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S taffing decisions are crucial for retailers since staffing levels affect store performance and labor-related expenses con-
stitute one of the largest components of retailers’ operating costs. With the goal of improving staffing decisions and

store performance, we develop a labor-planning framework using proprietary data from an apparel retail chain. First, we
propose a sales response function based on labor adequacy (the labor to traffic ratio) that exhibits variable elasticity of
substitution between traffic and labor. When compared to a frequently used function with constant elasticity of substitu-
tion, our proposed function exploits information content from data more effectively and better predicts sales under
extreme labor/traffic conditions. We use the validated sales response function to develop a data-driven staffing heuristic
that incorporates the prediction loss function and uses past traffic to predict optimal labor. In counterfactual experimenta-
tion, we show that profits achieved by our heuristic are within 0.5% of the optimal (attainable if perfect traffic information
was available) under stable traffic conditions, and within 2.5% of the optimal under extreme traffic variability. We
conclude by discussing implications of our findings for researchers and practitioners.
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1. Introduction

Effective management of store labor is important to
successful retail operations as store labor performs all
service-related tasks (e.g., check-out, returns, shop-
ping assistance) (Fisher et al. 2006), production-like
tasks (i.e., in-store logistics) (Fisher 2004, Ton 2009)
and labor costs are among the largest costs retailers
incur in day-to-day operations. The retail environ-
ment is characterized by volatile store traffic, which
complicates the process of determining staffing levels
and affects retailers’ ability to provide consistent ser-
vice quality. Therefore, the ability to match store labor
with incoming customer traffic in an efficient manner
is a critical driver of retailers’ store performance. In
this study, we explore the relationship among sales,
labor, and traffic. The exploration prompted develop-
ment of a heuristic that enables retailers to use cus-
tomer traffic patterns to determine their labor
requirements.
Traditional staffing practices in retailing are pri-

marily sales-driven and depend on store budget allo-
cation. A typical sales-based staffing rule is to match a

constant ratio of expected store sales to the number of
store associates [refer to Lam et al. (1998, p. 62) for a
detailed discussion of traditional staffing practices]. A
staffing policy primarily driven by sales, however,
ignores the fact that retail sales are also affected
(among other factors) by store traffic and might result
in labor-to-traffic-mismatches, which can have a nega-
tive impact on sales revenue (Netessine et al. 2010,
Perdikaki et al. 2012). Retailers cannot fully exploit
their sales potential if they follow such staffing poli-
cies because the scheduled labor may not be enough
to accommodate customer traffic flows. In addition,
latent shopper demand may be very different from
past sales, since past sales include only customers
who purchased and not those who had an intention to
purchase but left the store due to lack of sales associ-
ate assistance. The proportion of customers who typi-
cally leave a store because of poor service is not
negligible. Extensive interviews with American cus-
tomers reveal that “33% who experienced a problem
could not find sales help when they required assis-
tance. At the end of the day 6% of all shoppers are lost
due to lack of sales associate availability” (Baker

Please Cite this article in press as: Chuang, H. H.-C., et al. Traffic-Based Labor Planning in Retail Stores. Production and Operations Man-
agement (2015), doi: 10.1111/poms.12403

Vol. 0, No. 0, xxxx–xxxx 2015, pp. 1–18 DOI 10.1111/poms.12403
ISSN 1059-1478|EISSN 1937-5956|15|00|0001 © 2015 Production and Operations Management Society

info:doi/10.1111/poms.12403


Retail Initiative 2007, p. 3). Inevitably, such staffing
practices have negative short-term and long-term
implications for retail store performance.
Recently, retailers have been making better use of

information available at the store level to improve
traditional staffing practices. Specifically, retailers
invest heavily in different types of in-store technology
such as sales-tracking systems, workforce-planning
systems, and traffic-counting systems to ensure that
stores are staffed with the right number of sales asso-
ciates. Utilizing such technologies enables retailers to
generate traffic forecasts for their stores and consider
several store specific characteristics to determine the
aggregate labor hours required for each store. Even
though this approach is an improvement from tradi-
tional labor-planning practices that rely mainly on
sales forecasts, it has a strong focus on within-store
performance. Going beyond the focus on individual
stores, retailers could better leverage the information
available to them by also considering the performance
across different stores in their retail chains. In this
study, we present an approach that enables retailers
to derive aggregate labor requirements by utilizing
traffic data, point-of-sale (POS) data, and labor data
across stores with similar attributes (e.g., store format,
product mix, and market demographics). We show
that such an approach leads to robust performance
while identifying average differences across stores in
the chain.
We analyze proprietary data on labor, traffic, and

sales collected from 46 stores of a high-end women’s
apparel retailer. We investigate the apparel sector
because, unlike other retail settings (e.g., grocery
stores) that have a close to 100% conversion rate of
turning shoppers into buyers (Netessine et al. 2010),
apparel stores exhibit considerable heterogeneity in
conversion rates and thus staffing levels have a stron-
ger influence on converting traffic into sales (Perdi-
kaki et al. 2012). Our modeling effort focuses on panel
data to leverage the between-store variation in sales,
traffic, and labor in addition to the within-store tem-
poral variation used by existing staffing approaches
(e.g., Kabak et al. 2008, Lam et al. 1998). We develop
a sales response function with the appropriate charac-
teristics to make reliable staffing decisions and
demonstrate that the function has strong explanatory
power of sales variation. Using the estimated parame-
ters of the sales response function, we formulate a
profit-maximizing problem and propose a traffic-
based heuristic to help managers determine weekly
staffing levels. We assess the performance of the heu-
ristic’s staffing recommendations by performing
counterfactual experiments (Kydland and Prescott
1996), and find that the heuristic performs close to the
optimal based on the sales response function, and

generates higher profits than the observed staffing
levels.
While our study is not the first in the literature that

proposes a traffic-based labor-planning approach,
our study makes improvements in the following
dimensions. First, we formulate a sales response
function based on labor adequacy (the ratio of labor
to traffic) that exhibits the expected variable elasticity
of substitution between traffic and labor in the retail
space—while it might be easy to maintain a level of
sales by bringing in additional traffic to replace lost
labor when the staffing levels are adequate, increas-
ing store traffic should not have as high of an impact
when labor is already utilized to capacity. Second,
we employ panel estimation methods—widely used
fixed effects modeling as well as recently promoted
random effects modeling with Mundlak’s correction
(Bell and Jones 2015, Mundlak 1978)—that allow us
to leverage information available from the perfor-
mance across stores, as opposed to just the within-
store performance variability, resulting in much more
efficient and robust estimates for our sales function.
We show that our proposed sales response function
exploits the information content from the fit sample
more effectively and predicts sales under extreme
input conditions better than the function in related
literature. Furthermore, the proposed formulation
and estimation could potentially allow management
to isolate time-invariant store differences that affect
the stores’ ability to turn traffic into sales. Third, we
use the sales function to develop a data-driven staff-
ing heuristic that incorporates the prediction loss
function (Granger 1969, West 1996) and uses past
traffic to predict optimal labor, as opposed to
attempting to forecast volatile traffic. The optimal
labor prediction yields staffing levels that are com-
mensurate to other stores’ staffing levels as opposed
to levels that are just continuation trends of a store’s
current practices. In counterfactual experiments, we
show that the heuristic achieves profits that are
within 0.5% of the optimal (attainable if perfect traffic
information was available) under stable traffic condi-
tions and within 2.5% of the optimal under extreme
traffic variability.
The rest of this article is organized as follows. Sec-

tion 2 summarizes the relevant literature; Section 3
describes the research setting and the panel data used
for analysis. In section 4, we propose a sales response
function, discuss its theoretical properties, and pres-
ent estimation results of the function. In section 5, we
present a traffic-based staffing heuristic and in sec-
tion 6 we assess its performance and conduct sensitiv-
ity analyses. We conclude by discussing managerial
implications of our findings and potential extensions
of our work.
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2. Related Literature

Labor planning has been a traditional area of research
in operations management and a large body of litera-
ture has focused on mathematical modeling to facili-
tate labor-planning decisions. The emerging stream of
empirical research on retail labor management is pri-
marily motivated by Raman et al. (2001) who posit
that store labor is key to resolving execution issues
such as inventory record inaccuracy (DeHoratius and
Raman 2008) and phantom stockouts (Ton and
Raman 2010). Fisher et al. (2006) examine the impact
of execution issues on customer satisfaction and sales
and propose labor reallocation across stores to
enhance sales. Since experienced store associates are
usually more capable of executing prescribed tasks
correctly, one critical issue of retail labor management
is to reduce employee turnover and the associated
loss of accumulated experience (Cascio 2006). Ton
and Huckman (2008) find employee turnover is nega-
tively associated with profit margin and customer
service in a US retail chain. Because high employee
turnover is often caused by working overtime,
pressure, and fatigue, increasing staffing levels is an
effective way to relieve workload and enhance service
quality (Oliva and Sterman 2001). In addition to the
well-known effect of labor on service quality, Ton
(2009) finds that increasing the amount of labor leads
to profit increases through labor effects on confor-
mance quality and Chuang and Oliva (2015) find a
positive impact of staffing levels and labor-mix on
inventory data quality. Netessine et al. (2010) exam-
ine the impact of labor planning and labor execution
on store performance and find that matching store
labor to traffic is associated with greater basket val-
ues. Their study, which does not possess actual traffic
data but uses monthly data on the number of transac-
tions as a proxy for traffic, suggests that better labor
planning and execution would lead to superior store
performance. Our study is different from the above
descriptive body of literature in its research question
and data. We study labor together with actual store
traffic to develop a traffic-based labor-planning heu-
ristic for retail environments.
While the impact of labor on retail performance

has been extensively analyzed in the aforementioned
studies, traffic has been comparatively understudied
because of the difficulty to measure and record actual
store traffic. Few studies obtain actual traffic data to
assess the effect of traffic and labor on store perfor-
mance (Perdikaki et al. 2012) and utilize such data
to improve/support store labor-planning decisions
(Kabak et al. 2008, Lam et al. 1998, Mani et al. 2015).
Lam et al. (1998) propose a sales response function-
relating store sales to traffic and labor and use traffic
forecasts to plan labor in a single store. Kabak et al.

(2008) adopt Lam et al.’s function to determine
hourly staffing requirements, which are used as
inputs of a mixed integer program to optimize daily
shifts. Our study differs from Kabak et al. (2008) in
that their staffing requirements are based on fore-
casted sales revenue as opposed to store traffic. In
addition, while Kabak et al. (2008) focus on optimiz-
ing the hourly labor plan, given the sales forecast,
our goal is to develop a methodology that effectively
uses traffic information to perform weekly labor allo-
cation. Mani et al. (2015) provide a methodology that
identifies the extent of understaffing in retail stores
and its impact on sales and profitability. Our study is
different from Mani et al.’s (2015) in the following
dimensions. Mani et al.’s (2015) objective is to
develop a methodology to assist labor planning by
identifying periods during the day where overstaf-
fing and understaffing occur. We, on the other hand,
view planning at a higher level and are interested in
determining the aggregate requirements of labor
hours at a store on a weekly level. Moreover, the opti-
mal staffing rule proposed by Mani et al. (2015) is
technically more complicated in that it requires
imputation of unobserved labor costs. Although
econometricians do not typically have access to
employee wages, store managers have labor cost
information when making their staffing decisions.
Thus, our heuristic, which does not require labor cost
imputation, is easier for retailers to implement.
Finally, Perdikaki et al. (2012) empirically examine
how traffic and labor affect store performance. They
find that sales exhibit diminishing returns to scale
with respect to traffic; labor moderates the impact of
traffic on sales; and conversion rate declines with
increasing traffic. Our objective differs from Perdi-
kaki et al.’s (2012) in that we are interested in provid-
ing a framework to support store labor-planning
decisions. To that end, we propose and assess the
performance of a simple heuristic using counterfactual
experimentation.
Our study is closest to Lam et al. (1998) who pro-

pose a traffic-based labor-planning methodology
based on traffic forecast. We improve on their paper
in three important ways. First, we develop a formula-
tion and estimation method that allows us to leverage
information across multiple stores and utilize the per-
formance variability across stores. Second, our sales
response function is based on labor adequacy (the
ratio of labor to traffic) and exhibits variable elasticity
of substitution between traffic and labor. From an
information theory perspective, our sales response
function exploits the information content from the fit
sample more effectively than Lam et al.’s. Finally,
unlike Lam et al.’s (1998) labor-planning approach
that relies on traffic forecast, we propose an approach
that exploits only past traffic information and still
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performs within 2.5% of the optimal even under
extreme traffic conditions.

3. Research Setting and Data
Description

Our research site is a large US retail chain that special-
izes in women’s high-end fashion apparel. As of 2013,
the retailer had more than 200 stores located in the
United States, the District of Columbia, Puerto Rico,
the U.S. Virgin Islands, and Canada. The retailer’s
stores are located mainly in shopping centers and
malls.
The retailer had installed customer traffic counters

in 60 of its US stores during our study period. Those
traffic counters were purchased from a company that
develops advanced traffic counting systems and
guarantees a very high percentage of performance
accuracy. This technology has several capabilities
such as counting groups of people; distinguishing
between incoming and outgoing customer traffic; and
differentiating between adults and children, while not
counting shopping carts or strollers. This traffic
counting system also responds well to different levels
of light in the store and can prevent certain types of
counting errors such as customers entering but imme-
diately exiting the store.
We obtained the following daily data for the retailer

over a whole calendar year (52 weeks): (i) store sales
volume (total revenue in $), (ii) labor data (employee
hours), and (iii) traffic data (total number of custom-
ers). The stores were open 7 days a week and their
operating hours were different among locations and
days of the week, for example, weekends and week-
days. Out of 60 stores, there were nine stores for
which we did not have traffic information for the
entire 52 weeks. Those stores had either opened later
during that year or had not installed traffic counters
at the beginning of the year. Moreover, there were five
stores that were in malls that did not have a working
website so we could not obtain their operating hours.
Thus, we restricted our analysis to the remaining 46
stores for which we could obtain complete informa-
tion with respect to our variables of interest.
The retailer uses a proprietary labor-planning sys-

tem to perform in-store labor allocation. The tool is
run centrally (i.e., at corporate headquarters), and
provides weekly labor requirements to store manag-
ers who use this information as an input to make
more detailed staffing scheduling decisions (i.e., day-
by-day and hour-by-hour), taking different con-
straints into account such as employees’ preferred
schedules and vacations.
While the data were available on a daily basis, we

analyzed weekly labor capacity following Oliva and

Sterman (2001) and Siebert and Zubanov (2010).
Although we also check the effectiveness of our
analysis based on a daily data aggregation (see sub-
section 4.3), several structural elements better justify
the weekly data aggregation. First, the weekly aggre-
gation is consistent with staffing planning practices in
the apparel retail sector that determines weekly
capacity requirements and later decides on day-to-
day scheduling decisions (Pastor and Olivella 2008).
Second, this approach is also consistent with this
retailer’s labor planning practices. Weekly labor
requirements are provided as a recommendation to
local store managers by the centralized labor-plan-
ning system, while detailed workforce scheduling
decisions (e.g., day-by-day, hour-by-hour) are more
appropriate for local store managers who have better
knowledge about constraints pertaining to local con-
tracts and labor availability. Finally, the fraction of a
store’s weekly traffic that occurs in any given day of
the week does not vary much for each store (e.g., 15%
of the week’s traffic occurs on Friday, 10% on Mon-
days, etc.) and explains 70% of the variation of sales
within a week, making the translation from weekly
labor requirements to daily requirements a simple
exercise, again, best informed by the local store
constraints.
As discussed earlier, the stores’ operating hours

were different among locations and days of the week.
To avoid any potential spurious correlation that could
arise due to systematic differences in stores’ business
hours, we normalized our variables. Specifically, we
divided weekly sales, weekly traffic, and weekly
labor by the regular business hours of each store on
each week to obtain average sales per hour, average
traffic per hour, and average labor hours per hour for
each store on each week. This approach has been
adopted by prior literature in similar contexts (e.g.,
Perdikaki et al. 2012). We report the summary statis-
tics, pairwise Pearson correlations, and within- and
between-store variance of the normalized variables
and the labor adequacy—(/ = L/N) see the following
section—calculated from the normalized variables
traffic (N) and labor (L) in Table 1. To test the validity
of our analysis, we split the data set of 46 stores
into a fit sample (weeks 1–40) and a test sample (weeks
41–52).

4. Sales Response Function

We formulate a sales response function that is
grounded on production theory to capture the
dynamics of labor, traffic, and sales revenue in our
setting. After discussing the rationale of the proposed
function, we present the estimation results of the
function using the store-level data described above.
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4.1. Formulation
Following previous studies (e.g., Kabak et al. 2008,
Lam et al. 1998, Mani et al. 2015) that use a produc-
tion function approach to capture sales generation in
apparel retail stores, we model sales as a production
function with two factors—traffic (N) and labor (L).
However, we revised this frequently used production
function to address two issues unique to our
approach. First, we wanted to develop a formulation
that would allow us to leverage the information
across multiple stores (i.e., panel estimation), a salient
possibility since the retailer has centralized capacity
planning. As reported in Table 1, the variance
between stores is much greater than the variance
within stores for all our relevant variables. We
believe there is valuable information in that variance.
The reason why we decided to use panel data to esti-
mate the model parameters, as opposed to using data
from one store at a time, is due to the benefits that
are associated with panel data analysis vis-�a-vis a
time-series analysis, among them: panel data models
(i) can control for individual heterogeneity; (ii) incor-
porate more data, that is, more variability, that
results in less collinearity among variables, more
degrees of freedom, and higher efficiency of esti-
mates; and (iii) are able to identify and measure
effects that are simply not detectable in pure-cross-
section or pure time-series data (Baltagi 2001, Hsiao
2003, Klevmarken 1989).
The second concern that we had in developing a

formulation of the sales response function was the
intended use that we had for it, namely, the estima-
tion of store labor requirements in ranges that might
be outside of the observed sample for each store.
While the papers cited above have used the estimated
response function outside of the sample range, we
believe that the formulation has characteristics that

may make this extrapolation unreliable. Specifically,
the sales response function to traffic and labor origi-
nally proposed by Lam et al. (1998) is

S ¼ aNb1eb2=L; ð1Þ
where N, L, and S represent traffic, labor, and sales.
Here, the estimated parameters a, b1, and b2 deter-
mine the store sales potential, the sales elasticity of
traffic, and the response of sales to labor (b2 < 0
when sales is an increasing function of labor),
respectively. The formulation has the appropriate
upper limit in the contribution of labor—the log-
reciprocal model specification (Lilien et al. 1995)—
and it is fully scalable to traffic and inherent store
potential. Furthermore, the specification is easy to
estimate using a simple log transformation of the
data.
The formulation, however, assumes a constant elas-

ticity of substitution between labor and traffic. The
elasticity of substitution measures how easy it is to
substitute one input for another. For equation (1), the
elasticity of substitution is given by

r ¼ d lnðN=LÞ
d ln jTRSj ¼

d lnðN=LÞ
d ln j � @S=@L

@S=@N j
¼ 1

2
;

where TRS is the technical rate of substitution (Var-
ian 1992). An elasticity less than one indicates that,
as we would expect, the two inputs are gross com-
plements, that is, it is not possible to fully make up
for lost traffic by adding extra labor. However, the
assumption that this rate of substitution is constant
seems problematic to us. While it might be easy to
maintain a level of sales by bringing in additional
traffic to replace lost labor when the staffing levels
are adequate to provide the required services,

Table 1 Summary Statistics and Correlation Coefficients of the Normalized Variables

N Mean SD Minimum Maximum 1 2 3 4

1. Labor
Overall 2392 5.37 1.62 2.57 14.14 1.00
Between 46 1.44
Within 52 0.77

2. Traffic
Overall 2392 67.84 29.84 13.91 280.89 0.68*** 1.00
Between 46 23.70
Within 52 18.46

3. Sales
Overall 2392 865.65 439.12 162.27 3530.25 0.83*** 0.79*** 1.00
Between 46 381.92
Within 52 223.78

4. Labor adequacy
Overall 2392 0.09 0.027 0.016 0.245 0.00 �0.63*** �0.25*** 1.00
Between 46 0.021
Within 52 0.018

***p < 0.001.
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increasing store traffic should not have as high of an
impact when labor is already utilized to capacity.
That is, the substitutability between the two inputs
should be contingent on the current balance
between the inputs.
To address this issue, we adopt a formulation

that assumes that the output and elasticity of substi-
tution are a function of the ratios of input factors
(Karagiannis et al. 2005, Revankar 1971). Specifically,
we posit that the labor-to-traffic ratio (/ = L/N)
constitutes labor adequacy and drives sales genera-
tion. In other words, what matters is not labor
available per se, but how labor compares to store
traffic. While / will normally take small values—in
many store formats customers can find merchandize
without the support of a sales representative—for-
mulating the ratio as L/N makes it an increasing
function of labor. Using the log-reciprocal specifica-
tion (Lilien et al. 1995) to capture the saturation
effects on this ratio, the sales response function is
specified as:

S ¼ aNbec=/ ¼ aNbecN=L; ð2Þ

where the parameters a, b, and c determine the store
sales potential, the sales elasticity to traffic
(0 < b < 1), and the response of sales to the labor
adequacy (L/N) (c < 0 when sales is an increasing
function of labor). This functional form captures
several relationships among store sales, store traffic,
and labor supported by theoretical and empirical
literature. According to queuing theory, we can
reasonably expect that as the number of salespeople
increases, fewer customers will leave without being
served, and this will result in an increase in sales. In
addition, it has been observed in retail settings that
the relationship between traffic and sales is given by
an increasing concave function (e.g., Perdikaki et al.
2012). Moreover, theoretical literature in service
operations assumes that the relationship between
revenue and labor increases at a diminishing rate
(Hopp et al. 2007). This assumption has also been
supported by empirical literature (e.g., Perdikaki
et al. 2012) that finds that staffing levels increase
sales at a diminishing rate.
The functional form is grounded on the general-

ized power production function that subsumes the
well-known Cobb–Douglas function and the tran-
scendental function used by previous studies on
apparel retail staffing (Kabak et al. 2008, Lam et al.
1998, Mani et al. 2015). The generalized power pro-
duction function is flexible in that it does not require
constant elasticity of substitution (Janvry 1972) and
shows the variable elasticity of substitution that we
anticipate. The elasticity of substitution of equa-
tion (2) is

r ¼ d lnðN=LÞ
d ln jTRSj ¼

d lnðN=LÞ
d ln j � @S=@L

@S=@N j
¼ LbþNc

2LbþNc
¼ /bþ c

2/bþ c
:

Since c < 0, the elasticity of substitution of this pro-
duction function is lower than the one for Lam et al.’s
(1998), that is, it has an upper limit of 1/2 when the
labor adequacy is high.1 More importantly, the elas-
ticity of substitution is increasing in / (dr/d/ > 0),
suggesting that for the expected operating range
/ < 1 it is more difficult to replace traffic with labor
when the two inputs are out of balance. Such behav-
iors are expected when even more customers arrived
in a situation where labor was already working at
capacity.
The sales function (2) can be linearized on the

inputs by taking the natural log:

lnðSÞ ¼ lnðaÞ þ b lnðNÞ þ c=/: ð3Þ
We turn the above function into an empirically esti-

mable fixed effects model (Wooldridge 2010) for store
i at period t, in which Di are store dummies that
denote time-invariant store characteristics such as
store location and store size among others.

lnðSitÞ ¼ b0 þ b1 lnðNitÞ þ b2
1

/it

þDi þ �it: ð4Þ

We propose a fixed effects model, as opposed to a
random effects model, as we believe that each store in
our sample will be different in a unique way, not con-
trolling for store characteristics will produce biased
estimates of the coefficients.
We can employ the estimated coefficients to recover

structural parameters a, b, and c. Using equations (3)
and (4), we obtain the following relationships after
dropping the random noise �it:

ai ¼ eb0þDi ; b ¼ b1; c ¼ b2:

The above specification provides estimates for traf-
fic elasticity (b) and the response to labor adequacy
(c) that takes into account all the available data (across
stores and weeks), thus providing more efficient and
reliable estimates for the interaction parameters. The
fixed effects estimate (ai) accounts for the fact that
stores differ in some intrinsic aspects such as location,
demographics, or store size, and capture the ability to
monetize the interactions between traffic and labor.
Since our model includes store dummies to capture
all time-invariant aspects of a particular store, addi-
tional time-invariant controls would be dropped from
the model for being collinear to the store dummies.
While a more detailed breakdown of the impact of
time-invariant effects might be desired for designing
improvement strategies, the breakdown is not
required for staff planning purposes. Finally, the
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specification in equation (4) can easily be expanded to
include heterogeneity in the labor force and traffic, or
to capture time variant effects by adding dummies
(e.g., promotions, sales periods, etc.). Appendix A
provides the specification assuming labor with two
different productivity levels.

4.2. Sales Function Estimation
Using the fit sample (weeks 1–40), we adopted fixed
effects modeling and include 45 dummy variables to
estimate (4) (in which the base store has Di = 0)
(Cameron and Trivedi 2010). To account for AR(1)
serial correlation (p < 0.001 based on a Wooldridge
autocorrelation test for panel data), heteroskedasticity
(p < 0.001 based on a modified Wald test for group-
wise heteroskedasticity), and cross-sectional depen-
dence (p < 0.001 based on three different tests for
cross-sectional independence), we adopted Driscoll
and Kraay standard errors, which are robust to all
three issues listed above (Hoechle 2007).
Another issue that needed to be addressed was the

potential endogeneity between contemporaneous
labor and sales. In a simple regression of sales and
labor the coefficient of labor could be endogenously
biased as (i) labor could be planned based on
expected future demand, and (ii) managers could
potentially observe sales and change labor accord-
ingly. However, three separate reasons led us to
believe that the endogeneity bias was mitigated in our
setting. First, the fact that we use actual labor instead
of planned labor should mitigate the endogeneity bias
as actual labor is expected to randomly vary from
planned labor due to unanticipated absenteeism. Sec-
ond, controlling for traffic should also mitigate the
endogeneity bias between sales and labor since actual
traffic can control for unobserved events such as pro-
motional periods when retailers would tend to sche-
dule more labor (Perdikaki et al. 2012 have also used
this approach). Finally, interviews revealed that stores
plan labor based on expected traffic and that the sales
associates were typically informed of their schedules
a week ahead of time. As a result, the retailer does not
change its staffing plans later in the week based on
sales observed in the early part of the week, thus
reducing the possibility of reverse causality. To verify
our assumption, we ran the C-statistic endogeneity
test, which is superior to the Hausman endogeneity
test as it does not require conditional homoscedastic-
ity (Baum et al. 2003), and the Davidson-MacKinnon
test (Cameron and Trivedi 2005). We found that the
null hypothesis of exogeneity is not rejected in either
test (p = 0.85 and 0.65 respectively). Finally, as a
robustness check, we conservatively assumed that the
endogeneity bias was present and used the first and
fourth lags of labor as instruments—lagged labor has
been used in previous studies as a valid instrument

(e.g., Perdikaki et al. 2012, Siebert and Zubanov 2010,
Tan and Netessine 2014)—and found that the instru-
mentation makes little difference to the estimates.
Model I in Table 2 shows parameter estimates from

equation (4) and their corresponding robust standard
errors. Model Ia shows the estimation with the instru-
mental variables. We also checked the variance-infla-
tion-factors (VIFs) and find no severe multicollinearity
using VIF > 10 as a cutoff point (Mela and Kopalle
2002).
The regression and all parameters are highly signifi-

cant, and all estimated parameters have the expected
sign and magnitude. Although simple, the proposed
function is able to capture sales variation well without
any additional controls. The high R2 (0.90), as well as
the small root mean squared error (RMSE = 0.145),
provide strong evidence that the function captures
salient features of store operations and helps us build
confidence in using the formulation for further analy-
sis. Furthermore, 74% of the explained variance is due
to the variance of the fixed effect estimates, suggesting
that the model does an adequate job of capturing the
within-store variance over time. As a way to further
assess our proposed functional form from an informa-
tion theory perspective, we introduced Mundlak’s cor-
rection (Mundlak 1978) that allows the use of random
effects methods to estimate the model. Given a prop-
erly specified model, Mundlak’s correction does not
affect the parameter estimates of the fixed effect model
nor the predicted outcomes. Mundlak’s correction,
however, permits the model to be estimated through
maximum likelihood estimation (MLE) and generates
robust estimates that are more efficient than fixed
effect estimates (Bell and Jones 2015). Mundlak’s cor-
rection incorporates store-specific means of all time-
variant regressors as extra controls, (i.e., lnðNiÞ and
/�1
i ), thus our sales response function becomes:

lnðSitÞ¼ aiþb1 lnðNitÞþb2
1

/it

þb3lnðNiÞþb4/
�1
i

þ �it;

ð5Þ

where ai is a store-specific intercept and assumed to
be uncorrelated with other variables. Model II in
Table 2 shows the parameter estimates and standard
errors. Note that the estimates of b1 and b2 are identi-
cal to the FE estimates, but they are more efficient
(standard errors are cut by one-third). The estimates
of the coefficients for the means of traffic and labor
adequacy have the expected signs, that is, the same
sign as the time-variant effects, and are significant.
As a result of these additional controls, the estimated
error variance due to store fixed effects is reduced to
52%. Finally, predicted sales from Models I and II
are identical—the maximum difference between pre-
dictions is within the computer rounding error, that
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is, 1e-14. For prediction and analysis purposes we
use Model I in the rest of the manuscript.
Figure 1 plots the estimated response (with 95%

confidence interval) for the range covering the lower
99% of the traffic and labor adequacy values
observed in our sample. The left panel shows the
diminishing returns to traffic that we expect from
stores being increasingly crowded (dashed line is
N and is provided as reference). The right panel
shows the saturation effect of labor adequacy beyond
the point where the store is staffed to a level where
each employee sees an average of five customers per
hour (1// = 5).

Finally, the distribution of the store potentials (ai)
under Model II has a mean of 5.620 and a standard
deviation of 0.858. The distribution is fairly compact
(range [3.994, 7.242]) and we found no evidence to
reject that it was normally distributed (p = 0.378
Shapiro–Wilk W test). It should be noted that, having
controlled for average traffic and labor adequacy,
these ai isolate all the stores’ time-invariant factors
that affect profitability. It could be possible to perform
detailed analyses of the drivers of the stores’ abilities
to monetize traffic and labor by treating ai as depen-
dent variables on regressions with hypothesized fac-
tors (e.g., store demographics, store size, competition,

Table 2 Panel Data Estimates of the Sales Response Function

Model I (FE) Model Ia (IV) Model II (RE) Model III (FE) Model IV (RE)

b0 3.656*** 3.604*** 1.715*** 5.424*** 7.202***
(0.168) (0.128) (0.278) (0.277) (0.502)

b1 (N) 0.813*** 0.831*** 0.813*** 0.391*** 0.391***
(0.046) (0.038) (0.031) (0.058) (0.023)

b2 (Ours) (1//) �0.031*** �0.031*** �0.031***
(0.003) (0.003) (0.002)

b2 (Lam et al.) (1/L) �2.047*** �2.047***
(0.336) (0.145)

b3 (�N) 0.693*** �0.190**
(0.091) (0.098)

b4 (Ours) (1=/) �0.072***
(0.012)

b4 (Lam et al.) (1=L) �4.817***
(0.664)

q 0.74 0.80 0.52 0.73 0.45
F statistic 108.87*** 36.87*** NA 90.13*** NA
v2 statistic NA NA 696.78*** NA 647.39***
Log-likelihood NA NA 854.77 NA 830.08
R2 0.90 0.94 0.90 0.90 0.90
No. of Observations 1840 1656 1840 1840 1840

Model I shows the fixed effects estimates of our model. Model Ia treats labor as endogenous variable and shows the estimates of our model using the
first and fourth lags of labor as instruments. Model II shows the Mundlak’s correction estimates of our model. Models III and IV show the fixed effects
and Mundlak’s correction estimates of the Lam et al.’s model.
Standard errors are in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels respectively. q is the share of estimated
error variance accounted for by fixed effects.

Figure 1 Estimated Response to Traffic and Labor Adequacy (95% CI)
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location). Such an analysis, however, is beyond the
scope of this study.

4.3. Assessment of Sales Function
To assess the robustness of the estimated sales func-
tion, we used it to predict the realized sales in our test
sample (weeks 41–52) while making smearing correc-
tion (Duan 1983) to account for errors incurred by
directly exponentiating predicted ln(Sit). Despite the
fact that the test sample included significantly higher
traffic periods (see discussion in subsection 6.1 and
Figure 5), the function had a solid out-of-sample per-
formance explaining 82.4% of the realized sales across
the 46 stores and with only a 0.140 Mean Absolute
Percent Error (MAPE).
To illustrate the benefits of panel estimation, we

compared the performance of our estimated sales
function to the store-by-store estimation of the Lam
et al.’s (1998) formulation employed by Mani et al.
(2015). In addition to the structural components in
equation (1), we added time series components to
account for the sales autocorrelation used by Lam
et al. (1998)—see Appendix B for details. Two of the
stores yielded unrealistic parameter values (b1 < 0 or
b2 > 0), suggesting a specification error, and they
were excluded from our comparison sample. For the
remaining 44 stores, the average R2 per store was 0.70
with a standard deviation of 0.11. Considering all of
the available estimates across all stores (n = 1760), the
store-by-store estimation explained 96% of the
observed sales variance (the squared correlation
between actual and predicted sales). While these
numbers compare well to the variance explained by
our sales function (90% overall, of which 74% is
explained by the store fixed effects), this marginal
increase in R2 comes at a very high loss of estimation
efficiency. Whereas store-by-store estimation with
local information required 312 parameters for 44
stores, our model only required 48 parameters for 46
stores.
When using the full panel data to estimate the Lam

et al.’s (1998) specification, the elasticity estimates are
significant and have the expected signs and magni-
tudes (Model III and IV in Table 2 report the FE and
Mundlak’s correction estimates of the Lam et al.’s for-
mulation). Furthermore, the model’s ability to explain
sales is not significantly different than that of our pro-
posed formulation within the fit sample (weeks 1–40)
(F = 0.960 and p = 0.193 for H0: Difference of In-Sam-
ple Fit = 0), nor within the test sample (weeks 41–52)
(t = 0.048 and p = 0.962 for H0: Difference of
MSE = 0). However, assessment of the two functional
forms from an information theory perspective, the
established paradigm for model selection (Burnham
and Anderson 2002), reveals some differences.
According to Burnham and Anderson (2002), when

selecting among model specifications/functional
forms one should select the model with the highest
information content. We use the Akaike Information
Criterion (AIC)—2k � 2ln(L), where k is number of
parameters in a model and ln(L) is its log likelihood—
to assess the model’s ability to exploit information
content from the fit sample. Model II and Model IV
have AICs of �1695.55 and �1646.17, respectively,
indicating that model II makes better use of the infor-
mation content (lower AIC) and that the relative prob-
ability of Model IV minimizing the (estimated)
information loss is virtually zero (exp((AICII � AICIV)/
2) (Burnham and Anderson 2002). We speculate that
this difference in information content is in part
reflected in the coefficient for the means for traffic (b3)
having an opposite sign to the traffic elasticity (b1),
suggesting that Lam et al.’s functional form is too sen-
sitive to changes in traffic for this data set.
As discussed in the previous section, the two mod-

els differ on the assumed elasticity of substitution
between production factors, that is, labor and traffic.
Figure 2 plots the isoquants of the two functions as
estimated using the full panel structure for the med-
ian sales ($742) in the base case store. Our formulation
(solid line) shows a lower elasticity of substitution,
and indicates that higher levels of staffing would be
required to maintain the same levels of sales through-
out the range of observed traffic. While these isoqu-
ants represent the inputs required to achieve the
median sales data observed in our sample, the two
functions are indistinguishable in the regions close to

Model III

Model I

20 40 60 80 100
N

4

6

8

10

L

Figure 2 Isoquant for Median Sales on Base Case Store

Notes. Curves estimated from the parameters of Models I and III in
Table 2, for a sales level of $742/week
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the medians of the fit sample. The functions, however,
differ when either labor or traffic is relatively low.
As a final test, we estimated our model using data

aggregated daily (as opposed to weekly). The model
is still capable of explaining 78.6% of the daily sales
variance, and does so with parameter estimates that
are significant (p < 0.001) and all have the signs and
magnitudes similar to the values estimated from the
weekly data.

5. Traffic-Based Staffing Heuristic

The estimated sales response function in subsec-
tion 4.2 provides a basis for our staffing heuristic. We
treat other decisions (e.g., inventory selection, service
levels, advertising) as given, and focus exclusively on
labor and its impact on sales revenue by formulating
an optimization problem in which labor (Lit) is the
decision variable. Consistent with prior literature
(Lam et al. 1998, Mani et al. 2015), we assume that
managers aim to maximize profit under constant mar-
ginal cost of labor. Even though these are common
assumptions made in the literature, we acknowledge
that store managers may actually take additional fac-
tors into account, yet we are not aware of the exact
model they use to make their labor-planning deci-
sions. Our profit function is the difference of sales
times the gross margin, minus the labor cost:

Max
Lit

pðLitÞ¼dSit�xLit¼daiN
b
itexpðcNit=LitÞ�xLit; ð6Þ

where d is the gross margin (%) and x is the hourly
labor cost ($/hour/employee).
A closed-form optimal solution for Lit is obtained

by solving the first-order condition of equation (6):

L�it ¼ arg max
Lit

pðLitÞ ¼ cNit

2W

�
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� cN1�b

it
x

dai

r �
;

ð7Þ

where W(�) is the Lambert W function—the inverse
function of f(x) = xex (Abramowitz and Stegun 1965)
(i.e., W(x)eW(x) = x). While the closed-form L�it is
valid under the constraint that the input to W(�) has
to be greater than or equal to �e�1, that constraint is
satisfied for our range of observed Nit and parame-
ter estimates.
The profit function is concave in labor (Lit), i.e.,

@2pðLitÞ
@L2it

¼ dN1þb
it ac expðcNit

Lit
Þð2Lit þ cNitÞ

L4it
\0;

if Lit/Nit > �c/2, that is, if labor adequacy (/it)
meets a minimum staffing requirement of �c/2. The
minimum Nit in our sample is 13 customers/hour,
assuming the minimum possible staffing level

(Lit ¼ 1) results in /it = 0.077, which is far above the
estimated �c/2 = 0.016. Thus, the profit function is
concave for our operating range.
The optimal labor L�it derived in equation (7), how-

ever, requires full information about the incoming traf-
fic Nit for the relevant period, which managers clearly
do not have at the time of the staffing decision, and
thus they have to rely on traffic forecasts. To assess the
effect of forecasting errors on the staffing expression
above, we measure the impact of deviations of labor
from the optimal staffing level as r ¼ pðL0itÞ=pðL�itÞ, the
ratio of profits from an arbitrary labor plan L0it to opti-
mal profits. Figure 3 illustrates the impact of subopti-
mal staffing levels on r for fixed values of (Nit, a, c, d,
x) and different levels of traffic elasticity b. Figure 3
shows that the drop in profitability is more responsive
to understaffing (L0it=L

�
it\1) than overstaffing

(L0it=L
�
it[ 1). This asymmetry in the response to staff-

ing deviations is due to the fact that while labor costs
increase linearly with Lit, sales rise at a slower rate
when Lit increases (i.e., decreasing returns to scale).
Note also that the negative impact of understaffing is
more substantial when traffic elasticity is low (b = 0.7)
and store sales generation relies more on labor.
Given that deviations in L�it have an asymmetric

impact on profitability, using traffic forecasting to
identify labor requirements may result in suboptimal
staffing levels as most forecasting methods rely on
minimizing mean squared errors (MSE), and indi-
rectly imply symmetric consequences of over- and
under-forecasting (Granger 1969). This problem is
generally described in the literature as predictions
with loss functions (see Lee 2008 for a review of the
literature), and it has been shown that when a particu-
lar criterion (e.g., utility, monetary value) will be used
to evaluate economic decisions driven by the fore-
casts, then it should also be used at the estimation
stage of the modeling process (Gonzalez-Rivera et al.
2007, West 1996). In our case, since we have a clear
mechanism—profit function in (6)—to assess the cost

Figure 3 Impact of Suboptimal Staffing on Profit

Notes. Graph calculated assuming Nit = 100, a = 38.70, c = �0.03,
d = 0.48, and x = 15.
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of a wrong forecast (the departure from optimal prof-
its based on the suboptimal staffing level), it is justifi-
able (even desirable) to use readily observed data to
predict optimal labor that is directly deducted from
the decision criterion (Equation 6). Since sales are a
function of traffic as well as the interaction between
traffic and labor, the optimal staffing level is an
increasing-concave function of traffic, and, as argued
in Section 3, temporal traffic variations do not contain
as much variability as the variability across stores,
our conjecture is that the optimal staffing should
reflect past traffic flows at a store, that is,
L�it ¼ fðNi;t�pÞ. Furthermore, if instead of using indi-
vidual traffic patterns for each store we utilize traffic
data across stores, we can empirically identify the
structural relationships between historical traffic and
optimal labor, and devise a labor plan L̂it that is near-
optimal and depends on readily observed traffic (Ni,t-p).
This process results in an estimation that minimizes the
departure from optimal profitability while explicitly con-
sidering the asymmetric response of profit to departures
from optimal staffing levels, that is, the loss function.
To test our conjecture that the optimal staffing level

can be estimated with historical traffic, we first calcu-
late L�it by substituting into equation (7) the estimated
parameters a, b, and c (Model I in Table 2), the
reported gross margin of the retailer for this period,
d = 0.48 (U.S. Securities and Exchange Commission
2008), and the observed Nit from the fit sample (i.e.,
weeks 1–40). Since we did not have access to the
hourly labor cost x for the retailer to illustrate our
heuristic, we assign a value (x = 15) based on industry
statistical data from the U.S. Department of Labor and
the National Retail Foundation (Bureau of Labor Statis-
tics 2013). We later test our heuristic’s sensitivity to
variations in the hourly labor cost (see subsection 6.2).
Since L�it in equation (7) is a nonlinear function of

Nit, we specify a log–log model to estimate the rela-
tionship between L�it and Nit:

lnðL�itðx ¼ 15; d ¼ 0:48ÞÞ
¼ h0 þ

X
p
hp lnðNi;t�pÞ þ di þ �it:

ð8Þ

The idea of equation (8) is to empirically character-
ize optimal labor L�it as the sum of store-specific base
levels (i.e., h0 + di) and a traffic-based adjustment (i.e.,P

p hp logðNi;t�pÞ) according to information up to the
last p weeks. Estimating (8) enables us to identify the
weights (hp, ∀p) assigned to past traffic to derive
labor requirements. Panel data estimation is advanta-
geous in that it uses past traffic patterns across stores
(rather than local information) to generate more stable
and informative estimates to develop labor require-
ments—a desirable attribute given the cross-sectional
dependence detected when estimating the sales
response function (see subsection 4.2). Note that the
FE regression in equation (8) addresses asymmetric
response of profitability (see Figure 3) using the built-
in profit maximizer L* as the dependent variable/
target.
Table 3 shows the fixed effects estimates and robust

standard errors (in parentheses) of equation (8)
(across 46 stores). We adopt the Driscoll and Kraay
standard errors to account for autocorrelation, heter-
oskedasticity, and cross-sectional dependence (Hoe-
chle 2007). We consider weekly traffic lags up to four
periods and find no severe collinearity as all VIFs are
less than 10.
The high (adjusted) R2 implies that past traffic is a

good predictor of L�it computed from the fit sample
estimates. The diminishing weights on Ni,t�p as p
increases suggest that the most recently observed traf-
fic carries more information, which is consistent with
an exponential smoothing of past traffic data. Interest-
ingly, increasing p beyond 2 periods does not signifi-
cantly improve model fit. For example, when p = 4,
two extra parameters h3 and h4 are not significant at
the 0.05 level and they only improve R2 by 0.002.
Thus, we retain the simpler model with (Ni,t�1, Ni,t�2).
Finally, we estimate the model using (Ni,t�3, Ni,t�4) to
explore the possibility of generating labor plans two
weeks ahead. That is, at period t�2, the manager can
generate the labor plan for period t using store traffic
information collected from periods t�3 and t�4. As a
result, local managers would have more time to deter-
mine daily/hourly schedules and provide the

Table 3 Panel Data Estimates of Equation (8)

n h0 h1 h2 h3 h4 di R2 Adjusted R2 RMSE

1748 �0.545*** 0.456*** 0.153*** NA NA Included 0.937 0.935 0.108
(0.077) (0.056) (0.041)

1702 �0.634*** 0.423*** 0.124*** 0.083 NA Included 0.937 0.935 0.108
(0.082) (0.062) (0.042) (0.055)

1656 �0.694*** 0.399*** 0.096** 0.072 0.079* Included 0.939 0.937 0.107
(0.087) (0.063) (0.036) (0.047) (0.043)

1656 0.174** NA NA 0.274*** 0.160*** Included 0.920 0.918 0.122
(0.088) (0.066) (0.058)

*p < 0.10; **p < 0.05; ***p < 0.01; The fraction of unexplained variance due to store fixed effects is 0.89.
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detailed schedules amendable to store associates’ shift
requests beforehand.
Since fixed effects modeling enables us to capture

the relationships between optimal labor and past traf-
fic in a reliable fashion, our heuristic simply capital-
izes on those empirical estimates of (h0, hp, di).
Therefore, following the premise of traffic-based (as
opposed to sales-based) labor planning, our heuristic
defines weekly staffing requirements for given x and
d as

L̂itðx; dÞ ¼ expðh0 þ
X

p
hp lnðNi;t�pÞ þ diÞ � D; ð9Þ

where D is the smearing correction factor (Duan
1983) to account for errors incurred by directly ex-
ponentiating ln(L̂itðx; dÞ). The labor plan L̂itðx; dÞ
devised from equation (9) is exclusively driven by
store traffic data already observed. The heuristic is
realistic and easy-to-deploy in the sense that it only
uses information that is readily available to decision
makers while saving the need to extrapolate data.
The above formulation exploits the structural
relationships between historical traffic and optimal
labor identified from the empirical estimation of
(8). In the following section, we assess the proposed
staffing heuristic by performing a counterfactual
analysis in which we compare the performance of
the heuristic against the optimal and observed staff-
ing decisions.

6. Assessment of Staffing Heuristic

In this section, we assess the performance of our traf-
fic-based labor-planning heuristic. By combining the
two empirically verified structures (equations (4)
and (8)), we perform a counterfactual analysis (Kyd-
land and Prescott 1996) to compare our heuristic’s
labor plans with the retailer’s actual labor decisions.
In addition, we assess our heuristic’s sensitivity to
parameter values and compare our heuristic’s perfor-
mance with the performance of an individual store
traffic forecast-based approach.

6.1. Heuristic Performance
Figure 4 illustrates the logic of our counterfactual
analysis, in which, as in section 5, we set x = 15 and
d = 0.48. From the fit sample (weeks 1–40) we derived
estimates of (a, b, c) in subsection 4.2 and estimates of
(h0, hp, di) in Section 5. Using those estimates and the
test sample (weeks 41–52) actual traffic realizations
for each store, we compute the heuristic staffing level
(L̂it) from equation (9) and its corresponding profit
(p(L̂it)). Similarly, we compute L�it from equation (7)
and the optimal profit pðL�itÞ using the actual traffic
realization in the test sample. For clarity of exposition,
we define h ¼ pðL̂it=pðL�itÞ), the ratio of profits result-

ing from the heuristic’s staffing level to optimal prof-
its, and a ¼ pðLaitÞ=pðL�itÞ), the ratio of profits from
actual staffing level to optimal profits, where Lait is the
observed staffing level. The two metrics (h and a)
enable us to evaluate the performance of the heuris-
tic’s staffing levels and the actual staffing levels rela-
tive to the optimal staffing levels.
Figure 5 shows the average of h versus the average

of a across 46 stores over the test sample period
(weeks 41–52). In the first half of the sample (weeks
41–46), the average performance of the traffic-based
staffing heuristic is very close to optimal staffing
(average performance gap (1 � h) = 0.33%). The heu-
ristic performs better than the actual labor realization
(a) by achieving significantly smaller performance
gap relative to the optimal level (average performance
gap (1 � a) = 3.20%, t = 12.21, p < 0.01) and lower
performance variability (F = 32.45, p < 0.01). In the
last 6 weeks (47–52), the heuristic’s performance
reveals a slight fluctuation (average performance gap
(1 � h) = 2.48%) while the actual exhibits substantial
performance degradation (average performance gap
(1 � a) = 10.68%). Nevertheless, the heuristic still
performs better than the actual in terms of a smaller
gap relative to the optimal profitability (t = 13.78,
p < 0.01) and lower variability (F = 14.21, p < 0.01).

Figure 4 Procedure for Counterfactual Analysis

Figure 5 Performance of Heuristic Versus Actual and Optimal Staffing
Decisions

Notes. q_k%(x) refers to the k% quantile of x for the 46 stores.
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To better understand the causes of the performance
degradation of h and a during the last 6 weeks we
investigate patterns of store traffic over the whole
year. As shown in Figure 6, traffic flows remain
stationary up to week 46 and a change occurs in
the last 6 weeks. Essentially, the holiday season
(Thanksgiving to Christmas) shifts the mean of traffic
up and amplifies the variability of traffic among
stores (not shown in the figure). Our staffing heuris-
tic, which relies exclusively on traffic data in the past
p weeks, has limited capability to address those
traffic spikes. The effect is more salient because of
the asymmetric response of profit to understaffing.
Nonetheless, the heuristic still performs within 2.5%
of the optimal profits, despite the dramatic traffic
surges, for example, 50% increase in week 47 and
90% increase in weeks 51 and 52, corroborating the
usefulness of exploiting structural relationships
between traffic and optimal labor through across-
store fixed effects.
Clearly, the performance of the heuristic could be

improved if we could use past years’ information to
anticipate changes in traffic patterns. For instance, we
could modify equation (8) into a two-way (store and
time) fixed effects model:

lnðL�itðx; dÞÞ ¼ h0 þ
X

p
hp lnðNi;t�pÞ

þ di þ gPeriodt þ �it;

where Periodt is a set of time-related dummy vari-
ables. These time-related dummies could be weekly,
bi-weekly, monthly, or simply a binary indicator
that separates holiday seasons from regular weeks.
As such, the parameter g captures the time dynam-
ics and the heuristic will perform even better. How-
ever, the increased cost of deploying such
improvement (e.g., maintaining past year data and
more complicated estimation procedures) has to be
assessed against the relatively small gains available
from that incremental information.

Finally, in terms of dollar values, profits from the
heuristic (pðL̂itÞ) are on average $27,820.69/week/
store and are not statistically different from the opti-
mal (t = �0.43; p = 0.66) (on average, the heuristic
profits are just $470.00/week/store short of optimal),
and significantly higher than profits from actual labor
(pðLaitÞ) (t = 2.46; p < 0.01) (on average heuristic prof-
its are $2,380.29/week/store higher than actual). To
test the robustness of our heuristic, in the next section
we conduct various analyses and focus on the first
6 weeks of the test sample under stationary traffic
flows (weeks 41–46).

6.2. Heuristic Robustness
We first verify that the heuristic is robust to changes
in the hourly labor cost x by testing a wide variety of
values from 10 to 25. While the precise cost informa-
tion would be accessible to the retailer, we conduct
the analysis as a means of assessing how the heuristic
performance will change if the retailer has different
compensation premiums. The left panel of Figure 7
shows the average of h versus the average of a across
46 stores and 6 weeks (weeks 41–46). The average
performance of the staffing heuristic is very close to
optimal staffing (average performance gap < 0.5%)
regardless of the value of x, while the performance of
actual labor (a) is on average lower than the heuris-
tic’s performance (h); mainly due to some stores that
were severely understaffed (see q_5%(a) line in left
panel of Figure 7). In general, the traffic-based heuris-
tic staffs more aggressively than the retailer for x in
the realistic range of [10, 20]. The improvement of a as
x increases is because the effect of understaffing is
mitigated when we assume labor is more expensive,
that is, the difference between the two average staff-
ing levels is monotonically decreasing in x. The per-
formance of the actual staffing practice peaks at
x = 19, but even then is still significantly inferior to h
(t = 9.38, p < 0.01 H0:(1 � h) = (1 � a)).
Note that one of the advantages of the heuristic is

the reduced variability of performance across stores
as the full panel information is being used to estimate
the sales response and predict the optimal labor. To
better articulate this point, we compare heuristic-gen-
erated labor and actually realized labor to optimal
labor. The right panel of Figure 7 illustrates estimated
probability densities of L̂=L� and La/L

� at x = 19
(where La reaches its highest profitability). Several
observations can be made from the figure. First, our
heuristic exhibits much lower variability and in most
cases its deviation from L� is within � 20%. As illus-
trated in Figure 3, such modest departures from the
optimal staffing level have limited impact on profit-
ability, explaining the low variability of h in the left
panel of Figure 7. Second, the slight right skewness of
L̂=L� is an indicator of the asymmetric response of

Figure 6 Trajectories of Store Traffic Flows over the Year
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profitability to overstaffing and understaffing. Since
overstaffing is preferred for the profit function, our
heuristic, that considers the effects of prediction loss,
has a bias toward the overstaffing side. Third, in addi-
tion to exhibiting higher performance variability, the
distribution of La/L

� is skewed to the left and reflects
that there are more instances of under-staffing
(La/L

� < 1) and with a larger deviation from L�.
We further evaluate the performance of generating

labor plans two weeks ahead, as doing so would
allow store managers to have more time making
local adjustments of labor schedules. Specifically, we
apply the estimated h3 and h4 (Table 3) to lagged
traffic data (Ni,t�3, Ni,t�4) and compute staffing levels
from equation (9). Table 4 shows the performance
comparison under different values of x. The heuris-
tic with either (Ni,t�1, Ni,t�2) or (Ni,t�3,Ni,t�4) performs
significantly better than actual labor decisions. Also,
the staffing heuristic achieves much lower perfor-
mance variability across stores and weeks. For
instance, for the case where x = 15, the performance
of the labor plan fixed two weeks in advance (Ni,t�3,
Ni,t-4) drops only 0.19% from the plan made for the
current period, with a minimal increase in variability
relative to the (Ni,t�1, Ni,t�2) case of 0.27%—that is,
0.93–0.66.
As mentioned in Section 5, the heuristic relies on

estimates from the whole panel data set without
extrapolating traffic data. As a final benchmark, we
test two extrapolative traffic forecasting approaches.
The first approach is exponential smoothing and is
selected for comparison because of its recognized
performance and popularity in practice (Achabal
et al. 2000). We estimate the optimal exponential
smoothing coefficient qi for each store using the fit

sample and the starting condition N̂it ¼ Nit We gen-
erate a traffic forecast N̂it ¼ q̂Ni;t�1 þ ð1� q̂ÞN̂i;t�1

and substitute N̂it into equation (7) to devise labor
plans (L̂�it) for the test sample period. The optimal
exponential smoothing achieves a RMSE of 7.57 and
a MAPE of 0.09 over the sample. The second
approach is an autoregressive integrated moving
average (ARIMA) model (Washington et al. 2011)
adopted by Lam et al. (1998). We apply ARIMA
(p = 2, q = 1) (see Appendix C for model selection
details) to generate traffic forecast N̂it that is also
inserted into equation (7) to compute L̂�it. The ARIMA
(2, 1) model achieves a RMSE of 6.74 and a MAPE of
0.07 over the sample. The last two columns of Table 4
show that the two staffing approaches based on local
exponential smoothing (he = p(L̂�it)/p(L

�
it)) and AR-

IMA (ha = p(L̂�it)/p(L
�
it)) outperform actual labor staff-

ing decisions. However, our proposed heuristic
using the whole panel to derive global weights on
(Ni,t-1, Ni,t-2) achieves a significantly smaller perfor-
mance gap relative to the optimal (t-test) and signifi-
cantly lower variability (F-test) across the whole
range of x when compared to the local exponential
smoothing he (t = 2.62, p < 0.01; F = 1.19, p < 0.01)
and ARIMA ha (t = 4.76, p < 0.01; F = 1.37, p < 0.01)
approaches. Upon inspection, it is evident that the
extrapolative forecast methods perform well because
their predictions are within 10% of the realized value
(i.e., MAPE < 0.10, and the profit function is quite
insensitive to small forecasting errors (see Figure 3)).
That said, the statistically significant difference
between our heuristic and the extrapolative methods
comes from the more stable estimates of desired
labor that emerge from the panel estimation. This
finding suggests that the value of the heuristic

Figure 7 Impact of Wage on Heuristic Performance

Notes. q_k%(x) refers to the k% quantile of x (n = 46(stores)*6(weeks) = 276 at each ).
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emerges more from setting the appropriate target
level (L�it) based on the sales response function rather
than from a precise traffic forecast.

7. Discussion

Our study takes a grounded approach to develop a
retail labor-planning framework, which avoids the
pitfall of allocating labor capacity solely based on a
rudimentary calculation of expected sales without
fully utilizing knowledge about customer traffic. Our
study has several distinct features. First, when formu-
lating the sales response function we introduced the
notion of labor adequacy. Our focus on labor ade-
quacy aims to enhance service quality and confor-
mance quality in actual store operations, since
adequate/abundant labor capacity is instrumental in
reducing work pressure and speeding up customer
service (Oliva and Sterman 2001); ensuring correct
execution of in-store logistic tasks (Ton 2014); and
maintaining inventory information accuracy (Chuang
and Oliva 2015). Second, our proposed sales function
exhibits variable elasticity of substitution between
traffic and labor, which is expected in a retail setting,
and is more capable of explaining sales performance
under extreme conditions of input factors. The vari-
able elasticity of substitution between labor and traf-
fic, together with the labor adequacy, shed light on
the importance of balancing labor-to-traffic ratios in
practice. Third, in order to exploit information avail-
able across stores, we adopted panel estimation meth-
ods for our sales function as well as the staffing rule.
Doing so helps us not only isolate time-invariant store

differences that affect the stores’ ability to turn traffic
into sales, but also develop labor requirements that
are commensurate to other stores’ staffing levels as
opposed to levels that are continuation trends of a
store’s current practices. As a result of the robust and
efficient panel estimation, our heuristic performs
fairly well under both stable and extreme traffic con-
ditions. Last, our study goes beyond establishing sta-
tic correlations between variables and contributes to
the growing body of empirical research on the effects
of labor on retail performance (Fisher et al. 2006,
Mani et al. 2015, Netessine et al. 2010, Perdikaki et al.
2012, Ton 2009, Ton and Huckman 2008). Researchers
who aim to develop data-driven and easy-to-use staff-
ing rules can refer to our modeling framework and
extend our idea to other labor-intensive service set-
tings such as restaurants, banks, and hospitals. More-
over, researchers who intend to empirically assess
retail labor productivity should find the proposed
sales response function applicable given the function
properties.
Several limitations of our study pinpoint opportu-

nities for future research. First, our analysis assesses
a single apparel retail chain, which allows us to
implicitly control unobservable firm-level factors
such as pricing policies, manager incentive schemes,
and types of merchandise. Analyzing stores of the
same firm contributes to a deep understanding of
the context but somewhat limits the generalizability
of our results. Subsequent studies should attempt to
further explore the effects of labor and traffic on per-
formance in other service settings. Second, we adopt
a fixed effects estimation to control for several un-
observable time-invariant store-level factors that
could affect sales. We acknowledge that several
other factors such as labor experience, employee
turnover, and inventory levels, for which we do not
possess data, could drive store sales performance.
Third, we take an aggregate view on planning labor
capacity and derive weekly labor requirements.
While the detailed daily/hourly workforce schedul-
ing is not explicitly addressed in our study, we have
shown that the proposed sales response function
works with that granularity. Lastly, given that we
only have data on total labor hours, we cannot
differentiate full-time labor from part-time labor,
which could differ in experiences, attitudes, and
productivity. For example, Chuang and Oliva (2015)
find that the mix of full-time and part-time labor has
significant impact on inventory data quality. In
Appendix A, we show how our sales response
function can be modified to distinguish between
full-time and part-time labor. Future research may
incorporate labor mix into a modeling framework,
empirically identify its effect, and develop more
comprehensive staffing rules.

Table 4 Performance Comparison among Different Staffing
Approaches

Actual
labor
(a)

Traffic
lag 1–2(h)

Traffic
lag 3–4(h)

Exponential
smooth (he)

ARIMA
(2, 1)(ha)

x = 10
Mean (%) 94.17 99.75 99.61 99.70 99.68

t-test 18.51* 17.93* 18.46* 18.39*
SD (%) 4.95 0.49 0.71 0.57 0.59

F-test 95.18* 47.84* 76.50* 70.15*
x = 15

Mean (%) 96.80 99.67 99.48 99.61 99.58
t-test 12. 21* 11.22* 12.00* 11.87*
SD (%) 3.82 0.66 0.93 0.74 0.78

F-test 32.45* 16.22* 26.32* 24.20*
x = 20

Mean (%) 97.53 99.60 99.37 99.52 99.49
t-test 8.94* 7.73* 8.60* 8.45*
SD (%) 3.72 0.82 1.16 0.92 0.96

F-test 20.61* 10.23* 16.40* 15.10*

The analysis (n = 46 * 6 = 276) is across 46 stores and 6 weeks. t-test
H0: Mean a-Mean h = 0. F-test H0: Variance a/Variance h = 1.
†p < 0.05, *p < 0.01.
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Despite these limitations, our modeling efforts
carry pragmatic implications for retail practitioners.
First, our study proposes a methodology that guides
retailers to utilize aggregate information to determine
labor requirements. Since many retailers have
recently invested in traffic counting technology and
have started using such technology to support labor
planning, retailers who possess traffic count data
could adopt our framework to derive weekly labor
hour requirements at their stores. These weekly
requirements could then be used by store managers
as guidance to identify the mix of labor and perform
daily as well as hourly level scheduling. Second, the
proposed heuristic is easy to implement in that it
merely requires readily available data and does not
rely on sophisticated forecasting mechanisms. Our
heuristic applies fixed effects estimation to derive
weights on past traffic and outperforms an extrapola-
tive approach that requires store-level traffic forecast-
ing. The weights on observed traffic information can
be estimated and updated in a spreadsheet. Third,
unlike many existing retail labor management sys-
tems that focus on minimizing labor costs and often
result in understaffing, our labor-planning framework
provides an alternative to match labor with traffic so
as to achieve better sales performance. By aiming for
reduction of labor-traffic-mismatches, we expect our
heuristic’s recommended staffing levels not only to
positively affect service delivery but also to relieve
employee work pressure/fatigue to a certain extent.
Last, retailers can take advantage of the robustness of
our heuristic to lagged traffic information to develop
aggregate labor plans that become input to daily/
hourly schedules and apprise their employees of their
schedules several weeks in advance. Such an
approach can allow retailers to accommodate employ-
ees shift requests/preferences without sacrificing
profitability. This idea of being accommodative to
store labor is actually found to be beneficial for store
execution and profits in high-performance retail com-
panies (Ton 2014).
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Appendix A: Estimation Equation for
Heterogeneous Labor Productivity
Consistent with previous models in service operations
(e.g., Oliva and Sterman 2001, 2010), we assume two

types of employees, experienced (E), and rookies (R),
each with a different level of productivity. We can
define the effective total labor output as L = E + jR
where j ≤ 1 is the fractional productivity of a rookie
relative to an experienced employee. In extreme
cases, j could be negative, as when rookies take time
away from experienced employees for mentoring and
training.
Replacing the revised labor function into the sales

function yields:

S ¼ aNb expðcN
L
Þ ¼ aNb expð cN

Eþ jR
Þ:

Following the same logic described in the study,
the above expression can be empirically estimated for
store i at period t in which Di denotes time invariant
store characteristics.

lnðSitÞ ¼ b0 þ b1 lnðNitÞ þ b1
Nit

Eit þ R0
it

� �
þDi þ �it;

R0
it ¼ b3Rit þ vit:

Dropping the random noise �it and vit, we can
recover the structural parameters

ai ¼ expðb0 þDiÞ; b ¼ b1; c ¼ b2=b3; j ¼ b3:

The empirical estimation involves two equations.
The model can be deemed as an errors-in-variables
panel data model (Cameron and Trivedi 2005, Grili-
ches and Hausman 1986) and model parameters can
be estimated without the use of external instruments.
A classical estimation method is to specify the joint
log-likelihood function of �it and vit (i.e., a mixture of
two normal distributions) and find maximum likeli-
hood parameter estimates through numerical optimi-
zation (King 1998). Readers who are interested in
different alternative estimators can refer to Griliches
and Hausman (1986), who provide an in-depth
illustration and discussion of different estimation
strategies.

Appendix B: Estimating Lam et al.’s
(1998) Sales Response Function
Aggregating data weekly, and using the fit sample
(week 1- week 40) for each of the 46 stores in our sam-
ple we estimated the sales response function specified
in Lam et al. (1998).

lnðStÞ ¼ b0 þ b1 lnðNtÞ þ b2ð1=LtÞ þ
Xk

i¼1

qi�t�i þ lt:

This linear model represents their proposed
response function,
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EðStÞ ¼ aNb1
t eb2=Lt e

E

�Pk

i¼1
qi�t�i

�
þ0:5vt

;

where a ¼ eb0 ,
Pk

i¼1 qi�t�i is the autoregressive com-
ponent, and vt is the forecast error variance.
We modeled serial correlation using different lags

k = 1, 2, . . . 5. We limited the maximum k to 5 as it
makes the ratio of parameters-to-observations equal
to five. For each store we calculated the squared
correlation between fitted ln(St) and observed ln(St)
as the R2 metric (Wooldridge 2010) and the adjusted
R2 as 1 � (1 � R2) ((n � 1)/(n � p)), where n is
sample size and p is the number of parameters
(Washington et al. 2011). To determine the number
of lags k to use in our assessment, for each store we
selected the k that would yield the highest adjusted
R2, while retaining sensible estimates of the labor
and traffic parameters, that is, b1 > 0 and b2 < 0
(Lam et al. 1998). The estimation yielded non-sensible
estimates for two stores regardless of the value of k,
suggesting that the model had the wrong specifica-
tion for these stores. As it was not possible to obtain
reasonable staffing levels for these stores, we
dropped them from our comparison sample. Let s(k)
denote the number of stores for which we used k
lags, the 44 stores with reasonable estimates were
distributed as follows: s(1) = 3, s(2) = 3, s(3) = 6,
s(4) = 7, and s(5) = 25, thus requiring 312 parame-

ters
P5
k¼1

ð3þ ksðkÞÞ to perform the estimation.

Appendix C: Traffic Forecasting of Lam
et al. (1998)
For each of the 46 stores, we estimated the following
ARIMAmodel

lnðNtÞ � lnðNt�1Þ ¼ lþ hðBÞ
/ðBÞ at;

where h(B) is a moving average operator with order
q and B is a backshift operator, /(B) is an autore-
gressive operator with order p and B is a backshift
operator, and p is the normally and identically dis-
tributed error with mean zero and constant vari-
ance.
For each store (n = 40 weeks), we fitted the ARIMA

model with different orders of p and q using minimi-
zation of conditional sum-of-squares (CSS). While
MLE has adequate asymptotic properties, CSS is more
robust under our small sample size. For all forecasting
models, CSS estimation outperformed MLE estima-
tion, thus we only report CSS results. After we esti-
mated the model, we generated a weekly traffic
forecast from week 41 to week 52, and calculated sev-
eral forecasting performance metrics—MSE, RMSE,
mean absolute deviation (MAD), and MAPE for all 46
stores (see Table A1).

The fact that the best performing models are the
ARIMA models with p = 2 and q = 1 suggests that
models with more parameters are over-fitted to the fit
sample and do not adjust well to the test sample (Box
et al. 2008). Accordingly, we used the ARIMA p = 2
and q = 1 to forecast individual store traffic for our
comparison.

Note
1The constraint r > 0 also reduces the viable range for the
response to labor adequacy to �b/< c < 0.
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