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Introduction
Some researchers have proposed the GARCH process with different innovation
distributions from normal law such as, student’s t-distribution (Bollerslev, 1987),
the generalized error distribution (Andersson, 2001), normal inverse Gaussian (Forsberg
and Bollerslev, 2002), -stable distribution (Menn and Rchev, 2005), and generalized
secant hyperbolic distribution (Palmitesta and Provasi, 2004). These models are
developed for the purpose of fitting empirical facts from market data such as
asymmetrically heavy tails with positive excess kurtosis, volatility clustering and the
leverage effect.1

Some empirical facts contribute to the modeling of asset dynamics. The argument
proposed by Geman et al. (2001a and 2001b) suggests that financial asset dynamics must
have a jump component but need not have a diffusion component. Empirical evidence
shows that infinite-activity jumps may perform better than finite-activity compound
Poisson jumps. This implies that asset prices actually display many small jumps on a
finite time scale. Lévy processes can generate non-normal innovation and accommodate
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The paper constructs a GARCH process with time-changed Lévy innovations from the economic
perspective which assumes that the arrival of new information causes the asset return to be stochastic
and volatility clustering. The GARCH (1,1) process with generalized hyperbolic innovation is
introduced as a general form for the volatility process. The paper uses a special case of the process
to discuss the economic meaning behind alternative dynamic behaviors, and then applies it in pricing
a European option under the hypothesis that every investor selects the canonic martingale measure.
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both low and high frequency jumps. Stochastic time changes can produce stochastic
volatility, which includes both affine and quadratic volatility dynamics. Therefore,
by subordinating the stochastic time changes to Lévy processes, the time-changed
Lévy processes simultaneously possess infinite-activity jumps, stochastic volatility, and
non-normal distributions.

In this paper, we assume that the noise in the financial market is the sole innovation
term of the GARCH process, thus, the return process is constant if there is no noise.
This assumption can be observed in a return structure that depends on the risk-free rate
and risk premium dynamics (or volatility structure). The economic interpretations are
different from previous literature, which assumed only the time-changed return
dynamics. As a result of this improvement, we set the innovation process to be
a time-changed Lévy process with subordinator Tt. The process represents the impact
of the noise on the price, due to the arrival of new information. If the noise arises
frequently, then the arrival of information passes quickly, and the price jumps violently.
Hence, the asset price or firm value processes vary more. When investors possess these
assets and hedge their dynamics, it becomes more likely for the total value to reach the
stop loss point of the portfolio (default barrier). The hedge may be in vain and the cost
increases. This uncertain condition usually indicates worsening of the economic
environment in the real world. On the other hand, a slow arrival time corresponds to
steady growth as a result of less noise, which implies a better economic environment.

The Generalized Hyperbolic (GH) process is a pure jump process. We take this
process as the noise dynamics, due to its flexibility to fit different market data well, and
the GARCH process is adopted as the variance dynamics for volatility clustering in
most of the financial data. The return dynamics is assumed to be the GARCH-GH
process. This is different from the time-changed Lévy return processes of Carr and Wu
(2004). We can apply the GARCH-GH process to derive a European call option pricing
model and find the economic meaning behind the return behavior, using different
parameter values.

Next, the paper introduces the family of GH distributions with their main
properties and establishes the GARCH-type option pricing models with GH
innovations. Then, it presents the GARCH process with time-changed Lévy
innovation and option pricing models. Finally, it concludes the discussion.

The Model

The Generalized Hyperbolic Distributions

Let the information arrival time, S be a random variable following the Generalized
Inverse Gaussian (GIG) distribution and let W be an independent standard normal
random variable. We assume that the impact on price due to information arrival is given
by the distribution, SWS  , where   is a constant and WS is a Brownian motion with
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mean 0 and variance S; this is called a GH distribution. If S is the calendar time, which
has the property of steady increase at constant speed, then the information impact
follows a normal distribution with mean S  and variance S, or it can be regarded as
a drift-  Brownian motion subordinated by S. The density function of the GH
distribution is as follows (Prause, 1999):
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of the second kind. Since GIG distribution is infinitely divisible, GH distributions can
be characterized by five parameters:    and  . The first three determine the
shape of the GH and the last two represent the scale and location, respectively. Both
Lévy density and probability density have exponential tails with decay rates

   on the right side and    on the left side. The restrictions on the
parameters are as follows: R  and   ,  if 0 ;   ,0  if 0 ;

  ,0  if 0 . The characteristic function of the GIG distribution has the
following form:
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and the moment generating function can be derived from it as follows:
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There are many well-known probability distribution in the GH family which has a

rich structure and a great variety of shapes. Some examples are listed as follows:2

• Normal   22  , , when 2  /,  and   denotes time

period.

• Hyperbolic distribution, when 1 .

2 The last three cases are taken from Blæsild (1999).
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• Normal Inverse Gaussian    (NIG), where 2050  /,,.  ,

 22 1     and  / .

• Variance Gamma    , when   2242 20   ,,

and  /1 .

• Student’s t-distribution
  ,  when

050   ,.
and   .

• Cauchy   , when
050   ,.

and 1 .

• GIG   , , when
0 ,  2  and

2/  .

Figures 1 and 2
demonstrate the density and
cumulative probability of the
GH distribution and its
special cases. GH distribution
has more flexibility for
skewness, kurtosis and tail
behavior than most of the
other distributions. Thus, we
can fit market data well by
using this distribution.
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Figure 1: Densities of the GH Family

Note: The figure shows a comparison of the densities of the GH
family including Normal(0,1), GH(2,1,0,1,0),
Hyperbolic=GH(1,1,0,1,0), NIG=GH(–0.5,1,0,1,0),
VG=GH(0.5,1,0,0,0), and Student-t (4)=GH(–1,0,0,2,0).

NIG

Figure 2: Cumulative Probabilities of the GH Family

Note: The figure shows the cumulative probabilities of the GH family, including standard Normal (0,1),
GH(2,1,0,1,0), Hyperbolic=GH(1,1,0,1,0), NIG=GH(–0.5,1,0,1,0), VG=GH(0.5,1,0,0,0),
and Student-t (4)=GH(–1,0,0,2,0).
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The GARCH Process with GH Innovation
Some empirical studies, such as Bollerslev (1986) and Akigiray and Booth (1988),
suggest that one may adopt GARCH(1,1) as a conditional heteroskedastic model for
volatility clustering. Therefore, we nest GH law in the GARCH(1,1) process to combine
the two properties of information arrival—stochastic and clustering. We assume that
logarithmic asset returns under physical measure P, adhere to the following dynamics:

      NtwqrSS tttttttt  ,;;ln 1 ...(1)

  GHz tttt ~1 ...(2)
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2    ,, Ntttt ...(3)

where St denotes the price of the underlying asset at time t. rt and qt denote the

risk-free rate and dividend yield for the period [t–1, t], respectively.   can be interpreted

as the market price of risk.     stands for the parameter vector of GH.
2
t  is the conditional variance of t  given  021  ,,,  tt  and  tz  is a sequence of

independent and identical random variables with mean 0 and variance 1.   ;tw  is

equal to    
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ttp
t

E  which neutralizes the expectation of the innovation.

The volatility process   Ttt ,,, 21  is predictable, and some restrictions on parameters,

such as w > 0,  ,   and 1  , will ensure that the unconditional variance

of the asset return is positive and bounded (or covariance stationary).

We can further find the conditional expectation,
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exp  is the stock price including reinvestment of the dividend

yield qt.

The Option Pricing Model Under GARCH-GH Process
The GARCH-GH option pricing model is constructed as follows: consider that the

asset dynamics are defined on a filtered probability space   P
t

  . It consists of

filtered probability spaces   Ntttt P    on which a sequence   Ntt   of independent
and identical real random variables are defined.
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where    0 , and t  is the -field of all information up to and including time t.

 k  stands for the -field generated by k  on k .

Since this process belongs to the class of incomplete models, thus, there is no unique
equivalent martingale measure for this model. Duan (1995) and Heston and Nandi
(2000) derived a GARCH option pricing model from the Locally Risk-Neutral Valuation
Relationship (LRNVR). Rather than restricting investors’ preferences, we assume that
every investor chooses the canonic martingale measure which is consistent with the
assumptions postulated by the LRNVR. Then, a GARCH-GH option pricing model can
be introduced as the following theorem.

Theorem 1:

Let a new measure Q on T  equivalent to the physical measure P, be defined by the
Radon-Nikodym derivative, dQ/dP = ZT, where T is the time horizon and belongs to
natural numbers, and the density process   TttZ ,,, 21  is defined as follows:
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and Qt measure makes the distribution of  ttt *  identical to that of t  under
Pt measure. Then:

• The discounted asset price process  tS  is a martingale with respect to the

filtration t  under Q measure.

• The conditional one period ahead variances of the return dynamics are
unaffected by the change of measure, that is,
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• The return dynamics under Q measure can be written as:
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where  *
t  is a sequence of real random variables on  tt ,  following  GH  and

t = 1, 2, …, T.

Proof of Theorem 1 is provided in the Appendix.
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These results enable us to calculate the value of the derivatives of the underlying
asset. Without losing generality, we set the dividend yield to be 0 hereafter.
The following corollary is introduced to price the vanilla options.

Corollary 1:

The value of a European call option with strike price K and maturity T is given by,
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where the underlying asset price ST at time T is given by
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Proof:

We choose finite periods {t, t+1, t+2, ..., T}. Then, summing the return dynamics given
by Equation 5 over these intervals, we get Equation 7 and the arbitrage free option price
at time t can thus be expressed by Equation 6.

All subclasses of the GH family can be nested in the GARCH process. We can apply
Theorem 1 and Corollary 1 to price the European option under such GARCH process
with Lévy time-changed innovations model, in a manner similar to the above steps.

Special Cases
The GH process incorporates the pure jumps process—VG and NIG—as special cases.
The former has finite variation while the latter does not. We consider these two cases
as examples. The business time Tt is set to follow an Inverse Gaussian (IG) process with
mean t and variance t , in the first example. The IG describes the distribution of the
time that a Brownian motion takes to reach a fixed positive level, if the Gaussian law
describes the distribution of the distance at a fixed time in Brownian motion. We assume
that the impact caused by the new information is a geometric Brownian motion
subordinating Tt. That is, the impact process is a Normal Inverse Gaussian (NIG) and
can be expressed as a Brownian motion W with drift   and volatility   at time changed
by an independent Tt process:

     tt
NIG
t TWTX 

Consider another example. If the business time Tt is set to follow a Gamma process
with mean t and variance t , and the impact caused by the new information is assumed
to be a geometric Brownian motion subordinating Tt, then, it is known as a Variance
Gamma (VG) process and can be expressed as a Brownian motion W with drift   and
volatility   at time changed by an independent Tt process:

     tt
VG
t TWTX 



14 The Icfai University Journal of Financial Risk Management, Vol. V, No. 2, 2008

Alternative innovation distributions of GARCH(1,1) can be constructed by using
the procedure described in subsection: The GARCH Process with GH Innovation.
We introduce and discuss these two simple special forms of the GARCH-GH process.
The first case is the GARCH(1,1) process with NIG   0  innovations, denoted by
the GARCH(1,1)-NIG   0  in which the parameter 0  means that the
expectation of the innovation (noise) equals 0. The second case is the GARCH(1,1)
process with VG   0  innovations, denoted by the GARCH(1,1)-VG   0 .
The two cases are further discussed regarding their economic meaning, and they have
fewer parameters for easy estimation and quick pricing option. The details are provided
in the following subsections.

The GARCH-NIG Option Pricing Model
From Equations 1, 2 and 3, we replace the GH distribution with NIG distribution, and
assume that the drift of the NIG innovation is 0, the risk-free interest rate r is constant
in every period. Then, the process is called the GARCH(1,1)-NIG   0  process
which under P measure is written as follows:

ttt
t

t hgr
S
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
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
   /// tt hg 2112 , and t  is a sequence of independent random

variables with mean 0 and variance ht. Figure 3 displays the dynamic behavior of the
GARCH(1,1)-NIG   0  process with different values of parameter  , while the
other parameters remain fixed. Since  represents the variance of the subordinator Tt,

Figure 3: The GARCH(1,1)-NIG(0, , ) Process with Different  Values

Note: The dynamics are modeled as follows:   ttttt hhrSS   501 .ln ,   ,,0~| 1 tt hNIG ,
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2

1   ttt hwh  , where r = 0.01/252,   = 0.03,   = 0.0002,   = 0.05, and   = 0.04.
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as  increases, Tt becomes increasingly varied. We can see that the jump sizes become larger
than those for smaller  . The larger jumps appear more frequent and in stronger cluster.
Moreover, the range of the entire path gets wider. The reason is that the larger
 creates greater volatility ht in the GARCH structure. These phenomena reflect that
the information arrival passes faster and the impact caused by information increases.
Volatility clustering, existing popularly in financial markets, can be regarded as the
clustering of information arrival. Further in finance, the frequent larger jumps in
dynamics of asset prices or firm values always reverse the drift and cause sudden large
losses or gains. Hedging is difficult in such situations. Therefore, large   also means
a highly uncertain environment that is flooded with abundance of good or bad news.
It usually implies a worse scenario.

For introducing the GARCH(1,1)-NIG   0  option pricing model, we need the
following corollary:

Corollary 2:

Under the hypotheses of Theorem 1, the value of a European call option at time t with
strike price K and expiring at maturity T is:

     tTQ
NIGGARCH

t KSEtTrC  |,maxexp 0 , ...(8)

where  QE  denotes the expectation under the risk-neutral distribution. The terminal

asset price ST can be written in the following form:
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where *
t  conditional on 1 t  is a NIG distribution with mean 0 and variance ht.
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  1tt SSE ln  is equal to r. Thus, the price process under the risk-neutral probability
measure Q is:

  *.ln tttt grSS  501 ...(10)

  ,,0~|
1

*
ttt

hNIG




  Tthhwh tttt ,,,,* 211
2

11   

where 




   tt hg 2112 // . We choose finite periods {t, t+1, t+2, ..., T}, and

summing the return dynamics given by Equation 10 over these intervals, we get Equation 9,
and the arbitrage free option price at time t can thus be expressed by Equation 8.
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Proposition 1:

The GARCH(1,1) option pricing model of Duan (1995) is a special case when the value
of   approaches 0.

Proof:

Under P measure, the price dynamics are:

  ttttt ggrSS   501 .ln ,

where   ,,0~|
1 ttt

hNIG


 ,

1
2

1   ttt hwh   and 




  tt hg  2112 // .

If   approaches zero, then the NIG distribution turns into the Normal distribution

with mean 0 and variance ht. That is,  ttt hN ,~| 01 , the model is Duan’s GARCH
option pricing model.

The GARCH-VG Option Pricing Model
From Equations 1, 2 and 3, we replace the GH distribution with VG distribution, and
assume that the drift of the VG innovation is 0, and the risk-free interest rate, r is
constant in every period. Then, the process is called the GARCH(1,1)-VG   0
process, which under physical measure P is written as follows:

  ttttt hgrSS   501 .ln

  ,,~| ttt hVG 0

1
2

1   ttt hbawh 

Figure 4: The GARCH(1,1)-VG(0, , ) Process with Different Values

Note: The dynamics are modeled as follows:   ttttt hhrSS   501 .ln ,   ,,0~| 1 ttt hVG ,

1
2

1   ttt hwh  , where r = 0.01/252,   = 0.03,   = 0.0002,   = 0.05, and   = 0.04.
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where    212 ttt hhg  log , and t  is a sequence of independent random variables
with mean 0 and variance ht. Figure 4 displays the dynamic behavior of
GARCH(1,1)-VG   0  with different values of parameter  , while the other
parameters remain unchanged. As discussed in subsection: The GARCH-NIG Option
Pricing Model, a larger   corresponds to worsening of the economic environment.

For introducing the GARCH(1,1)–VG   0  option pricing model, we need the
following corollary:

Corollary 3:

Under the hypotheses of Theorem 1, the value of a European call option at time t with
strike price K and expiring at maturity T is:

     
tTQ

VGGARCH
t

KSEtTrC  |0,maxexp

where  QE  denotes the expectation under the risk-neutral distribution and the

terminal asset price is,  











  

 

T

ti

T

ti
iitT gtTrSS

1 1

50 *.exp  , where *
t  conditional

on 1 t  is a VG distribution with mean 0 and variance ht.

Proof is similar to that of Corollary 2.

Proposition 2:

The GARCH(1,1) option pricing model of Duan (1995) is a special case when the value
of  approaches 0.

Proof is similar to that of Proposition 1.

Conclusion
We consider the dynamic behavior of financial asset prices from an economic
perspective which assumes that arrival of new information causes randomness and
clustering of volatility of an asset’s return. Under this assumption, the GARCH with
time-changed Lévy innovations is established. We can describe the rate and the impact
of the information arrival via alternative parameters estimated from the market data,
and can further explain the economic meaning beyond the model only for fitting the
financial data.

A general GARCH(1,1)-GH process has a rich structure that contains well-known
GARCH(1,1) processes with alternative innovations. GARCH-GH option pricing
models can be developed under the hypothesis that every investor selects the canonic
martingale measure. We introduce simpler forms of the option pricing model—
GARCH(1,1)-NIG   0  and GARCH(1,1)-VG   0 . Forsberg and Bollerslev
(2002) show that the former offers very accurate out-of-sample predictions on the
ECU/US exchange rates. Further research can be done to compare the empirical
performances for different market data. 
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Appendix

Proof of Theorem 1 is as follows:

(a) Using Equation 4, the definition of   ;tw  and the measurability of t  with respect to 1t ,

we obtain

       111
|;;exp| 

 ttttttt
Q

tt
Q wrSEFSE 

     







 


11

1
ttttttt

t

tP wrS
Z
Z

E  |;;exp

       

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











 tt

t

tP
tttt Z

Z
EwrS  |exp;expexp

1
1

 
  

    tt
t

ttt E
E

rS 


 expexp
exp

exp  
1

1

 tt rS exp1

(b) Since

      tttPtttP VarSSVar    111 ||log a.s.,

      ttttQtttQ VarSSVar    111 ||log a.s.,

the assertion holds.

(c) Since the distribution of  ttt *  under Qt measure is the same as that of t  under Pt measure,

using Equation 1 we can derive,

      ;;ln tttttttt wqrSS 1

     tttttt wqr  ;;

  Ttwqr tttt ,,,,; * 21  ,

and the variance process,

2
11

2
110

2
  ttt 

  Ttttt ,,,,* 212
11

2
1110    .

The variance process 1t  needs to be replaced by  tt 
*  in order to ensure the desired result.
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