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Use of Partial Cumulative Sum to Detect Trends and 
Change Periods for Nonlinear Time Series 

Berlin Wu and Liyang Chen* 

Because the structural change of a time series from one pattern to another may not switch at 

once but rather experience a period of adjustment, conventional change point detection may 

be inappropriate under some circumstances. Furthermore, changes in time series often occur 

gradually so that there is a certain amount of fuzziness in the change point. For this, 

considerable research has focused on the theory of change period detection for improved 

model performance. However, a change period in some small time interval may appear to be 

negligible noise in a larger time interval. In this paper, we propose an approach to detect 

trends and change periods with fuzzy statistics using partial cumulative sums. By controlling 

the parameters, we can filter the noises and discover suitable change periods. Having 

discovered the change periods, we can proceed to identify the trends in the time series. We 

use simulations to test our approach. Our results show that the performance of our approach is 

satisfactory. 
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1 Introduction 

An interesting topic in time series analysis is the detection of trends and the 
measurement of change points. An extensive literature has been proposed to find 
change points. For example, Chow (1960), Nyblom (1989), Ploberger et al. (1989), 
Bleaney (1990), Lin and Terasvirta (1994), and others have proposed various 
methods to detect change points. Broemeling and Tsurumi (1987) used a Bayesian 
procedure to solve inferential problems of structural shift. They provided a simple 
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way to analyze data and did not rely heavily on asymptotic distribution theory in 
making statistical inference. Tsay (1988) proposed a procedure to detect outliers, 
level shifts, and variance changes in a univariate time series. Balke (1993) pointed 
out that Tsay’s procedures do not always perform satisfactorily when level shifts are 
present. Barry and Hartigan (1993) also presented a Bayesian analysis for change 
point problems. 

Before one attempts to detect change points, several fundamental questions 
arise. What does a change point mean? Can we give a clear definition of a change 
point? How do we determine change points if the economic structure for a time 
series changes gradually? How do we smooth or get rid of an unstable and uncertain 
intervention in a time series? How do we address poorly defined economic 
keywords? These problems involving semantic interpretation and fuzzy statistical 
analysis have bothered many researchers for a long time. For this reason, Zadeh 
(1965) proposed fuzzy set theory, a new tool to generalize the classical notion of a 
set and to accommodate semantic and conceptual fuzziness in statements. Fuzzy 
theory has the intrinsic property of linguistic variables. This property can help us to 
reduce the difficulties of uncertain problems. Fuzzy theory is widely used in various 
areas.  

In this paper we use fuzzy logic to deal with change periods and trend problems 
in time series analysis. These interesting problems have been investigated by many 
researchers. Custem and Gath (1993) suggested a useful approach based on fuzzy 
clustering for the detection of outliers and for the robust estimation of underlying 
parameters. Hathaway and Bezdek (1993) established fuzzy c-regression models as 
a promising technique for switching regression parameter estimation and clustering. 
Yoshinari et al. (1993) developed a new method to build fuzzy models through 
clustering methods based on linear varieties. Inclan and Tiao (1994) proposed an 
iterative procedure to detect variance changes based on a centered versions of the 
cumulative sums of squares. Wu and Chen (1999) suggested an algorithm for fuzzy 
time series classification. 

Hinkley (1971) proposed the modified page and the cumulative sum methods. 
Hsu (1979, 1982) investigated the detection of a variance shift at an unknown point 
in a sequence of independent observations, focusing on the detection of points of 
change one at a time because of the heavy computational burden. Worsley (1986) 
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used maximum likelihood methods to test for a change in the mean of a sequence of 
independent exponential family random variables. Sastri et al. (1989) presented a 
performance comparison for six time series change detection procedures.  

However, these detection techniques are based on the assumption that the 
underlying time series exhibits a significant change point characteristic (Wu and 
Chen, 1999). Using the concept of fuzzy set theory, Wu and Chen (1999) proposed a 
procedure for change period detection for nonlinear time series. Nevertheless, in 
dealing with time series with switching regimes, we should consider not only change 
point detection but also the properties of change periods. Because many patterns of 
changing structure in time series occur over a time interval, these phenomena should 
not be treated as a mere sudden turn at a certain time. 

Another problem is that a change period in a time series over a certain time 
interval may seem like a noise in a larger time interval. In our research, we propose 
a procedure based on fuzzy logic to detect change periods. Our approach enables us 
to filter the noise and to locate change periods by controlling parameters. Moreover, 
we don’t require any initial knowledge about the structure in the data to apply this 
method. 

This paper is organized as follows. In Section 2, we introduce the basic concept 
of fuzzy logic and introduce our approach with examples. In section 3, simulations 
illustrate our method. Empirical examples of three foreign exchange rates are 
studied in Section 4. Section 5 provides the conclusion and suggestions.  

2 Detection of trends and change periods 

2.1 Fuzzy time series 

A time series is a set of observed values recorded over time. These observed values 
could be either continuously observed, called a continuous time series, or observed 
at discrete time points, called a discrete time series. A time series is usually denoted 

}{ tX , where 
1 2
, , ,

nt t tX X XL  refer to the observed values at times 1 2, , , nt t tL . 
Time series analysis plays a very important role in forecasting and is very 

successful in many applications. Each observation is taken to be a single, precise 
value in traditional time series analysis. However, the measurement error of 
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collecting data, the time lag in observation, or the interaction between variables may 
turn the single value into a range of possible values. For example, when we talk 
about the stock index of a day, which value do we specify, the index at beginning of 
the day, the end of the day, the high point, or the low point? 

Conventional time series analysis is based on the concept that the observed data 
are random with certain measurement errors or noise. However, in empirical studies 
we often encounter the situation that the data reveal not only randomness but also 
fuzziness. In this case, the application of fuzzy time series leads to improved 
inference. We begin with a definition of a fuzzy time series. 

Definition 2.1 A fuzzy time series 

Let { }; 1, 2,tX t∈ℜ = L  be a time series and U  be the universe of discourse. Let 

{ }; 1,2, ,iP i m= L  be an ordered partition of U  on which linguistic variables 

{ }; 1, 2, ,iL i m= L  are defined. For each tX , the corresponding fuzzy set on U , 
)( tXF , consists of membership functions { }1 2, , ,t t tmμ μ μL  for { }1 2, , , mL L LL . 

Then { }( )tF X  is a fuzzy time series corresponding to }{ tX  and is denoted: 

( ) ( ) ( ) ( )
m

ttmtttt
t L

X
L

X
L
XXF μμμ

+++= L
2

2

1

1  (1) 

where the addition symbol denotes the connection and itti LX )(μ  specifies the 
corresponding relation of the membership function )( tti Xμ  of tX  with respect to 

iL  satisfying : [0,1]tiμ ℜ→  and 
1

1m
tii

μ
=

=∑ . 
For simplicity, we write ),,,()( 21 tmtttXF μμμ L=  instead of (1) and take the 

triangular or trapezoidal membership function in this paper. The set 
{ ; 1, 2, , }iL i m= L  is regarded as a sequence of linguistic variables, and the fuzzy 
time series },,2,1;)({ ntXF t L=  consists of their memberships. That is, any 

( )tF X  ( 1, 2, ,t n= L ) contains the memberships corresponding to each iL . 

Example 2.1 

Let { } { }( ) 0.8,1.7, 2.9,4.1,3.5,3.2,4.3,3.6tX t =  and  { }[0,1],[1,2],[3,4],[4,5]U = . 
Define the linguistic variables to be 1L = very low, 2L = low, 3L = middle, 4L = 
high, and 5L = very high. Moreover, we take the average number of the intervals as 
our typical values. The typical values corresponding to 1 2 5, ,L L LK  are now 



Trends and Change Periods Detection for Nonlinear Time Series 127 

defined as 0.5, 1.5, 2.5, 3.5, 4.5. Figure 1 shows the membership functions of these 
linguistic variables. 

Figure 1: The membership functions for Example 2.1 

Thus, we have the fuzzy time series { }( )tF X  corresponding to { }tX  as shown in 
Table 1. 

Table 1: The fuzzy time series for Example 2.1 

 very low low middle high very high 
)( 1XF  0.7 0.3 0 0 0 
)( 2XF  0 0.8 0.2 0 0 
)( 3XF  0 0 0.6 0.4 0 
)( 4XF  0 0 0 0.4 0.6 
)( 5XF  0 0 0 1 0 
)( 6XF  0 0 0.2 0.8 0 
)( 7XF  0 0 0 0.2 0.8 
)( 8XF  0 0 0 0.9 0.1 

2.2 Detection of change period 

Because the structural change of a time series from one pattern to another may not 
switch at once but rather experience a period of adjustment, it is natural for us to 
apply the concept of change period instead of change points when analyzing a 
structural change process. Taking a view different from change points, the concept 
of a change period provides us with a more reasonable, more comprehensible, and 
more flexible way to analyze real world problems. 

In order to present an approach to locate the change periods in a fuzzy time 

4.53.52.51.50.5 

1 
1L  

2L 3L
4L 5L
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series, the following definitions are required. 

Definition 2.2 An indicator series 

Let ),,,()( 21 tmtttXF μμμ L=  be a fuzzy time series and maaa ,,, 21 L  
( , 1, 2, ,ia i m∈ℜ = L ) be the weights with respect to the linguistic variables 

mLLL ,,, 21 L . Then the series ( ) ( ) ( )ttmmtttt XaXaXatIF μμμ +++= L2211)(  is 
called the indicator series for the fuzzy time series. 

Example 2.2 

In Example 2.1, we transformed the time series { }tX  into a fuzzy time series 

{ }( )tF X . Now letting the fuzzy weights of { }( )tF X  be 21 −=a , 12 −=a , 
03 =a , 14 =a , and 25=a , we have: 

7.10201003.0)1(7.0)2()1( −=×+×+×+×−+×−=IF  
8.002012.008.0)1(0)2()2( −=×+×+×+×−+×−=IF  

4.0024.016.000)1(0)2()3( =×+×+×+×−+×−=IF  
6.16.024.01000)1(0)2()4( =×+×+×+×−+×−=IF  

10211000)1(0)2()5( =×+×+×+×−+×−=IF  
8.0028.012.000)1(0)2()6( =×+×+×+×−+×−=IF  
8.18.022.01000)1(0)2()7( =×+×+×+×−+×−=IF  
1.11.029.01000)1(0)2()8( =×+×+×+×−+×−=IF  

Definition 2.3 A detection sequence for change periods 

Let { }( ); 1, 2, ,IF t t n= K  be a fuzzy trend indicator series and define 

∑ +

=′
′= kt

ttk tIFtd )()( . We call )(tdk  a change period detection sequence of degree 3. 

Example 2.3 

Let { }( ); 1, 2, ,8IF t t = K  be the same as that in Example 2.2. The change period 
detection sequence of degree 3 is constructed as follows: 

1.24.0)8.0()7.1()3( −=+−+−=d  
2.16.14.0)8.0()4( =++−=d  

1.216.14.0)5( =++=d  
4.38.016.1)6( =++=d  
6.38.18.01)7( =++=d  
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7.31.18.18.0)8( =++=d  

Note that the change period detection sequence of degree n  is the sequence of 
the partial cumulative sums of n  consecutive elements in the fuzzy trend indicator 
series. The choice of the degree of a change period detection sequence and the fuzzy 
weights of a fuzzy time series determine what kind of change periods can be found. 

The first step is to take first differences. If { }tX  is the time series, we obtain 
its first difference time series { }tY  by taking 1−−= ttt XXY . Intuitively, tY  is the 
change in the series at time t  relative to time 1t − . That is to say, 0>tY  
indicates that 1−tX  rises to tX  at time t  by the amount tY . Conversely, 0<tY  
indicates that 1−tX  falls to tX  at time t  by the amount tY . Obviously, 0=tY  
means that there is no change in the original series between times 1t −  and t . 

After forming the first difference time series { }tY , the second step is to 
transform { }tY  into the corresponding fuzzy time series )( tYF  with iL  as its 
linguistic level, mi ,,2,1 L= . If a time series }{ tX  reflects the linguistic fuzziness, 
then so does its first difference { }tY . 

The third step is to construct the fuzzy trend indicator series 
( ) ( ) ( )ttmmtttt YaYaYatFI μμμ +++= L2211)(  of the fuzzy time series )( tYF . The 

rule to decide the fuzzy weights of the fuzzy time series is that if ia  is the fuzzy 
weight of some linguistic variable iL  where the negative tY  makes the 
membership function ( )tti Yμ  greater than zero, then we assign ia  a nonpositive 
value. Conversely, if ia  is the fuzzy weight of some linguistic variable iL  where 
the positive tY  makes the membership function ( )tti Yμ  greater than zero, then we 
assign ia  a nonnegative value. 

The next step is to compute the change period detection sequence from this 
fuzzy trend indicator series. We are going to detect trends and change periods in a 
time series with this detection sequence. The degree of the sequence plays a very 
important role in controlling what types of change periods can be found.  

As noted above, sometimes an obvious change in trend or a change period in a 
small time interval may appear to be noise caused by randomness and fuzziness in a 
larger time interval. The observation range heavily influences our recognition of a 
change period. Furthermore, even under the same observation scope, two 
researchers may disagree about the existence of a change period. Therefore, an 
essential question arises: Can we always find the appropriate type of change periods 
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that are meaningful in a given application? 
In this paper, we propose a method to detect empirically relevant types of 

change periods by controlling the degree of the change period detection sequence 
and the fuzzy weights. Intuitively, the greater n , the greater change period one is 
able to find. Next, we formalize the definition of a change period. 

Definition 2.4 A change period 

Suppose that { }( )
t n

d t ∞

=
 is a change period detection sequence of degree n . For a 

given 0>h , if there is a time interval { }1 1, , ,l l l mT t t t+ += L  such that 
htdh <<− )(  for all 1t T∈  and if an immediately preceding time interval 

},,,{ 1)1(2 −−−−= ljljl tttT L  and an immediately subsequent time interval 
},,,{ 213 kmlmlml tttT ++++++= L  are such that the signs of )(td  are all the same for all 

2t T∈  ( 3T ) but are opposite to the signs of )(td  for all 3t T∈ ( 2T ), then we call 
},,,,{ ]2/)1([2]2/)1([1]2/)1([]2/)1([ mnlnlnlnl ttttT ++−++−++−+−= L  a change period, where ][x  

denotes the ceiling function. 

Example 2.4 

Suppose that )(td  is the change period detection sequence of degree 10 shown in 
Table 2. 

Table 2: The change period detection sequence for Example 2.4 

t  )(td  t  )(td  t  )(td  t  )(td  t  )(td  

1 6.768 6 8.822 11 2.085 16 −4.230 21 −6.017 

2 8.779 7 5.719 12 −0.467 17 −4.272 22 −6.944 

3 7.807 8 6.760 13 0.903 18 −9.525 23 −9.651 

4 5.699 9 6.998 14 0.557 19 −8.633 24 −10.074 

5 9.157 10 3.923 15 −4.167 20 −9.614 25 −7.815 

Letting h = 4, we can see that at times 10, 11, 12, 13, and 14, we observe 
htdh <<− )( . We find that for the immediately preceding time interval 

}9,,2,1{2 K=T  )(td  is positive for all 2t T∈  and that for the immediately 
subsequent time interval }25,,11,10{3 K=T  )(td  is negative for all 3t T∈ . Thus, 
the change period is { }10 [(10 1) / 2] 4,5,6,7,8T = − + = . 
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Here is a summary of the steps involved in detecting change periods in a time 
series { }tX : 
Step 1. Calculate the first difference time series { }tY , where 1−−= ttt XXY . 
Step 2. Transform the difference time series { }tY  into a fuzzy time series 

{ }( )tF Y  with iL  as its linguistic level, mi ,,2,1 L= . 
Step 3. Choose the weights of this fuzzy time series{ }( )tF Y  and calculate the 

corresponding fuzzy trend indicator series ( )IF t . 
Step 4. Construct the change period detection sequence of degree n  { }( )d t  

from the fuzzy trend indicator series ( )IF t . 
Step 5. Observe the change period detection sequence { }( )d t  and search for a 

time intervals that satisfy the conditions in Definition 2.4. These time 
intervals are the change periods. 

2.3 Detecting trends 

Detecting trends is of great importance in many applications of both practical and 
theoretical areas. The ability to recognize the beginnings and the ends of trends 
helps us to make correct decisions and take appropriate actions. In this paper, we 
propose an approach to detect trends using change period detection sequences. 
Before introducing this method, we define a trend in a time series. 

Definition 2.5 A trend 

Suppose that { }( )
t n

d t ∞

=
 is a change period detection sequence of degree n , if we 

can find an time interval { }1, , ,m m m nT t t t+ += L  at which )(td  is positive or zero 
for every Tt∈  and some Nnm ∈, , then { }1( ), ( ), , ( )m m m nX t X t X t+ +L  
(henceforth abbreviated )(TX ) is called an upward trend. Conversely, if we can 
find an time interval { }1, , ,m m m nT t t t+ += L  at which )(td  is negative or zero for 
every Tt∈  and some Nnm ∈, , then )(TX  is called a downward trend. 

Property 2.1 A trend must occur between two change periods. 

Proof: Suppose that { }( )
t n

d t ∞

=
 is a change period detection sequence of degree n  

and 1T  is a change period. Then, by Definition 2.4, there is an immediately 
preceding time interval 2T  at which )(td  takes the same sign for every 2Tt∈ . 
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Without loss of generality, we assume that )(td  is positive on 2T  and thus 2T  is 
an upward trend. There are only three possibilities for the sign of the next 
observation: positive, negative, or zero. If )(td  is also positive or zero at the next 
observation, then we can enlarge 2T  to include this observation and create a longer 
upward trend. If )(td  is negative at the next observation, the there be an h  and a 
time interval 3T  such that htdh <<− )(  on 3T . Clearly, 3T  immediately 
follows 2T  and by Definition 2.4 is a change period. Therefore an upward trend 
must occur between two change periods. The result for a downward trend is similar. 

Property 2.1 is an important result. It tells us that when we detect a change 
period in a time series, it is the end of a trend. 

3 Simulations 

Figure 2 illustrates time series generated from each of six models, with lengths 
ranging from 100 to 400. All error terms are standard normal. 
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Figure 2: Simulation data for models 1-6 

In transforming the difference time series { }tY  into the fuzzy time series, we 
choose the linguistic values set { }; 1, 2,3, 4,5iL i = ={fall sharply, fall, unchanged, 
rise, rise sharply}, and the membership function for model 1 to 6 are shown in 
Figures 3-8. 
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Figure 3: Membership function for model 1 

Figure 4: Membership function for model 2 

Figure 5: Membership function for model 3 
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Figure 6: Membership function for model 4 

Figure 7: Membership function for model 5 

Figure 8: Membership function for model 6 

In all models we set the fuzzy weights 1 2 5, , ,a a aK  at −2, −1, 0, 1, 2. The 
degree of the change period detection sequence and the h  in Definition 2.4 are set 
at 10 and 6. It is obvious that there is a clear change at 200t  and 201t  which are the 
end of an upward trend and the beginning of a downward trend. The change periods 
we found are expected to contain at least these two points. Following our proposed 
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method, we find the change period { }197 198 204, , ,T t t t= L  which contains 200t  and 

201t . We show the partial time series on T  in Figure 9, the twenty observations in 
the preceding and subsequent intervals are also included for a clearer visual grasp. 

Figure 9: Partial time series at times 177 to 224 in model 1 

In models 2, a change period is again detected at { }197 198 204, , ,T t t t= L  when 
6h = . Figure 10 shows X(177) to X(224) of model 2. 

Figure 10: Partial time series at times 177 to 224 in model 2 

In models 3 and 4, we set 15h =  and find a change period at 

{ }47 48 51, , ,T t t t= L . We show the results in Figures 11 and 12. 
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Figure 11: Partial time series at times 37 to 61 in model 3 

Figure 12: Partial time series at times 37 to 61 in model 4 

We can see from Figure 6 that there are many small change periods in model 5. 
A researcher can decide whether or not to treat these as noise just by controlling the 
degree of the change period detection sequence. Letting 6h = , we identify the 
change periods { }1 6 7 24, , ,T t t t= L , { }2 40 41 70, , ,T t t t= L , { }3 113 114 127, , ,T t t t= L , 

{ }4 198 199 201, , ,T t t t= L , { }5 209 210 215, , ,T t t t= L , { }6 260 261 286, , ,T t t t= L , 

{ }7 325 326 335, , ,T t t t= L , { }8 375 376 377, ,T t t t= , and { }9 391 392 393 394, , ,T t t t t=  in model 5. 
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Figure 13: Partial time series at change periods of model 5 

Similarly, setting 6h =  in model 6, we identify the change periods 

{ }1 119 120 137, , ,T t t t= L , { }2 140 141 149, , ,T t t t= L , { }3 160 161 213, , ,T t t t= L , 

{ }4 220 221 228, , ,T t t t= L , and { }5 326 327 341, , ,T t t t= L . 

Figure 14: Partial time series at change periods of model 6 

We change the data structure at 200t  and 201t  in models 1, 2, 5, and 6, and at 

50t  and 51t  in models 3 and 4. In each model, the change periods found by our 
approach accurately contain those points. As you can see in Figures 13 and 14, we 
can even filter the noise and still accurately identify change periods.  
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4 Empirical study 

To investigate an application of our approach, three sets of exchange rate data were 
chosen: exchange rates for EUR (Europe) against USD (USA), USD against CAD 
(Canada), and GBP (UK) against USD. We chose these three series because they 
exhibit different structures. We arbitrarily chose the starting point January 1, 2003, 
and ending point July 25, 2003. 

Each series contains 144 observations. Our goal is to detect change periods and 
to test the performance of our approach. Figures 15-17 illustrate the exchange rate 
series of EUR against USD, USD against CAD, and GBP against USD. 

Figure 15: The exchange rate of EUR against USD 

Figure 16: The exchange rate of USD against CAD 
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Figure 17: The exchange rate of GBP against USD 

As outlined in Section 2, for each series we first construct the first difference 
series. Then we transform the first difference series into a fuzzy time series with the 
linguistic values set { }; 1, 2,3, 4,5iL i = ={fall sharply, fall, unchanged, rise, rise 
sharply} and the membership functions shown in Figures 18-20. We set the fuzzy 
weights 1 2 5, , ,a a aK  at −3, −1, 0, 1, 3. The degree of the change period detection 
sequence and the h  in Definition 2.4 are set at 10 and 5. Figures 21-23 plot the 
partial time series used to identify the change periods. 

Figure 18: Membership function of the exchange rate of EUR against USD 
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Figure 19: Membership function of the exchange rate of USD against CAD 

Figure 20: Membership function of the exchange rate of GBP against USD 
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{ }5 95 96 106, , ,T t t t= L , { }6 112 113 125, , ,T t t t= L , and { }7 137 138 139, ,T t t t= . 
In the exchange rate series of GBP against USD, the change periods were 
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Figure 21: Partial time series at change periods of exchange rate of EUR/USD 

Figure 22: Partial time series at change periods of exchange rate of USD/CAD 

Figure 23: Partial time series at change periods of exchange rate of GBP/USD 
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Comparing Figures 15 and 21, Figures 16 and 22, and Figures 17 and 23, we 
can see that the results are satisfactory. The change periods that we detected in these 
three foreign exchange rates contains almost all the change periods that we visually 
recognize. Since the length of the series was selected arbitrarily, the performance of 
our approach shows that our proposed procedure can be applied in general models. 
Different scales of change periods can be obtained by adjusting the parameters of the 
procedure. 

5 Conclusion 

Economic and financial analysts often need to know when changes occur in a time 
series. In this research we formalize the concept of change periods in contrast with 
traditional change points as more realistic structural features of certain time series. 
We present an approach to detect change periods by partial cumulative sums of 
fuzzy statistics, allowing us to identify the beginnings and ends of trends. 

The application of fuzzy theory avoids the potential hazards of over fitting 
which might occur in traditional analysis with single observations. Through the use 
of fuzzy statistics, our proposed change period detection approach is able to 
systematically address fuzziness in the data. As a consequence, its results are more 
meaningful in practice. 

The key contribution of this paper is that we provide a new method to detect 
change periods. In comparison with conventional methods, our approach offers 
several advantages: 
(1) Initial knowledge about the structure in the data is not required, so we can 

take full advantage of the model-free approach. 
(2) We can select standards for change periods by controlling the parameters to 

detect change periods at the scale desired and filter noise in a time series. 
(3) The fuzzy data can be handled. 

Although the simulation and empirical results show that our approach of 
change period detection is visually satisfactory and can be generally applied, there 
remain several points to note and problems to be solved: 
(1) Because the change periods we consider are defined as intervals where trends 

change, the stationary part of a time series may be viewed as a change period. 
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(2) Future study should address sensitivity of its results to the parameter choice. 

References 

Adlassing, K. D., (1986), “Fuzzy Set Theory in Medical Diagnostics,” IEEE 
Transactions on Systems, Man and Cybernetics, 16, 260-264. 

Balke, N. S., (1993), “Detecting Level Shifts in Time Series,” Journal of Business 
and Economic Statistics, 11, 81-92. 

Barry, D. and J. A. Hartigan, (1993), “A Bayesian Analysis for Change Point 
Problems,” Journal of the American Statistics Association, 88, 309-319. 

Bleaney, M., (1990), “Some Comparisons of the Relative Power of Simple Tests for 
Structural Change in Regression Models,” Journal of Forecasting, 9, 437-444. 

Broemeling, L. D. and H. Tsurumi, (1987), Econometrics and Structural Change, 
New York, NY: Marcel Dekker Inc. 

Brown, R. L., J. Durbin and J. M. Evans, (1975) “Techniques for Testing the 
Constancy of Regression Relationships over Time,” Journal of the Royal 
Statistical Society B, 37, 149-163. 

Chow, G. C., (1960), “Tests of Equality between Sets of Coefficients in Two Linear 
Regressions,” Econometrica, 28, 591-605. 

Clymer, J. R., P. D. Corey and J. Gardner, (1992), “Discrete Event Fuzzy Airport 
Control,” IEEE Transactions on Systems, Man, and Cybernetics, 22, 343-351. 

Custem, B. V. and I. Gath, (1993), “Detection of Outliers and Robust Estimation 
Using Fuzzy Clustering,” Computational Statistics and Data Analysis, 15, 
47-61. 

Gupta, M. M., P. N. Nikiforuk, Y. Tsukamoto and R. Martin-Clouaire, (1982), “An 
Application of Fuzzy Integral to Medical Diagnosis,” Proceedings of IFAC 
Congress, New Dehli, 16-21. 

Hathaway, R. J. and J. C. Bezdek, (1993), “Switching Regression Models and Fuzzy 
Clustering,” IEEE Transactions on Fuzzy Systems, 1, 195-204. 

Hinkley, D. V., (1971), “Inference about the Change-Point from Cumulative Sum 
Tests,” Biometrika, 58, 509-523. 

Hsu, D. A., (1979), “Detecting Shifts of Parameter in Gamma Sequences with 
Applications to Stock Price and Air Traffic Flow Analysis,” Journal of the 



Trends and Change Periods Detection for Nonlinear Time Series 145 

American Statistical Association, 74, 31-40. 
Hsu, D. A., (1982), “A Bayesian Robust Detection of Shift in the Risk Structure of 

Stock Market Returns,” Journal of the American Statistical Association, 77, 
29-39. 

Inclan, C. and G. C. Tiao, (1994), “Use of Cumulative Sums of Squares for 
Retrospective Detection of Changes of Variance,” Journal of the American 
Statistical Association, 89, 913-923. 

Klir, G. F. and T. A. Folger, (1988), Fuzzy Sets, Uncertainty and Information, 
Englewood Cliffs, NJ: Prentice Hall. 

Lin, C. F. and T. Terasvirta, (1994), “Testing the Constancy of Regression 
Parameters against Continuous Structural Change,” Journal of Econometrics, 
62, 211-228. 

Nyblom, J., (1989), “Testing for the Constancy of Parameters Over Time,” Journal 
of the American Statistical Association, 84, 223-230. 

Page, E. S., (1955), “A Test for Change in a Parameter Occurring at an Unknown 
Point,” Biometrika, 42, 523-527. 

Ploberger, W., W. Kramer and K. Kontrus, (1989), “A New Test for Structural 
Stability in the Linear Regression Model,” Journal of Econometrics, 40, 
307-318. 

Sastri, T., B. Flores and J. Valdes, (1989), “Detecting Points of Change in Time 
Series,” Computers Open Research, 16, 271-293. 

Tsay, R. S., (1988), “Outliers, Level Shift, and Variance Changes in Time Series,” 
Journal of Forecasting, 7, 1-20. 

Worsley, K. J., (1986), “Confidence Regions and Tests for a Change-Point in a 
Sequence of Exponential Family Random Variables,” Biometrika, 73, 91-104. 

Wu, B. and M. Chen, (1999), “Use of Fuzzy Statistical Methods in Change Periods 
Detection,” Applied Mathematics and Computation, 99, 241-254. 

Yoshinari, Y., W. Pedrycz and K. Hirota, (1993), “Construction of Fuzzy Models 
through Clustering Techniques,” Fuzzy Sets and Systems, 54, 157-165. 

Zadeh, L. A., (1965), “Fuzzy Sets,” Information and Control, 8, 338-353. 


