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There is increased interest in deploying charging station infrastructure for electric vehicles, due to the in-

creasing adoption of such vehicles to reduce emissions. However, there are a number of key challenges for

providing high quality of service to such vehicles, stemming from technological reasons. One of them is due

to the relative slow charging times and the other is due to the relative limited battery range. Hence, develop-

ing efficient routing strategies of electric vehicles requesting charging to stations that have available charging

resources is an important component of the infrastructure. In this work, we propose a queueing modeling

framework for the problem at hand and develop such routing strategies that optimise a performance metric

related to vehicles’ sojourn time in the system. By incorporating appropriate weights into the well-known dy-

namic routing discipline “Join-the-Shortest-Queue”, we show that the proposed routing strategies not only

do they maximise the queueing system’s throughput, but also significantly mitigate the vehicle’s sojourn

time. The strategies are also adaptive in nature and responsive to changes in the speed of charging at the

stations, the distribution of the vehicles’ point of origin when requesting service, the traffic congestion level

and the vehicle speed; all the above are novel aspects and compatible with the requirements of a modern

electric vehicle charging infrastructure.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

Over the last few years a strong push is occurring to reduce the use

f hydrocarbons in the transportation sector. This trend is supported

y the latest advances in battery and power electronics technology,

long with government mandates on energy independence and re-

ilience, as well as an increased emphasis on a smarter infrastructure.

t is strongly enabled by the introduction of electric vehicles (EVs) and

heir close relatives Plug-in Hybrid Electric Vehicles (PHEVs) by major

ar manufacturers that have drastically increased consumer choices.

According to a recent report of the International Energy Agency

2012a), the transportation ‘ accounted for 6.7 gigatons of emitted

O2 or 22 percent of the world’s total. Further, global fuel demand

or transportation is projected to grow approximately 40 percent by

035 International Energy Agency (2012b), driven by the rapid adop-

ion of automobiles in the fast growing economies of China, India

nd more recently in the African continent. EV/PHEVs represent an

nnovative technology that could help address both environmental

oncerns and longer term reduce dependence on fossil fuels. How-

ver, fast EV adoption relies on a number of socio-economic, as well
∗ Corrsponding author. Tel.: +88 6229387115.

E-mail addresses: hungy@nccu.edu.tw (Y.-C. Hung), gmichail@ufl.edu
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s technological factors. Key socio-economic factors include strin-

ent emissions regulations, rising fuel prices and financial incentive

rograms OECD/International Energy Agency (2013), while the most

ressing technological one is the large scale deployment of an effi-

ient and well managed charging station infrastructure. At present,

here are diverging forecasts on the growth rate of the EV popula-

ion International Energy Agency (2011), although there is consen-

us that it is going to represent a sizable portion (at least 7 percent

n the US) of the national fleet by 2025–30. Obviously, penetration

ates could be significantly higher than these estimates depending

n how the aforementioned socio-economic and technological fac-

ors evolve. Further, the impact of fast adoption of EVs on utilities

nd on the stability of the grid is mostly dependent on regional or

ven local penetration rates; e.g., Southern California Edison has pro-

ected a penetration rate larger than 7 percent in its service territory

lready by 2020.

The key concern regarding rapid adoption of EVs by utilities is that

hey could have a disruptive impact on the power grid, since under

evel 1 charging conditions, an EV represents a load equivalent to 50

ercent of that of a house, while under Level 2 conditions it repre-

ents a 2.5-fold equivalent load. Obviously, the extent of their impact

ill depend on the degree and local/regional density of their penetra-

ion, charging requirements and the time of the day they are charged.

owever, studies have shown that a fleet of EVs can be effectively
EURO) within the International Federation of Operational Research Societies (IFORS).
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powered by the underutilised electric power grid during the off-peak

hours with little need to increase the energy delivery capacity of

the existing grid infrastructure (Taylor, Maitra, Alexander, Brooks, &

Duvall, 2010) if scheduled carefully. Hence, the literature has focused

on coming up with efficient schedules of charging EVs overnight, e.g.

an incentive based energy consumption controlling scheme was in-

troduced in Caron and Kesidis (2010), and a direct load control (DLC)

scheme for residential energy control was discussed in Ruiz, Cobelo,

and Oyarzabal (2009); Wu, Wang, and Goel (2010). To achieve a sus-

tainable electrification of the transportation sector, a robust charging

station infrastructure needs to be in place that would not interfere

with regular grid operations and at the same time address EV driver’s

range anxiety resulting from the limited ability to recharge EVs in a

time commensurable with filling the tank of a gas-powered vehicle.

Specifically, UCLA Smart Grid Energy Research Center argues that if

25 percent of all vehicles were pure EVs, the current US power grid

would be challenged in meeting the demand for power. For some util-

ities, even adding Level-2 charging infrastructure may overload dis-

tribution transformers during peak hours. On the driver’s quality-of-

service issue, note that charging EVs is an inherently slow process

(it takes between 20 minutes to several hours to fully charge them,

depending on the technology used (Lukic, Cao, Bansal, Rodriguez, &

Emadi, 2008)), thus requiring careful planning and control to accom-

modate customers.

In this study, we focus on the development of efficient routing

strategies for a general model of EV charging systems with fully ran-

dom environments, so as to provide quality service to EV drivers and

release their range anxiety. This directly leads to the goal of min-

imising the strategy’s performance metrics related to “sojourn time”

(including EV’s travel time, waiting time for charging, and charg-

ing time), which is different from the well-known Vehicle Routing

Problem (VRP) (Dantzig & Ramser, 1959; Pillac, Gendreau, Guéret, &

Medaglia, 2013) and Dynamic Traveling Repairman Problem (DTRP)

(Bertsimas & Ryzin, 1990, 1993) that involve design of vehicle-

delivery routes from a depot to a set of scattered demand locations,

so as to minimise the overall routing cost (e.g., travel time/distance)

under various side constraints (Baldacci, Toth, & Vigo, 2007;

Ferrucci, Block, & Gendreau, 2013; Jaillet & Wagner, 2008; Kergosien,

Lenté, Piton, & Billaut, 2011; Laporte, 2007, 2009; Li, Mirchandani, &

Borenstein, 2009; Pavone, Frazzoli, & Bullo, 2007; Pillac et al., 2013;

Solomon, 1987). We assume that service demands are placed by the

EV drivers according to a general process, and the distribution of

the locations of where EVs originate is arbitrary, although its sup-

port is determined by a compact Euclidean service region. There are

K charging stations located in the service region, and each of them

has a known charging speed (usually in kiloWatt-hours). Upon the

request of service, each EV is directed to one of the stations accord-

ing to some routing policy and heads to the station at a constant

speed. After entering the station, EVs queue up to be serviced and

their charging times are assumed to be randomly distributed from an

arbitrary distribution. We also assume that real-time communication

between vehicles and the decision maker is possible (e.g., advanced

mobile phones or global positioning systems (GPS) can be integrated

into the vehicle devices). These flexible assumptions are suitable for

real-life settings, but also require more complicated routing strate-

gies (e.g., dynamic/online routing) for solving the designated optimi-

sation problem.

Note that the way we formulate the problem allows us to depict

the EV service system as an acyclic network with two layers of feed-

forward parallel queues (see Section 2 for details), thus facilitating

the development of routing strategies and fundamental analysis re-

garding throughput and stability. For example, it was shown that the

dynamic routing strategy “Join-the-Shortest-Queue” (JSQ) along with

a scheduling policy based on “maximal matching” maximises the

throughput of a general acyclic network and achieves system stability

defined by the uniform mean recurrence time (Hung & Michailidis,
012). Although the EV system described here has different charac-

eristics (see Section 2 for details), the JSQ strategy appears to retain

he property of throughput maximisation (see Section 4 for details).

owever, to minimise a key performance metric -the vehicle’s so-

ourn time in the system- the routing strategy must in addition be re-

ponsive to other system states and control parameters. In this work,

e show that the vehicle’s sojourn time can be significantly mitigated

y incorporating the following two factors as “weights” into the JSQ

olicy: (i) the rate at which vehicles can be charged at the stations

nd (ii) the distance of the EV to each station upon its service request.

urther, its performance is adaptive to the change of several control

arameters, such as the speed of charging stations, the distribution of

emand locations, the traffic congestion level, and the vehicle speed.

t should be noted that the idea to integrate the elements of queue

ength, service rate and distance to the charging facility in the de-

elopment of routing strategies for queueing systems has not been

roposed in the literature, to the best of our knowledge.

The remainder of this paper is organised as follows. Section 2 de-

icts a general model for the EV service system with fully random en-

ironments, characterises the system’s maximum throughput based

n the capacity of each service station, and defines system stability

ia the uniform mean recurrence time property. Section 3 introduces

ome routing policies, some of which have been used in different set-

ings in the literature, while others have to property of maximising

he system’s throughput. The performance of some of these policies

s assessed numerically in Section 5. Section 4 establishes that the

roposed weighted versions of JSQ policies indeed maximise the sys-

em’s throughput under fairly weak stochastic assumptions on the ar-

ival and service (charging) processes. Since appropriate dependence

tructures are allowed for the arrival, service, and routing processes, a

echnique called the “perturbed Lyapunov function method” (Hung &

ichailidis, 2012; Kushner, 1967) was employed to obtain the result.

ection 5 evaluates the proposed throughput-maximising policies in

erms of their sojourn-time metrics under various control parameter

ettings through a simulation study. Some concluding remarks are

resented in Section 6.

. Model description and system stability

Suppose there are K EV charging stations placed in a compact Eu-

lidean region R ⊂ R
2, whose locations are denoted by S1, S2, . . . , SK .

ervice demands for charging are placed by EV drivers at random lo-

ations in region R according to a general random process with rate

, and we assume the demand locations follow an arbitrary distribu-

ion F over the region R. Upon request of service, each EV is guided to

ne of the charging stations according to some routing policy π and

eads to the station, for simplicity, at a constant speed v > 0. Note that

he latter assumption is made to simplify the exposition, although in

ractice v can be a non-decreasing function of λ; e.g. one may imag-

ne that vehicles slow down when the system is heavily loaded. We

lso assume that assigned EV routes do not change, while the EVs are

n route to the assigned station. Finally, to simplify the formulation of

he problem, we assume that each charging station comprises of an

nfinite buffer first-in-first-out (FIFO) queue and a charger with ran-

om service times. When the EV is charged (service completed), it

eaves the system immediately.

Denote the set of EV service demand times by A = {a1, a2, . . .}
nd the set of times that EVs have finished charging at the station

y D = {d1, d2, . . .}. The collection of all event times is then denoted

y A ∪ D = {t1, t2, . . .}, where ti represents either the demand arrival

r system departure time. If ti ∈ A, then its associated demand loca-

ion is denoted by li, li ∈ R. For any routing policy π , the associated

outing process is given by

k(ti) =
{

1 if ti ∈ A and the vehicle is directed to station k,

0 otherwise,
(1)
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Fig. 1. An illustration of the locations of three charging stations in a rectangular region

R and their corresponding service regions.
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Fig. 2. A graphical presentation of the system with K flows (charging stations), each of

which is comprised of two layers of queues.
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here k = 1, . . . , K. Denote the probability that an EV has the service-

emand location l and is directed to station k by Pk(l),
∑K

k=1 Pk(l) =
. The routing policy π is then associated with K service regions

1, . . . , RK , where

k = {l ∈ R : Pk(l) > 0} (2)

epresents a set of possible locations that the EVs can be directed

o station k, and
⋃K

k=1 Rk = R. Fig. 1 illustrates the locations of three

harging stations in a rectangular region R and their corresponding

ervice regions, where Ri

⋂
R j = ∅ for i �= j.

Note that given a routing policy π , if there exists at least one loca-

ion l such that Pk(l) > 0 for each charging station k, the demand for

harging stemming from arriving EVs to the system is then divided

nto K parallel flows passing through, respectively, the K charging sta-

ions. At any event time t+
n , we denote the total number of EVs in flow

by

k(tn) = Mk(tn) + Nk(tn), (3)

here Mk(tn) represents the number of vehicles heading to, but not

et having reached the station k, and Nk(tn) represents the number of

Vs waiting in station k (including the one being served). Based on

he above set of notation, the process Qk(tn) evolves according to

k(tn+1) = Qk(tn) + Ik(tn+1) − Dk(tn+1), (4)

here Dk(tn+1) is the number of vehicles that complete service

t station k during the time interval (tn, tn+1]. By definition, it is

lear that Dk(tn+1) = 1 if tn+1 is the departure time of a vehicle

rom station k and Dk(tn+1) = 0 otherwise. Let us denote the queue

ength vectors at time t+
n by Q(tn) = (Q1(tn), . . . , QK(tn)), M(tn) =

M1(tn), . . . , MK(tn)), and N(tn) = (N1(tn), . . . , NK(tn)).

We now characterise the maximum possible input rate of the ser-

ice system, so as to keep it stable. First, the input rate of demand for

lectric charging is defined as

= lim
t→∞

1

t

∑
i∈Z+

1{ti≤t and ti∈A}, (5)

hich is based on the property of ergodicity for long-term observa-

ion. Second, note that each divided flow k comprises of two queues

n tandem, where the lengths of the first-layer (which is actually a vir-

ual queue) and second-layer queues at time tn are Mk(tn) and Nk(tn),

espectively. Fig. 2 gives a graphical presentation of the system de-

cribed above. Since there is “no delay” on the service of the vehi-

les in the first-layer queues (i.e., vehicles head to the designated

ervice stations immediately after the service request), each one of

he first-layer queues can be treated as a G/G/∞ (but not necessar-

ly FIFO), with the mean service time (or mean travel time) being

efined as

k = 1

|Rk|
∫

l∈Rk

‖l − Sk‖
v

Pk(l)dl, (6)

here |Rk| is the area of service region Rk and ‖l − Sk‖ represents the

istance between location l and station k. By the above definition, the
ean service rate of each first-layer queue is given by

k = 1

∇k

, k = 1, . . . , K. (7)

hird, let σ k, j be the charging time of the jth vehicle arriving at sta-

ion k. Each one of the second-layer queues is simply a G/G/1, with the

ean charging rate being defined as

k =
(

lim
n→∞

1

n

n∑
j=1

σk, j

)−1

, k = 1, . . . , K. (8)

ote that in practice the charging time σ k, j depends on the EV battery

apacity, the power consumption determined by the driver, and the

utput power provided by the charging station. Therefore, μk simply

epresents the charging speed of station k (e.g. a DC Quick Charger

an offer more than 50 kiloWatt-hours output). Finally, let

k = lim
n→∞

∑n
i=1 Ik(ti)∑n

i=1

∑K
k=1 Ik(ti)

, (9)

hich is the long-term proportion of the input traffic flow directed

o station k. It is clear that 0 ≤ rk ≤ 1 for all k = 1, . . . , K, and
∑K

k=1

k = 1. Since all input traffic can go unimpeded through the first-layer

ueues, the following conditions on the second-layer queues are nec-

ssary to stabilise the system:

kλ < μk for all k = 1, . . . , K. (10)

ince
∑K

k=1 rk = 1 and 0 ≤ rk ≤ 1 for all k = 1, . . . , K, the conditions

n (10) directly introduce an upper bound on the input rate, say, λ <

1 + · · · + μK . The quantity μ1 + · · · + μK is known as the maximum

hroughput of the system in the queueing literature.

The first step here is to develop a routing policy so that system sta-

ility can be established for any input rate λ < μ1 + · · · + μK under

airly mild assumptions. Since no strong assumptions are made for

ll the involved stochastic processes, the stability is defined via the

uniform mean recurrence time” property (Hung & Michailidis, 2012;

ushner, 1967). That is, the system is said to be stable if there exists

ome positive integer b0 and nonnegative real-valued function F( · )

uch that for any n and s = min{t ≥ tn : |Q(tn)| ≤ b0}
n[s − tn] ≤ F(Q(tn)) when |Q(tn)| ≥ b0. (11)

ere En denotes the expected value conditioned on the σ -field

hat contains all system information up to time tn, and |Q(t)| =
K
k=1 Qk(t). This definition indicates that when |Q(t)| reaches a level

n > b0, the conditional expectation of the time required to return to

he value b0 (or smaller) is bounded above by a function of bn, uni-

ormly in n and in the past history. It should be noted that, stability

efined in (11) directly implies that P(Qk(t) < ∞) = 1 for all t and k

i.e. weak stability) and lim inft→∞ Qk(t)/t = 0 almost surely for all k

i.e. rate stability). A routing policy that satisfies the rate stability for
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all input rates λ < μ1 + · · · + μK is called the maximum throughput

policy.

3. Routing policies

We next introduce selected routing policies, some of which are

popular in the literature, while others can potentially maximise the

throughput of the system.

3.1. π1 (routing to the nearest station)

The key objective of this policy is simple and straightforward

- direct EVs to the nearest station upon their demand for service

(Solomon, 1987). The associated routing processes are then given by

Ik(ti) =
{

1 if ti ∈ A and k = arg min
j=1,...,K

‖li − S j‖,

0 otherwise,
(12)

k = 1, . . . , K. Note that under π1, the service regions satisfy that

Ri

⋂
R j = ∅ for all i �= j and

⋃K
k=1 Rk = R (please see Fig. 1 for an ex-

ample). This also implies that for each k ∈ {1, . . . , K},

Pk(l) =
{

1 if l ∈ Rk,

0 otherwise.

If the distribution of originating demand locations is uniform over R,

then we have

rk = lim
n→∞

∑n
i=1 Ik(ti)∑n

i=1

∑K
k=1 Ik(ti)

= |Rk|
|R| ,

which are constant values. Thus, π1 is obviously not a maximum

throughput policy.

3.2. π2 (the round robin policy)

This policy directs EVs to the stations in turn upon their demand

for service (Knust & Lücking, 2009; Wu & Down, 2009). The associ-

ated routing processes are then given by

Ik(ti) =
{

1 if ti = aj for some j ≤ i and j = k (mod K),
0 otherwise,

(13)

k = 1, . . . , K. Note that under π2, the service regions satisfy that Rk =
R for all k = 1, . . . , K. Also, π2 is not a maximum throughput policy

since rk = 1
K for all k.

3.3. π3 (maximum service rate)

This policy directs each EV to the station having the largest ser-

vice/charging rate upon its demand for service (Baras, Dorsey, &

Makowski, 1985; Buyokkoc, Varaiya, & Walrand, 1985). The associ-

ated routing processes are then given by

Ik(ti) =
{

1 if ti ∈ A and k = arg max
j=1,...,K

μ j,

0 otherwise,
(14)

k = 1, . . . , K. Note that under π3, the service regions satisfy that Rk =
R and R j = ∅ for all j �= k. Since now rk = 1 and r j = 0 for all j �= k,

the maximum throughput is simply μk. Thus, π3 is obviously not a

maximum throughput policy.

3.4. π4 (Random Routing Policies)

Let us consider the inequalities shown in (10), given the con-

straints that 0 ≤ rk ≤ 1 for all k = 1, . . . , K and
∑K

k=1 rk = 1. For any

λ < μ1 + · · · + μK , it is clear that there exists at least one solution (in

fact, infinitely many) (r̄1, . . . , r̄K) such that

r̄ λ < μ for all k = 1, . . . , K, (15)
k k
here 0 ≤ r̄k ≤ 1 for all k = 1, . . . , K and
∑K

k=1 r̄k = 1. For example,

ne can always choose r̄k = (μk/
∑K

k=1 μk) for all k = 1, . . . , K. There-

ore, if the input rate λ is known, each possible solution (r̄1, . . . , r̄K)
hen constitutes a policy associated with the routing processes, say, if

i ∈ A,

k(ti) = 1 with probability r̄k, (16)

= 1, . . . , K; and Ik(ti) = 0 otherwise. Based on the policy, each vehi-

le is directed randomly to a station based on the associated probabil-

ties r̄1, . . . , r̄K upon the demand of service (this is known as a static

roblem, see (Bertsimas & Simchi-Levi, 1996; Gendreau, Laporte &

éguin, 1999) for examples). Thus, if r̄k �= 0 for all k, then the service

egions satisfy that Rk = R for all k = 1, . . . , K. Although π4 appears

o be throughput maximising, it is not practical from the following

erspectives: (i) the information of the input rate λ is required so as

o solve r̄k; (ii) the solution of (r̄1, . . . , r̄K) is not unique; and (iii) it

ay result in bad performance with respect to delay or sojourn time

etrics (see Section 5 for examples).

.5. π5 (join the weighted shortest queue)

This policy directs EVs to the station having the smallest weighted

ueue length upon their demand for service. The associated routing

rocesses for this policy are given by

k(ti) =
{

1 if ti ∈ A and k = arg min
j=1,...,K

{
wjQj(ti−1)

}
,

0 otherwise,
(17)

here wj > 0 is an arbitrarily weight chosen by the designer, k =
, . . . , K.

Note that π5 can be viewed as the converse of the “max-

mal matching” discipline in the queueing literature (Armony &

ambos, 2003; Hung & Michailidis, 2012, 2008; Mekkittikul &

cKeown, 1996) and many of the existing policies can be included

nder this framework. For example, if wj are the same for all j, then

5 reduces to the standard JSQ policy; if Qj(ti) are the same for all

j = 1, . . . , K at time ti and w j = 1
μ j

, then π5 is equivalent to π3; if

j(ti) are the same for all j = 1, . . . , K at time ti and w j = ‖li − S j‖,

hen π5 is equivalent to π1. However, the choice of wj will not affect

he system’s throughput and stability (see Section 4 for details).

It is also worth noting that π4 and π5 are both maximum through-

ut policies. However, due to the shortcomings of π4 mentioned ear-

ier, the theoretic aspects of system stability will be investigated by

tilising merely π5 in the remainder of this work.

. System stability

We first show that policy π5 maximises the system’s throughput

nd achieves the stability defined in (11). Suppose relaxed assump-

ions such as correlated vehicle arrival times, correlated vehicle ser-

ice times, and interdependent routing processes are made. These as-

umptions then lead to non-Markovian dynamics for the arrival and

ervice processes of the system, for which a more general frame-

ork provided by the perturbed Lyapunov function method (Hung

Michailidis, 2012; Kushner, 1967) will be used. Note that to utilise

he perturbed Lyapunov function method, one usually starts with a

tandard Lyapunov function V(Q(tn)) and then incorporates a pertur-

ation term δV(tn) into V(Q(tn)). By placing a reasonable bound on

V(tn), V(Q(tn)) + δV(tn) can then be used to show the desired sys-

em stability.

The following assumptions are needed to establish the stability

esult.
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Fig. 3. A graphical presentation of the service region R = [0, 30] × [0, 30] and the lo-

cations of three charging stations S1 = (5, 15 − 5
√
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√
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ssumption 1. There exists a nonnegative bounded function ρ(m),

hich goes to zero as m → ∞, such that

n

∣∣∣∣ 1{tm+1∈A}
En[tm+1 − tm]

− λ

∣∣∣∣ ≤ ρ(m − n) for m ≥ n. (18)

his assumption states that given all system information up to time

n, the conditional arrival rate converges to its long-term arrival rate

s m − n → ∞. It corresponds to a general condition on the arrival

rocess, for which interdependence (whatever its nature may be)

etween arrival/inter-arrival times is allowed. When the future be-

omes less and less predictable, it is assumed that the conditional

ikelihood of such interdependence gets weaker.

By (18), it is clear that En[tm+1 − tm] is bounded below by a posi-

ive constant h0 for all m ≥ n. In addition, it is natural to assume that

n[am+1 − am] (recall that am+1 − am is the (m + 1)th inter-arrival

ime) is bounded above by a positive constant h1 for all m ≥ n. These

ogether imply

0 ≤ En[tm+1 − tm] ≤ h1 for m ≥ n. (19)

ssumption 2.

n

∣∣λ{Ik(tm+1) − rk}
∣∣ ≤ ρ(m − n) for all k and m ≥ n. (20)

his assumption states that given all system information up to time

n, upon the request of service, the conditional likelihood that a vehi-

le will be directed to station k converges to its long-term proportion

s m − n → ∞. Note that this assumption also incorporates the inter-

ependence structure of each routing process.

ssumption 3.

n

∣∣∣∣ Ik(tm+1)

En[tm+1 − tm]
− rkλ

∣∣∣∣ ≤ ρ(m − n) for all k and m ≥ n. (21)

his is basically a combination of Assumptions 1 and 2. Moreover,

t allows the existence of a cross-dependence structure between the

outing process and the arrival process. When the future becomes

ess and less predictable, it is assumed that the conditional cross-

ependence gets weaker.

ssumption 4.

n

∣∣∣∣ Dk(tm+1)

En[tm+1 − tm]
− μk

∣∣∣∣ ≤ ρ(m − n) for all k and m ≥ n. (22)

his assumption states equivalently that given all system informa-

ion up to time tn, the mean service rate of each station over the time

nterval (tm, tm+1] converges to its long-term rate as m − n → ∞. It

orresponds to a general condition on each service process, for which

nterdependence between service times is allowed.

We define first the individual “routing” Lyapunov function pertur-

ation for each routing process

V r
k (tn) = −2wkQk(tn)

n+N−1∑
m=n

En[tm+1 − tm]En

[
λ{Ik(tm+1) − rk}

]
,

here the value of N will be chosen in the proof shown later. We

efine next the “combined” Lyapunov function perturbation for each

raffic flow

V c
k (tn) = 2wkQk(tn)

n+N−1∑
m=n

En[tm+1−tm]En

[
Ik(tm+1)

En[tm+1−tm]
−rkλ

]
.

e define last the “departure” Lyapunov function perturbation for

ach traffic flow
V d
k (tn) = −2wkQk(tn)

n+N−1∑
m=n

En[tm+1 − tm]En

[
Dk(tm+1)

En[tm+1 − tm]
− μk

]
.

he full Lyapunov function perturbation δV(tn) is given by

V(tn) =
K∑

k=1

δV r
k (tn) +

K∑
k=1

δV c
k (tn) +

K∑
k=1

δV d
k (tn).

uppose the standard Lyapunov function is chosen as V(Q(tn)) =
K
k=1 wkQ2

k
(tn) and the time-dependent Lyapunov function is given

y Ṽ(Q(tn)) = V(Q(tn)) + δV(tn), we then have:

heorem 1. Under Assumptions 1-4, π5 maximises the system’s

hroughput and achieves the stability defined in (11).

roof. The proof is sketched in the Appendix. �

. Evaluation of sojourn time metrics

In this section, we evaluate the performance of the introduced

aximal throughput policies in terms of the sojourn-time metrics

ia computer simulation. Note that the sojourn time in this setting

orresponds to the amount of time that an EV spends in the system,

hich by definition includes its travel time (to the station), waiting

ime (for charging), and charging time. The core of the simulator was

ritten in C++, while the simulation setup is described as follows.

Let us consider a square region R = [0, 30] × [0, 30] with three EV

harging stations located in the vertices of an equilateral triangle, say,

1 = (5, 15 − 5
√

3), S2 = (25, 15 − 5
√

3) and S3 = (15, 15 + 5
√

3). A

raphical representation of the service system is given in Fig. 3. To

educe the number of control parameters that will influence the so-

ourn time performance, here we assume the inter-arrival times be-

ween service demands and the charging times at each station are

ndependent and exponentially distributed. The service rates at three

harging stations are given by μ1 = 2, μ2 = 3 and μ3 = 6 (e.g. as-

ume there are one Slow charger, one Rapid AC charger, and one

apid DC charger), which induce the maximal system throughput

1 + μ2 + μ3 = 11. The system is then simulated with the Poisson

rrival process of rates λ = 6, 7, 8, 9, 10 and 10.9 under various EV

peeds v = 0.1, 0.5, 2, 5 and 10. Except for the numerical results pro-

ided in Section 5.3.3, we also assume the service-demand locations

re independent and uniformly distributed over the square R, viz., F

s a uniform distribution on [0, 30] × [0, 30]. Note that these setups

an be easily calibrated so that practical situations can be met.

For comparison purposes, the mean and 95th percentile (P95) ve-

icle sojourn time were recorded based on 2 × 105 collected events
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Fig. 4. The mean sojourn times under the four policies with the input rate λ = 6, 7, 8, 9, 10, 10.9 and EV speeds v = 0.5, 2, 5, and 10.
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(the first 105 events obtained from the warm-up period were ex-

cluded) under policies (i) π4 with (r̄1, r̄2, r̄3) = (2/11, 3/11, 6/11)
(Random Routing policy, abbreviated as RR); (ii) π5 with wj ≡
1 (i.e., the JSQ policy); (iii) π5 with w j = 1

μ j
(Join-the-Weighted-

Shortest-Queue policy, abbreviated as JWSQ); and (iv) π5 with w j =
‖li−S j‖

μ j
(Join-the-Doubly-Weighted-Shortest-Queue policy, abbrevi-

ated as JDWSQ). Note that wj associated with the JDWSQ policy

clearly represents a random process (not just a constant). However,

the policy becomes more flexible by taking into account “the distance

from the demand location to each service station”. The numerical re-

sults show that the sojourn time can be mitigated with respect to a

large class of control parameters based on such a routing scheme.

5.1. The mean sojourn time

The mean sojourn times under the four policies RR, JSQ, JWSQ,

and JDWSQ, for various choices of the input rate λ and EV speed v,

are depicted in Fig. 4. As can be seen, the JDWSQ policy outperforms

the other three policies for most of the simulation scenarios. An ex-

ception is found in the case that system is heavily loaded (λ = 10.9)

and EV speed is relatively low (v = 0.5), for which the JWSQ policy

appears to perform best in minimising the mean sojourn time. Note

that as the EV speed increases, the difference between policies JWSQ

and JDWSQ becomes less significant. Such a phenomenon will be fur-

ther discussed in Section 5.3.1.

5.2. The 95th percentile sojourn time

The 95th percentile of the distribution of sojourn times under the

four policies RR, JSQ, JWSQ, and JDWSQ, for various choices of the
nput rate λ and EV speed v, are depicted in Fig. 5. As can be seen, the

DWSQ policy performs best for various choices of EV speed when

he system is lightly or moderately loaded. On the other hand, the

WSQ performs best for various choices of EV speed when the sys-

em is more heavily loaded. The results may come from the intuition

hat, when the EV speeds are slow, the JDWSQ policy would be largely

ffected by the “demand locations” generated by the underlying ran-

om mechanism, thus increasing the variation of the resulting so-

ourn time. Analogously, the difference between policies JWSQ and

DWSQ becomes less significant as the EV speed increases.

.3. Simulation under heavy traffic

The sojourn time performance is of particular interest in practice

hen the system is heavily loaded (i.e., λ is large). This usually coin-

ides with a higher traffic congestion level and results in slower EV

peeds (i.e., smaller values of v), as mentioned earlier in Section 2. In

his section we introduce how to modify the JDWSQ policy so that

he sojourn time metrics can be further mitigated when λ is large.

e also show that the performance of the distance-based policies is

airly robust to a number of control parameters, such as the input rate

, the EV speed v, the service rates μk, and the distribution F of de-

and locations.

.3.1. Modification of routing policies

As can be seen from the numerical results in Section 5.1, the JD-

SQ policy is not optimal in minimising the mean sojourn time when

is large and v is small. Next, we provide insights on why policy

DWSQ may not be optimal for this metric in such a setting. Sup-

ose there is a 2-station service system with μ = (6, 2), Q1(tn−1) =
0, and Q2(tn−1) = 11. Assume that a service demand is placed at
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Fig. 5. The 95th percentile sojourn times under the four policies with the input rate λ = 6, 7, 8, 9, 10, 10.9 and EV speeds v = 0.5, 2, 5, and 10.
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Table 1

The mean sojourn times under policies JSQ, JWSQ, JDWSQ and their modifications

JSQ∗ , JWSQ∗ , JDWSQ∗ with μ = (2, 3, 6), v = 0.1, 0.5, 2, 5, 10, λ = 10.9, and uniform

demand locations. Note that the minimum mean sojourn time for each v is high-

lighted in bold.

λ v JSQ JSQ∗ JWSQ JWSQ∗ JDWSQ JDWSQ∗

0.1 270.64 331.20 176.32 294.64 192.35 172.07

0.5 60.71 67.07 41.39 64.88 47.36 40.66

10.9 2 23.59 24.84 19.34 20.81 17.31 18.13

5 16.02 15.89 13.45 15.13 10.56 11.15

10 10.86 10.61 9.48 12.95 8.72 8.82

Table 2

The 95th percentile sojourn times under policies JSQ, JWSQ, JDWSQ and their modi-

fications JSQ∗ , JWSQ∗ , JDWSQ∗ with μ = (2, 3, 6), v = 0.1, 0.5, 2, 5, 10, λ = 10.9, and

uniform demand locations. Note that the minimum P95 sojourn time for each v is

highlighted in bold.

λ v JSQ JSQ∗ JWSQ JWSQ∗ JDWSQ JDWSQ∗

0.1 543 604.11 288.77 498.64 318.01 302.61

0.5 121.48 122.29 66.62 104.68 89.60 73.02

10.9 2 53.12 50.89 36.61 41.84 37.27 39.75

5 42.63 44.22 24.43 33.56 24.58 26.24

10 29.73 25.10 19.88 32.07 23.06 23.54

J

s

n

a

a

j

ime tn with the associated location li such that ‖li − S1‖ = 30 and

li − S2‖ = 10. It is clear that policy JDWSQ will direct the vehicle to

1. Consider the scenario that the 10 vehicles on the first flow are all

head of the current arriving vehicle (i.e., li is the farthest from S1

ompared to other vehicle locations on the first flow) and the 11 ve-

icles on the second flow are all behind the current arriving vehicle

i.e., li is the closet to S2 compared to other vehicle locations on the

econd flow). Since v is small, it is expected that relatively few vehi-

les are waiting in both service stations most of the time. In this case,

irecting the arriving vehicle to S2 (though it has a smaller service

ate) might be a better choice since its location is much closer to S2

nd there are no vehicles ahead (thus has a shorter waiting time for

ervice). The above example suggests that, instead of looking at all

he vehicles on each flow, in the policy one may consider the num-

er of vehicles “ahead of the arriving vehicle”. Therefore, the routing

rocess associated with the JDWSQ policy can be justified by

k(ti) =
{

1 if ti ∈ A and k = arg min
j=1,...,K

{ ‖li−S j‖
μ j

Hj(ti)
}
,

0 otherwise,

(23)

here Hj(ti) represents the number of vehicles ahead of the arriving

ehicle at time ti on the j-th flow. Note that by replacing Q j(ti−1) by

j(ti) in the routing process, the JSQ and JWSQ policy can be modified

n a similar way. We next evaluate the performance of these modified

olicies under the heavy traffic assumption.

Let us consider the same service system as in Sections 5.1 and 5.2

ith λ = 10.9 (recall that the maximum throughput is 11). Tables 1

nd 2 show the mean and 95th percentile sojourn times under poli-

ies JSQ, JWSQ, JDWSQ and their modifications based on Hj(ti) (de-

oted by JSQ∗, JWSQ∗, and JDWSQ∗), with various choices of EV speed

. As can be seen, the modified version of the JDWSQ policy (i.e., the
DWSQ∗ policy) improves both the sojourn time metrics when the EV

peeds are slow (i.e., v = 0.1 and 0.5), while policies JSQ and JWSQ do

ot benefit from such modifications for most of the cases. It should

lso be noted that, though the distance-based policies (i.e., JDWSQ

nd JDWSQ∗) are suboptimal in minimising the 95th percentile so-

ourn time (see Table 2), numerical results show that they remain
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Table 3

The mean and 95th percentile sojourn times under policies JSQ/JWSQ, JDWSQ,

and JDWSQ∗ with μ = (4, 4, 4), v = 0.1, 0.5, 2, 10, λ = 11.9, and uniform demand

locations.

λ v JSQ/JWSQ JDWSQ JDWSQ∗

Mean P95 Mean P95 Mean P95

0.1 179.88 292.65 102.27 181.70 148.57 261.14

0.5 40.17 65.61 27.30 47.39 36.31 61.72

11.9 2 16.10 31.82 15.08 26.81 17.56 33.24

10 7.81 16.07 6.08 13.94 9.07 22.39

Table 4

The mean sojourn times under policies JSQ, JWSQ, JDWSQ and their modifications

JSQ∗ , JWSQ∗ , JDWSQ∗ with μ = (2, 3, 6), v = 0.1, 0.5, 2, 10, λ = 10.9, and nonuni-

form demand locations. Note that the minimum mean sojourn time for each v is

highlighted in bold.

λ v JSQ JSQ∗ JWSQ JWSQ∗ JDWSQ JDWSQ∗

0.1 272.37 359.59 162.36 313.65 222.84 149.86

10.9 0.5 61.35 81.89 41.81 63.27 55.59 38.91

2 20.90 27.85 18.50 24.69 18.29 17.68

10 13.61 21.42 13.42 15.36 11.43 8.90 0 5 10 15 20 25 30

0
5

10
15

20
25

30

Fig. 6. An illustration of 2 × 103 simulated demand locations (the dots in red) based on

the designated mixture distribution F over the service region R. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version

of this article).

Table 5

The 95th percentile sojourn times under policies JSQ, JWSQ, JDWSQ and their mod-

ifications JSQ∗ , JWSQ∗ , JDWSQ∗ with μ = (2, 3, 6), v = 0.1, 0.5, 2, 10, λ = 10.9, and

nonuniform demand locations. Note that the minimum P95 sojourn time for each v

is highlighted in bold.

λ v JSQ JSQ∗ JWSQ JWSQ∗ JDWSQ JDWSQ∗

0.1 557.77 642.21 264.45 505.42 468.85 251.38

10.9 0.5 124.92 158.23 66.30 111.30 108.34 65.54

2 55.68 57.15 43.60 56.61 53.35 41.72

10 38.50 40.73 25.39 43.19 37.12 24.17
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fairly competitive (compared to policy JWSQ) under this particular

simulation setup.

5.3.2. Homogeneous charging stations

In this section, we show that the proposed distance-based poli-

cies also work well for a system comprising of homogeneous charg-

ing stations. Consider the same service system as in Sections 5.1–

5.3 with μ = (4, 4, 4), viz., the speeds of three charging stations are

all the same. In this case, the two policies JSQ and JWSQ are obvi-

ously identical. Table 3 shows the mean and 95th percentile sojourn

times under policies JSQ/JWSQ, JDWSQ, and JDWSQ∗ with a heavily

loaded input rate λ = 11.9 (the maximum throughput is 12) and var-

ious EV speeds v = 0.1, 0.5, 2, 10. As can be seen from Table 3, the

JDWSQ policy outperforms the JSQ/JWSQ policy in terms of both the

mean and 95th percentile sojourn time for all EV speeds considered

in this study. The numerical results strongly support that incorporat-

ing “distance” as another weight in the policy is beneficial for such

systems. However, numerical results show that both the mean and

95th percentile sojourn time are not further improved by the JDWSQ∗

policy.

5.3.3. Non-uniform demand locations

In this section, we show that the distance-based policies also work

well for the system with non-uniform demand locations. Let us con-

sider the same service system in Sections 5.1–5.2 with λ = 10.9, and

the distribution F of demand locations is a mixture of three uniform

distributions over the rectangular regions R1 (with vertices (0, 0), (30,

0), (30, 5) and (0, 5)), R2 (with vertices (0, 5), (30, 5), (30, 10) and (0,

10)), and R3 (with vertices (0, 10), (30, 10), (30, 30) and (0, 30)). As-

sume that the associated weights of the three uniform distributions

are given by w1 = 1/10, w2 = 1/2, and w3 = 2/5, respectively. This

then constitutes a system with half of the service demands uniformly

located over R2 (image that this is a street with extremely heavy traf-

fic) and another half of the service demands uniformly located over

R1 and R3. Fig. 6 illustrates 2 × 103 demand locations that were ob-

tained by simulating the designated mixture distribution F over the

service region R.

Tables 4 and 5 show the mean and 95th percentile sojourn

times under policies JSQ, JWSQ, JDWSQ and their modifications JSQ∗,

JWSQ∗, JDWSQ∗ with various EV speeds. As can be seen, for this par-

ticular case policy JDWSQ∗ outperforms all the other policies in terms

of both sojourn time metrics. As the EV speed becomes slower, nu-
erical results show that the improvement in both sojourn time met-

ics becomes more significant.

. Concluding remarks

We have introduced a general modeling framework for EV ser-

ice systems and established that a class of dynamic routing policies

aximises the throughput and maintains system stability defined

ia the uniform mean recurrence time under fairly weak stochastic

ssumptions. As the dependence structure is appropriately incorpo-

ated into the vehicle arrival, service, and routing processes, the the-

retical results are established via a technique called the perturbed

yapunov function method. Simulation results show that the pro-

osed weighted versions of the JSQ policy, titled JWSQ, JDWSQ and

DWSQ∗, outperform the existing policies in terms of both the mean

nd P95 of sojourn time for almost all the simulation scenarios. In

ddition, the performance is adaptive to the change of (i) input load

(or traffic congestion level); (ii) EV speed v; (iii) service rates μk;

nd (iv) distribution F of demand locations. It is noted that for such

ervice systems there always exist a number of control parameters

hat will influence the performance measures of interest. Therefore, it

ould be valuable to explore the optimisation problems with respect

o other control parameters, e.g. how to best allocate the charging

tations so as to minimise the vehicle’s mean sojourn time. Never-

heless, finding the solutions for this type of optimisation problems

ppears to be a challenging and involved task, and hence a topic for

uture work.
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ppendix. Proof of Theorem 1.

For any given input rate λ < μ1 + · · · + μK , we will show that

here exists a constant c > 0 such that En[Ṽ(Q(tn+1)) − Ṽ(Q(tn))] ≤
c when |Q(tn)| is large enough. This inequality together with the

ound on δV(tn) will then imply (11). Note that

n[Ṽ(Q(tn+1)) − Ṽ(Q(tn))]

= En[V(Q(tn+1)) − V(Q(tn))] +
K∑

k=1

En[δV r
k (tn+1) − δV r

k (tn)]

+
K∑

k=1

En[δV c
k (tn+1) − δV c

k (tn)] +
K∑

k=1

En[δV d
k (tn+1) − δV d

k (tn)],

(24)

nd we will examine it term by term. By mimicking the proof pro-

ided in Hung and Michailidis (2012), we can show

n[V(Q(tn+1)) − V(Q(tn))]

≤ 2

K∑
k=1

wkQk(tn)
{

Ik(tn+1) − En[Dk(tn+1)]
}

+ G, (25)

here G = ∑K
k=1 wk;

n[δV r
k (tn+1) − δV r

k (tn)]

≤ 2wkQk(tn)En[tn+1 − tn]
{

Ik(tn+1)λ − rkλ
}

+ 2h1wkQk(tn)ρ(N) + Cr
k (26)

or some constant Cr
k

> 0;

n[δV c
k (tn+1) − δV c

k (tn)]

≤ −2wkQk(tn)
{

Ik(tn+1) − rkλEn[tn+1 − tn]
}

+ 2h1wkQk(tn)ρ(N) + Cc
k (27)

or some constant Cc
k

> 0; and also

n[δV d
k (tn+1) − δV d

k (tn)]

≤ 2wkQk(tn){En[Dk(tn+1)] − μkEn[tn+1 − tn]}
+ 2h1wkQk(tn)ρ(N) + Cd

k (28)

or some constant Cd
k

> 0.

Taking the full Lyapunov function perturbation based on (26)-(28)

long with the bound given in (25), we have

n[Ṽ(Q(tn+1)) − Ṽ(Q(tn))]

≤ 2En[tn+1 − tn]

K∑
k=1

wkQk(tn)
[
Ik(tn+1)λ − μk

]
+ ε′

= 2En[tn+1 − tn]

(
K∑

k=1

λwkQk(tn)Ik(tn+1) −
K∑

k=1

μkwkQk(tn)

)
+ ε′,

(29)

here ε′ is bounded above by

h1ρ(N)
K∑

k=1

wkQk(tn) +
K∑

k=1

(Cr
k + Cc

k + Cd
k ) + G. (30)

Recall that for any given λ < μ1 + · · · + μK , there always exist

¯ , . . . , r̄ such that r̄ λ < μ for all k = 1, . . . , K, where 0 ≤ r̄ ≤ 1 for
1 K k k k
ll k and
∑K

k=1 r̄k = 1. This means that there exists some constant

0 > 0 such that r̄kλ − μk ≤ −c0 for all k = 1, . . . , K. Our proof pro-

eeds by discussing two different cases: tn+1 ∈ A and tn+1 /∈ A. Sup-

ose now tn+1 ∈ A and j = arg min
k=1,...,K

{
wkQk(tn)

}
, then I j(tn+1) = 1

nd Ii(tn+1) = 0 for i �= j. Thus, we have

n[Ṽ(Q(tn+1)) − Ṽ(Q(tn))]

≤ 2En[tn+1 − tn]

(
(

K∑
k=1

r̄k)λwjQj(tn) −
K∑

k=1

μkwkQk(tn)

)
+ ε′

≤ 2En[tn+1 − tn]

(
K∑

k=1

r̄kλwkQk(tn) −
K∑

k=1

μkwkQk(tn)

)
+ ε′

= 2En[tn+1 − tn]

K∑
k=1

(r̄kλ − μk)wkQk(tn) + ε′

≤ −2c0h0

K∑
k=1

wkQk(tn) + ε′. (31)

ote that given |Q(tn)| > b for some positive constant b, we can always

hoose a large value of N in (30) so that

h1ρ(N)
K∑

k=1

wkQk(tn) ≤ c0h0

K∑
k=1

wkQk(tn).

herefore, (31) can be expressed as

n[Ṽ(Q(tn+1)) − Ṽ(Q(tn))] ≤ −c0h0

K∑
k=1

wkQk(tn) + C, (32)

here C = ∑K
k=1 (Cr

k
+ Cc

k
+ Cd

k
) + G > 0. Eq. (32) directly implies

n[Ṽ(Q(tn+1)) − Ṽ(Q(tn))] → −∞ as |Q(tn)| → ∞.

hus, there exist c > 0 and b∗ > 0 such that

n[Ṽ(Q(tn+1)) − Ṽ(Q(tn))] ≤ −c when |Q(tn)| > b∗. (33)

ince we know that |δV(tn)| = O(|Q(tn)|), given a small γ > 0, this

mplies that for sufficiently large value of b∗, |δV(tn)| = |V(Q(tn)) −
˜ (Q(tn))| ≤ γ · V(Q(tn)). Let tn be such that |Q(tn)| > b∗ and τ =

in{i > n : |Q(ti)| ≤ b∗}. By (33), we then have

n[Ṽ(Q(tτ )) − Ṽ(Q(tn))] ≤ −cEn[τ − n].

hus,

1 − γ )En[V(Q(tτ ))] ≤ En[Ṽ(Q(tτ ))]

≤ −cEn[τ − n] + V(Q(tn))(1 + γ )

≤ − c

h1

En[tτ − tn] + V(Q(tn))(1 + γ ),

here the last inequality comes from

cEn[tτ − tn]

= −c{En[tn+1 − tn] + En[tn+2 − tn+1] + · · · + En[tτ − tτ−1]}
≥ −ch1En[τ − n].

hus,

n[tτ − tn] ≤ h1

c

{
V(Q(tn))(1 + γ ) − 1 + γ En[V(Q(tτ ))]

}
.

ince V(Q(tτ )) ≤ sup|Q(ti)|≤b∗ V(Q(ti)), this then implies the stability

efined in (11). For the second case that tn+1 /∈ A, we have Ik(tn+1) =
for all k = 1, . . . , K. Thus, analogous to (31), we simply obtain

n[Ṽ(Q(tn+1)) − Ṽ(Q(tn))] ≤ −2h0

K∑
k=1

μkwkQk(tn) + ε′. (34)

ince the stability defined in (11) can be shown in a similar way, the

roof is then complete.
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