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a b s t r a c t

This paper introducesmortality dependence inmulti-countrymortalitymodeling using a dynamic copula
approach. Specifically, we use time-varying copulamodels to capture themortality dependence structure
across countries, examining both symmetric and asymmetric dependence structures. In addition, to
capture the phenomenon of a heavy tail for the multi-country mortality index, we consider not only
the setting of Gaussian innovations but also non-Gaussian innovations under the Lee–Carter framework
model. As tests of the goodness of fit of different dynamic copula models, the pattern of mortality
dependence, and the distribution of the innovations, we used empirical mortality data from Finland,
France, the Netherlands, and Sweden. To understand the effect of mortality dependence on longevity
derivatives, we also built a valuation framework for pricing a survivor index swap, then investigated the
fair swap rates of a survivor swap numerically. We demonstrate that failing to consider the dynamic
copula mortality model and non-Gaussian innovations would lead to serious underestimations of the
swap rates and loss reserves.

© 2015 Published by Elsevier B.V.
1. Introduction

As life expectancy increases dramatically, longevity risk has be-
come an increasingly important consideration for defined bene-
fit (DB) pension plans and annuity providers. Managing longevity
risk using capital market solutions such as mortality-linked secu-
rities or derivatives has received great attention in recent years.
The EIB/BNP longevity bondwas the first proposed longevity bond,
introduced in November 2004, though it was never issued. The
q-forward contract between JPMorgan and the UK company Lucida
was the world’s first capital market derivative transaction, which
took place in January 2008; the initial capital market longevity
swap, executed in July 2008, enabled Canada Life to hedge its UK-
based annuity policies. The first capital market Kortis longevity
bond, executed in December 2010, was announced by the Swiss
Re Reinsurance Company Ltd. In assessing these and other exam-
ples, much research has been devoted to the design and pricing of
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mortality-linked securities (Blake et al., 2006; Dowd et al., 2006;
Biffis and Blake, 2009; Blake et al., 2010; Biffis et al., 2011; Huang
et al., 2011; Wang et al., 2011; Wang and Yang, 2013).

As a potential means to increase hedge effectiveness, basis risk
has been a primary concern in recent market developments. Basis
risk resultswhen themortality experience of the index in longevity
securities differs from the longevity risk exposure of the pension
plan or annuity portfolio, when hedging longevity risk with the
securities based on longevity indices. Dowd et al. (2006) point
out that a hedge is only as good as the reference index based
on the insurer’s own mortality experience. Coughlan et al. (2011)
also caution that basis risk can result in an imperfect longevity
hedge, leaving some residual amount of risk. It is thus essential
to evaluate the extent of this risk and weight the degree of risk
reduction against the cost of the hedge. As Blake et al. (2012)
explain, one of the reasons the EIB longevity bond never launched
was because the basis risk in the bond appeared too great. It might
have provided a reasonable hedge for male pension plan members
in their 60s, but pension plans also include male members in their
70s and 80s, aswell aswomen. The Swiss ReMortality Bond, issued
in 2003, reflects a combined mortality index instead, including
France, England, the United States, Italy, and Switzerland. The
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mortality bond issued by Nathan Ltd. in 2008 similarly depends on
a combined mortality index, for four countries: the United States,
the United Kingdom, Canada, and Germany. Therefore, finding
ways to deal with the basis risk through a longevity hedge is a
critical question; it is unacceptable to ignore the basis risk when
designing mortality-linked securities.

The mortality index underlying a mortality-linked security is
particularly important for dealing with basis risk and increasing
hedge effectiveness. We introduce a survivor index swap that
can transfer the longevity risk pool across different insurers in
different countries. Survivor swaps have been explored widely in
prior literature (Dawson, 2002; Blake, 2003; Lin and Cox, 2005;
Dowdet al., 2006), but existing studies donot dealwith basis risk or
the structure of a survivor swap that is based on a single population
group. Dawson et al. (2010) first introduce the concept of a basis
swap but ignore the associated pricing problem. In response, the
current research attempts to model mortality dependence across
countries, to deal with basis risk and build a valuation framework
for pricing a survivor index swap.

This pricing decision depends on the dependence structure of
the mortality rates across countries. Cox et al. (2006) investigate
the Swiss Re mortality bond by assuming that its bond payments
are contingent on the dynamics of two-country populations. Yang
et al. (2011) offer a coherent mortality model for two populations
within a Lee–Carter framework. Li and Hardy (2011) instead
consider four extensions to the Lee–Carter model to measure
basis risk in longevity hedges and demonstrate their findings
with two populations.1 In combination, these studies highlight the
importance of mortalitymodeling for two populations, rather than
a single one, when dealingwith basis risk. However, tomake better
use of hedging effectiveness, the mortality model also should
build on a multi-country framework that can capture mortality
dependence across countries. To the best of our knowledge, Yang
and Wang (2013) provided the first attempt to capture multi-
countrymortality dynamics; they applied a co-integration analysis
with Gaussian residuals to investigate long-run equilibrium in a
mortality time index. However, short-term catastrophe mortality
shocks, such as the influenza pandemic in 1918, World Wars
I and II, or the tsunami in December 2004, may lead to a co-
jump in the mortality rates in different countries. It is thus
crucial to address mortality jumps when modeling multi-country
mortality dynamics. In addition, mortality dependence may be
asymmetric or time-varying. For example, mortality dependence
across countriesmay be lower during a smoothmortality evolution
and higher during a huge mortality shock, such as the 2004
tsunami. To extend existing research that includes multi-country
populations, we consider dynamic copula models and seek to
capture mortality dependence that is allowed to be systematic or
asymmetric in a multi-mortality framework, with both Gaussian
and non-Gaussian residuals, to price a survivor index swap.

Copula models, which represent an appealing alternative to
the Gaussian dependence structure, can help construct flexible,
non-standard multivariate distributions and capture dependence
between the variables. In finance literature, copula models have
been used widely to capture dependence structures in financial
data. For example, Engle (2002) addresses correlations among
asset returns that are not constant over time, in a phenomenon
known as asymmetric dependence, such that returns exhibit

1 The four extensions are as follows: both populations are jointly driven by
the same single time-varying index, the two populations are co-integrated, the
populations depend on a common age factor, or there is an augmented common
factor model in which a population-specific time-varying index is added to the
common factor model, with the property that it will tend toward a certain constant
level over time.
greater correlation during market downturns (high-volatility
regime) than during market upturns (low-volatility regime)
(Erb et al., 1994; Ramchand and Susmel, 1998; Longin and Solnik,
2001; Ang and Chen, 2002; Ang and Bekaert, 2002; Patton,
2004; Jondeau and Rockinger, 2006; Okimoto, 2008). The copula
models also have been extended, to be time-varying. Manner
and Reznikova (2010) study different time-varying copula models,
including three popular methods, namely, copulas with time-
varyingparameters as proposedbyPatton (2006), structural breaks
in the copula parameters as proposed by Dias and Embrechts
(2004), and the regime-switching (RS) copulas proposed by
Pelletier (2006). All three dynamic copula methods have been
used recently to deal with dependence structures, such as those
underlying interest rates (Bu et al., 2011; Kumar and Okimoto,
2011), exchange rates (Dias and Embrechts, 2004; Patton, 2006),
real estate securities (Zhou and Gao, 2012; Hoesli and Reka, 2013),
and crude oil prices (Reboredo, 2011).

To deal with multi-country longevity risk, we need a mortality
model to project the future mortality rates for different countries
simultaneously. We extend the Lee–Carter model (Lee and
Carter, 1992) to a multi-country framework, but to capture the
phenomenon of a heavy tail for the multi-country mortality index,
we also consider both Gaussian and non-Gaussian innovations,
including the jump diffusion (JD) and generalized hyperbolic
(GH) innovations for the Lee–Carter model, and we extend Wang
et al.’s (2011) single-population approach.2 The GH distribution
(Barndorff-Nielsen, 1977) provides a flexible tool to model the
empirical distribution with skewness, leptokurtosis and tail-
thickness, and it nests many well-known distributions such
as the normal, Student’s t and hyperbolic (HYP) distributions
(Barndorff-Nielsen and Blæsild, 1981); variance gamma (VG)
distributions (Madan and Seneta, 1987, 1990); normal inverse
Gaussian (NIG) distributions (Barndorff-Nielsen, 1995); and the
GH-skewed t (GHST) distribution (Prause, 1999; Aas and Haff,
2006). We employ empirical mortality experience to fit the
time-varying copula models and examine mortality dependence
across countries. Because of the fundamental importance of the
notion of linear correlation in finance and insurance, the time-
varying copula models may have a non-trivial impact on the
pricing of longevity securitization or the risk measurement of
such positions. In our application, we provide the fair values of a
survivor index swap and their value at risk (VaR) and conditional
tail expectation (CTE). Finally, using the calibrated marginal and
copula parameters of long-term multi-country mortality data, we
provide a numerical analysis that demonstrates the asymmetric
dependence phenomenon in multi-country mortality data and
allows us to assess the impacts of the non-normal property and
asymmetric multi-country mortality dependence on the pricing
and risk management of a survivor index swap.

The contributions of this research are fivefold. First, we use
time-varying copula models to introduce mortality dependence
across countries in stochastic mortality modeling. Second, this
article extends the original Lee–Carter model to a multi-country
framework and considers both JD and GH innovations. Third, we
carry out an empirical analysis and demonstrate the asymmetric
dependence phenomenon in multi-country mortality data, as well
as assess the impacts of the non-normal property and asymmetric
multi-country mortality dependence. Fourth, as an application, we
build a valuation framework for a survivor index swap using the
Wang transform; in building this framework, we consider the basis

2 Wang et al. (2011) adopt five non-Gaussian distributions to model the error
terms of the Lee–Carter model: Student’s t-distribution, generalized hyperbolic
skewed Student’s t-distribution, jump diffusion distribution, variance gamma
distribution, and normal inverse Gaussian distribution.
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risk and currency risk across countries. Fifth,we numerically assess
the value at risk (VaR) and conditional tail expectation (CTE) of the
basis swaps to evaluate hedging effectiveness.

The remainder of this paper is organized as follows. In Section 2,
we present a Lee–Carter model with a multi-country framework,
then implement a dynamic copula approach to capture the de-
pendence of mortality rates across countries. In addition to the
dynamic copula function and the estimation, we introduce the
Gaussian and non-Gaussian models for mortality indices. The
structure and the valuation framework for a survivor index swap
are the focus in Section 3. In Section 4, we fit the classical LCmodel
with the dynamic copula and non-Gaussian residuals, according to
the empirical data. We also examine the impact of mortality de-
pendence on a survivor swapby calculating the fair swappremium,
alongwith the VaR and CTE of the survivor index swaps. On the ba-
sis of a numerical analysis of the valuation of a survivor index swap,
we draw some key conclusions and detail the implications.

2. Multi-country mortality modeling under a dynamic copula
framework

To price the survival index swaps, we first deal with multi-
country mortality dynamics and consider mortality dependence
across countries. We build the multi-country mortality dynamics
by employing the Lee–Carter framework and use the dynamic
copula models to capture the mortality dependence. In addition,
we employ the JD and GH distributions to model the residuals of
the mortality indices.

2.1. The Lee–Carter model under a multi-country framework

We employ the Lee–Carter model and extend their model to a
multi-country framework. We analyze changes in mortality as a
function of both age x and time t on a filtered probability space
Ω, ℑ, P, (ℑs)

t+T
s=0


, where P is the physical probability measure

and ℑt is the information available at time t . If we consider
N population groups from different countries, then mj

x, t , j =

1, . . . ,N , is the mortality force at age x in the jth population group
during calendar year t . That is,

lnm j
x, t = a j

x + b j
xk

j
t + e j

x, t , j = 1, . . . ,N, (1)
where the Lee–Carter model can capture the age–period effect for
the jth population with a j

x coefficients and the force of mortality
for the jth population changes according to an overall mortality in-
dex k j

t , which is modulated by an age response b j
x . The error term

e j
x, t reflects a particular, age-specific historical influence that is not
captured by the model. In addition, the parameters b j

x and k j
t are

subject to
b j

x
x = 1 and

k j
t

t = 0 where these two conditions en-
sure the model identification. We use the approximation method
to fit the parameters a j

x , b
j
x and k j

t for each set ofmortality data. Ac-

cording to the two constraint conditions
b j

x
x = 1 and

k j
t

t = 0, âjx
is simply the average value over time of ln


m j

x, t


, and k̂jt is the sum

over various ages of ln

m j

x, t


− âjx. Regressing ln


m j

x, t


− âjx on

k̂jt , we can obtain b̂ j
x by using a simple regression model without

an intercept parameter. Finally, following the two-step estimation
procedure for k j

t by Lee and Carter (1992), we re-estimate k̂jt in a
second step, using actual number of deaths in different population
groups, such that the estimated number of deaths is close to the
actual number of deaths in the jth population group.

2.2. The Gaussian and non-Gaussian models for the mortality indices

To capture the phenomenon of a heavy tail for the multi-
country mortality index, we consider not only the setting of
Gaussian innovations but also non-Gaussian innovations includ-
ing the jump diffusion (JD) and generalized hyperbolic (GH) inno-
vations with the Lee–Carter model. The original Lee–Carter model
assumes aGaussian innovation for themortality index and forecast
the future dynamics of themortality index k j

t . Inmost applications,
k j
t is well-modeled as a randomwalkwith drift or referred to as the

ARIMA(0, 1, 0) model. However, Lee (2000) suggests that an added
moving average termor autoregressive termmay be superior. Con-
sequently, we use a standard ARIMA(P, 1,Q ) time-series model to
describe the mortality forecast, as follows:

kjt − kjt−1 = ω +

P
h=1

ϕh


kjt−h − kjt−h−1


+

Q
h=0

ψhε
j
t−h,

j = 1, . . . ,N, (2)

where P and Q denote the AR and MA orders, respectively; ω, ϕh,
and ψh are the drift, AR, and MA parameters, respectively, with
ψ 0 = 1; and ε j

t is a sequence of independent and identically ran-
dom variables with zero mean.

Under non-Gaussian innovations for themortality indices, error
terms ε j

t can be expressed as3:

ε
j
t = aj + σjzj +

N j
i=1

Y j
i , (3)

where N j is the Poisson distribution with intensity λj; each Y j
i ,

independent of z j and N j, is a normal distribution with mean µj

and standard deviation δj. When ε j
t follows a JD distribution, the

probability density function of the ε j
t JD distribution is of the form:

fJD

x| aj, σj, λj, µj, δj


=

∞
n=1

λnj e
−λj

n!
Φ

x| aj + nµj, σ

2
j + nδ2j


, (4)

where Φ

·| µ̃, σ̃ 2


is a normal probability density function with

mean µ̃ and variance σ̃ 2.
When ε j

t follows a GH distribution, the probability density
function of the ε j

t GH distribution is of the form:

fGH

x|αj, βj, δj, γj, θj



=


α2j −β2j
δj

γ
√
2π

Kγj

δj


α2
j − β2

j



× eβj(x−θj)
K
γj−

1
2


αj


δ2j +


x − θj

2


δ2j +(x−θj)
2

αj

 1
2 −γj

, (5)

where Kγ is the modified Bessel function of the second kind with
index γj; δj is the scale parameter; θj is the shift parameter; and
γj, αj and βj determine the shape of the GH distribution. These
parameters obey the following constraints: αj >

βj
 ≥ 0 and

γj ∈ R. To ensure the zero-mean condition, we have

θj = −βjδjKγj+1


δj


α2
j − β2

j


/

α2
j − β2

j Kγj

δj


α2
j − β2

j


. (6)

3 Let aj = −λjµj in the JDmodel to ensure that themean of the error terms equals
0.
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Table 1
The special cases of GH distributions.

αj βj γj Notes

Generalized Hyperbolic (GH) >0 ∼ ∼

Hyperbolic (HYP) >0 ∼ 1
Variance Gamma (VG) >0 ∼ >0 for δj = 0
Normal Inverse Gaussian (NIG) >0 ∼ −0.5

Skewed t (GHST) >0 and αj →
βj
 ∼ <0 and γj = −

νj
2 νj is the degree of freedom of GHST

Student’s t (T ) 0 0 <0 and γj = −
νj
2 for δj =

√
vj, νj is the degree of freedom of T

Note: The symbol ∼ denotes the free parameters in the corresponding distributions.
TheGHdistribution nests severalwell-known sub-distributions
includingHYP distribution, VG distribution, NIG distribution, GHST
distribution and Student’s t (T ) distribution. In this paper, we also
model the law of ε j

t as the family of GH distributions, and the
corresponding parameters of each distribution are presented in
Table 1.

2.3. The time-varying copula models

We use the time-varying copula model to capture themortality
dependence across countries. Copulas, introduced by Sklar (1959),
are tools for modeling dependence between random variables. It
links univariate distributions to themultivariate distribution of the
related variables. Many studies demonstrate that the specification
of time-varying correlation gives better results than unconditional
copula models (e.g., Alexandra and Paul, 2010). Consequently,
we also employ the time-varying copula to empirically test the
mortality dependence structure.

To model the mortality dependence across N countries, under
the time-varying copula model, the conditional N-dimensional
cumulative distribution function (cdf) of ε j

t is as follows:

P

ε 1
t ≤ x1, . . . , ε N

t ≤ xN
ℑt−1


= F (x1, . . . , xN | ℑt−1)

= C (F1 (x1| ℑt−1) , . . . , FN (xN | ℑt−1)| ℑt−1) , (7)

where Fj is the marginal conditional cdf of ε j
t and C is a conditional

copula function. In view of Eq. (7), if the copula is sufficiently
differentiable, the joint density function of ε j

t , j = 1, . . . ,N , can
be obtained as follows:

f (x1, . . . , xN | ℑt−1)

= c (F1 (x1| ℑt−1) , . . . , FN (xN | ℑt−1)| ℑt−1)

N
j=1

fj

xj
ℑt−1


, (8)

where f is the joint conditional probability density function (pdf);
fj is themarginal conditional pdf of ε j

t ; and c is a conditional copula
density function that satisfies

c (u1, u2, . . . , uN | ℑt−1) =
∂NC (u1, u2, . . . , uN | ℑt−1)

∂u1 . . . ∂uN
. (9)

We examine both the symmetric and asymmetric mortality
dependence structure. Thus, we use the symmetric multivariate
copulas – Gaussian copula and Student’s t copula – to characterize
the symmetric mortality dependence and the asymmetric copulas
– the Gumbel copula, Clayton copula and skewed t copula –
to characterize the asymmetric mortality dependence. We will
empirically test whether the multi-country mortality indices
display symmetry or asymmetry in the dependence structure.

The multivariate Gaussian copula is of the form:

CG(u1, . . . , uN; R) = ΦR(Φ
−1(u1), . . . ,Φ

−1(uN)), (10)

whereΦ−1 denotes the inverse cumulative density of the standard
normal;ΦR(x1, . . . , xN) denotes the standard multivariate normal
cumulative distribution and R is a N-by-N correlation matrix. The
Gaussian copula density is given by

cG(u1, . . . , uN; R) = |R|−1/2 exp

−

1
2
(x′R−1x − x′x)


, (11)

where x = (Φ−1(u1), . . . ,Φ
−1(uN)) and |R| is the determinant of

the covariance R. The Gaussian copula has zero upper (right) and
lower (left) tail dependence, that is λU = λL = 0.4

The multivariate Student’s t copula is given by

CT (u1, . . . , uN; R, v) = TR,v(T−1
v (u1), . . . , T−1

v (uN)), (12)

where R is aN-by-N correlationmatrix; T−1
v is the inverse of the cdf

of the univariate standard Student’s t with v degrees of freedom;
and TR,v has the density of the form:

fR,v(y1, . . . , yN) =
Γ

v+N
2


Γ

v
2

√
(πv)n |R|


1 +

y′R−1y
v

−v+N
2

, (13)

where y = (y1, . . . , yN)′. The corresponding Student’s t copula
density is given by

cT (u1, . . . , uN; R, v) =
fR,v(x1, . . . , xN)

N
i=1

fv(xi)
, (14)

where xi = T−1
v (ui) and fv(.) is the density of the Student’s t

distribution with v degrees of freedom with v > 2 for finite
covariance.

The skew t copula, proposed by Demarta and McNeil (2005), is
defined in the following representation:

CST


u1, . . . , uN;


, v, η


= ST,v,η(ST−1

v,η1
(u1), . . . , ST−1

v,ηN
(uN)), (15)

where v > 4 for finite covariance; η = (η1, . . . , ηN)
′ is a

N-dimensional vector accounting for the skewness; ST,v,η repre-
sents a multivariate skewed t distribution with the following den-
sity:

fST

x1, . . . , xN;


, v, η



= c

exp

x′

−1
η


K v+N

2


v + x′

−1
x

η′

−1
η




v + x′

−1
x

η′

−1
η

−
v+N
2 

1 +
x′

−1
x

v

 v+N
2

, (16)

4 The tail dependence coefficients are defined as λL = limu→0
C(u,u)

u and λU =

limu→0
2u−1+C(1−u,1−u)

u .
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where

c =
21− v+N

2

Γ (v/2) (πv)
N
2

 , (17)

and ST−1
v,ηj
, j = 1, . . . ,N , is the inverse cdf of the jth margin with

its density as follows:

fST (xj; v, ηj)

=
21− v+1

2

Γ (v/2)
√
πv

exp

xjηj


K v+1

2


v + x2j


η2j




v + x2j

η2j

−
v+1
2

1 +

x2j
v

 v+1
2
. (18)

Note thatwhen each ηj → 0 for j = 1, . . . ,N , the skewed t density
in Eq. (16) converges to the multivariate Student’s t density.

The Archimedean copulas can efficiently capture the tail depen-
dences coming from the extreme observations that are caused by
the asymmetry. The Gumbel copula, one of the Archimedean cop-
ulas, is defined as

CG(u1, . . . , uN; θ) = exp

−

 N
i=1

(− ln ui)
θ

1/θ
 , (19)

where θ ∈ [1,∞) is the degree of dependence between ui, i =

1, . . . ,N . There is no dependence if θ approaches one and there is
a fully dependent relationship if θ approaches infinity. The Gum-
bel copula has upper tail dependence and only allows for positive
dependence.

The Clayton copula, one of the Archimedean copulas, is given by

CC (u1, u2, . . . , uN; θ) =


N
i=1

u−θ
i − N + 1

−1/θ

, (20)

with θ ∈ (0,∞). There is no dependence if θ approaches zero and
there is a fully dependent relationship if θ approaches infinity. The
Clayton copula only has lower tail dependence.

Engle (2002) propose a multivariate GARCH model with
dynamic conditional correlation (DCC) that allows correlations to
be driven by the cross product of the lagged standardized residuals
and an autoregressive term. As shown by Vogiatzoglou (2010)
and Manner and Reznikova (2010), this DCC framework can easily
be adapted to model the dynamics copulas such as multivariate
Gaussian copula, multivariate Student’s t copula and multivariate
skewed t copula. Let Yt = (Y1t , . . . , YNt)

′ where Yit = Φ−1(uit) for
a multivariate Gaussian copula, Yit = T−1

v (uit) for a multivariate
Student’s t copula and Yit = ST−1

v,ηi
(uit) for a multivariate skewed t

copula. The dynamic correlation matrixΣt in a DCC copula model
is specified as

Σt = diag {Qt}
−

1
2 Qtdiag {Qt}

−
1
2 , (21)

Qt = (1 − α − β)Q + αYt−1Y ′

t−1 + βQt−1, (22)

where Q is parameter correlation matrix and α and β are non-
negative parameters satisfying α + β < 1. Therefore Σt is a
dynamic correlation matrix as long as Qt is positive definite. For
more details of the DCC copula, the reader can refer to Serban et al.
(2007), Vogiatzoglou (2010), and Manner and Reznikova (2010).

Patton (2006) proposes observation driven copula models for
which time-varying dependence parameter is a function of trans-
formations of the lagged data and an autoregressive term. For the
non-Gaussian case such as one-parameter bivariate Archimedean
copula family, as shown by Patton (2006) and Manner and
Reznikova (2010), the evolution of a dependence parameter θ of
a Archimedean copula is

θt = Λθ ωθ + βθΛ−1
θ (θt−1)+ γθ

1
10

10
j=1

u1,t−j − u2,t−j
 , (23)

whereΛθ is themodified logistic transformation to ensure that the
parameter always remains in its range. Note that Eq. (23) contains
an autoregressive termΛ−1

θ (θt−1) to capture the persistence in the
dependence parameter and themean of the last 10 observations of
the transformed lagged variables to capture any variation in de-
pendence.

For one-parameter multivariate Clayton and Gumbel copulas,
following the similar concept of Patton (2006), in this paper we
extend Eq. (23) from the bivariate case to a multivariate case as
follows:

θt = Λθ ωθ + βθΛ−1
θ (θt−1)

+


i>j

γ θi,j


1
10

10
h=1

ui,t−h − uj,t−h
 . (24)

Because θt > 0 for Clayton copula and θt > 1 for Gumbel copula,
Manner and Reznikova (2010) suggest Λθ (x) = exp(x) for the
Clayton copula and Λθ (x) = exp(x) + 1 for the Gumbel copula
to ensure the parameter always remains in its domain.

2.4. Estimation of time-varying copulas

Denote the sample of observeddata by xt = {x 1t , . . . , xNt} , t =

1, . . . , T , is the realized residual vector in the tth year. The log like-
lihood function is given by:

L(Θ) =

T
t=1

log f (xt |ℑt−1;Θ), (25)

where Θ is a vector including the parameters of the time-varying
copula model, which includes the parameters of marginal pdfs and
copula functions. Substituting Eq. (8) into Eq. (25) yields

L(Θ) =

N
i=1

T
t=1

log fi (xit |ℑt−1;Θ)

+

T
t=1

log (c (F1 (x1t |ℑt−1) , . . . ,

FN (xNt |ℑt−1) |ℑt−1;Θ)) . (26)

The parameters can be estimated bymaximum likelihood (ML) and
the inference for the margins (IFM). Compared to ML, the IFM, a
two-step estimation, is easily implemented and yields asymptoti-
cally efficient estimates (Joe, 1997; Patton, 2006). As a result, we
use the IFM method that allows for a two-step estimation pro-
cedure. Therefore, we can estimate each set of marginal param-
eters separately in the first step. Or equivalently, the first step is
then equivalent to N single estimations of univariate distributions.
In the second step, given the calibrated marginal parameters in
the first step, we can obtain the time-varying copula parameters.
The detailed two-step estimation procedure is provided in the Ap-
pendix.
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3. Valuation framework for survivor index swaps

To increase the hedge effectiveness, a security that can transfer
longevity risk across countries is needed. We demonstrate with
a survivor swap which the underlying survivor index is based
on a weighted multi-country survivor probability. We refer such
security as a survivor index swap in this research. The structure and
the valuation framework for a survivor index swap are introduced
below.

3.1. The structure of a survivor index swap

A survivor swap has been widely explored in prior literature
(Dawson, 2002; Blake, 2003; Dowd, 2003; Lin and Cox, 2005). A
survivor swap is an agreement that involves the periodic exchange
of a series of preset payments for a series of random mortality-
dependent payments. On each payment date, the fixed-rate payer
pays a preset amount, equal to the value of the notional principal
multiplied by a fixed rate, and receives in return from the floating-
rate payer a random mortality-dependent payment, equal to the
value of the notional principal multiplied by the unexpected shock
in survival probability (i.e., the difference between the actual
survival probability and the reference survival probability). Thus,
survivor swaps can be used to transfer the unexpected shock in
mortality improvement. Dowd et al. (2006) point out that hedge
is only as good as it is when the reference index is based the
insurer’s own mortality experience. In addition, a single mortality
benchmark has been considered to be inadequate to create an
effective hedge. Blake et al. (2012) point out that one of the reasons
why the EIB longevity5 bond was not launched was because the
basis risk in the bond was considered to be too great. To increase
the hedging effectiveness, we extend the structure of a vanilla
survivor swap analyzed by Dowd et al. (2006) and Dawson et al.
(2010) to a survivor index swap that the underlying mortality
index is linked to a benchmark cohort in different countries instead
of a single population mortality index.

Assume that T -year survivor index swap is issued at time t0. The
underlying n-year survival index is a weighted survival probability
in different populations based on the annuities issued to the cohort
aged x0 at time, which is denoted as S x 0(t 0, n). Especially, we
consider the exchange rate converting the annuity into domestic
currency in calculating the weight. Letwj(t 0) be the weight for the
jth population group at time t0, which can be expressed as

wj(t 0) =
Ljx 0Q j(t 0)

N
i=1

Lix 0Q i(t 0)
, j = 1, . . . ,N (27)

where Ljx 0 is the annuities issued to the cohort aged x0 at time t0 in
the jth population group and Q j(t 0) is the exchange rate which is
used to convert the jth foreign payout into domestic currency.

Thus, the underlying combined survivor index for the survivor
index swap across N populations, Sx 0(t 0, n), can be expressed as

S x 0(t 0, n) =

N
j=1

wj(t 0 + n)× npjx0 , n = 1, . . . , T , (28)

where np
j
x0 denote the n-year survival probability of the jth

population group aged x0 that reaches age x0 + n in calendar year
t 0 + n, which is calculated according the multi-country mortality
dynamics. Then

5 For example, the European Investment Bank (EIB) longevity bond is linked to a
survival index for English and Welsh men, aged 65 in 2002.
npjx0 = exp


−

 n

0
m j

x 0+u, t 0+u du

,

j = 1, . . . ,N, n = 1, . . . , T . (29)

We assume that the mortality rates are constant within certain
age and timewindows but may vary from one window to the next.
Specifically, given any integer age x and calendar year t , we assume
that

m j
x+ξ, t+τ = m j

x, t for 0 ≤ ξ, τ < 1, j = 1, . . . ,N,

n = 1, . . . , T . (30)

Thus, the n-year survival probability of the jth mortality group can
be calculated as

npjx0 = exp


−

n−1
h=0

m j
x 0+h, t 0+h


,

j = 1, . . . ,N, n = 1, . . . , T . (31)

Let cS denote the fixed swap rate and cS n be the floating swap
rate for a unit notional principle. On each of the payment dates
t, t = 1, . . . , T , a fixed-rate payer of the survivor index swap
pays the notional principal multiplied by a predetermined fixed
proportion, cS = (1 + π)Srefx 0(t 0, n) to the floating-rate payer and
in return receives the notional principal multiplied by a survivor
index, cS n = S x 0(t 0, n). S

ref
x 0(t 0, n) is the reference survival index

anticipated by using the best estimate of the Lee–Carter model to
calculate the reference survival probability in the jth population
group, np

ref ,j
x0 . π is the swap premium which is determined by

setting the initial value of the swap equal to zero for each party.

3.2. Risk-neutral survival probabilities

To change the real-world probability measure P to a risk-
neutral probability, Wang (2000) proposes a distortion operator,
called the Wang risk measure, with the following transformation:

F̃ j
t (x) = Φ


Φ−1


F j
t (x)


+ λ


, (32)

where λ is the market price of risk, and Φ is the standard normal
cdf. Let the cdf of np

j
x0 under the real-world (physical) probability

measure P be

F j
t (s) = ProbP(tpjx0 ≤ s). (33)

The expected value of tp
j
x0 under the Wang risk measure (risk

neutral measure), is of the form:

EQ

tpjx0


=


∞

0


1 − F̃ j

t (s)


ds. (34)

Because tp
j
x0 is ranging from0 to 1, as shownbyDenuit et al. (2007),

we have

tEQ

tpjx0


=

 1

0


1 − Φ


Φ−1


F j
t (s)


+ λ


ds. (35)

The analytical computation of EQ

tp

j
x0


according to Eq. (35) is

difficult to implement. Therefore, after calibrating the parameters
of the time-varying copulamodel, we use aMonte Carlo simulation
with 100,000 iterations to obtain the expected value of the survival
probability under the Wang risk measure.

3.3. Valuation of a survivor index swap

To price a survivor index swap, we calculate the fair swap
premium, i.e. π . Let M be the face amount of the swap. Under the
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Wang risk measure Q , from the point of view of the hedger, the
present value of the payment received by the fixed rate payer for a
T -year survival index swap, denoted by V Fix

0 , can be calculated as

V Fix
0 = EQ


T

t=1


exp


−

 t

0
r(u) du



×M × (1 + π)Srefx 0(0, t)


, (36)

where r(t) is the risk-free rate.
Furthermore, the present value of the payment received by the

floating rate payer for a T -year survival index swap, denoted by
V Float
0 , is

V Float
0 = EQ


T

t=1


exp


−

 t

0
r(u) du


M × Sx 0(0, t)


. (37)

Since the present values of the future cash flows received by
the fixed rate payer and by the floating rate payer for a survivor
index swap shall be equal, we can obtain a fair swap premium by
equating Eqs. (36) and (37). Under the assumption that mortality
risk and financial risk are independent, we can thus obtain

π =

T
t=1


B(0, t)

2N
j=1
wj(0)EQ


tp

j
x0


T

t=1


B(0, t)

2N
j=1
wj(0)tp

ref ,j
x0

 − 1 (38)

where B(t, T ) denotes the price of a zero-coupon bond issued at
time t that pays $1 at time T , t ≤ T .

3.4. Expected shortfall with a survivor index swap

From the standpoint of the pay-fixed payer, we canmeasure the
unexpected loss from the survivor index swap. The loss at time t is
defined as the form

Loss(t) = M

(1 + π)Srefx 0(0, t)− Sx 0(0, t)


, t = 1, . . . , T . (39)

The present value of the total unexpected loss, denoted as PVL,
is given by

PVL =

T
t=1

B(0, t)× Loss(t) (40)

which is determinedwhen the initial value of the swap equals zero,
i.e., π , is built in this research. With Eq. (40), we provide the value
at risk (VaR) and conditional tail expectation (CTE) of the survivor
index swaps.

4. Numerical results

In this section, we first price a survivor index swap. Using the
mortality data of Finland, France, the Netherlands and Sweden
from 1900 to 2009, we then re-fit the classical LC model with the
dynamic copula and non-Gaussian residuals to attain the fair swap
premium of the survivor index swap. Finally, we provide the VaR
and CTE of the survivor index swaps.

4.1. Model fit of Gaussian and non-Gaussian residuals

To simulate the mortality rates, we first find the optimal lag
order of the ARIMA(P, 1,Q ) model for each country, according
Table 2
BIC values of ARIMA (P, 1,Q ) models for each country.

AR order MA order Finland France Netherlands Sweden

0 0 187.19 195.36 226.81 162.99
0 1 183.84 188.27 215.64 155.16
0 2 186.19 189.03 217.92 157.23
1 0 184.37 185.92 217.67 156.43
1 1 186.19 187.93 217.91 157.32
1 2 187.35 190.20 219.33 158.09
2 0 186.25 188.02 219.12 157.05
2 1 188.53 190.23 220.19 159.40
2 2 189.44 192.17 221.63 161.26

Table 3
Goodness-of-fit tests for the residuals of mortality indices.

Model LLF AIC BIC LLF rank AIC rank BIC rank

Panel A: Mortality index for Finland

Normal −176.81 179.81 183.84 8 8 2
T −173.45 177.45 182.83 7 4 1
JD −171.67 177.67 185.75 1 6 7
VG −172.36 177.36 184.09 5 3 5
NIG −172.23 177.23 183.96 3 1 3
HYP −172.34 177.34 184.07 4 2 4
GHST −172.54 177.54 184.26 6 5 6
GH −172.23 178.23 186.31 2 7 8

Panel B: Mortality index for France

Normal −178.89 181.89 185.92 8 8 6
T −173.28 177.28 182.67 6 4 1
JD −171.96 177.96 186.04 4 6 7
VG −171.48 176.48 183.21 2 1 2
NIG −171.89 176.89 183.62 3 2 3
HYP −175.62 180.62 187.35 7 7 8
GHST −172.20 177.20 183.93 5 3 4
GH −171.48 177.48 185.55 1 5 5

Panel C: Mortality index for the Netherlands

Normal −208.60 211.60 215.64 8 8 7
T −190.93 194.93 200.32 5 3 1
JD −188.52 194.52 202.60 1 1 4
VG −192.20 197.20 203.93 6 6 6
NIG −190.08 195.08 201.81 4 4 3
HYP −204.26 209.26 215.99 7 7 8
GHST −189.53 194.53 201.25 3 2 2
GH −189.53 195.53 203.60 2 5 5

Panel D: Mortality index for Sweden

Normal −148.13 151.13 155.16 8 8 2
T −144.96 148.96 154.34 7 3 1
JD −143.79 149.79 157.86 3 7 8
VG −143.73 148.73 155.46 2 1 3
NIG −144.13 149.13 155.85 5 4 5
HYP −143.86 148.86 155.59 4 2 4
GHST −144.59 149.59 156.32 6 5 6
GH −143.73 149.73 157.80 1 6 7

to the Bayesian information criterion (BIC; Schwarz, 1978). The
results in Table 2 show that theARIMA(1, 1, 0)model is the best one
for France, whereas the ARIMA(0, 1, 1) model is the best model for
Finland, the Netherlands and Sweden. Therefore, we use the best
goodness-of-fit ARIMA(P, 1,Q ) models for the mortality index for
Finland, France, the Netherlands and Sweden.

We then re-fit the error terms of the best goodness-of-
fit ARIMA(P, 1,Q ) model with several distributions – normal,
Student’s t , JD, VG, NIG, HYP, GHST, and GH – to model the
non-Gaussian property of the error terms from 1900 to 2009.
Using mortality data from Finland, France, the Netherlands, and
Sweden, we determine the log-likelihood function (LLF), Akaike
information criterion (AIC; Akaike, 1974), and BIC results, together
with their corresponding ranks, as we summarize in Table 3.
All three criteria indicate that the normal distribution provides
the worst goodness of fit for all our mortality data, and the
GH or JD distributions provide better goodness of fit according
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Table 4
Dependence structure for standard residuals of mortality indices.

Finland France Netherlands Sweden

Panel A: Pearson’s linear correlation

Finland 1 0.5240 0.4239 0.5181
France 0.5240 1 0.5393 0.3090
Netherlands 0.4239 0.5393 1 0.3073
Sweden 0.5181 0.3090 0.3073 1

Panel B: Spearman’s rho

Finland 1 0.4775 0.5008 0.5961
France 0.4775 1 0.5497 0.4154
Netherlands 0.5008 0.5497 1 0.4958
Sweden 0.5961 0.4154 0.4958 1

Panel C: Kendall’s tau

Finland 1 0.3330 0.3551 0.4220
France 0.3330 1 0.3982 0.2926
Netherlands 0.3551 0.3982 1 0.3663
Sweden 0.4220 0.2926 0.3663 1

to LLF. However, because the BIC introduces a penalty term for
the effective number of parameters, this criterion indicates that
Student’s t model offers the best fit formortality data from Finland,
France, the Netherlands, and Sweden. Thus, the goodness-of-fit
tests consistently indicate that non-Gaussian distributions provide
better in-sample for the error terms of the mortality indices.

Using the best in-sample goodness of fit for the standard
residuals of the mortality indices, we report, in Table 4, their
dependence measures according to linear correlation, Spearman’s
rho and Kendall’s tau. During 1900–2009 period, we find that
the mortality rates exhibit mortality dependence. For example,
Pearson’s linear correlations are all positive and range from 0.3073
to 0.5393, which means that the positive mortality dependence
structure creates a serious problem for pricing survivor index
swaps linked to a cohort survival index with cross-country
mortality improvement.

4.2. Selection of the dynamic copula model

The probability integral transforms for the standard residuals
obtained from the best goodness-of-fit models provide the input
data for estimating the static and dynamic copulas. As Table 5
shows, compared with the static copula models, the dynamic
copula models provide better goodness of fit, in terms of LLF.
However, for the Gaussian, Student’s t , and skewed t copulas, the
DCC version does not provide a significant improvement in LLF,
such that its goodness of fit is even worse that the fit of the static
version, according to both AIC and BIC. Therefore, for Gaussian,
Student’s t , and skewed t copulas, it is sufficient to use static
Student’s t copulas to model mortality dependence, according to
the BIC. For Clayton and Gumbel copulas, the time-varying version
provides better goodness of fit, as assessed by LLF, AIC, and BIC. In
addition, among all competing copulas, the time-varying Gumbel
copula provides the best goodness-of-fit performance, according
Table 6
Parameters of the time-varying Gumbel copula.

Parameters Estimate Standard error t-statistic

ωθ −0.4027 0.1158 −3.48
γ θ1,2 −1.0103 0.2480 −4.07
γ θ1,3 2.7186 0.4866 5.59
γ θ1,4 −0.6321 0.2273 −2.78
γ θ2,3 0.7077 0.0867 8.17
γ θ2,4 1.0376 0.3482 2.98
γ θ3,4 −0.7627 0.0752 −10.14
βθ 1.0572 0.0159 66.56
θ0 1.5258 0.1318 11.58

Notes: This table provides the parameter estimates and robust standard errors of the
time-varying Gumbel copula. The t-statistic is the ratio of the parameter estimate to
its corresponding robust standard error. θ0, ωθ , βθ and γ θi,j are defined in Eq. (R.10),
where i or/and j equal 1 for Finland, 2 for France, 3 for the Netherlands and 4 for
Sweden.

to LLF, AIC, and BIC. The parameter estimates of the time-varying
Gumbel copula are in Table 6. On the basis of these results, we
chose to examine the fair swap rates, VaR, and CTE using the
time-varying Gumbel copula model, with Student’s t residuals, to
simulate mortality rates for Finland, France, the Netherlands, and
Sweden.

We provide a numerical example of the survivor index swaps
for a cohort of 65-year-old persons in the calendar year 2009. The
initial term structure is obtained from the US Department of the
Treasury. We assume that the exchange rates are equal to 1 and
the initial annuities issued to each of the fourmortality group equal
0.25. Table 7 reveals the fair swap premiums,with time tomaturity
equal to 25 years when is −0.1, −0.15, and −0.2, and with parallel
shifts upward of 0%, 2%, and 4% in the yield curve. From Table 7,
we demonstrate that the lower the λ and the interest rate are, the
higher is the fair swap premium. Similarly, the fair swap premiums
of the DCC copula models with non-Gaussian residuals are higher
than those of the original LC model, even when the yield curve
moves up in parallel. From Table 8, we reach the same conclusion
by varying the time to maturity.

Table 9 presents the VaR and CTE of the PVL with maturation
times of up to 25 years. Compared with the original LC model,
the best prediction model has higher VaR and CTE values. Because
shorter duration contracts cover less longevity risk, the VaR and
CTE values are smaller for shorter duration survivor index swaps.
The differences between the original LC and the best prediction
models instead are greater for longer durations.

5. Conclusion

As life expectancy continues to increase, longevity risk has
become a global phenomenon. The use of capital market solutions
such as survivor swaps and longevity bonds to hedge longevity
risk consequently has becomemore important as well. To increase
hedging effectiveness, it is necessary to deal with basis risk for the
development ofmortality-linked securities. This research proposes
Table 5
Estimation of copula models for mortality indices.

Model LLF AIC BIC LLF rank AIC rank BIC rank

Clayton copula 46.35 −45.35 −44.01 10 10 10
Time-varying Clayton copula 74.40 −65.40 −53.29 4 2 3
Gumbel copula 51.12 −50.12 −48.77 9 9 8
Time-varying Gumbel copula 85.67 −76.67 −64.56 1 1 1
Gaussian copula 65.44 −59.44 −51.37 8 7 4
DCC Gaussian copula 65.44 −58.44 −49.02 7 8 7
Student’s t copula 72.24 −65.24 −55.82 6 3 2
DCC Student’s t copula 72.35 −63.35 −51.24 5 6 5
Skewed t copula 76.22 −65.22 −50.42 3 4 6
DCC Skewed t copula 76.76 −64.76 −48.62 2 5 9
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Table 7
Swap premiums for different interest rates (units: bps).

Yield Rates Model λ = −0.1 λ = −0.15 λ = −0.2

Original yield curve Time-varying Gumbel + non-Gaussian 131.31 145.23 159.10
No dependence + Normal 126.08 140.71 155.29

Parallel shift up of 2% Time-varying Gumbel + non-Gaussian 102.10 113.99 125.84
No dependence + Normal 97.63 110.14 122.60

Parallel shift up of 4% Time-varying Gumbel + non-Gaussian 78.48 88.64 98.77
No dependence + Normal 74.67 85.36 96.01

Notes: Time to maturity is 25 years. ‘‘Time-varying Gumbel + non-Gaussian’’ indicates that we use the time-varying Gumbel copula model to capture the dependence
structure of the multi-country mortality indices, applying the best goodness-of-fit Student’s t distribution to model the residuals of the mortality index. ‘‘No
dependence + Normal’’ means that we ignore the dependence structure of the multi-country mortality indices and use the Gaussian distribution to model the residuals of
the mortality index.
Table 8
Swap premiums for different maturities (units: bps).

Time to maturity Model λ = −0.1 λ = −0.15 λ = −0.2

15 Time-varying Gumbel + non-Gaussian 12.99 19.87 26.70
No dependence + Normal 10.44 17.68 24.88

20 Time-varying Gumbel + non-Gaussian 62.49 73.05 83.57
No dependence + Normal 58.45 69.56 80.62

25 Time-varying Gumbel + non-Gaussian 131.31 145.23 159.10
No dependence + Normal 126.08 140.71 155.29

Notes: ‘‘Time-varying Gumbel + non-Gaussian’’ indicates that we use the time-varying Gumbel copula model to capture the dependence structure of the multi-country
mortality indices, applying the best goodness-of-fit Student’s t distribution to model the residuals of the mortality index. ‘‘No dependence + Normal’’ means that we ignore
the dependence structure of the multi-country mortality indices and use the Gaussian distribution to model the residuals of the mortality index.
Table 9
VaR and CTE of the losses for different maturation times (λ = −0.1).

Time to maturity Model VaR95 VaR99 CTE95 CTE99

15 Time-varying Gumbel + non-Gaussian 0.1600 0.2235 0.1991 0.2569
No dependence + Normal 0.1080 0.1519 0.1349 0.1720

20 Time-varying Gumbel + non-Gaussian 0.2742 0.3857 0.3419 0.4404
No dependence + Normal 0.1850 0.2615 0.2318 0.2963

25 Time-varying Gumbel + non-Gaussian 0.3799 0.5354 0.4754 0.6150
No dependence + Normal 0.2542 0.3622 0.3209 0.4135

Notes: ‘‘Time-varying Gumbel + non-Gaussian’’ indicates that we use the time-varying Gumbel copula model to capture the dependence structure of the multi-country
mortality indices, applying the best goodness-of-fit Student’s t distribution to model the residuals of the mortality index. ‘‘No dependence + Normal’’ means that we ignore
the dependence structure of the multi-country mortality indices and use the Gaussian distribution to model the residuals of the mortality index.
survivor index swapswith a cohort survivor index that can serve as
an effective hedging instrument for both the annuity provider and
the pension provider. To price the survivor index swaps, this study
investigates, for the first time, time-varying mortality dependence
across countries, as well as non-Gaussian residuals under the
multi-country Lee–Carter framework.

By providing illustrations based in the male mortality expe-
rience in four countries, Finland, France, the Netherlands, and
Sweden, we uncover consistent support for the non-Gaussian
residuals and time-varyingmortality dependence across countries.
Specifically, when we calibrate the parameters of the RH model,
Student’s t model is the best one for all mortality indices, accord-
ing to the BIC criterion. For the mortality projection for these five
countries, we find that the normal distribution providesweakmor-
tality in-sample performance, whereas the non-Gaussian distribu-
tions provide good in-sample performance. In the survivor index
swap application,we demonstrate that the swap curves of the orig-
inal LC model are lower than those of the LC model with time-
varying dependence and non-Gaussian innovations. In addition,
the VaR and CTE values of the original LC model are lower than
those of the best goodness-of-fit model. Choosing an appropriate
leptokurtic model is critical to avoiding an underestimation of the
loss for the insurer due to longevity risk. The contributions of this
research thus are significant not only for academic purposes but
also for the development of real-world capital market solutions to
hedge longevity risk.
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Appendix. The IFMmethod for mortality index

To model the mortality dependence across N countries, under
the time-varying copula model, the conditional N-dimensional
cumulative distribution function (cdf) of ε j

t is as follows:

P

ε 1
t ≤ x1t , . . . , ε N

t ≤ xNt
ℑt−1


= C (F1 (x1t | ℑt−1) , . . . , FN (xNt | ℑt−1)| ℑt−1) , (A.1)

where ε j
t is the error term of the ith mortality index and xt =

x 1t , . . . , xNt

is the realized residual vector in the tth year. To

estimate the parameters of the mortality index, we adopt the
inference formargins (IFM)method proposed by Joe and Xu (1996)
and Joe (1997). Let Θ = {ΘM ,ΘC }, where ΘM =


ΘM

1 , . . . ,Θ
M
N


is the marginal parameter set; ΘM

j is the parameter set of the
jth margin; and ΘC is copula parameter set. The IFM method is
a two-step estimation procedure. The first step is equivalent to
N estimations of univariate mortality indices. We estimate each
margin’s parameter set ΘM

j , j = 1, . . . ,N , by performing the
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estimation of the marginal distributions.

Θ̂M
j = argmax

ΘM
j

T
t=1

ln fi

xit |ℑt−1;Θ

M
j


. (A.2)

Consequently, for each country, we calibrate the parameters of
mortality index in Eq. (3) and its error terms in Eqs. (4) and (5) in
the first step.

In the second step, given the calibrated marginal parameter set
Θ̂M =


Θ̂M

1 , . . . , Θ̂
M
N


obtained in the first step, we can estimate

the (time-varying) copula parameter set in the following:

Θ̂C = argmax
ΘC

T
t=1

log

c

F1(x1t), . . . , FN(xNt)ℑt−1; Θ̂M;ΘC


. (A.3)

The IFM estimator is defined as the vector

Θ̂ =


Θ̂M , Θ̂C

′

. (A.4)

This completes the two-step estimation procedure for the IFM
method.
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