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a b s t r a c t

This paper first defines an increase in ambiguity and an increase in downside ambiguity. We then provide
comparative criteria for ambiguity aversion and downside ambiguity aversion. Different from the finding
that the comparative criterion for risk aversion is variantwith themeasure of the premium to reduce risks,
we show that the criteria remain the same, whether the premiums to reduce ambiguity and downside
ambiguity are measured by utility or money. Under the criteria, a more ambiguity-averse (downside-
ambiguity-averse) individual is shown to spendmore effort in reducing ambiguity (downside ambiguity)
than a less ambiguity-averse (downside-ambiguity-averse) individual.
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1. Introduction

Ellsberg (1961) found that individuals tend to prefer a lottery
with certain probabilities to a lottery with uncertain probabili-
ties. Such a preference that cannot be explained by the theory
of expected utility is known as ambiguity aversion. Since then,
researchers have developed various models to characterize this
ambiguity-averse preference, such as maxmin expected utility
(Gilboa and Schmeidler, 1989), Choquet expected utility (Schmei-
dler, 1989), α-maxmin expected utility (Ghirardato et al., 2004),
the smooth model of ambiguity aversion (Klibanoff et al., 2005),
and so on.1 Based on these models, fruitful findings regarding

∗ Corresponding author at: Department and Graduate Institute of Finance,
National Taiwan University, No. 50, Ln. 144, Sec. 4, Keelung Road, Taipei city 10673,
Taiwan. Tel.: +886 2 33661082.

E-mail addresses: huangyic@fcu.edu.tw (Y.-C. Huang), tzeng@ntu.edu.tw
(L.Y. Tzeng), zhaolin@iss.ac.cn (L. Zhao).
1 Regarding the smooth model of ambiguity aversion (Klibanoff et al., 2005), its

intertemporal versionwhich is called recursive smooth ambiguitymodel (Klibanoff
et al., 2009) and its dual representation (Iwaki and Osaki, 2014) have been
developed. Furthermore, more general ambiguity models which accommodate
the above models and relax their assumptions have also been proposed, such as
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decisionmaking under ambiguity aversion have been discovered.2

On the other hand, some researchers have devoted to experimen-
tal studies and further enriched our understanding of ambiguity
preferences.3

Maccheroni et al.’s (2006) variational characterization, Siniscalchi’s (2009) vector
expected utility, Nau’s (2011) state-preference theory, Cerreia-Vioglio et al.’s (2011)
uncertainty averse representation, andGhirardato and Siniscalchi’s (2012) local and
global multiple-prior characterization.
2 For instance, Gollier (2011) proved that under certain conditions, greater

ambiguity aversion decreases the demand for the ambiguous asset but increases the
equity premium. Snow (2011) showed that an increase in ambiguity aversion raises
both the demand for self-insurance and the demand for self-protection. However,
these results do not necessarily hold for more than two states of nature (Alary et al.,
2013). Furthermore, Hoy et al. (2014) found that ambiguity aversion can help to
explain the fact that few people are willing to receive a free genetic test.
3 For example, Cabantous (2007) found that insurers charge higher premiums

in the presence of ambiguity than in the absence of ambiguity and that the
charged premiums are higher when the insurers face with conflict ambiguity than
with imprecise ambiguity. Cabantous et al. (2011) also discovered similar results,
whereas when considering different types of risks, the result of higher charged
premiums for conflict ambiguity than for imprecise ambiguity is reversed under
the risks with abundant data such as fire risk. Charness et al. (2013) pointed out
that social interactions affect ambiguity attitudes by inducing ambiguity loving
and incoherent individuals to behave ambiguity neutrality. Moreover, from the
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In addition to characterizing the preference of ambiguity
aversion, researchers have been exploring how to compare the
degree of ambiguity aversion across individuals. For example,
under the α-maxmin expected utility model (Ghirardato et al.,
2004), the function a, which is theweight on themaxmin expected
utility, is used to measure the degree of ambiguity aversion. An
individual with a larger value of the function a behaves more
pessimistically, indicating a more ambiguity-averse person. Under
the smooth ambiguity aversion model (Klibanoff et al., 2005), one
is said to be more ambiguity averse than the other when one’s
ambiguity function is obtained by the other’s ambiguity function
transformed with a strictly increasing and concave function, given
the same utility function and subjective beliefs. Klibanoff et al.
(2005) also proposed a measure for ambiguity aversion named
the coefficient of ambiguity aversion, which is analogous to the
Arrow–Pratt absolute risk aversion index.4

Beyond ambiguity aversion, third-order ambiguity attitude
has not received much attention in the literature. One notable
exception is the study of Baillon (2013). Analogous to risk
apportionment (Eeckhoudt and Schlesinger, 2006), Baillon (2013)
used the preferences over different options that vary in the
probabilities of lotteries to define ambiguity attitudes, which
is called ambiguity apportionment. In this approach, ambiguity
aversion is defined as the preference of the option with certain
probabilities of lotteries and third-order ambiguity attitude, which
he called ambiguity prudence, is defined as the preference of the
option in which the reduction and variation of the probabilities
of lotteries are separated.5 Furthermore, he showed that if the
state space satisfies certain properties, under the smooth model of
ambiguity aversion (Klibanoff et al., 2005), ambiguity aversion and
ambiguity prudence correspond to an ambiguity function with a
negative second derivative and onewith a positive third derivative,
respectively.6 However, regarding the intensity of the third-
order ambiguity attitude, as far as we know, no paper explores
it.

This paper extends this line of the literature by providing com-
parative criteria for ambiguity aversion and downside ambiguity
aversion under the smoothmodel of ambiguity aversion (Klibanoff
et al., 2005). Compared with other models on ambiguity, the
smooth ambiguity model is more suitable for our purpose because
the preference-based definition of ambiguous events in its frame-
work can disentangle non-constant ambiguity attitude and the
ambiguity of an event (Klibanoff et al., 2011). In the literature,
stochastic dominance approach has been a prevalent and pow-
erful tool for ordering risks, characterizing risk preferences, and
analyzing comparative statics regarding risks under the expected
utilitymodel. Given the success of stochastic dominance approach,
for ambiguity, we develop similar notions by adopting the smooth
ambiguity aversionmodel (Klibanoff et al., 2005)with a framework
like the expected utility model.

experimental results, Conte and Hey (2013) found that among four types of
models (the expected utilitymodel, the smooth ambiguity aversionmodel, the rank
dependent expected utility model, and the α-maxmin expected utility model), the
smooth ambiguity aversion model has the best explanatory and predictive power
for individuals’ behavior in the presence of ambiguity.
4 Ahn (2008) proposed a model whose domain is the set of lotteries other than

the state space. He proposed a index similar to that of Klibanoff et al. (2005).
5 This preference also represents the preference of the option with a less-spread

left tail on the distribution of probabilities of lotteries, which is similar to the
definition of downside risk aversion (Menezes et al., 1980). Thus, in this paper, we
use the term downside ambiguity aversion for third-order ambiguity attitude.
6 In his paper, fourth-order ambiguity attitude (ambiguity temperance) and Nth-

order ambiguity attitude were also defined and the sign of the Nth derivative of
the ambiguity function could be determined by (−1)n+1 if the state space satisfies
certain properties.
Following Rothschild and Stiglitz (1970) and Ekern (1980), we
first provide formal definitions of an increase in ambiguity and an
increase in downside ambiguity. Then, we propose the conditions
under which one is more ambiguity averse or downside ambigu-
ity averse than the other. These conditions are analogous to those
proposed by Ross (1981) and Modica and Scarsini (2005), respec-
tively, for risk aversion and downside risk aversion. Furthermore,
we find that the conditions of comparative ambiguity aversion and
downside ambiguity aversion defined by the monetary premium
are the same as those defined by the utility premium. This finding
is different from the results on risks in the literature, such as those
of Jindapon and Neilson (2007).7

As an application of the comparative criteria, we study the
problem of spending efforts in reducing ambiguity and downside
ambiguity which is related to but different from what Huang
(2012) has examined. In the presence of ambiguity, we study the
impact of more ambiguity aversion on optimal efforts to reduce
ambiguity while Huang (2012) studied its impact on optimal
efforts to reduce risks. Moreover, our more ambiguity aversion
measure is developed in the spirit of Ross’s (1981) comparative
risk aversion measure while Huang’s (2012) measure is defined
as Klibanoff et al.’s (2005) absolute ambiguity aversion measure
which was proposed in the spirit of the Arrow–Pratt risk aversion
measure. We show that an individual will spend more efforts in
reducing ambiguity (downside ambiguity) if and only if he or she
is more ambiguity averse (downside ambiguity averse) defined by
our criteria. This finding is analogous to the result of Jindapon and
Neilson (2007), where efforts are spent to reduce risks.

Our paper contributes to the literature in three ways. First, this
paper is, to our best knowledge, the first to offer definitions of
an increase in ambiguity and an increase in downside ambigu-
ity for general ambiguous probability distributions. In contrast to
the Bernoulli distribution studied by Snow (2011) and Alary et al.
(2013), for general probability distributions, the notion of an in-
crease in ambiguity or in downside ambiguity depends crucially
on how the unknown parameter in the probability distribution is
defined. To use the mean-preserving spread and the mean–vari-
ance-preserving spread to describe the increase in ambiguity and
the increase in downside ambiguity, respectively, the unknown
parameter must be properly specified. Second and moreover, we
develop comparative ambiguity aversion and downside ambiguity
aversion in the spirit of Ross (1981). This opens up a new way to
analyze the intensity of higher-order ambiguity attitudes that com-
plements the apportionment approach adopted by Baillon (2013)
when studying higher-order ambiguity attitudes. Third, we clar-
ify that conditions for comparative ambiguity aversion and down-
side ambiguity aversion are indifferent whether the premiums to
reduce ambiguity and downside ambiguity, respectively, are mea-
sured by utility or money. This finding identifies a key difference
between comparative ambiguity aversion and comparative risk
aversion.

The rest of our paper is organized as follows. Section 2 provides
the definitions for an increase in ambiguity and an increase in
downside ambiguity. Section 3 develops the notion of comparative
ambiguity aversion and downside ambiguity aversion, while
Section 4 presents an application in spending efforts in reducing
ambiguity and downside ambiguity. We conclude the paper in
Section 5 and relegate all proofs to the Appendices.

7 In general, conditions of comparative risk aversion defined by the monetary
premium lead to Ross’s (1981) measure of risk aversion, whereas conditions of
comparative risk aversion defined by the utility premium lead to the Arrow–Pratt
measure of risk aversion.
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2. Increases in ambiguity and downside ambiguity

We consider an individual facing uncertain wealth with a
distribution density represented by p(x; θ), where x denotes
the wealth value and θ denotes the parameter on which the
distribution density relies. The distribution is ambiguous in the
sense that the parameter θ is not known precisely and taking on
values in a space Θ . The ambiguity takes the form of a probability
distribution for θ . To describe attitudes toward ambiguity, we
adopt the smooth model of ambiguity aversion (Klibanoff et al.,
2005). Under this model, the expected utility for a given θ is

U(θ) =


p(x; θ)u(x)dx,

where u is the intrinsic vNM utility function. The individual’s
overall utility under ambiguity is expressed as

EF [φ(U(θ))] =


φ (U(θ)) dF(θ),

where F : Θ → [0, 1] denotes the cumulative distribution func-
tion of the parameter and φ is the individual’s ambiguity function
that is increasing and concave. We make the following assump-
tions throughout our analysis:

A1. Θ = [θ, θ ];
A2. U(θ) : Θ → R is fixed, and is continuously differentiable;
A3. U ′(θ) > 0 for all θ ∈ Θ .

Here, A1 specifies the spaceΘ as an interval, inwhich the boundary
θ or θ can be −∞ or +∞.8 A2 clarifies that we will take the
function U(θ) as given and focus on comparative statics regarding
φ. In order to fix U(θ), we need to fix the intrinsic utility function
u and the distribution density p(x; θ).

A3 is motivated by the fact that the expected utility U(θ)

is monotone in θ if the change in θ specifies a change in the
wealth distribution in line with the stochastic dominance rule.
The monotonicity of U(θ) is also assumed by the literature on
ambiguity such as two recent papers, Gollier (2011) and Snow
(2014).9 In fact, Rothschild and Stiglitz (1970) have proven that
an improvement/a deterioration according to the first-order or
second-order stochastic dominance always increases/decreases
the expected utility, as long as the utility function u is increasing
and concave. For most commonly used distributions, the change in
the parameter corresponds to an improvement or a deterioration
in line with the stochastic dominance rule. As shown in Appendix
A, if there is a density function p(x) such that p(x; θ) = p(x − θ),
then an increase in θ implies an improvement in linewith the first-
order stochastic dominance. If there is a density function p(x) and
a constant µ such that


+∞

−∞
xp(x)dx = 0 and p(x; θ) =

1
θ
p
 x−µ

θ


(θ > 0), then an increase in θ implies a deterioration in line with

8 When θ = −∞ or θ = +∞, we abuse notation a bit to use [θ, θ ] to denote
(−∞, θ ] or [θ, +∞).
9 Gollier (2011) demonstrated that the analytically optimal demand for

ambiguous asset can be found when (1) the return follows the normal distribution,
where θ denotes its mean; (2) θ is normally distributed; (3) the individual has a
CARA risk preference; and (4) the individual has a CRAA ambiguity preferences.
Under the assumptions (1) and (3), U ′(θ) > 0 can be found. He further showed
the equivalent relationship between an increase in ambiguity aversion and a
Monotone-Likelihood-Ratio-order shift on the distribution of the second-order
belief by assuming that U ′(θ) > 0, where θ denotes the parameter which
determines the distribution of the return. On the other hand, Snow (2014) examined
the comparative statics of an increase in ambiguity aversion on the demand for
insurance by setting θ as the loss probability in a two-state model where the
assumption of U ′(θ) < 0 can be found.
the second-order stochastic dominance.10 Many distributions can
be parameterized in the form 1

σ
p
 x−µ

σ


. A natural example is the

normal distribution, where p(x) =
1

√
2π

e−
x2
2 .

Taking into account the monotonicity of U(θ), A3 requires
that θ is ordered in the way that a larger θ produces a higher
utility.11Assumptions A1–A3 imply that the mapping U(θ) :

[θ, θ ] → [U(θ),U(θ)] is one-to-one and onto.
We first define an increase in ambiguity in the spirit of

Rothschild and Stiglitz (1970) as follows.

Definition 1 (Increase in Ambiguity According to Rothschild and
Stiglitz, 1970). Let F and G be two distributions of θ . We say that
F has less ambiguity than G in the sense of Rothschild and Stiglitz
(1970), denoted F &RS G, if EF [φ(U(θ))] ≥ EG [φ(U(θ))] for all
φ : [U(θ),U(θ)] → R that is twice continuously differentiable
and satisfies φ′ > 0, φ′′ < 0.

The following lemma provides the condition for an increase in
ambiguity according to Rothschild and Stiglitz (1970).

Lemma 1. Let F and G be two distributions of θ . Then, under
Assumptions A1–A3, F &RS G if and only if η

θ

U ′(θ)[F(θ) − G(θ)]dθ ≤ 0, ∀η ∈ [θ, θ ]. (1)

Proof. Please see Appendix B. �

Following Ekern (1980), we further refine the notion in
Rothschild and Stiglitz (1970) by removing the requirement φ′

> 0.

Definition 2 (Increase in Ambiguity According to Ekern, 1980). Let
F and G be two distributions of θ . We say that F has less
ambiguity than G in the sense of Ekern (1980), denoted F &E G, if
EF [φ(U(θ))] ≥ EG [φ(U(θ))] for all φ : [U(θ),U(θ)] → R that is
twice continuously differentiable and satisfies φ′′ < 0.

Lemma 2 gives the conditions for an increase in ambiguity
according to Ekern (1980). Since φ in Definition 2 needs not to
be monotone increasing, an additional restriction (see Eq. (2)) is
required. The proof is similar to that of Lemma 1 and is thus
omitted.

Lemma 2. Let F and G be two distributions of θ . Then, under
Assumptions A1–A3, F &E G if and only if θ

θ

U ′(θ)[F(θ) − G(θ)]dθ = 0 (2)

and η

θ

U ′(θ)[F(θ) − G(θ)]dθ ≤ 0, ∀η ∈ [θ, θ ]. (3)

10 With the density 1
σ
p
 x−µ

σ


, the mean of the uncertain wealth equals µ, which

is independent of σ ; the variance equals


+∞

−∞
y2p(y)dy


σ 2 , which is proportional

to σ 2 . An increase in σ in fact creates amean-preserving increase of risk in the sense
of Rothschild and Stiglitz (1970).
11 Otherwise, if U(θ) is monotone decreasing in θ , one can employ a negative
monotonic transformation on θ such as θ̃ = −θ or θ̃ =

1
θ

to obtain V (θ̃) =
u(x)p


x; −θ̃


dx = U(−θ̃ ) or V (θ̃) =


u(x)p


x; 1

θ̃


dx = U


1
θ̃


. Then the

expected utility V (θ̃) is monotone increasing in θ̃ .
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Lemmas 1 and 2 demonstrate that the notion of increase
in ambiguity depends on U ′(θ). Recall that θ parameterizes
the distribution density p(x; θ) and different specifications of
the parameter give rise to different functional forms of U . The
term U ′(θ) in (1)–(3) corrects for the effect brought by the
parameterization. Eq. (2) can be understood as a generalization of
the mean-preservation condition, since when U ′(θ) is constant, it
reduces to θ

θ

[F(θ) − G(θ)]dθ = 0.

Moreover, when U ′(θ) is constant, Eq. (3) reduces to the well-
known second-order stochastic dominance condition η

θ

[F(θ) − G(θ)]dθ ≤ 0, ∀η ∈ [θ, θ ].

In this case, Eqs. (2) and (3) correspond to the notion that G is a
mean-preserving spread of F .12 When U ′(θ) is not constant, we
have the following result.

Proposition 1. Under Assumptions A1–A3, let τ ∈ [U(θ),U(θ)] be
a new parameter. We employ θ = U−1(τ ) to re-parameterize the
distribution density p(x; θ) as

p̃(x; τ) = p

x;U−1(τ )


.

Under this new parameterization, the expected utility for a given τ is

V (τ ) =


u(x)p̃(x; τ)dx = τ ,

and the individual’s overall utility under ambiguity is expressed as

EF [φ(V (τ ))] =

 U(θ)

U(θ)

φ(τ)dF(τ ).

For distributions of τ , F &E G if and only if G is a mean-preserving
spread of F .

Proof. Please see Appendix C. �

Proposition 1 shows that when U ′(θ) is not constant, one can
re-parameterize the distribution density such that the marginal
expected utility is constant with the new parameter. The essence
of the re-parameterization is to introduce a new parameter for
the wealth distribution such that the expected utility is linear in
this new parameter. After the re-parameterization, an increase in
ambiguity corresponds exactly to the mean-preserving spread. To
illustrate the dependence of&E on the parameterization, let us look
at two concrete examples.

Example 1. Assume that the uncertain wealth obeys a Bernoulli
distribution: There are two states of nature such that U(θ) =

p(θ)u(a) + (1 − p(θ))u(b) (a > b). When p(θ) = θ ∈ [0, 1],
we have U(θ) = θ [u(a) − u(b)] + u(b), which in turn suggests
U ′(θ) = u(a) − u(b) > 0 is a constant. For θ , F &E G if and only if
G is a mean-preserving spread of F . This special case was explored
by Snow (2011) and Alary et al. (2013).

Example 2. Assume that the uncertain wealth obeys a normal dis-

tribution p(x; µ, σ) =
1

√
2πσ

e−
(x−µ)2

2σ2 , where µ ∈ R is ambigu-
ous but σ is not. Let u(x) = −e−γ x, γ > 0. We then have

12 When U ′(θ) is constant, U(θ) is linear in θ , and the concavity of overall utility
φ(U(θ)) is attributed entirely to φ. In this case, the concavity of φ corresponds
exactly to the aversion to mean-preserving spreads.
U(µ) = −e−γ (µ−
γ
2 σ 2). In this case, an increase in ambiguity on

µ is not necessarily a mean-preserving spread. However, if we in-
troduce a new parameter τ ∈ (−∞, 0), and re-parameterize the
normal distribution of the uncertain wealth as

p̃ (x; τ , σ ) = p

x; −

1
γ

log(−τ), σ


=

1
√
2πσ

e−


x+ 1

γ log(−τ)
2

2σ2 ,

then we have

V (τ ) =


u(x)p̃(x; τ , σ )dx = τe

γ 2σ2
2 ,

which is linear in τ .13 For distributions of τ , F &E G if and only if G
is a mean-preserving spread of F .

In the same spirit as Menezes et al. (1980), we can define an
increase in downside ambiguity.

Definition 3 (Increase in Downside Ambiguity According to Menezes
et al., 1980). Let F and G be two distributions of θ . We say that F
has less downside ambiguity than G in the sense of Menezes et al.
(1980), denoted F 'M G, if EF [φ(U(θ))] ≥ EG [φ(U(θ))] for all φ
that is three times continuously differentiable and satisfies φ′ > 0,
φ′′ < 0, φ′′′ > 0.

The following lemma shows the conditions of an increase in
downside ambiguity according to Menezes et al. (1980).

Lemma 3. Let F and G be two distributions of θ . Then, under
Assumptions A1–A3, F 'M G if and only if η

θ

U ′(θ) [F(θ) − G(θ)] dθ ≤ 0 (4)

and η

θ

U ′(θ)

 θ

θ

U ′(ζ )[F(ζ ) − G(ζ )]dζ

dθ ≤ 0,

∀η ∈ [θ, θ ]. (5)

Proof. Please see Appendix D. �

Following Ekern (1980),we further refine thenotion inMenezes
et al. (1980) by removing the requirement φ′ > 0, φ′′ < 0.

Definition 4 (Increase in Downside Ambiguity According to Ekern,
1980). Let F and G be two distributions of θ . We say that F has less
downside ambiguity than G in the sense of Ekern (1980), denoted
F 'E G, if EF [φ(U(θ))] ≥ EG [φ(U(θ))] for all φ that is three times
continuously differentiable and satisfies φ′′′ > 0.

Lemma 4 gives the conditions for an increase in downside
ambiguity according to Ekern (1980). Since φ in Definition 4 needs
not to bemonotone increasing and concave, additional restrictions
(see Eqs. (6) and (7)) are required. The proof is similar to that of
Lemma 3 and is thus omitted.

Lemma 4. Let u be given and let F and G be two distributions of θ .
Then, F 'E G if and only if θ

θ

U ′(θ)[F(θ) − G(θ)]dθ = 0, (6)

 θ

θ

U ′(θ)

 θ

θ

U ′(ζ )[F(ζ ) − G(ζ )]dζ

dθ = 0, (7)

13 The re-parameterization in this example is defined by τ = −e−γµ
≠ U(µ)

while the re-parameterization in Proposition 1 is defined by τ = U(µ). They are
equivalent to each other based on a nonnegative scale change.
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and η

θ

U ′(θ)

 θ

θ

U ′(ζ )[F(ζ ) − G(ζ )]dζ

dθ ≤ 0,

∀η ∈ [θ, θ ]. (8)

Similar to the characterization of the increase in ambiguity,
the notion of increase in downside ambiguity also depends
on how the distribution density p(x; θ) is parameterized, and
the term U ′(θ) in (4)–(8) corrects for the effect introduced by
the parameterization. Eqs. (6) and (7) can be understood as a
generalization of themean–variance-preservation condition, since
when U ′(θ) is constant, Eq. (6) implies that F and G have the same
mean, while Eq. (7) implies that F and G have the same variance.
Lemma 4 thus reduces to stating that G is a mean–variance-
preserving spread of F . When U ′(θ) is not constant, we have the
following result. The proof is similar to that of Proposition 1 and is
thus omitted.

Proposition 2. Under Assumptions A1–A3, let the distribution
density be re-parameterized by the parameter τ ∈ [U(θ),U(θ)] in
the same manner as that specified in Proposition 1. For distributions
of τ , F 'E G if and only if G is a mean–variance-preserving spread of
F .

Theway of the re-parameterization in Proposition 2 is the same
as that in Proposition 1. Accordingly, in Example 2, with the same
re-parameterization

p̃ (x; τ , σ ) = p

x; −

1
γ

log(−τ), σ


=

1
√
2πσ

e−


x+ 1

γ log(−τ)
2

2σ2 ,

for distributions of τ , we have F 'E G if and only if G is a
mean–variance-preserving spread of F .

3. Comparative ambiguity aversion and downside ambiguity
aversion

This section provides comparative conditions for ambiguity
aversion and downside ambiguity aversion in the spirit of Ross
(1981). For simplicity, an increase in ambiguity and an increase in
downside ambiguity are both defined in the sense of Ekern (1980)
for all the analyses. Suppose that there are two individuals with
ambiguity functions φ1 and φ2, respectively. For distributions of θ
such that F &E G, define πi as the premium measured in utility the
individual is willing to pay to reduce the ambiguity from G to F .
Mathematically, πi satisfies

EG [φi(U(θ))] = EF [φi(U(θ) − πi)] , i = 1, 2.

To ensure thatπi is well defined, the domain ofφi must be properly
extended to cover [U(θ)−πi,U(θ)], the lower boundary of which
depends on πi, which further depends on φi, F and G. To facilitate
analysis, we make the following assumption to avoid this issue.

A4. limθ→θ U(θ) = −∞ so that U(θ) ∈ (−∞,U(θ)].14

Under Assumption A4, the domain of the ambiguity functions
φi (i = 1, 2) naturally expands to (−∞,U(θ)], and as a result,
πi is well defined for all distributions F and G satisfying F &E G.
Assumption A4, when combined with A1–A3, implies that the
mapping U(θ) : [θ, θ ] → (−∞,U(θ)] is one-to-one and onto.

The following proposition offers the equivalent characteriza-
tions of comparative ambiguity aversion.

14 Note that θ can be −∞, with which A4 rewrites limθ→−∞ U(θ) = −∞.
Proposition 3 (Comparative Ambiguity Aversion According to Ross,
1981). Let AssumptionsA1–A4hold true. For φ1, φ2 : (−∞,U(θ)] →

R that are twice continuously differentiable and satisfy φ′

i > 0,
φ′′

i < 0 (i = 1, 2), the following three statements are equivalent:

(1) There exists a constant λ > 0 such that

φ′′

1 (z)
φ′′

2 (z)
≥ λ ≥

φ′

1(w)

φ′

2(w)
, ∀z, w ∈ (−∞,U(θ)].

(2) There exists a twice continuously differentiable function h :

(−∞,U(θ)] → R satisfying h′
≤ 0, h′′

≤ 0, and a constant
λ > 0, such that φ1 = λφ2 + h.

(3) π1 ≥ π2 for all F and G such that F &E G.

Proof. Please see Appendix E. �

Proposition 3 offers three equivalent conditions under which
individual 1 is more ambiguity averse than individual 2, analogous
to Ross’s (1981) measure of risk aversion. The first condition is
stronger than the measure of ambiguity aversion proposed by
Klibanoff et al. (2005). The second condition demonstrates that
the more ambiguity-averse ambiguity function φ1 can be obtained
by a linear transformation of φ2 in which the additive component
is decreasing and concave. The third condition clarifies that the
more ambiguity-averse individual always pays a higher premium
to reduce ambiguity.

We also provide the equivalent characterizations of compar-
ative downside ambiguity aversion as the following proposition,
which parallels Proposition 3.

Proposition 4 (Comparative Downside Ambiguity Aversion Accord-
ing to Modica and Scarsini, 2005). Let Assumptions A1–A4 hold true.
For φ1, φ2 : (−∞,U(θ)] → R that are three times continuously dif-
ferentiable and satisfy φ′

i > 0, φ′′′

i > 0 (i = 1, 2), the following three
statements are equivalent:

(1) There exists a constant λ > 0 such that

φ′′′

1 (z)
φ′′′

2 (z)
≥ λ ≥

φ′

1(w)

φ′

2(w)
, ∀z, w ∈ (−∞,U(θ)].

(2) There exists a function h : (−∞,U(θ)] → R that is three times
continuously differentiable and satisfy h′

≤ 0, h′′′
≥ 0, and a

constant λ > 0, such that φ1 = λφ2 + h.
(3) π1 ≥ π2 for all F and G such that F 'E G.

Proof. Please see Appendix F. �

Proposition 4 shows three equivalent conditions under which
individual 1 is more downside ambiguity averse than individual
2. These conditions are similar to those for comparative risk
aversion proposed by Modica and Scarsini (2005). Note that the
first condition implies that φ′′′

1 (z)/φ′

1(z) ≥ φ′′′

2 (z)/φ′

2(z) for all
z ∈ (−∞,U(θ)].

So far, we have employed the utility premium to define com-
parative ambiguity aversion and comparative downside ambiguity
aversion. An alternative is to use the monetary premium instead,
that is, define π̂i such that θ

θ

φi


p(x; θ)u(x)dx


dG(θ)

=

 θ

θ

φi


p(x; θ)u(x − π̂i)dx


dF(θ), i = 1, 2.

We have the following linkage between the monetary premium
and the utility premium.

Proposition 5. Let Assumptions A1–A4 hold true. For ambiguity, the
following two statements are equivalent:
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(1) π̂1 ≥ π̂2 for all F and G such that F &E G.
(2) π1 ≥ π2 for all F and G such that F &E G.

For downside ambiguity, the following two statements are
equivalent:

(3) π̂1 ≥ π̂2 for all F and G such that F 'E G.
(4) π1 ≥ π2 for all F and G such that F 'E G.

Proof. Please see Appendix G. �

In fact, if there exists a couple of distributions F &E G (F 'E G)

satisfying π1 < π2, one can easily construct a new couple of
distribution F̄ &E Ḡ (F̄ 'E Ḡ) such that π̂1 < π̂2 and vice versa.

Unlike the findings regarding risk aversion, we find that the
conditions of comparative ambiguity aversion and downside ambi-
guity aversion defined by the monetary premium and by the util-
ity premium yield identical measures of ambiguity aversion and
downside ambiguity aversion, as shown in Proposition 5. The ratio-
nal is that, for risks, themonetary premium affects the argument of
the utility function, resulting in Ross’s (1981) measure of risk aver-
sion, while the utility premium has no influence on the argument
of the utility function, which results in the Arrow–Pratt measure
of risk aversion. On the other hand, for ambiguity, since both the
monetary premium and the utility premium affect the argument of
the ambiguity function, the same measures of ambiguity aversion
and downside ambiguity aversion are derived.15

4. An application

In this section, we illustrate how the comparative conditions
developed above can be applied to a comparative static problem
that is similar to that of Jindapon and Neilson (2007).16 Suppose
there are two individuals with ambiguity functions φ1 and φ2,
respectively, and each individual can spend an effort e ∈ [0, 1] in
reducing ambiguity (or downside ambiguity) fromG to eF+(1−e)G
at a cost of utility c(e). Then, the optimal effort level for individual
i is

e∗

i = argmax
e

 θ

θ

φi (U(θ) − c(e)) d [eF(θ) + (1 − e)G(θ)] . (9)

To ensure that e∗

i is well defined, some conditions on c(e)
are required and the domain of φi needs to be expanded
beyond [U(θ),U(θ)]. This leads us to make the following three
assumptions, whereM is a pre-specified positive constant and c(e)
is twice continuously differentiable:

A5. 0 ≤ c(e) ≤ M , c ′(e) > 0, c ′′(e) > 0 for all e ∈ (0, 1);
A6. c ′(0) = 0, lime→1 c ′(e) = +∞;
A7. φi (i = 1, 2) is well defined on [U(θ) − M,U(θ)].

15 When the utility premium is defined in the level of the utility under ambiguity,
i.e., is deducted outside of the φ function, the derived measures might be related to
Klibanoff et al.’s (2005) absolute ambiguity aversion measure (in the sense of the
Arrow–Pratt risk aversionmeasure) but different from themeasures derived by the
monetary premium. Thus, in such a setting, we might obtain results analogous to
those under risks that the measures depend on how the premium is defined.
16 Li (2009) provided comparative conditions of higher-order Ross risk aversion
and discussed the relationship between his results and Jindapon and Neilson
(2007)’s results. We adopt an approach close to Li (2009) to develop comparative
conditions of second-and-third-order ambiguity attitudes in the sense of Ross
(1981). In addition to Jindapon and Neilson (2007), many papers have investigated
the comparative static problem of efforts such as Ehrlich and Becker (1972),
Dionne and Eeckhoudt (1985), Briys and Schlesinger (1990), Jullien et al. (1999),
Kocabiyikoǧlu and Popescu (2007), and Chuang et al. (2013).
A5 shapes c(e) in a general way, where c ′(e) > 0 and c ′′(e) > 0
capture that both the effort cost and the marginal effort cost is
increasing in the effort level. In A6, c ′(0) = 0 implies that e = 0
is not a solution to (9) because the individual’s marginal utility is
positivewhen e = 0; lime→1 c ′(e) = +∞ implies that e → 1 is not
a solution either because the individual’s marginal utility goes to
negative infinity when e = 1. Overall, A6 guarantees the existence
of an interior solution to (9). A7 guarantees that φi (U(θ) − c(e)) is
well defined.

The following proposition indicates who will spend more
efforts in reducing ambiguity (or downside ambiguity). In the same
spirit of Proposition 5, identical results can be obtained if we
replace the cost of effort in utility by the cost of effort in money.

Proposition 6. Let Assumptions A1–A3 and A5–A7 hold true.
Consider two ambiguity functions φ1, φ2 : [U(θ) − M,U(θ)] → R
that are three times continuously differentiable and satisfy φ′

i >

0, φ′′

i < 0, φ′′′

i > 0, i = 1, 2. Then, the solution to (9) is interior
and unique. Moreover, for ambiguity, the following two statements
are equivalent:

(1) Individual 1 is more ambiguity averse than individual 2 in the
sense of Ross (1981): there exists a constant λ > 0 such that

φ′′

1 (z − k)
φ′′

2 (z − k)
≥ λ ≥

φ′

1(w − k)
φ′

2(w − k)
, ∀z, w ∈ [U(θ),U(θ)],

∀k ∈ [0,M].

(2) e∗

1 ≥ e∗

2 for all c(e) satisfying Assumptions A5–A6, and all F and
G such that F &E G.
For downside ambiguity, the following two statements are
equivalent:

(3) Individual 1 is more downside ambiguity averse than individ-
ual 2 in the sense of Modica and Scarsini (2005): there exists a
constant λ > 0 such that
φ′′′

1 (z − k)
φ′′′

2 (z − k)
≥ λ ≥

φ′

1(w − k)
φ′

2(w − k)
, ∀z, w ∈ [U(θ),U(θ)],

∀k ∈ [0,M].

(4) e∗

1 ≥ e∗

2 for all c(e) satisfying Assumptions A5 and A6, and all F
and G such that F 'E G.

Proof. Please see Appendix H.17 �

Jindapon and Neilson (2007) found that when the cost of effort
is measured by money, an individual who is more risk averse, as
defined by Ross (1981), makesmore efforts in reducing risks than a
less risk-averse individual.With regard to ambiguity and downside
ambiguity, we find a similar result: Proposition 6 shows that the
more ambiguity-averse individual, according to Ross (1981) (or the
more downside-ambiguity-averse individual, according to Modica
and Scarsini, 2005), spends more efforts in reducing ambiguity
(or downside ambiguity). When the cost of effort is measured
by utility, we obtain the result by using identical comparative
conditions, while Jindapon and Neilson (2007) obtained the result
by the Arrow–Pratt measure of risk aversion.

17 Note that φ′′
1 (x)

φ′′
2 (x) ≥ λ ≥

φ′
1(y)

φ′
2(y) , ∀x, y ∈ [U(θ) − M,U(θ)] is sufficient for

φ′′
1 (z−k)

φ′′
2 (z−k) ≥ λ ≥

φ′
1(w−k)

φ′
2(w−k) , ∀z, w ∈ [U(θ),U(θ)], ∀k ∈ [0,M]. But the converse

is not true. Indeed, it is easily seen that the former statement includes the special

case φ′′
1 (U(θ)−M)

φ′′
2 (U(θ)−M)

≥ λ ≥
φ′
1(U(θ))

φ′
2(U(θ))

but the latter statement cannot accommodate this

case. This remark also applies to the comparison between φ′′′
1

φ′′′
2

and φ′
1

φ′
2
.
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5. Conclusion

This paper first provides general definitions of an increase
in ambiguity and an increase in downside ambiguity. Then, we
propose comparative criteria for ambiguity aversion and downside
ambiguity aversion in the spirit of Ross (1981). We show that
these criteria remain the same, whether the premiums to reduce
ambiguity and downside ambiguity are defined by utility or
money. Finally, we illustrate an application of these criteria by
studying who will spend more effort in reducing ambiguity and
downside ambiguity.

Since Ross (1981)’s risk aversion measure is widely used
in analyzing incentive problems involving risks, the Ross-type
ambiguity measure developed in this paper could be used to
analyze many other incentive problems involving ambiguity. In
addition to the application we proposed in Section 4, one more
example is the decision on receiving a genetic test in the presence
of ambiguity studied by Hoy et al. (2014). Specifically, one might
analyze who is inclined to pay more costs to take a genetic test to
reduce ambiguity.

One of themain contribution of this paper is to introduce Ross’s
(1981) approach to study the intensity of ambiguity attitudes.
Since Ross’s (1981) approach can be extended to accommodate
higher-order risk attitudes (Li, 2009; Denuit and Eeckhoudt, 2010),
our paper opens up a new way to study the intensity of higher-
order ambiguity attitudes that complements Baillon’s (2013)
study of ambiguity attitudes by the apportionment approach.
Following the approach suggested by Li (2009), the extension of
our results to Nth-order ambiguity attitudes with N ≥ 4 is
straightforward.

Acknowledgments

The authors appreciate the helps of managing editor Rob Kaas
and the valuable comments of two anonymous referees. Larry Y.
Tzeng acknowledges financial support from the research grant
of Ministry of Science and Technology (MOST) (102-2410-H-002-
028-MY3). Lin Zhao acknowledges financial support from the
research grant of National Science Foundation of China (NSFC) (No.
71301161).

Appendices

To simplify the notation, we denote X (η) =
 η

θ
U ′(θ)[F(θ) −

G(θ)]dθ and do not mention it again unless there is potential
for confusion. We first establish two lemmas that will be used
later.

Lemma A.1. Let Assumptions A1–A3 hold true. Suppose that w0 ∈

(U(θ),U(θ)) is given and ε > 0 is small enough such that (w0 −

ε, w0 + ε) ⊂ [U(θ),U(θ)]. Let F and G satisfy

Under F : θ ≡ U−1(w0),

Under G : θ =


U−1


w0 −

ε

2


, with probability

1
2
,

U−1

w0 +

ε

2


, with probability

1
2
.

Then, we have:

(1) The support of X (η) is

U−1


w0 −

ε
2


,U−1


w0 +

ε
2


⊂

U−1 (w0 − ε) ,U−1 (w0 + ε)

;

(2) F &E G.
Proof of Lemma A.1. By construction, we have

F(θ) =


0, θ ∈ [θ,U−1(w0)),

1, θ ∈ [U−1(w0), θ ],

G(θ) =


0, θ ∈


θ,U−1


w0 −

ε

2


,

1
2
, θ ∈


U−1


w0 −

ε

2


,U−1


w0 +

ε

2


,

1, θ ∈


U−1


w0 +

ε

2


, θ

.

It is easily seen that F ≡ G on

θ,U−1


w0 −

ε
2


∪

U−1

w0 +
ε
2


, θ

,

X (θ) =

 θ

θ

U ′(θ)[F(θ) − G(θ)]dθ

=
1
2


−

 U−1(w0)

U−1(w0−
ε
2 )

U ′(θ)dθ +

 U−1(w0+
ε
2 )

U−1(w0)

U ′(θ)dθ


= 0,

and X (θ) is supported in

U−1


w0 −

ε
2


,U−1


w0 +

ε
2


⊂

(U−1(w0 − ε),U−1(w0 + ε)). The fact that X (η) ≤ 0 for all
η ∈ [θ, θ ] follows straightforwardly. �

Lemma A.2. Let AssumptionsA1–A3hold true. Suppose that z0, w0 ∈

(U(θ),U(θ)) are given and z0 < w0. Fix ε > 0 small enough such
that (z0−ε, z0+ε) ⊂ [U(θ),U(θ)] and z0+ε < w0. Let 0 < q < 1,
F and G satisfy

Under F : θ =


U−1(z0), with probability q,
U−1(w0), with probability 1 − q,

Under G : θ =


U−1


z0 −

ε

2


, with probability

q
2
,

U−1

z0 +

ε

2


, with probability

q
2
,

U−1(w0), with probability 1 − q.

Then, we have:

(1) the support of X (η) is

U−1


z0 −

ε
2


,U−1


z0 +

ε
2


⊂

U−1 (z0 − ε) ,U−1 (z0 + ε)

;

(2) F &E G.

Proof of Lemma A.2. By construction, we have

F(θ) =

0, θ ∈ [θ,U−1(z0)),
q, θ ∈ [U−1(z0),U−1(w0)),

1, θ ∈ [U−1(w0), θ ],

G(θ) =



0, θ ∈


θ,U−1


z0 −

ε

2


,

q
2
, θ ∈


U−1


z0 −

ε

2


,U−1


z0 +

ε

2


,

q, θ ∈


U−1


z0 +

ε

2


,U−1(w0)


,

1, θ ∈

U−1(w0), θ


.

It is easily seen that F ≡ Gon

θ,U−1


z0 −

ε
2


∪

U−1


z0 +

ε
2


, θ

,

X (θ) =

 θ

θ

U ′(θ)[F(θ) − G(θ)]dθ

=
q
2


−

 U−1(z0)

U−1(z0− ε
2 )

U ′(θ)dθ +

 U−1(z0+ ε
2 )

U−1(z0)
U ′(θ)dθ


= 0,
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and X (θ) is supported in

U−1


z0 −

ε
2


,U−1


z0 +

ε
2


⊂

(U−1(z0−ε),U−1(z0+ε)). The fact thatX (η) ≤ 0 for allη ∈ [θ, θ ]

follows straightforwardly. �

Appendix A. Proof of the monotonicity of U(θ)

Assume that theuncertainwealth takes value from (−∞, +∞).
For the distribution density of the uncertainwealth p(x; θ), we pro-
vide a formal proof for the following two statements on the mono-
tonicity of U(θ):

(1) If there is a density function p(x) such that p(x; θ) = p(x −

θ), then an increase in θ implies an improvement in line
with the first-order stochastic dominance. In this case, U(θ) is
increasing in θ as long as u is increasing.

(2) If there is a density function p(x) and a constant µ such that
+∞

−∞
xp(x)dx = 0 and p(x; θ) =

1
θ
p
 x−µ

θ


(θ > 0), then an

increase in θ implies a deterioration in line with the second-
order stochastic dominance. In this case, U(θ) is decreasing in
θ as long as u is increasing and concave.

Proof. Let H(x) =
 x
−∞

p(t)dt , Hθ (x) =
 x
−∞

p(t; θ)dt be the
cumulative distribution functions associated with p(x), p(x; θ),
respectively. For statement (1), we have Hθ (x) = H(x − θ). For
θ1 > θ2, there must be Hθ1(x) ≤ Hθ2(x) for all x ∈ (−∞, +∞).
This confirms that the distribution p(x; θ1) dominates p(x; θ2) in
the sense of first-order stochastic dominance. For statement (2),we
have Hθ (x) = H

 x−µ

θ


. For θ1 > θ2 > 0, there is Hθ1(x) ≥ Hθ2(x)

for x ≤ µ and Hθ1(x) ≤ Hθ2(x) for x ≥ µ. Then, it follows
straightforwardly that x

−∞

[Hθ2(t) − Hθ1(t)]dt ≤ 0, ∀x ∈ (−∞, µ]. (A.1)

Integration by parts yields
+∞

−∞

[Hθ2(t) − Hθ1(t)]dt

= −


+∞

−∞


t
θ2

p

t − µ

θ2


−

t
θ1

p

t − µ

θ1


dt = 0.

This equation implies that for x ∈ (µ, +∞), there is x

−∞

[Hθ2(t) − Hθ1(t)]dt = −


+∞

x
[Hθ2(t) − Hθ1(t)]dt ≤ 0. (A.2)

Taking (A.1) and (A.2) together, we see that
 x
−∞

[Hθ2(t) −

Hθ1(t)]dt ≤ 0 for all x ∈ (−∞, +∞). This confirms that the
distribution p(x; θ2) dominates p(x; θ1) in the sense of second-
order stochastic dominance. �

Appendix B. Proof of Lemma 1

Integration by parts yields

EF [φ(U(θ))] − EG [φ(U(θ))]

= −

 θ

θ

φ′ (U(θ))U ′(θ)[F(θ) − G(θ)]dθ

= −φ′

U(θ)


X (θ) +

 θ

θ

φ′′ (U(θ))U ′(θ)X (θ)dθ.

The sufficiency (the ‘‘if’’ part) then follows straightforwardly. The
necessity (the ‘‘only if’’ part) follows from the arguments by
contradiction in Rothschild and Stiglitz (1970). �
Appendix C. Proof of Proposition 1

Keeping in mind that U(θ) =

u(x)p(x; θ)dx, we have

V (τ ) =


u(x)p̃(x; τ)dx =


u(x)p


x;U−1(τ )


dx

= U(U−1(τ )) = τ .

The remaining part of this proposition is apparent. �

Appendix D. Proof of Lemma 3

We employ integration by parts once more to obtain

EF [φ(U(θ))] − EG [φ(U(θ))]

= −φ′

U(θ)


X (θ) + φ′′


U(θ)

  θ

θ

U ′(θ)X (θ)dθ



−

 θ

θ

φ′′′ (U(θ))U ′(θ)

 θ

θ

U ′(η)X (η)dη

dθ.

The sufficiency (the ‘‘if’’ part) then follows straightforwardly. The
necessity (the ‘‘only if’’ part) follows from the arguments by
contradiction in Menezes et al. (1980). �

Appendix E. Proof of Proposition 3

We first prove (1) → (2). Define h := φ1 − λφ2, in which
λ is given in (1). Since φ1, φ2 : (−∞,U(θ)] → R are twice con-
tinuously differentiable, h is also twice continuously differentiable.
When (1) holds true,

h′
= φ′

1 − λφ′

2 = φ′

2


φ′

1

φ′

2
− λ


satisfies h′

≤ 0 due to the facts φ′

2 > 0 and λ ≥
φ′
1

φ′
2
, and

h′′
= φ′′

1 − λφ′′

2 = φ′′

2


φ′′

1

φ′′

2
− λ


satisfies h′′

≤ 0 due to the facts φ′′

2 < 0 and φ′′
1

φ′′
2

≥ λ. As a result,
h := φ1 − λφ2 satisfies all the properties stated in (2). This proves
(1) → (2).
We then prove (2) → (3). Given (2), we have

EF [φ1 (U(θ) − π1)]
= EG [φ1 (U(θ))] = EG [λφ2 (U(θ)) + h (U(θ))]
≤ EG [λφ2 (U(θ))] + EF [h (U(θ))]
= EF [λφ2 (U(θ) − π2) + h (U(θ))]
≤ EF [λφ2 (U(θ) − π2) + h (U(θ) − π2)]
= EF [φ1 (U(θ) − π2)] ,

where the first inequality follows from the fact that F &E G and the
second inequality follows from the fact that h′

≤ 0. Then π1 ≥ π2
follows straightforwardly from the fact that EF [φ1 (U(θ) − π1)] ≤

EF [φ1 (U(θ) − π2)].
To prove (3) → (1), assume that F &E G. Let π1(t) and π2(t) be
such that

EtG+(1−t)F [φi(U(θ))] = EF [φi(U(θ) − πi(t))] , i = 1, 2.

Put differently, θ

θ

φi (U(θ)) d[tG(θ) + (1 − t)F(θ)]

=

 θ

θ

φi (U(θ) − πi(t)) dF(θ).
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Implicit differentiation and substitution of πi(0) = 0 yield

π ′

i (0) =

 θ

θ
φi (U(θ)) d[F(θ) − G(θ)] θ

θ
φ′

i (U(θ)) dF(θ)

=

 θ

θ
φ′′

i (U(θ))U ′(θ)X (θ)dθ θ

θ
φ′

i (U(θ)) dF(θ)
, (E.1)

where the second equality follows from integration by parts.
Assume, for contradiction, that (1) does not hold. Then there exist
z0, w0 ∈ (−∞,U(θ)] such that

−
φ′′

1 (z0)
φ′

1(w0)
< −

φ′′

2 (z0)
φ′

2(w0)
. (E.2)

Because φi is twice continuously differentiable, we can assume
z0 < U(θ). Remember that under Assumptions A1–A4, the map-
ping U(θ) : [θ, θ ] → (−∞,U(θ)] is one-to-one and onto. There-
fore, U−1

: (−∞,U(θ)] → [θ, θ ] is well defined. Without loss
of generality, we assume z0 ≤ w0 and differentiate between two
cases.
Case 1: z0 = w0. In this case, by continuity, we extend (E.2) to be

−
φ′′

1 (z)
φ′

1(w0)
< −

φ′′

2 (z)
φ′

2(w0)
, ∀z ∈ (w0 − ε, w0 + ε),

where ε > 0 is small enough such that (w0 − ε, w0 + ε) ⊂

(−∞,U(θ)]. Construct F and G in theway specified by Lemma A.1.
Then, X (θ) is supported in (U−1(w0 − ε),U−1(w0 + ε)) and θ

θ
φ′

i (U(θ)) dF(θ) = φ′

i (w0). By Eq. (E.1), we thus have

π ′

1(0) =
1

φ′

1(w0)

 U−1(w0+ε)

U−1(w0−ε)

φ′′

1 (U(θ))U ′(θ)X (θ)dθ

<
1

φ′

2(w0)

 U−1(w0+ε)

U−1(w0−ε)

φ′′

2 (U(θ))U ′(θ)X (θ)dθ

= π ′

2(0). (E.3)
Case 2: z0 < w0. In this case, by continuity, we extend (E.2) to be

−
φ′′

1 (z)
qφ′

1(z0) + (1 − q)φ′

1(w0)
< −

φ′′

2 (z)
qφ′

2(z0) + (1 − q)φ′

2(w0)
,

∀z ∈ (z0 − ε, z0 + ε),

where ε > 0 is small enough such that (z0 − ε, z0 + ε) ⊂

(−∞, w0) ⊂ (−∞,U(θ)] and 0 < q ≪ 1.18 Construct F and
G in the way specified by Lemma A.2. Then, X (θ) is supported in
(U−1(z0 − ε),U−1(z0 + ε)) and θ

θ

φ′

i (U(θ)) dF(θ) = qφ′

i (z0) + (1 − q)φ′

i (w0), i = 1, 2.

By Eq. (E.1), we have

π ′

1(0) =

 U−1(z0+ε)

U−1(z0−ε)
φ′′

1 (U(θ))U ′(θ)X (θ)dθ

qφ′

1(z0) + (1 − q)φ′

1(w0)

<

 U−1(z0+ε)

U−1(z0−ε)
φ′′

2 (U(θ))U ′(θ)X (θ)dθ

qφ′

2(z0) + (1 − q)φ′

2(w0)
= π ′

2(0). (E.4)

To sum up, Eqs. (E.3) and (E.4) demonstrate that in both cases, we
have π1(t) < π2(t) for t small enough. This contradicts π1 ≥ π2
for all F and G such that F &E G. �

18 Indeed, if we introduce a function F(z, q) = −
φ′′
1 (z)

qφ′
1(z0)+(1−q)φ′

1(w0)
+

φ′′
2 (z)

qφ′
2(z0)+(1−q)φ′

2(w0)
, then F(z, q) is continuous in both z and q, and F(z0, 0) < 0. By

continuity, F(z, q) < 0 when z is sufficiently close to z0 and q is sufficiently close
to zero.
Appendix F. Proof of Proposition 4

The proof can be performed in the same manner as that for
Proposition 3 if we replace the integration by parts θ

θ

φi (U(θ)) d[F(θ) − G(θ)]

=

 θ

θ

φ′′

i (U(θ))U ′(θ)X (θ)dθ

with θ

θ

φi (U(θ)) d[F(θ) − G(θ)]

= −

 θ

θ

φ′′′

i (U(θ))U ′(θ)

 θ

θ

U ′(η)X (η)dη

dθ

when F 'E G. �

Appendix G. Proof of Proposition 5

We prove (1) → (2) by contradiction. Assume that there exists
F &E G such that π1 < π2. Denote the utility premium and the
monetary premiumpaid for reducing the ambiguity from tG+(1−

t)F to F byπ1(t), π2(t) and π̂1(t), π̂2(t), respectively. By definition,
we have θ

θ

φi (U(θ)) d[tG(θ) + (1 − t)F(θ)]

=

 θ

θ

φi (U(θ) − πi(t)) dF(θ)

=

 θ

θ

φi


p(x; θ)u(x − π̂i(t))dx


dF(θ).

Implicit differentiation and integration by parts yields

π ′

i (t) =

 θ

θ
φ′′

i (U(θ))U ′(θ)X (θ)dθ θ

θ
φ′

i (U(θ) − πi(t)) dF(θ)
, (G.1)

π̂ ′

i (t) =

 θ

θ
φ′′

i (U(θ))U ′(θ)X (θ)dθ θ

θ
φ′

i


p(x; θ)u(x − π̂i(t))dx

 
p(x; θ)u′(x − π̂i(t))dxdF(θ)

. (G.2)

Since π1(0) = π2(0) = 0 and π1(1) < π2(1), there exists
t0 ∈ [0, 1) such that π1(t0) = π2(t0) = π0 and π ′

1(t0) < π ′

2(t0). By
Eq. (G.1), this implies θ

θ
φ′′

1 (U(θ))U ′(θ)X (θ)dθ θ

θ
φ′

1 (U(θ) − π0) dF(θ)

<

 θ

θ
φ′′

2 (U(θ))U ′(θ)X (θ)dθ θ

θ
φ′

2 (U(θ) − π0) dF(θ)
. (G.3)

We claim that there exist θa, θb ∈ [θ, θ ] such that

−
φ′′

1 (U(θa))

φ′

1 (U(θb) − π0)
< −

φ′′

2 (U(θa))

φ′

2 (U(θb) − π0)
.

To verify this claim, we define a new two-variable function

Hi(θa, θb) = −
φ′′

i (U(θa))

φ′

i (U(θb) − π0)
, i = 1, 2
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and argue by contradiction. If H1(θa, θb) ≥ H2(θa, θb) for all
(θa, θb) ∈ [θ, θ ] × [θ, θ ], then it follows from the fact X (θ) ≤ 0
that
H1(θa, θb)X (θa) ≤ H2(θa, θb)X (θa),

∀(θa, θb) ∈ [θ, θ ] × [θ, θ ],

which integrated over θa implies19 θ

θ

H1(θa, θb)X (θa)dθa

≤

 θ

θ

H2(θa, θb)X (θa)dθa < 0, ∀θb ∈ [θ, θ ],

which further implies
1 θ

θ
H1(θa, θb)X (θa)dθa

≥
1 θ

θ
H2(θa, θb)X (θa)dθa

,

∀θb ∈ [θ, θ ].

Integrating the above over θb yields θ

θ

 1 θ

θ
H1(θa, θb)X (θa)dθa

 dθb

≥

 θ

θ

 1 θ

θ
H2(θa, θb)X (θa)dθa

 dθb. (G.4)

By definition, we have θ

θ

 1 θ

θ
Hi(θa, θb)X (θa)dθa

 dθb

= −

 θ

θ

 φ′

i (U(θb) − π0) θ

θ
φ′′

i (U(θa))U ′(θa)X (θa)dθa

 dθb

= −

 θ

θ
φ′

i (U(θ) − π0) dθ θ

θ
φ′′

i (U(θ))U ′(θ)X (θ)dθ
. (G.5)

Substituting (G.5) into (G.4), we get

0 <

 θ

θ
φ′

1 (U(θ) − π0) dθ θ

θ
φ′′

1 (U(θ))U ′(θ)X (θ)dθ

≤

 θ

θ
φ′

2 (U(θ) − π0) dθ θ

θ
φ′′

2 (U(θ))U ′(θ)X (θ)dθ
,

or in other words, θ

θ
φ′′

1 (U(θ))U ′(θ)X (θ)dθ θ

θ
φ′

1 (U(θ) − π0) dθ
≥

 θ

θ
φ′′

2 (U(θ))U ′(θ)X (θ)dθ θ

θ
φ′

2 (U(θ) − π0) dθ
,

which is a contradiction to (G.3). Therefore, as long as (G.3) holds
true, there must exist some (θa, θb) ∈ [θ, θ ] × [θ, θ ] such that
H1(θa, θb) < H2(θa, θb), i.e.,

−
φ′′

1 (U(θa))

φ′

1 (U(θb) − π0)
< −

φ′′

2 (U(θa))

φ′

2 (U(θb) − π0)
.

19 Notice that Proposition 5 becomes trivial when F ≡ G, and hence the proof
focuses on the case F ≠ G. In this case, if F &E G, X (θ) ≤ 0 and in the
meanwhile there must exist some θ̂ ∈ [θ, θ ] such that X (θ̂) < 0. This ensures θ

θ
H2(θa, θb)X (θa)dθa < 0.
Denoting U(θa) and U(θb) − π0 by z0 and w0 respectively, then
z0, w0 ∈ (−∞,U(θ)] and

−
φ′′

1 (z0)
φ′

1(w0)
< −

φ′′

2 (z0)
φ′

2(w0)
.

Following the arguments in the proof of Proposition 3, we can
construct a pair of distributions F̄ and Ḡ over θ such that F̄ &E Ḡ
and  θ

θ
φ′′

1 (U(θ))U ′(θ)X̄ (θ)dθ θ

θ
φ′

1 (U(θ))


p(x; θ)u′(x)dx

dF̄(θ)

<

 θ

θ
φ′′

2 (U(θ))U ′(θ)X̄ (θ)dθ θ

θ
φ′

2 (U(θ))


p(x; θ)u′(x)dx

dF̄(θ)

,

where X̄ (η) =
 η

θ
U ′(θ)[F̄(θ) − Ḡ(θ)]dθ . This amounts to saying

π̂ ′

1(0) < π̂ ′

2(0) according to Eq. (G.2), which further implies
π̂1(t) < π̂2(t) for t small enough. In sum, with a small t , we have
F̄ &E tḠ+(1−t)F̄ and themonetary premiumpaid for reducing the
ambiguity from tḠ + (1 − t)F̄ to F̄ satisfies π̂1(t) < π̂2(t), which
is a contradiction.
The proof for (2) → (1) is similar.
The proof of (3) ⇔ (4) can be performed in the samemanner, with
the integration by parts θ

θ

φi (U(θ)) d[F(θ) − G(θ)] =

 θ

θ

φ′′

i (U(θ))U ′(θ)X (θ)dθ

replaced by θ

θ

φi (U(θ)) d[F(θ) − G(θ)]

= −

 θ

θ

φ′′′

i (U(θ))U ′(θ)

 θ

θ

U ′(η)X (η)dη

dθ

when F 'E G. �

Appendix H. Proof of Proposition 6

The first-order condition of the objective function is

d
de


e=e∗i

 θ

θ

φi(U(θ) − c(e))d[eF(θ) + (1 − e)G(θ)]

= −c ′(e∗

i )

 θ

θ

φ′

i


U(θ) − c(e∗

i )

d

e∗

i F(θ) + (1 − e∗

i )G(θ)


+

 θ

θ

φi

U(θ) − c(e∗

i )

d [F(θ) − G(θ)] = 0.

Integrating the second term of the right-hand side of the above
equation by parts yields

0 = −c ′(e∗

i )

+

 θ

θ
φ′′

i


U(θ) − c(e∗

i )

U ′(θ)X (θ)dθ θ

θ
φ′

i


U(θ) − c(e∗

i )

d

e∗

i F(θ) + (1 − e∗

i )G(θ)
 . (H.1)

The second-order derivative of the objective function is

d2

de2

 θ

θ

φi(U(θ) − c(e))d[eF(θ) + (1 − e)G(θ)]

= −c ′′(e)
 θ

θ

φ′

i (U(θ) − c(e)) d [eF(θ) + (1 − e)G(θ)]
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+ (c ′(e))2
 θ

θ

φ′′

i (U(θ) − c(e)) d [eF(θ) + (1 − e)G(θ)]

− 2c ′(e)
 θ

θ

φ′′′

i (U(θ) − c(e))U ′(θ)X (θ)dθ < 0,

where the last term of the right-hand side of the above equation
has been rearranged using integration by parts. The condition
c ′(0) = 0 guarantees that e = 0 is not the solution to (9) because
the individual’s marginal utility is always positive when e = 0.
The condition lime→1 c ′(e) = +∞ guarantees that e = 1 is not
the solution to (9) because the individual’s marginal utility goes to
negative infinitywhen e → 1. These guarantees the existence of an
interior solution. The negative sign of the second-order derivative
guarantees that the solution to (9) is unique.
To prove (1) → (2), when individual 1 is more ambiguity averse
than individual 2, we have −φ′′

1 (z − k)/φ′

1(w − k) ≥ −φ′′

2 (z −

k)/φ′

2(w − k) for all z, w ∈ [U(θ),U(θ)] and all k ∈ [0,M].
Accordingly,

φ′′

1


U(θa) − c(e∗

2)

U ′(θa)X (θa)

φ′

1


U(θb) − c(e∗

2)


≥
φ′′

2


U(θa) − c(e∗

2)

U ′(θa)X (θa)

φ′

2


U(θb) − c(e∗

2)
 ≥ 0, ∀θa, θb ∈ [θ, θ ].

Integrating the above over θa yields20 θ

θ
φ′′

1


U(θa) − c(e∗

2)

U ′(θa)X (θa)dθa

φ′

1


U(θb) − c(e∗

2)


≥

 θ

θ
φ′′

2


U(θa) − c(e∗

2)

U ′(θa)X (θa)dθa

φ′

2


U(θb) − c(e∗

2)
 > 0

for all θb ∈ [θ, θ ], or in other words,

0 <
φ′

1


U(θb) − c(e∗

2)
 θ

θ
φ′′

1


U(θa) − c(e∗

2)

U ′(θa)X (θa)dθa

≤
φ′

2


U(θb) − c(e∗

2)
 θ

θ
φ′′

2


U(θa) − c(e∗

2)

U ′(θa)X (θa)dθa

for all θb ∈ [θ, θ ]. Integrating the above over θb yields

0 <

 θ

θ
φ′

1


U(θb) − c(e∗

2)

dθb θ

θ
φ′′

1


U(θa) − c(e∗

2)

U ′(θa)X (θa)dθa

≤

 θ

θ
φ′

2


U(θb) − c(e∗

2)

dθb θ

θ
φ′′

2


U(θa) − c(e∗

2)

U ′(θa)X (θa)dθa

,

or equivalently, θ

θ
φ′′

1


U(θ) − c(e∗

2)

U ′(θ)X (θ)dθ θ

θ
φ′

1


U(θ) − c(e∗

2)

dθ

≥

 θ

θ
φ′′

2


U(θ) − c(e∗

2)

U ′(θ)X (θ)dθ θ

θ
φ′

2


U(θ) − c(e∗

2)

dθ

> 0.

20 Notice that Proposition 6 becomes trivial when F ≡ G, and hence the proof
focuses on the case F ≠ G. In this case, if F &E G, X (θ) ≤ 0 and in the
meanwhile there must exist some θ̂ ∈ [θ, θ ] such that X (θ̂) < 0. This ensures θ

θ φ′′
2 (U(θa)−c(e∗2))U ′(θa)X (θa)dθa

φ′
2(U(θb)−c(e∗2))

> 0.
We then obtain from (H.1) that

−c ′(e∗

2) +

 θ

θ
φ′′

1


U(θ) − c(e∗

2)

U ′(θ)X (θ)dθ θ

θ
φ′

1


U(θ) − c(e∗

2)

d

e∗

2F(θ) + (1 − e∗

2)G(θ)


≥ −c ′(e∗

2) +

 θ

θ
φ′′

2


U(θ) − c(e∗

2)

U ′(θ)X (θ)dθ θ

θ
φ′

2


U(θ) − c(e∗

2)

d

e∗

2F(θ) + (1 − e∗

2)G(θ)


= 0,
leading to e∗

1 ≥ e∗

2 .
To prove (2) → (1), we argue by contradiction. Suppose that there
exist z0, w0 ∈ [U(θ),U(θ)] and k0 ∈ [0,M] such that

−
φ′′

1 (z0 − k0)
φ′

1(w0 − k0)
< −

φ′′

2 (z0 − k0)
φ′

2(w0 − k0)
. (H.2)

Because φi is three times continuously differentiable, we can
assume z0 ∈ (U(θ),U(θ)) and k0 ∈ (0,M). We are mainly
concerned with the term

Ti(e) =

 θ

θ
φ′′

i (U(θ) − k0)U ′(θ)X (θ)dθ θ

θ
φ′

i (U(θ) − k0) d [eF(θ) + (1 − e)G(θ)]
,

e ∈ [0, 1]
in the following construction. Let

c(e) = M

1 − δ


1 − e2


, 0 < δ ≤ 1, (H.3)

where δ is to be specified later. Notice that c(e) in (H.3) satisfies
Assumptions A5 and A6. Without loss of generality, we assume
z0 ≤ w0 and differentiate between two cases.
Case 1: z0 = w0. In this case, by continuity, we extend (H.2) to be

−
φ′′

1 (w0 − k0 − ε)

φ′

1(w0 − k0 + ε)
< −

φ′′

2 (w0 − k0 + ε)

φ′

2(w0 − k0 − ε)
, (H.4)

where ε > 0 is small enough such that (w0 − ε, w0 + ε) ⊂

[U(θ),U(θ)]. Construct F andG in theway specified by LemmaA.1.
Then, X (θ) is supported in (U−1(w0 − ε),U−1(w0 + ε)) and

Ti(e) =

 U−1(w0+ε)

U−1(w0−ε)
φ′′

i (U(θ) − k0)U ′(θ)X (θ)dθ

eφ′

i (w0 − k0) +
1−e
2 φ′

i


w0 − k0 +

ε
2


+

1−e
2 φ′

i


w0 − k0 −

ε
2

 .
Due to φ′′

i < 0, φ′′′

i > 0, we have for all θ ∈ (U−1(w0 −

ε),U−1(w0 + ε)) and all e ∈ [0, 1] that

−
φ′′

1 (U(θ) − k0)
eφ′

1(w0 − k0) +
1−e
2 φ′

1


w0 − k0 +

ε
2


+

1−e
2 φ′

1


w0 − k0 −

ε
2


< −

φ′′

1 (w0 − k0 − ε)

φ′

1(w0 − k0 + ε)
< −

φ′′

2 (w0 − k0 + ε)

φ′

2(w0 − k0 − ε)
by (G.4)

< −
φ′′

2 (U(θ) − k0)
eφ′

2(w0 − k0) +
1−e
2 φ′

2


w0 − k0 +

ε
2


+

1−e
2 φ′

2


w0 − k0 −

ε
2

 ,
which leads us to
T1(e) < T2(e), ∀e ∈ [0, 1]. (H.5)
We now specify δ in (H.3) such that when c(e) = k0, there will be
c ′(e) = T1(e). In fact, c(e) = k0 implies

e =


1 −

1
δ2


1 −

k0
M

2

, 1 −
k0
M

≤ δ ≤ 1,

c ′(e) − T1(e) = δM

 δ

1 −
k0
M

2

− 1

− T1

1 −
1
δ2


1 −

k0
M

2
 := f (δ).
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Ti(e) =

 U−1(z0+ε)

U−1(z0−ε)
φ′′

i (U(θ) − k0)U ′(θ)X (θ)dθ

q

eφ′

i (z0 − k0) +
1−e
2 φ′

i


z0 − k0 +

ε
2


+

1−e
2 φ′

i


z0 − k0 −

ε
2


+ (1 − q)φ′

i (w0 − k0)
.

Box I.
−
φ′′

1 (U(θ) − k0)
q

eφ′

1(z0 − k0) +
1−e
2 φ′

1


z0 − k0 +

ε
2


+

1−e
2 φ′

1


z0 − k0 −

ε
2


+ (1 − q)φ′

1(w0 − k0)

< −
φ′′

1 (z0 − k0 − ε)

qφ′

1(z0 − k0 + ε) + (1 − q)φ′

1(w0 − k0)

< −
φ′′

2 (z0 − k0 + ε)

qφ′

2(z0 − k0 − ε) + (1 − q)φ′

2(w0 − k0)
by (H.7)

< −
φ′′

2 (U(θ) − k0)
q

eφ′

2(z0 − k0) +
1−e
2 φ′

2


z0 − k0 +

ε
2


+

1−e
2 φ′

2


z0 − k0 −

ε
2


+ (1 − q)φ′

2(w0 − k0)
,

Box II.
Since f

1 −

k0
M


= −T1(0) < 0 and for ε small enough

f (1) = M

 1

1 −
k0
M

2

− 1 − T1

1 −


1 −

k0
M

2
 > 0,

there must exist a constant δ̂ ∈


1 −

k0
M , 1


such that f (δ̂) = 0.21

With δ = δ̂, we have that ê =


1 −

1
δ̂2


1 −

k0
M

2
satisfies

c(ê) = k0, c ′(ê) = T1(ê). (H.6)

Thanks to the concavity of the objective function, the ê satisfying
the first-order condition is exactly the optimal effort level. Taking
(H.1), (H.5) and (H.6) together, we have

0 = −c ′(ê) +

 θ

θ
φ′′

1


U(θ) − c(ê)


U ′(θ)X (θ)dθ θ

θ
φ′

1


U(θ) − c(ê)


d

êF(θ) + (1 − ê)G(θ)


< −c ′(ê) +

 θ

θ
φ′′

2


U(θ) − c(ê)


U ′(θ)X (θ)dθ θ

θ
φ′

2


U(θ) − c(ê)


d

êF(θ) + (1 − ê)G(θ)

 .
The above leads us to e∗

1 = ê and e∗

2 > ê, which contradicts (2).

Case 2: z0 < w0. In this case, by continuity, we extend (H.2) to be

−
φ′′

1 (z0 − k0 − ε)

qφ′

1(z0 − k0 + ε) + (1 − q)φ′

1(w0 − k0)

< −
φ′′

2 (z0 − k0 + ε)

qφ′

2(z0 − k0 − ε) + (1 − q)φ′

2(w0 − k0)
, (H.7)

where ε > 0 is small enough such that (z0 − ε, z0 + ε) ⊂

[U(θ),U(θ)] and z0 + ε < w0, and 0 < q ≪ 1.22Construct F and

21 Indeed, for any given e ∈ [0, 1],

limε→0 Ti(e) = limε→0

  U−1(w0+ε)

U−1(w0−ε)
φ′′
i (U(θ)−k0)U ′(θ)X (θ)dθ

eφ′
i (w0−k0)+ 1−e

2 φ′
i (w0−k0+

ε
2 )+

1−e
2 φ′

i (w0−k0−
ε
2 )

 = 0.

Therefore, we can always fix ε small enough such that f (1) > 0.
22 Indeed, if we introduce a function F(ε, q) = −

φ′′
1 (z0−k0−ε)

qφ′
1(z0−k0+ε)+(1−q)φ′

1(w0−k0)
+

φ′′
2 (z0−k0+ε)

qφ′
2(z0−k0−ε)+(1−q)φ′

2(w0−k0)
, then F(ε, q) is continuous in both ε and q, and F(0, 0) <

0. By continuity, F(ε, q) < 0 when ε and q are sufficiently close to zero.
G in the way specified by Lemma A.2. Then, X (θ) is supported in
(U−1(z0−ε),U−1(z0+ε)) andwe get the equation in Box I. Due to
φ′′

i < 0, φ′′′

i > 0, we have for all θ ∈ (U−1(w0 − ε),U−1(w0 + ε))
and all e ∈ [0, 1] the equation given in Box II which leads us to

T1(e) < T2(e), ∀e ∈ [0, 1].

The remaining of the proof is exactly the same as that in Case 1.
This proves (2) → (1).
The proof of (3) ⇔ (4) can be performed in the samemanner, with
the integration by parts θ

θ

φi

U(θ) − c(e∗

i )

d [F(θ) − G(θ)]

=

 θ

θ

φ′′

i


U(θ) − c(e∗

i )

U ′(θ)X (θ)dθ

replaced by θ

θ

φi

U(θ) − c(e∗

i )

d [F(θ) − G(θ)]

=

 θ

θ

φ′′′

i


U(θ) − c(e∗

i )

U ′(θ)

 θ

θ

U ′(η)X (η)dη

dθ

when F 'E G. �
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