í2, F.
Q, {-̂ (ifgii, 7 |) '»'id an íí;-diniensional independent stan-
dard Brownian motion W{t) = (W ,̂(r). Pr,(r) WJt))
is defined on the probability space. The fîow of infor-
mation accruing co all the agents in the economy is
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represented by the filtration í-^,í,g|(i7-| which satisfies the
usual hypotheses.'^ Note that Q denotes the spot martin-
gale probability measure. The notations are as follows:

P{t,T) = the time t price of a zero-coupon bond
paying one dollar at time T

L\t,T) = the forward LIBOR rate contracted at time
/ and applied to the period [T, T + Ô\ with

Q^ = the forward martingale measure with
respect to the numéraire P( , T).

The relationship between L\t, T) and P(/, T) can
be expressed as follows:

L*(f, T) ^ (P(f, T) - P(i, T + ô))/ôP{t, T + Ô) (1)

BGM [1997] mode]ed interest rate behavior in terms
of the forward LIBOR rates based on the arbitrage-free
conditions in HJM [1992]. We briefly specify their results.

Proposition 1 The LIBOR Rate Dynamics under
the Measure Q

The dytiamics of the UBOR rate L.%t, T) tmder the
spot martingale measure Q is given as follows:

proposition specifies the general rule under which the
LIBOR rate dynamics are changed following a change
ot the underlying measure. This rule is useful for deriving
the pricing formulas of interest rate derivatives.

Proposition 2 The Drift Adjustment Technique
in DitTerent Measures

The dynamics of a forward LIBOR rate L''(/, 7 ) inidcr
an arbitrary forward martingale measure Q^ is given as follows:

L\t,T)

where{)<t<\mn{S, T).'

a {t,S))dt

(4)

A Lognormalization Technique for the LMM

According to the definition of the bond volatility
process in Equation (3), ¡0'p(f, ')],^\n.\ i" (2) and (4) is
stochastic rather than deterministic. The stochastic dif-
ferential Equations (2) and (4) are not solvable, and the
distribution oí L\T, T) is unknown. However, given a
fixed initial time, assumed to be 0, we can approximate
(Jp{t, T) by C7f'(f, T), which is defined by

= fit, T) • a,{t, T

where 0 <^ t <,T <T,

t,T)-dW{t) (2)

is defined as follows:
<, 7 -5X1
otherwise

T fE[0.r-5|

&T-S>Ú

otherwise

(3)

where Sis sotiie designated length of tinte,"" [S '(T— f)] denotes
the greatest integer that is ¡ess thati Ô~\T - t) and the deter-
ministic function y : R^ —> R" is bounded and piecewise
cotitittuous.

According to the derivation process in BGM [1997],
|C7,,(f, T')},etori stands for the volatihty process of the
bond price P{t, T). Notice that Equation (2) is a sto-
chastic process of a LIBOR rate under the spot martin-
gale measure Q. It is sometimes desirable to know the
processes under other martingale measures. The following

where 0 <_ t <T ^7". The calendar time of the process
{L^((, T~iÔ)}^^,^^^._.g, in (5) is frozen at its initial time
0 and thus the process {^pV^ ' )I,6|O,T| becomes deter-
ministic. By substituting ö\[{t,T + 5) for íTp(f, 'I' + Ô) in
the drift terms of (2) and (4), their drift and volatility
terms will he deterministic, so we can solve it and find
the approximate distribution of L(T , T) to be lognor-
maUy distributed.

This technique is the so-called Wiener chaos order (*
approximation, which was first used by BGM |1997] tor
pricing interest rate swaptions. It was developed further in
Brace, Dun, and Barton [1998] and formalized by Brace and
Womersley [200()|. The approximation also appears in
Schlögl [2002]. This approximation has been shown to be
very accurate. We present the result in the following propo-
sition and its proof in Appendix A.
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Proposition 3 The Logriormalized LIBOR Market
Model

The dynaïuics ofa loíinormalized forward LIBOR rate
L\t,'r) under an arbitrary jonmrd martítigalc measure Q'̂  is

w here

by

where

(6)

U)

< Í < niin(5. 7'

(9)

Brigo and Mercurio [2001] indicate that empirical studies
have shown the variability oí"the ic^to be sm.ill compared
to the variability ofthe forward LIBOR rates/' There-
fore, we can freeze the value ofthe processes w^t) to its
initial value; n'^0) and obtain

(10)

An Approximate Distribution of a Swap Rate
in the LMM Framework

Besides the LMM, the SMM as shown by Jamshidian
11997] provides the swaption prices with the lilack swap-
tion formula, which has become the widely accepted
standard pricing formula by the swaption market. It is
well-known, however, that the LMM and the SMM are
not compatible in that a swap rate and a LIBOR rate
cannot be lognormally distributed under the same mea-
sure. Therefore, choosing either of the two models as a
pricing foundation is problematic. Brace, Dun, and Barton
11998] have suggested that the LMM should be adopted
as the central model due to its mathematical tractability,
;md we follow their suggestion.

In tbis way, the first problem we encounter is how
to fmd the approximate distribution of swap rates under
the LMM framework. It is known that a swap rate is
roLiglily a weighted average of LIBOR rates. Moreover,
LIBOR rates under the LMM framework are approxi-
mately lognormally distributed. Therefore, the distrib-
ution ofa swap rate is roughly a weighted average of
lognormal distributions. In this subsection, we present
a new approach to find the approximate distribution of
a swap rate under the LMM framework.

Consider a swap rate, observed at t and with reset
dates {T^,Tf,.... rf_,} and payment dates {r¿',rf, ..., Tf},
defined as follows:

Note that S^^(T, T) is a weighted average of log-
normally distributed variables and its distribution is
unknown. Although Sf^iT, T) is not a lognormal distri-
bution, it c; n be well-appn^ximated by a lognormal dis-
tribution v'ith the correct first two moments.' Tbe
accuracy of :his technique has been examined by Mitcliell
[1968]. Furihermore, many areas of science have verified
the high accuracy ofthe Jognormal approximation for tbe
sum of logi orniiil random variables (e.g., Aitchison and
Brown [1957], Crow and Shnnizu [1988], Levy [1992],
Limpert, Stahel, and Abbt [2(X)1], and Borovkova, Permana,
and Weide 12007]) (In addition, we will provide detailed
empirical rt suits in the subsection C l̂alibration Procedure
and Numerical Study to show the lobust accuracy ofthe
resulting pricing formulas based on moment matching
approximation.)

Based on these studies, we assume tli,u In S'V/', T)
has a normal distribution with mean rn and variance î . The
moment generating function for In 5^(T, T) is given by

í

Takinj; h = I and It = 2 m (U), we obtain the
following t̂ vo conditions to solve for m and î :**

r, i (8)

(12)

(13)
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VALUATION OF INTEREST RATE
SPREAD OPTIONS

In this section, we price three types of IRSOs
within the LIBOR market model framework: an option
on the difference between two LIBOR rates with dif-
ferent compounding periods, an option between a swap
rate and a LIBOR rate, and an option between two
swap rates.

Valuation of First-Type IRSOs (FIRSOs)

A FIRSO is an option on the difference between
two LIBOR rates with difFerent compounding periods.
Its final payoff is given as follows:

(14)

where L\T. T) and L^{T, T) denote the T-matured
LIBOR rates with compounding period Ô aud f], respec-
tively. T is the options maturity date and {aY = Max(íí, 0).

For managing assets and Habilities, FIRSOs are
usually used to enhance the interest return of assets or
reduce the interest cost from liabilities in a more direct way.
If a fmancial manager desires to manage tbe risk of an
interest rate spread via a long-period basis swap, he may
use FIRSOs as ancillary instruments to eliminate tbe
downside risks of particular payments. In addition, if
investors have accurate views of the spread between
LIBOR rates at some specific time, they can take profits
by employing a corresponding FIRSO.

The pricing formula of FIRSOs is presented in the
following theorem. Its proof is given in Appendix B.

Theorem 1 The pricing formula of FIRSOs with the
final payoff specified in (14) is <^Íi>eu asfoUows:

C,(O) =

In

V.

where A,1(I.Í, T; T) is defined similarly to \{ii, T; T) asgiven
in (7), and

The pricing formula (15) somewhat resembles the
Margrabe [1978| formula in the LMM framework. In
contrast with tbe pricing formula as given in Fu [19^6],
Equation (15) indicates that drift terms of LIBOR rate.s
do affect the IRSO price. In addition, all the parameters
appearing in (15) can be extracted easily from market
data, making the pricing formula more tractable and fea-
sible for practitioners.

Valuation of Second-Type IRSOs (SIRSOs)

A SIRSO is an option on the difference between a
LIBOR rate and a swap rate. The fmal payoff is given as
follows:

(16)

where S'^(t, T) is an «-year forward swap rate with a year
fraction 7] observed at time t.

SIRSOs enable practitioners to benefit from taking
a view on the spread between a short-term rate and a
long-term rate. SIRSOs are usually embedded in tbe range
accruals, which are popular in the structured note market.
SIRSOs can also be employed as ancillary instruments for
a CMS to remove the downside risks of particular
payments.

The pricing formula of SIRSOs is presented in tlic
following theorem. Its proof is given in Appendix C.

Theorem 2 'l'lie pricing Jornnda of SIRSOs with the
final payoff specified in (16) is fiit/en asfi>Ílows:

1 ,

(17)
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where

= In 2In , T)]

Theort îm 3 Ihe pricing formula of TIRSOs with the
final payoff specified in (18) is given as follows:

P(0, T) exî>
V

(19)

where

V,

; ; T)]
in (C3) and (C4).

, T)-] are defined, respeäively,

The pricing Formula (17) also somewhat resembles
the formula in Margrabe |197H| in the LMM framework,
where end-users are more familiar with employing it. As
with Equation (15), the parameten in (17) can be extracted
easily from market-quoted prices.

- 2 [5^(7, 7')]

..Í = In

Valuation of Third-Type IRSOs (TIRSOs)

A TIRSO is an option on the difference between
two CMS rates with the final payotf as follows:

= (5f (T, T) - sy (18)

TIRSOs are usually embedded in the range accrual,
which is very popular in the structured note market.
TIRSOs are traded by investors who wish to take a posi-
tion on future relative chanL̂ cs in different parts ofthe
yield curve. TIRSOs can also be used as ancillary instru-
ments for a two-way constant maturity swap. As with
Equation (15), the parameters in the pricing Formula (19)
can be extracted easily from market-quoted prices. Con-
sequently, tlie pricing formula that follows is workable in
practice.

The pricing formula of TIRSOs is presented in the
following theorem. Its proof is given in Appendix D.

and , T}\, E ^ ' | S Í ( T , T ) ^ ] , E<^'[S;(T, T ) j , and
, T)^] are, respectively, defined in (D2), (D3), (D4),

and (D5).

The three types of IRSOs, which are usually
embedded ir structured notes, are widely traded in tlie
financial maiket. In practice, these structured notes are
priced based on Monte Carlo simulations. For financial
institutions issuing hundreds of structured notes, however,
Monte Carlo simulations are too time consuming to com-
pute the dail) prices of issued structured notes for investors
each day. The next section examines the closed-form pricing
formulas in T heorenis 3.1-3.3 and shows them to be suf-
ficiently and robustly accurate by comparing the Monte
Carlo simuLtion. The formulas consequently provide
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a time-reducing approach to price structured notes and
make the management of price quotations easier.

CALIBRATION PROCEDURE
AND NUMERICAL STUDY

This section first presents the calibration procedure
and then provides some numerical examinations for the
approximate formulas derived in the previous section.

Calibration Procedure

The cap and floor pricing formulas within the LMM
framework are in fact the Black formula, which has been
extensively used in market practice. Thus, the model
volatilities can be extracted directly from quoted implied
volatilities for cap prices. However, the correlation matrix
of the forward LIBOR rates cannot be extracted from the
quotations of cap prices since the standard pricing for-
mula of caplets involves only a single forward LIBOR rate.
In practice, two approaches are employed to calibrate cor-
relations between LIBOR rates. The first is presented by
Rebonato [1999|, who applies an historical correlation
matrix to engage in calibration, and the second is based
on the price quotations of swaptions.'' Both approaches
are tractable and widely used in the marketplace.

In this article, we adopt the Rebonato [1999]
approach to engage in a simultaneous calibration of the
LMM to the volatilities and correlation matrix of the for-
ward LIBOR rates.'" We assume that there are j ; forward
LIBOR rates in the íí)-factor framework. The steps to
calibrate the parameters are given as follows.

First, we assume that each forward LIBOR rate,
L( , Í.), has a constant instantaneous volatility, namely, for
i = 1, ..., n, Y{-, t.) = f.. The setting is as presented in
Exhibit 1." Thus, if the market-quoted volatility for
r,-year cap is ^,, then p^ = ^^ Next, for i = 2, ..., n if
the i.-year cap is â., then u. = â~t' — â', t.-,.

Second, we use the historical data of the forward
LIBOR rates to derive a market correlation matrix L. Z
is an «-rank (wi < n), positive-definite, and a synunetric
matrix, and can be written as

I - HVH

where H is a real orthogonal matrix and F is a diagonal
matrix. Let A = HT^^- and, thus, L = AA'. In this way,
we can find an Hi-rank (ÍÍI < n) matrix B so that S^ = BB^
is an approximate correlation matrix for S.

The advantage of finding ß is that we may replace
the íí-dimensional original Brownian motion dW(t) with
BdZ{t) where dZ{t) is an m-dimensional Brownian motion.
hi other words, we change the market correlation structure

dW{t)dW{tY = 1.(11

to an approximate correlation structure

BdZ{t){BdZ{t))' = BdZ{t)dZ{t)'B' = BB'dt = I" dt

The remaining problem is how to find a suitable
matrix B. Rebonato [1999J proposed a method described
as follows. Assume that the ik-th element of B for
i = 1, 2, ..., n is specified as follows:

E X H I B I T 1

Instantaneous Volatilities of L(f, •)

Itistant.Total Vol.

FwdRate; L(í,í,)

L{tJ2)

'•

Timei e (ÍQ,?,)

V2

Dead

^2

.. .

Dead

Dead

...

Dead

Dead
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M I ' " 1

6., =
COS0

l
ifk = \,2,....tii--[

if k = m

iö J. , , , ,.
^ ijt ' j=l,.,,,njf=l Bi-I

We can obtain an Optimal solution 0 by solving the fol

lowing optimization problem.

nnn
e (20)

where T. is the i/'-th cleniLMit of Z, and L" , is the i/'-th
element of Z", specifically defined as follows:

where î _, < r < fj,, it = 1 / and /= 1,2, .... n.
This piocc'dure is a general calihration method

without a constraint on cht)osing the number of factors,
m. The number of random shocks, m, may depend on
the maturity range of interest rates involved in the con-
sidered finan :ial product.'^ For example, we may use a
three-factor model, i.e., m = 3, to capture the shift and
twist of the entire yield curve. The first two random
shocks can bt interpreted, respectively, as the short-term
and long-ten ll factors causing the shift of different matu-
rity ranges on the yield curve. The correlation between
the short-term and long-term interest rates is specified
by the third r.indoin shock. According to this feature, the
numerical ex.miplcs in the following section are based on
a three-factoi model.

By substituting Ö into B, we obtain an optimal

matrix B such that S (= BB') is an approximate cor-
relation matrix for S.

Third, we use B to distribute the instantaneous
total volatility, V̂ ., to each Brownian motion without
changing the amount of the instantaneous total
volatility.'- That is.

Numerical Study

This subsection provides some practical examples that
examine the accuracy of the approximate pricing formulas
presented in Theorems 1-3 by comparing the results with
Monte Carlo simulations. The first case is an IRSO on the
difference between a 6m-LlBOR rate and a 3ni-LIBOR
rate; the second case is between a 7-year swap rate and a

E X H I B I T 2

The Numerical Examples of Theorem 1

Date

2007/1/1

2007/7/2

2008/1/1

2008/7/1

Time to Maturity

1
3
5
1
3
5
1
3
5
1
3
5

Theorem 1

5.7551 X 10-5
3.5085 X 10-"
5.1147 X 10"
2.4179 X lO"
5.2946 X lO-*
5.9586 X 10-"
2.0770 X 10-5
7.5396 X 10"
9.3120 X 10"
1.3033 X 10-^
1.0637 X 10-^
9.9555 X 10"

MC

5.7561 X
3.5076 X
5.1217 X

2.41 78 X

5.2946 X
5.9503 X
2.07 76 X
7.53')O X
9.3408 X
1.30.Í3X
1.06.Î5 X
9.9987 X

10-'
10"
10"

10"
10"
10"
10 5

10"
10"
10-̂
10-3
10-*

SE

1.1548 X 10-̂
3.6374 X 10^"
6.2260 X lO"

1.8705 X 10"^
4.0401 X 10"
6.3528 X 10-^
9.4075 X 10-^
8.3932 X 10-"
1.2973 X 10-^
9.1545 X lO-"
1.2236 X 10--'
1.5991 X 10-5

Notes: Tlie I-, 3-, and 5-yeaT ¡RSOs on the difference hetwcen a 6m-UBOR ran- and a .hn-LIB('R rate arr semiamually priced hased on the market data

ofcr the past two years. Vie market data are listed in Appendix H. Tlie notiotial I'aliie is assumed to i'e St. The simulation is based on 10,000 paths. MC

stands for the result oJ the Monte Carlo .Emulation, and SB stands for the standard error.
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E X H I B I T 3
The Numerical Examples of Theorem 2

Date Time to Maturity

2007/1/1

2007/7/2

2008/1/1

2008/7/1

Theorem 2

1.6847
3.4602
3.6115
3.4947
3.7791
3.6164
9.9053
8.2671
6.7070
1.0943
7.6029
6.6668

X

X

X

X

X

X

X

X

X

X

X

X

10-3
10-3

10-3
10-3
10-3
103

10-3
10-3
10-3
10-̂
10-3
10-3

MC
1.6846 X 10-3

3.4600 X 10-3
3.6117 X 10-3
3.4947 X 10-3
3.7792 X 10-3
3.6165 X 10-3
9.9053 X 10-3

8.2670 X 10-3

6.7088 X 10-3
1.0944 X 10-2
7.6026 X 10"^
6.6658 X 10-3

SE
2.4359
4.4089
4.6739
3.2942
4.3340
4.4806
4.8197
7.6276
7.5803
5.4960
7.8739
7.7912

X

X

X

X

X

X

X

X

X

X

X

X

10-5
10-5

10-5
10-5
10-5
10-5
10-5
10-5
105
10-5
10-5
10-5

Notes: The /-. .Í-, and 5-year IRSOs on the difference heUveen a "-year simp mie and ,i 6ni-LIBOR rate are seniiannually priced based on the market daUi
over the past two years. 'Die yvarfniction ofthe 7-ycar swap rate is n half year. The market data are listed in Appendix E. The notional vahic is assumed to i^e
$1. The simulation is based on ¡0,000 paths. MC shiiidsfor ihe rcsuli ofthe Monle Carlo sinmlalion, mid SF. stands for the standard error.

6m-LlBOR rate; the third case is between a 10-year swap
rate and a 2-year swap rate. The swap rates are reset semi-
annually.

For each case, we consider three times to maturity,
namely 1, 3, and 5 years. To examine tbe accuracy and
robustness ofthe presented formulas for different market
scenarios, IRSOs are priced semiannually for the recent
2-year market data. Appendix E lists the market data used
for calibration and simulations. The notional principal
for each example is assumed to be SI and simulations are
based on 10,000 paths.

Tbe results, listed in Exhibits 2-4, show that the
approximate formulas are sufficiently accurate by com-
parison to Monte Carlo simulations and are robust as four
market parameters over the past two years are employed.
Even for the more volatile market data (on date 2008/7/1).
the approximate formulas are still shown to be quite
acceptable.

In practice IRSOs, such as CMS spread options and
CMS range accruals, are priced based on Monte Carlo
simulation, which is too time consuming to provide cus-
tomers daily price quotations, especially for a financial
company issuing hundreds of IRSO-type structured notes.
Based on the empirical examinations given in
Exhibits 2 ^ , the pricing results ofthe presented formulas

are robustly close to the results from simulations. This
ensures that the approximate formulas are good substi-
tutes for simulations and solve the problem of excessive
time consumption that simulations present. Accordingly,
the presented formulas can enhance customer service by
providing customers with quick daily price quotations.
With these advantages, the presented formulas are worth
recommending for practical implementation.

CONCLUSIONS

We have developed the pricing formulas of three
types of IRSOs within the LMM framework: an option
on the difference between two LIBOR rates with dif-
ferent compounding period.s, an option on the difference
between a swap rate and a LIBOR rate, and an option on
the difference between two swap rates. These financial
products are widely traded in the marketplace or are
embedded in structured notes, such as CMS range accruals
and steepeners.

IRSOs can be used as ancillary instruments for
interest rate swaps to enhance profit from a change in the
spread between two interest rates or to lock in a current
spread. They can also be employed to control risks due
to changes in the shape ofthe yield curve.

4 6 VALUATION OF INTEREST RAIE SPREAD OPTKINS IN A MULTIFACTOR LIBOR MARKFT MODEL



E X H I B I T 4
The Numerical Examples of Theorem 3

Date Time to Maturity Theorem 3
2007/1/1

2001/1/2

2008/1/1

2008/7/1

2.8030 X 10"
3.6149 X 10
3.4973 X 10
3.7419 X 10
3.6444 X 10
3.1434 X 10"
1.0096 X 10
7.2788 X 10-
5.6175 X 10-
7.3652 X 10-
6.6315 X 10-

MC
2.8030 X 10
3.6148 X 10
3.4'í74x 10
3.7418 X 10
3.6445 X 10
3.1438 X 10
1.0097 X 10
7.2:̂ 89 X 10
5.6472 X
7.3<ï98 X
6.6:>21 X

10-'

5.3660 X 10-' 5.4040 X

SE

2.9121 X 10-5
4.2738 X 10 5
4.1149 X U) 5
3.1073 X 10-5
4.1017 X 10 5
3.7546 X 10 5
5.1243 X 10-5
6.9623 X 10-5
6.1297 X 10 5
5.6085 X 10 5
7.0309 X 10 5
6.0976 X 10-5

Notes: Tlu- I-, .î-, and 5-year IRSOs on the différend- hetuvcn <i lO-ycar swap rate and a 2-year <H'ap rate are sentitinnually priced ¡Uh-^cd on the market
data oi'cr the p>ist ttiv years. 'lite tmirket dai,t are listed in Appemiix F. The iiotioihil mhu- is assumed to he $1. The simubtioii is /wsci on 10.000 ¡nithf
MC stands for the result oj the Monte Carlo siimilatioii. ,vid SE stiinds for the standard error.

The approximate formulas have been found to be
robustly accurate as compared with the benchmark
result from Monte Carlo simulation using the most
recent 2-year data. The approximate formulas save time
and make daily quotations faster. This is especially impor-
tant k>r financial companies that have issued a large number
ot IRSO-type structured notes. Therefore, the pricing
models examined in this article are worth recommending
to market practitioners.

A P P E N D I X A

A Simple Proof for Proposition 2.2

It is well known that under the spot martingale measure
Q, the price dynamics of a money market account M{-) and
/'{". T) for 7'G ['t.T] are given as follows:

dM{t)

M{t)

dPjt, T)
Pit,T)

= r{t)dt

= r{t)dt-

(Al)

{A2)

where lV{t) is a Brownian motion on Q, r{t) is an instantaneous
short rate at time t and t € [0. T]. Moreover, according to (2),
thf LIBOR rate dynamics are given as follows;

dÜ{t,T)
(A3)

Now, we want to fmd the forward martingale measure
Q"" with respect to a numeraire P{-,S) with S G |(). '!].
According to the martingale pricing theory, under Q^ any
dynamics of a i asset price expressed in terms of P ( \ S) must
be a martingale. 1 his is a cluf to find the measure Q"" and the
dynamics of asset prices under Q"^.

Thus, all assets arc denominated in terms of P(- ,>*í) as follows:

(A4)

(A5)

P{t,S)

Based on Itô's Lemma, the dynamics of F'"(i; S) and
F{t, T; 5) are derived as follows:

r{t, I ;

(A6)

(A7)
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By observing {A6) and (A7), we can find a Randon-Nikodyni

derivative as follows:

m¡n¡.S.7'l

- j J \\<7,.iu,S)\f

(A8)

to define the target forward measure Q \ ^ (0 is a standard

Brownian motion under Q*" defined as follows:

(A9)

By taking (A9) into (A3}, we could obtain the

dynamics of L^(/,7) under Q^ a.s given in (4).

A P P E N D I X B

The Proof of Theorem 1

By applying Proposition 2.3, under the measure Q', the
dynamics of {L''(i,T)} for * - »5 and T} is given as follows:

dL {t, T) ^ ^.^^ .^. -¡

í.T)

Therefore,

jf{u,T)-älV{<<)\ (Bl)

(B2)

(B3)

where

Moreover, based on (B2).

K,' = Var{\nL\T,T) - In L\T,T))

We present a useful lemma for the following deriving

process.

Lemma Bl ïfX - Niß^,al) and Y - N(/I,..cr;.). thai
have

fe ÍX V i CXPÍV laOT

where

Based on the martingale valuation method, the pricing
formula ofthe FIRSO at its initial time (* can be obtained by
calculating the following expectation:

, (0) = P(0, (T, T) - L" (T. T))' ]

By employing (B3) and Lemma B1. the pricing formula
ofthe FIRSO can be derived as shown in Theorem 1.

A P P E N D I X C

The Proof of Theorem 2

The pricing formula of SIRSOs can be obtained by
deriving the following equation:

- p(o.

According to (B3), we have

(C2)

where M-, g = M^ g and !';¿ = !'~¿.
By employing the approximate method in the subsec-

tion titled An Approximate Distribution..., S^^(T,r) is
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•issumcd to be a lognormal distribution with the correct first
two nioinents given as follows:

(C3)

{CA)

where

lly applying (12) and (13), the mean and variance of
__ (T,T) can be computed, respectively, as follows:

For computing (Cl), we have to further derive

Kj' = Var( lnS;(r . r ) - lnL^T.r))

(C6)

)) (C7)

While the covariance part in (C7) is not analytically solv-
able, we may approximately derive it by replacing S'](T.,T)
with Ĝ  ( î  t Í"), where

It means that we use the geometric weighted average to
replace the arithmetic weighted average which is also used in
Vorst [1992]. Therefore,

''' [in G,;'(r,r)]

(C8)

by observing [CH), the covariance between lnL'\7,7') and

In5^ (T,T) c:m be approximately viewed as the weighted

covariances bi tween lni,^(7'.T) Mid \nLP{T,T^'') which is

involved in ln.S''(T,T^
With thi iiforementioned knowledge, the pricing for-

mula of the Slli^SO can be pnced via Lemma Bl.

A P P E N I ^ I X D

The Proof of Theorem 3

The prit ing formula of SlRSOs can be obtained by
deriving the following equation:

According to t'le approximate metliod in the subsection titled

An Approximate Distribution .... the distiibutions of 5^ {T,T)

and S^^{T,T) .ire assumed to be lognormal distributions with
the correct first two moments, i.e..

here

M,„ =

.Sf(T,T)']-21nE^' |S^^{T,T)]

^' 15^(7, T ) ] - ^lnH'^' [S'^r, T

; 2I«)9 THE jtiuRNAL OF DERIVATIVES 4 9



Moreover, E'"̂

c-Q r c''/T T

h e r e

and

are derived as follows:

+ 7 ( i ( . 7 , ) - y ( f ( . r )

and

(D2)

(03)

(D4)

where

For computing (D1), we further derive

As indicated in Appendix C, the covariance part in (D6)
may be approximately derived as follows:

where

Cov (In S',(TJr In S^ÍT.T)) - )^'^ (0)

By observing Equation (0.7), the covariance between

InS^{T,T] and InS^(T,T) can be approximately considered

as the weighted covariances between In L (7^/r ) and
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E X H I B I T 5

The Three-factor B Matrix

LIBOR

L (.0-1)

L (; 1-2)

L (•. 2-3)

L {-. 3-4)

L (•,4-.S)

L (-. 5-6)

L (-.6-7)

L (,7-8)

Factor 1

0.9108

0.9384

0.9702

0.9935

0,9951

0.9648

0.9381

0.8967

Factor 2

-0.353

-0.2647

-0.1666

-0.0259

0.0974

0.2614

0.3403

0.4256

Factor 3

0.2139

0.2222

0.1761

0.1111

0.0164

-0.0293

-0.0648

-0.1219

LIBOR

L (-,8-9)

L (-, 9-10)

L (-, 10-11)

L (•.11-12)

L (•. 12-13)

L (,13-14)

L (;14-15)

Fkctor 1

0.8522

0 6721

0 7757

0 5431

0 8414

07141

05383

Victor 2

0.5066

0.7063

0.4961

0.6495

0.4082

0.5198

0.6184

Factor 3

-0.1311

-0.2226

-0.3901

-0.5321

-0.3541

-0.4689

-0.5726

h'otes: Tlie foniwd LIBOR rates u'iihin each year are assumed to he peifeclly correlated, and consequently the correlation matrix of all relevant LIBOR rates,
namely Z. amid be reduced to a 15 X /_> matrix and calculated ßom the historical forward rate data iluring 2007/1 ^1-2008/7/¡. Matrix B is computed
based on Z by employing the Rebonato ¡19991 approach and BB'= "L.

lnL''(T,T''; which are, respectively, involved in In.S^ (̂T.T)

With the aforementioned knowledge, the pricing for-
ii oí the TIRSO can be priced via Lenmia Bl,

A P P E N D I X E

The Market Data

The data on 3- and 6-month inital LIBOR rates and cap
volatilities used for the nunierical study can be obtained from
Datastream. Exhibit 5 shows the matrix B, which is cahbrated
from the historical correlation matrix of LlliOR rates based
tin the Rebonato approach.

ENDNOTES

'As examined in Rogers |19%|. the Gaussian term struc-
ture model has an important theoretical limitation: The rate
can attain negative values with positive probability, which may
cause pricing errors in many cases.

'The filtration {^ï,e|,,, | is right continuous, and J*-̂ , con-

tains all the Q-null sets of .^.
^For ease of computation in Equation (3), we may fix 8

{for example, 0= 0.25).
^We employ W{t) to denote an independent IH-

dimensional standard Brownian motion under an arbitrary
measure without causing any confusion.

'See also Brace and Womersley [2000[ for the proof of
the low variai ility.

^As indicated by the empirical studies in Brigo and
Mercurio [20nl], forward swap rates obtained from lognornial
forward LIBC R rates are not far from being lognornial under
the relevant measure.

^E[S^(/,T)] and H[¿'̂  {t,T)'\ are computable.

^For this approach in detail, please refer to Brigo and
Mercurio [2001].

'"Since caps and swaptions are actively traded fmancial
instruments, a price inconsistency between the two products
is almost impossible. Thus, the calibration based only on cap
data is not unreasonable. In addition, even if end-users adopt
the other calii^ration approach, our pricing formulas remain
workable.

"For other assumptions of vt)latility structures, please
refer to Brigo and Mercurio [2001].

'-Note ihe Euclidean norm of each rtîw vector of B is 1.
' 'For more details regarding tbe performance of one- and

multi-factor models, please refer to Driessen, Klaassen, and
Melenberg 12003] and Rebonato [1999].
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