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Abstract: The profit of investment does not lie solely in the accuracy of prediction, but in the degree of belief as well. The greater the 
degree of belief is, the more capital the investors might venture, which results in more profit returns. On the contrary, under the condi-
tion of an accurate prediction, if the degree of belief is little, investors will not put in too much capital, which leads to limited profit. 
This study attempts to apply belief functions in explaining the prediction results of multivariate fuzzy time series, i.e. the degree of 
belief that the prediction model has for the prediction result. By utilizing multivariate fuzzy time series model, combining with two 
variables of closing price and volume of transaction in weighted stock price index, the author tries to predict the Taiwan weighted stock 

price index and estimate the degree of belief, which are trusted to be of great meaning for risk control and a better rate of return. 
Keywords: Belief measure, Fuzzy time series forecastinf, Fuzzy rule base, Average rank accuracy.

1. INTRODUCTION

 When we make a decision, we need to evaluate the 

possibility of the future outcome and do action according 
to them. Accordingly, in constructing a model of predic-

tion, not only should we consider the accurate of the 

prediction but also to establish a proper fuzzy mathemati-
cal model on the degree of belief in the prediction 

results. 

 In analyzing time series, the tendency of data can be the 

basis of determining the occurrence of incidents, such as 

progressive increase or progressive decrease and seasonal 
circulation or sudden boost. Hence, based upon the char-

acteristics observed, we can choose the best fitness model 

from the already-tested model groups, like ARIMA model 

group, ARCH model group or threshold model group. Yet, 
due to the inaccuracy of data collection, time lag, or the 

interwork among variables, the numerical value of a single 

measurement may seem like an accurate one superficially, 

however, in reality, a possible one within a range. For 

example, which is the exact number of registered students 

every year--at the beginning of the semester, in the middle 

of the semester, at the end of the semester or an average of 

the above numbers? Different sampling time often results 

in different value. Further, which is the weighted stock 

price index--the opening quotation, the closing quotation, 
or an average of the highest and the lowest stock price? 

The result varies a lot. Under the circumstance, if we use 

the traditional way of model construction and analysis to 

find the best fitness model and to explain the tendency of 

time series data, the danger of finding the best fitness of 

model to an undue extent might occur. 

 Ever since Zadeh's (1965) proposition of Fuzzy Set 

Theory, the theory has incorporated the property of 

linguistic variables, which is capable of reducing possible

trouble in dealing with uncertain problems as well as 

providing a more reliable way in processing complex, 
diverse and uncertain phenomena. Lately, the application 

of fuzzy set theory in time series has been increasing 

gradually, e.g. Song and Chissom (1993a, b, 1994), Chen 

(1996), Song (1997), Huarng (2001). Wu and Hung (1999) 

proposed fuzzy identification rule to be the criterion in 
determining ARCH model group and Bilinear Model 

Group. Wu and Chen (1999) utilized fuzzy clustering 

method to check the data structure's transitional span in 

time series. Tseng and Tzeng, etc. (2001) proposed a fuzzy 

ARIMA model to predict the NT dollar exchange rate to 

US dollar by combining traditional time series ARIMA 

model with fuzzy regression model. Tseng and Tzeng 

(2002) also combined fuzzy theory with seasonal ARIMA 
to establish a prediction model. 

 While in the process of applying fuzzy set to time series 

analysis, the first step is to figure out the way to integrate 

analyzing methods of linguistic variables in order to solve 

the indefiniteness in data. Aiming at solving this, Tong 

(1978) suggested the logical examination method and 
used a strategy-making chart to describe fuzzy model, but 

it is difficult to extend the method to multivariate systems. 

Thus, in order to obtain a more accurate fuzzy model, 

Graham and Newell (1989) and Xu and Lee (1987) 

proposed a method with learning ability to modify fuzzy 
model, while Chiang, etc. (2000) recommended a fuzzy 

linguistic summary system to collect time series data to 

find useful information. Besides, there is a rather inconve-

nient method that tries to choose the proper weighted 

factors with trial-and-error procedure. As a matter of fact, 

a more comprehensible and applicable way than the use of 

a strategy-making chart is to access the problem with 

fuzzy formulas. Seeing that, most scholars often try to find 

solution through fuzzy formulas, like Song and Chissom

Received 2007.05.15 

Accepted 2007.07.08 55



Kansei Engineering Vol.7 No.1

(1993a, b) using them to present a detailed construction 

process of fuzzy time series and model theory. Song and 
Chissom (1993a, 1994) also applied the method in predict-

ing the number of registered freshmen students for 

University of Alabama. Furthermore , Lee, etc. (1994) 
suggested a two-phase verification process, combined 

with linguistic methods and fuzzy formulas , to verify a 
fuzzy model. 

 Most of the past bibliographies have been focused on 

single-variate fuzzy time series rather than on multivariate 

fuzzy time series, and none of them has ever mentioned 

the degree of belief toward the prediction results made by 

the model. In view of this, this study attempts to incorpo-

rate belief functions into multivariate fuzzy time series , 
and use the belief functions to describe the degree of belief 

toward the prediction results made by prediction model . 
At last, the study takes two factors into consideration, i.e. 
the closing price and volume of transaction in weighted 

stock price index, and tries to make predictions with the 

establishment of a multivariate fuzzy time series model . 
Furthermore, the author uses average prediction rank of 

accuracy to verify the prediction and adds the belief func-

tions to describe the degree of belief toward the prediction 

results, which will be of great meaning to monetary 

finance in predicting future market trend as well as form-

ing policies to deal with changes .

2. FUZZY TIME SERIES ANALYSIS AND PREDICTION

2.1 Human thought and decision making under fuzzy 

    environment

 Fuzzy set theory is a kind of new trend in processing 
human thinking with a quantified way. The term does not 

imply carelessness or inaccuracy: rather, confronted with 
various sorts of uncertainty of life, it aims to analyze and 
to manage control in order to obtain more efficient, 
humanized and intelligent results. The construction of 

study subjects for modern science is becoming more and 
more complicated and obscure, resulting from factors of 
subjectivity, time discrepancy, circumstance changes and 

perspectives. This has made it hard for scientists to clearly 
study the true essence of subjects and to properly establish 
hypothetical mathematic model , which makes the fuzzy 
theory to come about. 

 The fuzzy theory can be referred to as including fuzzy 

set theory generated from general set theory, fuzzy esti-
mate theory with extended meaning of probability, and 
fuzzy logic originated from general logic with fuzziness 
notion. Fuzzy estimate theory does not deal with semantic 

uncertainty, but the subjectivity uncertainty in making 

judgment. The real human society is full of fuzziness. A 
lot of fuzzy uncertainty lies in our thinking, judgment,

communication, etc. Formerly, duality set regulates an 

element either belonging to a set (represented as 1) or not 
belonging to a set (represented as 0). In fuzzy theory, we 
use the numbers between 0 and 1 to indicate its degree of 

belongingness. 
 The application of fuzzy logic claims that personal 

preference does not have to be very clear or orderly, which 
is in contrary to the concepts in Boolean logic. For exam-

ple, according to Boolean logic, the comparison between 
a and b results in three possible results: (1)  b>a (2) a<b 

(3) a=b. Yet, the operation of human thinking is far more 
complex than the Boolean logic, especially with a great 

deal of uncertain preferences. Therefore, many research-
ers have long been trying to grasp the real situation in a 

comprehensive way. As far as social science problems are 
concerned, it is more apprehensible to present things by 

fuzzy model than to assign a specific value to a single 

object, which is more suitable for evaluating the relative 
characteristics between two objects. Also, since other 

characteristics often may be helpful in evaluating some 
opinion, we have to explain the so-call "other characteris-

tics" so that we can convert people's preferences into more 
convenient utility functions. 

 The main feature of fuzzy set theory is its preference for 
limitless possibility, thus, providing limitless explana-

tions. 
 In traditional set theory, an element either belongs to a 

set or not belongs to it. However, the element in fuzzy set, 
its membership grade may be that only part of it belongs 

to the set. For example, the phrase "young people." 
Exactly over what age can be consider being "not young"? 

There seems to be no definite demarcation line to separate 
"young" and "not young." According to the definition of 
fuzzy set, a 25-year-old man is "80% young," while a 70-

year-old man is only "20% young." In fuzzy set, the whole 
range of membership is set to be between 0 and 1. Each 
linguistic variable, like "young," represents a possible 

distribution. The mean value of the distribution is used to 
express the value that people adopted to determine what 
"young" is. As to the distribution, it depends and doesn't 
need to be normality. 

 Membership function is the foundation of fuzzy theory. 
It originates from characteristic function and is used to 
indicate the membership grade to sets, whose range is 
between 0 and 1. The greater the membership of an 
element is, the closer to 1 the membership grade is. While 
the less the membership of an element is, the smaller the 
membership grade value is. It is not an easy job to prop-

erly establish a membership function that can fully express 
the notion of fuzziness. Although membership grade is 

objective in its nature, it usually exists within human 
subjective conscience. There is no general theorem or
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formula to measure it, but we usually verify it through 

experience or statistics. 

 Traditional social and economic researches have long 

been devoted to the analysis of human thought and deci-

sion making. Uncertain examples are often encountered in 

a typical model construction. For example, whether the 

exact number of annual registered students is sampled at 

the beginning of the year or the middle or the end, the 

value usually differs. Again, the New Taiwan Dollar 

exchange rate against US Dollar should be the one at the 

opening market, the closing market or the average of the 

highest and the lowest price? Hendershot and Placek 

(1981) have done an extensive survey regarding the bibli-

ographies in the field. In studies of social science and 

economics, the answer to a question is seldom a definite 

true or false. If we try to analyze human ideas, we will find 

that it is inevitable to face the uncertainty of behavior. 

While, in fuzzy set, the continuous range value is capable 

of dealing with true-as-well-as-false situations. Thus, 

using the fuzzy characteristic of the continuous range 

value in analysis can facilitate researchers a lot in handling 

uncertainty, and is a more realistic measurement tool in 

practical application. 

2.2 Fuzzy Time Series Analysis 

 The first step before we go deeper into fuzzy time series 

is to convert common data into fuzzy data. In this study, 

we use membership function to convert the observed data 

into fuzzy set. Membership function is the most basic 

notion of fuzzy theory, and is able to describe the nature of 

fuzzy set. The only way to quantify fuzzy set is through 

membership function, which enables us to further analyze 

and process fuzzy data with accurate mathematic method. 

Thus, in order to set the observation value of a fuzzy 

model or to estimate the fuzzy output value of a fuzzy 

model, the first step is to convert the observation value 

into fuzzy set, a process called fuzzification. Conse-

quently, membership function plays a rather important 

role in establishing a fuzzy model. 

 Because the subject of the study is about the establish-

ment of multivariate fuzzy time series, it is necessary to 

explain the meaning of fuzzy time series. The so-called 

fuzzy time series is a method of applying fuzzy logic in 

the analyzing procedure of time series, combined with the 

analyzing procedure of linguistic variable, to solve the 

fuzziness of data. Hence, before establishing multivariate 

fuzzy time series and making predictions, we must provide 

definitions for some terms regarding fuzzy time series. 

Definition 2.1 Fuzzy time series 

  Let  {Xt•¸R, t = 1,2,...,n) be a time series, ƒ¶ be the range 

of {Xt •¸ R, t = 1,2,...,n}and {Pi; i=1,2,...,r,UPi = ƒ¶} be an

ordered partition on Q. Let {Li,i = 1,2,...,r} denote linguis-

tic variables with respect to the ordered partition set. For 

t = 1,2,...,n, if ƒÊi (Xt), the grade of membership of {Xt}

belongs to Li , satisfies ƒÊi : R •¨ [0,1] and E ƒÊi (Xt) = 1, 

then { FXt } is said to be a fuzzy time series of {Xt} and 

written as

where / is employed to link the linguistic variables with 

their memberships in FXt, and the + indicates, rather than 

any sort of algebraic addition, that the listed pairs of 

linguistic variables and memberships collectively. 

 For the sake of convenience, we simplify FXt as FXt = 

(ƒÊ1,ƒÊ2,•c•,ƒÊr), and use triangle membership grade function 

to proceed with the conversion. 

 In time series analysis, the determination of the value of 

autocorrelation is very important, because it reflects the 

long-term autocorrelation of a time series. Thus, we 

attempt to analyze the degree of autocorrelation of fuzzy 

time series with fuzzy correlation. 

Definition 2.2 Fuzzy relation 

 Let {Pi , i = 1,2,...,r} be an ordered partition set in ƒ¶.

Assume that G = (ƒÊ1,..., ƒÊr) and H = (v1,..., vr) are the fuzzy 

sets in ƒ¶, where ƒÊi and vj are the membership functions 

over ƒ¶for i, j=1,2,3...,r. Then we denote the fuzzy relation 

between G and H as R = Gt o H = [Rij]rxr, where " o "is the 

fuzzy composition ( we use the max-min here), "t "is the 

transpose and Rij is membership function between G and 

H. 

 As far as multivariate fuzzy time series is considered, 

and suppose the tendency of each variable of time series 

data is steady, this study focuses upon multivariate fuzzy 

time series models with the Markov property. The defini-

tion of Fuzzy-Markov-relative-matrix R is as following. 

Definition 2.3 Fuzzy-Markov-relative matrix 

 Assume that { FXt , t = 1,2,...,n } is a FAR (1) (fuzzy 

autoregression of order one) fuzzy time series, i.e. for any 

time t, FXt depends only on FXt-i . If the fuzzy set FXt 

consists of finite membership functions ,ƒÊi(Xt), i = 1, 2,..., r, 

then

is called a fuzzy-Markov-relative matrix.

On Multivariate Fuzzy Time Series Models 

 In the process of establishing Multivariate Fuzzy Time 

Series Model, we need to pay attention to many condi-

tions, which are stated as following: 

 Because the type of data we collected may be numeri-

cal, characteristic, or of linguistic values (e.g. data acquired
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from food sampling, etc.), it is difficult to use traditional 

time series procedure to analyze these sorts of data. 

Therefore, if we make use of fuzzy set procedure , we will 
be able to establish an adequate model without being 

confined by the type of data we collect . 
  There is no common agreement about the number of 

divided sets that is considered appropriate in founding a 

fuzzy universe of discourse set. In general, the more the 

sets being divided, the more accurate the set is. However, 

the complexity of operation will increase as well . Thus, 
the choice between accuracy and complexity depends on 

individual need. 

  As to the fuzzification of data, the authors use the stan-

dard membership function to accomplish the process . 
Since there is no fixed way of acquiring the typical value , 
we adopt a way of using median, mean , or classified 
community center of the elements in each set as the typi-

cal value. Yet, if the community center is deemed as the 

 typical value, this might result in a single set with multiple 

typical values, causing a trapezoid membership function 

and making the conversion process more complicated . On 
the contrary, if median or mean is chosen as the typical 

value, this will lead to each single set with only one typi-

cal value, causing a triangle membership function and 

making the conversion easier. 

 The key point in the process of model establishment lies 

in the stability of data structure. Because the data in this 

study is stable to a certain extent, we can move on directly 

to the step of model establishment. Nevertheless , in 

general situations, if the data collected are converted from 
numerical ones into fuzzy ones, the tendency may be 

increasing or decreasing. We have to make a difference for 

the original data and make them stable so as to continue 

the above step and to establish the model . Contrarily, if 
the data collected possess fuzzy structure and are verified 

to have fuzzy tendency, there is no solution for it at pres-

ent. 

 The order identification plays a very important role in 

multivariate fuzzy time series analysis. If we can find the 

right order, we can grasp factors that affects data tendency 

and establish a practical mathematic model. In practical 

application, especially stock, exchange rate , and futures 
data, the time series tendency often display nonlinear 

forms of either the high one getting higher or the low one 

getting lower. Most of the operation in financial market 
conforms to Markov nature. For this reason, we can choose 

the order according to real situations. 

 After choosing the order of multivariate fuzzy time 

series, we can utilize the calculating method defined in 

Definition 2.2, combined with multiple factors that might 

affect data, and generate Fuzzy-Markov-relative-matrix 

R. Based up the above interpretation, we analyze multi-

variate fuzzy time series model. Here, the author only 

discusses multivariate first order of auto-regression, 

defined as following: 

Definition 2.4 Multivariate first order of auto-regressive 

fuzzy time series model 

 If a multivariate fuzzy time series, {(FX1 ,t,  FX2,t,•c, 

FXk ,t) } for any t, can be written as

where R.ij is the fuzzy-Markov-relative matrix for ith vari-

able relative to jth variable, i,j = 1,2...,k , then we call the 

multivariate fuzzy time series {(FX 1,t, FX2 ,t,•c, FXk,t) } a 

multivariate first order of auto-regressive fuzzy time series 

model and denote it as VFAR(1). In the model, (FX1,t, 

FX2 ,t,•c, FX,k,t FXk,t,), is only depends on (FX 1,t-1_, FX2,t-1,•c,•, FXk,t-1 ), 

thus the model can be referred as the Markov Process. 

2.3 How to determine the attribute through fuzzy 

rule base? 

 In multivariate fuzzy time series analyzing, one of the 

significant fields worth studying is how to convert fuzzy 

values (membership functions) into linguistic variables . 

Generally, it is determined by the location of maximum 

membership function. If there is more than one maximum 

membership function, which should we choose to decide 

its attribute? Up to now, there is no fixed rule. On account 

of this, the study defines a linguistic vector index function 

to cope with those conditions that have more than one 

maximum membership function. 

Definition 2.5 Linguistic vector index function 

 Let L = {(L11,•c•,L1r),•c(Lk1,•c,Lkr) •b Lijis linguistic vari-

able for i=1,2,... k and j=1,2,...r} and FX, be a 

multivariate fuzzy time series with respect to the member-

ship function in L. Assume that FXt is a linguistic vector 

index function. Let

, and

where ,ƒÊLij
,(FXt) is the membership function in linguistic 

variable Lij. 

Example 2.1 Let L ={(L11,L12,L13,L14,L15)(L21,L22,L23,L24,L25) 

; L11 = plunge, L12 = down, L13 = unchanged, L14 = up) L15 

= soar
, L21 = very low, L22 = low, L23 = medium, L24 = high, 

and L25 = very high}. If one time series of two variables is 

computed by fuzzy-Markov-relative matrix R and the
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 membership  function with respect to L is 
FXt = {(0.59,0.58,1.1,1.1,1.1),(0.81,1.36,1.20,1.36,1.21)} i.e. 

    The membership function belonging to L11 is 0.59; 
    The membership function belonging to L12 is 0.85; 

    The membership function belonging to L13 is 1.1; 
    The membership function belonging to L14 is 1.1; 

    The membership function belonging to L15 is 1.1; 

    The membership function belonging to L21 is 0.81; 
    The membership function belonging to L22 is 1.36; 

    The membership function belonging to L23 is 1.20; 
    The membership function belonging to L24 is 1.36; 

    The membership function belonging to L25 is 1.21. 
By Definition 2.5, we get FXt = {(0,0,1,1,1),(0,1,0,1,0) } 

 According to definition 2.5, we can convert the fuzzy 

values predicted by multivariate fuzzy time series model 

into linguistic vector index function. Yet, how should we 
determine the linguistic variables through linguistic vector 

index function? Here, the author regrets to say that there is 
no fixed rule for reference up to now. So, based on the 

above definition, we can make use of fuzzy inference to 
construct a set fuzzy rule base to analyze the linguistic 

variables it outputs. 
 How can we obtain such a fuzzy rule base? As the name 

implies, what exists inside the base are some inference 
rules, i.e. a corpus of linguistic rules describing reasoning 

strategy. A fuzzy rule base is an expert system (rules) 
constructed upon the foundation of everyday fuzzy 

phenomena or knowledge. As to fuzzy time series, there is 
no definite measure for us to follow. Hence, since the rules 

in this study are statistics related, we use autocorrelation 
function (ACF) and partial autocorrelation function 

(PACF) to find the coefficient of time series model. As to 
the nonlinear time series, because its ACF and PACF are 

not clear and definite, we can obtain the best fitness model, 
following the traditional Autoregressive Integrated 

Moving Average (ARIMA) model, with the help of a 
three-step construction, i.e. (1) Order identification, (2) 

Parameter estimation, and (3) Diagnostic checking. As a 
result, the fuzzy rules in this study are established from 

the above notions, accumulation of experience and fuzzy

inference; so, the methodology is intuitive and subjec-

tive. 

 In this study, the universe of discourse of the two factors, 

degree of price fluctuation and transaction volume, are set 

to be {plunge , down , unchanged , up , soar} and { very 

low , low , medium , high , very high} respectively. 

Thus, n is set to be 5. Also, we choose (Ik1,•c,Ik5,) as fuzzy 

inference index, and Ikjt = 0 or 1 and j = 1,2,•c•,5 ; upon 

which we obtain 32 linguistic vectors. Vector (0,0,0,0,0) 

must be excluded, because it cannot represent any linguis-

tic variable. However, it is not easy to classify 31 vectors 

into proper linguistic variables. For if linguistic vector has 

only a 1 and the rest are 0, the output is the linguistic vari-

able represented by the location of 1. For instance, 

(0,0,0,1,0) indicates the membership function of up is 1, 

so we output the linguistic variable "up." 

 However, how should we decide if the linguistic vector 

has more than one 1? If we start each linguistic vector of 

fuzzy time series Ikji, j = 1,2, •c•,5 from Ik1t = 0 or 

1 to Ik5 , = 0 or 1 and then judge from our accumulated 

knowledge and experience, this would be a very time-

consuming job. Or if we judge by the whole linguistic 

vector, we can easily determine the linguistic variable it 

represents based on law of experience. For instance, in 

(0,0,0,1,1), the membership function of up and soar is 1 

respectively. According to law of experience, we can 

determine that the output linguistic variable is "soar." 

Accordingly, the output linguistic variable for (1,1,0,0,0) 

is "plunge." The following is the fuzzy rule base estab-

lished in this study. 

From example 2.1, we derive FXt = (0,0,1,1,1)(0,1,0,1,0). 

Thus, from the above fuzzy rule base we know that, as far 

as degree of price fluctuation and transaction volume 

difference are concerned, the output linguistic variables 

are "soar" and "medium." 

2.4 Prediction of Multivariate Fuzzy Time Series 

 People usually hope to have certain understanding for 

future situations; therefore, prediction results have become 

essential information in the decision-making process. 

Besides, accurate predictions will help decision-makers to

Fuzzy Rule Base
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make correct decisions and to react properly. That is why 
we make use of multivariate fuzzy time series model to 
conduct prediction. The definition of prediction with 

multivariate fuzzy time series model is as following. 

Definition 2.6 The prediction of multivariate first order 

of auto-regression fuzzy time series model. 
Assume that a multivariate first order of auto-regression 

fuzzy time series model is

and the known observation is (FX1,t, FX2
,t, •c•, FXk,t), t = 

1,2,•c,n then the prediction value forward l period is as 

following : 

(1) When l = 1,

(2) When l = 2,

(3) The prediction value forward l period is

2.5 Average Rank-forecasting Accuracy 

 After the establishment of multivariate fuzzy time series 

and fuzzy rule base, we are capable of making predictions 

successfully. In order to compare the discrepancy between 

linguistic variables predicted by our model and those in 

real situation, we set up a measuring index: average rank 

accuracy. It utilizes the notion of non-parameter rank and 

assigns each linguistic variable a representing value, like 

plunge (very low) as - 2, down (low) as - 1, unchanged 

(medium) as 0, up (high) as 1, and soar (very high) as 2. 

Definition 2.7 Average rank-forecasting accuracy 

 Let { RLt,t = 1,•c,n } be the linguistic variable of a time 

series, and { FLt,t = 1,•c,n) be the linguistic variable 

obtained from the prediction of fuzzy time series model .

Assume that L = { (L1, ,L2,•c,Lr) = (-(r-1)/2
, -(r-3)/2, 

••c•
,-(r-1)/2,) : Lj is the linguistic variable for j = 1,•c,r}, 

then

is called average rank-forecasting accuracy , where r 

denotes the number of linguistic variables. 

Example 2.2 Consider the universe of discourse ƒ¶ with 

five parts: {plunge, down, unchanged, up, soar}. For a 

time series, if its corresponding linguistic value is { up=1 , 

soar=2, down=-1, up=1, unchanged=0 , plunge=-2}; 

while the linguistic value for the realization is {0, 2, 0 , 2, 
-1

, -1}. By definition 2. 7, we know r=5 and n=6; therefore, 

the average rank forecasting accuracy is

3. MEASURING BELIEFS IN THE FORECASTING 
  PROCESS 

3.1 The use of belief functions 

 As people attempt to make decision for future affairs, 
they usually refer to past experience. Multivariate fuzzy 
time series forecasting model is just like human decision-
making model. Fuzzy relative matrix derives from previous 

quantity-price relationship and is just like former experi-
ence imprinted in human brain. Thus, by means of fuzzy 
relative matrix, we can further achieve prediction results. 
Nonetheless, just like people's judgments , people are not 
always right about the decisions they make. The same 

goes to the results of prediction made by forecasting 
models. Thereupon comes the question: How should we 
regard the prediction results forecasted by the model each 

time? Should we totally, partially or hardly accept them? 

 Try to recall the reaction we had when we had to make 
decisions for the future. Obviously, there is more than just 
the decision itself. The degree of belief towards the deci-

sion is also there. In other words, people not only make 
decisions but also make decisions with "degree of belief" 

in them. They tend to execute decisions more bravely for 
confident ones. By contrast, they act more carefully for 

less confident decisions. Accordingly, in the case of trying 
to make an investment, if we have faith in future market, 
we can make a large sum of investment; whereas, if we 
have little faith in future market, we can reduce the sum of 
money to be invested. In this regard, we can avoid loss due 

to misjudgment, increase investment returns for right 

judgment, and enhance our risk-control ability for capital. 
 So, this study not only makes predictions on multivariate
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fuzzy time series, but also establishes belief functions. 

Belief functions are used to describe the degree of belief in 

the predictions we made. Since the theoretically mathe-

matical foundation is constructed on the basis of the notion 

 of  belief function, some definitions and properties of belief 

function are provided, under limited conditions, as follow-

ing: 

Definition 3.1 Let ƒ¶ be a finite set. The set function G : 

2ƒ¶ •¨ [0,1] is a belief function, if

(i)

(ii)

Theorem 3.1 (i) Let G be a belief function in Q. Then 

the function g defined on 2ƒ¶, 

g (A)=(-1)•bA-B•b G(B), is nonnegative. 

B (ii) Let G and g be two functions from 2ƒ¶ to R.

G(A)= g (B) if and only if g (A)= ‡” (-1)•bA-B•b G (B). 

Proof. (i) Let A = { w1, w2,...,wn } •º ƒ¶ and Ai = A - { wi } 

Then

(ii) Then

If D = A, then the last form is g(A). If D # A, A -- D has 

2•bA-D•b subsets. Therefore, there exist even number of 

subsets B, D •º B •º A, exactly half of the sets have even 

number of elements . Thus the number of +1 is (-1)•bA-B•b 

half of the total number and the other is —1. For each D, 

D•‚A,

"•©" The way is the same as above .

To explain Theorem 3.1, we discover that any belief func-

tion G in ƒ¶ can be written as g : 2 ƒ¶•¨ [0,1], ‡” g (A) =1, 

and g(ƒÓ) = 0. Hence, formally g is a probability density 

function of some random set S in ƒ¶, i.e. P(S=A)=g(A), 

and G(A) = P(S •º A). Refer to the Theorem 3.2 below. 

Besides G plays the role of the distribution function of the 

random set S. In the theory of evidence, the value g(A) is 

interpreted as the weight of evidence in support of A. 

Theorem 3.2 Let g : 2 ƒ¶ — [0,1], g(ƒÓ)=0 and ‡” g (A) =1.

Define G(A)=‡”g (B), then the set function G is a belief 

function.

Proof. Since G(ƒÓ)=0 and G(Q)=1, we have to show that 

G is infinitely monotone. Let I = { 1, 2, ..., n) and Ai •º ƒ¶, 

i•¸I. We have

where at least one Ai contains F which is a subcollection 

of UAi.

Since ‡” (-1)•bJ•b+1, so the theorem is proved. 

3.2 How to establish and calculate the degree of belief? 

 This study uses the maximum membership grade to 

convert fuzzy forecasting value into linguistic vector 

index, and then obtain the predicted attributes of linguistic 

variables upon the fuzzy rule base. Just as when people 

are not sure to the very same extent if they make the right 

decision for the future, multivariate time series model 

doesn't have the same degree of belief in every prediction 

it makes. Thus, it is necessary to form a function to evalu-

ate the degree of belief of the forecasting model. In order 

to form and calculate degree of belief, the following defi-

nitions must be given: 

Definition 3.2 Generalized membership rank and 

maximum membership 

 Let L = {(L11, •c L15), •c, (Lkl •c Lk5) : Lij is a linguistic 

varriable}, and FXt be the membership function of multi-

variate fuzzy time series with respect to L. Let FXt be the 

linguistic vector index by converting FXt. Thus

For each FXA, assume that FAti is the generalized member-
ship rank of FAti and FCti is the maximum membership of 

FXti, where

in which uLij(FXt) is the membership function of FXti in the 

linguistic variable 

Example 3.1 Assume that there is a membership function 

of multivariate fuzzy time series with respect to L, say FXt 

{ (0.56,1.15,1.38,1.38),(0.96,1.32,1.40,0.74,0.28) } . Then 

FXt = { (0,0,0,1,1),(0,0,1,0,0) } . According to definition 

3.2, we have 

FAt1 = (-2•~0-1 •~0+0•~0+ 1 •~ 1 +2•~ 1)/(0+0+0+ 1 + 1) = 1.5 

FAt2 = (-2•~0-1 •~0+0•~ 1 + 1•~0+2•~0)/(0+0+ 1 +0+0) = 0. 

Now, we computed the maximum membership, FCt1= 1.38, 

FCt2 = 1.40. 

Definition 3.3 Confidence interference grade 

 For each FXt, let FItij be the confidence interference grade
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of each element for generalized membership rank in  FXti
Then

is the membership function of FXt in the linguistic variable 

Lij 

Example 3.2 Assume that FX, = {(0.56,0.45,1.15,1.38, 
1.38), (0.96,1.32,1.40,0.74,0.28)). Then the Confidence 
interference grade of each element is as following: 

FIt11=0.41,FIt12=0.33,FIt13=0.83,FIt14=0,FIt15=0, 
FIt21 = 0.66, FIt22 = 0.94, FIt23 = 0, FIt24 = 0.53, Fl,25 = 0.2. 

Definition 3.4 The weight of confidence interference 

grade 
 For the confidence interference grade of each element in 

FXti, let FWtij be the weight of confidence interference 

grade of FItij, then

Example 3.3 Assume FX, = {(0.56,1.15,1.38,1.38)(0.96, 
1.32,1.40,0.74,0.28)}, then the weight of confidence inter-

ference grade of each element is as following respectively 
FWt11 = 0.875, FWt12 = 0.625, FWt13 = 0.375, FWt14 = 
0.125, FWt15= 0.125. 

FWt21 = 0.5, FWt22 = 0.25, FWt23 = 0, FWt24 = 0.25, 
FWt25 = 0.5. 

Definition 3.5 Belief function 

 Let L = {(L11, L15),...,(Lk1, Lk5), L, is a linguistic vari-
able) and FX, be a membership function of multivariate 

fuzzy time series with respect to L. Let C,, be the belief 
function of FXti, then

Example 3.4 Assume that FX, = {(0.56,0.45,1.15,1.38, 

1.38)(0.96,1.32,1.40,0.74,0.28) }. Then the belief functions 

are

and

3.3 Some heuristic properties for the measuring 
   belief in the time series analysis 

Property 3.1 Let Cti be the belief function of fuzzy fore-

casting value FXti. For generalized rank FAti and maximum 
membership FCti, if the confidence interference grade and 

the weight coefficient in each element get smaller, then the 
confidence function Cti gets higher.

Property 3.2 If the distribution pattern of membership in 

FXti is of single kurtosis, then the larger the maximum 

membership value FCti is, the higher the belief function 
value will be. 

Property 3.3 If the distribution pattern of membership is 

approximately uniform distribution, then the belief func-
tion value Cti will be lower. 

Property 3.4 If the forecasting property is unchanged 

(medium), then the belief function value Cti will be higher. 
However, if the forecasting property is soar (very high) or 

plunge (very low), then the belief function value Cti will be 
lower. 

Property 3.5 Assume that C(t-1)i and Cti are the belief 

functions of fuzzy forecasting values FX(t-1)i and FXti 
respectively. Then C(t-1) will not affect Cti. In other words, 

the forecasting value of belief function of a certain day 
does not affect the one in the next day. 

4. EMPIRICAL STUDY 

4.1 Data Analysis 

 The data in this study are the daily weighted stock price 
index fluctuation and trade volume high/low difference 

information, taken from Taiwan Stock Exchange Corpora-

tion from 2003 January 3 to 2003 March 11, as illustrated 
in Figure 4.1 and 4.2. 

 As shown in the data, the daily maximum value of stock 

price index fluctuation is 211.09 and the daily minimum 

                  stock price fluctuation

Figure 4.1: TAIEX Fluctuation Summary 

(2003/January/3-2003/March/11) 

          trade volume high/low difference (hundred 
                       million)

Figure 4.2: TAIEX Trade Volume High/Low 

(2003/January/3•`2003/March/11)
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 one, -181.58; the maximum value of daily trade volume 

high/low difference is 393(hundred million), and the 

minimum one, -387(hundred million). Generally speak-

ing, universe of discourse should include the maximum 

and the minimum values; hence, we choose set (-181.58, 

211.09) and (-387, 393) as the universe of discourse of 

everyday stock price index fluctuation and daily trade 

volume high/low difference respectively. Because this 

study is based on fuzzy theory, we need to first fuzzify the 

data and, then, proceed to establish the model. Thus, 

(-181.58, 211.09) and (-387, 393) are divided 5 intervals 
as follows: let E1=1/8 quantile, E2=3/8 quantile, E3=5/8 

quantile, E4=7/8 quantile. 
I11 = (minimum, E1)=(-181.58, -91.5), and its repre-

sentative value is -181.58 ; 

I12 =(E1, E2)=(-91.5, -24.23), and its representative 

value is -46.58 ; 

I13 =(E2, E3)=(-24.23,11.22), and its representative 

value is -2.35 ; 

I14 =(E3i E4)= (11.22,85.53), and its representative 

value is 43.25 ; 

I15 = (E4i maximum) = (85.53, 211.09), and its represen-

tative value is 211.09. 

I21 =(minimum, E1)=(-387,-154), and its representa-

tive value is -387 ; 

I22 =(E1, E2)=(-154,-52), and its representative value 

is-81; 

I23 =(E2, E3)=(-52, 34), and its representative value is 

16; 

I24 =(E3, E4)=(34,129), and its representative value is 

48 ; 

I25 =(E4, maximum) = (129, 393), and its representative 

value is 393 

Among which, { I11, I12, I13, I14, 115 } and {I21, I22, I23, I24, I25}

are the five intervals of (-181.58, 211.09) and (-387, 

393) respectively. Then, we define five linguistic variables 

within (-181.58, 211.09) and (-387, 393), that is, L11 = 

plunge ; L12 = down ; L13 = unchanged ; L14 = up ; L15 = 
soar. 

L21 = very low ; L22 = low ; L23 = medium ; L24 = high ; 

L25 = very high. Each of the linguistic variables stands for 

a fuzzy set, and the components of each fuzzy set are 

Iji (i = 1,2;j = 1,2,...,5) and the corresponding membership 
function. 

4.2 Establishment of Fuzzy Time Series Analysis 

   Model 

 Before constructing the model, we have to fuzzify both 

daily weighted stock price index fluctuation and trade 

volume high/low difference. By applying the procedure of 

Definition 2.1, for each fuzzy set Lij(i = 1,2; j = 1,2,...,5),

we gain daily weighted stock price index fluctuation and 

trade volume high/low difference as well as the corre-

sponding membership function of each linguistic variable, 

as shown in Table 4.1 and 4.2. For the brief reason we 

only illustrated the first ten data 

 The daily weighted stock price index fluctuation and 

trade volume high/low difference from 2003/January/3 to 

2003/March/11 are shown in Table 4.1 and 4.2. Suppose 

the maximum membership grade of some day is located at 

L1j (j = 1,2,...,5), its linguistic variable will be regarded as 

L1j (j = 1,2,...,5). Take 2003/January/3 as an example. The 

maximum membership grade is located at L14 and L25. 

Thus, the weighted stock price index fluctuation of 2003/ 

January/3 is L14 and the trade volume difference is L25. Or 

we can call the fluctuation value of the day as "up" and the 

trade volume difference as "very high." The fuzzy rela-

tionship among data can be located, based on past fuzzy 

data, and furthermore, fuzzy-Markov-relative matrix is 

obtained as well.

R11 is the fuzzy-Markov-relative matrix of the stock 

price fluctuation of (a certain day) and the stock price 
fluctuation of (the next day). R12 is the fuzzy-Markov-rela-

tive matrix of the stock price fluctuation of (a certain day) 

and the trade volume difference of (the next day). R21 is 

the fuzzy-Markov-relative matrix of the trade volume 

difference of (a certain day) and the stock price fluctuation 

of (the next day). R22 is the fuzzy-Markov-relative matrix 

of the trade volume difference of (a certain day) and the 

trade volume difference of (the next day). Thus, the multi-

variate first order of auto-regression model is (FX1,t, FX2,t) 
= (FX1,t-1, FX2,t-1,)R. (FX1,t-1, FX2,t-1) and (FX1,t, FX2,t) each 
indicates the membership function of the linguistic vari-

able of multivariate fuzzy set of Taiwan weighted stock 

price index fluctuation and trade volume high/low differ-
ence in Day t-1 and Day t. At last, Table 4.3 and 4.4 present 

the membership functions output by the model and the 

membership functions converted from linguistic vector 

index functions.
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4.3 Comparisons and Analyses of Prediction Results 

 Since this study focuses mainly on the property 
tendency of time series, we make use of the fuzzy rule 

base discussed in section 3.2 to verify the converted 
membership functions and output the properties of the 

prediction results. Furthermore, we have introduced the 
meaning and definition of belief function in detailed in 

section 3.5. The properties of the prediction results and 

the belief functions are listed in Table 4.5 and 4.6. 
 As shown in Table 4.5 and 4.6, the multivariate fuzzy 

time series forecast model established in this study has 

proved itself to be a very effective predicting device. 
Because the predictions are made through the five divided 
sections, the matching average should be about 0.20, 

regarding either stock price fluctuation or trade volume 
difference. However, if we  made predictions through the 

model in this study, the matching averages of stock price 
fluctuation and trade volume difference are 0.53 and 0.55, 

and the average forecasting accuracy are 0.81 and 0.86 
respectively. Belief function has also been helpful in 

deciding the amount of capital to be invested and control-
ling risks. It is clearly manifested that if the belief function 

is higher, the properties we predict are in conformity with 
the properties of true value. On the contrary, when the 

predicted properties and the true ones are distinct, the 
belief functions of the prediction are usually lower. As 
shown in the following Table 4.7, the authors present the 

true value properties as well as the predicted value proper-
ties of TAIEX fluctuation from March 12 to April 23, 

generated by the model we propose in this study. 
 Owing to the Second Gulf War during March, 20 to 

May, 2, 2003, the first SARS case identified on March, 8 
in Taiwan, the seal-off of Taipei Municipal Hoping Hospi-

tal on April, 24, and the fast spread of SARS, Taiwan stock 
market had suffered great impact. Nonetheless, under the 

severe market unrest, the matching average for the next 31 
days, as shown in Table 4.7, manages to reach 0.27 and 

the average forecasting accuracy, 0.72. If we exclude the 
ten days prior and post Gulf War and the days after SARS 

outbreaks, we find that there are six days with matching 
average as high as 0.5 and average forecasting accuracy, 
0.79 as shown in Table 4.8. This has proved that the multi-

variate fuzzy time series forecast model we establish is, to 
a certain extent, credible in predicting future conditions. 

The reason of some prediction values' failing to reach the 
true values is that we only take the maximum membership 
function into consideration and neglect the secondary 

membership functions in the conversion process. 

 To sum up, with the help of a reasonable forecast model 
and belief functions for evaluating the prediction results, 
we can make an appropriate investment strategy and won't 

feel at a loss for future investment and can reduce the risks

as well. 

5. CONCLUSIONS 

 In order to increase profit gains, simply enhancing the 

accuracy of forecast is not enough. A more substantial 
factor is to have great belief in accurate predictions, so 

that investors can place more capital and gain maximum. 
returns. On the contrary, if investors have little belief in 

the predictions, they will act with care and fear and place 

less capital in the investment, causing less profits, despite 
the prediction results being accurate. Again, no forecast 

model can guarantee ever accuracy. According to the 
belief function proposed in the study, accurate predictions 

generally tend to have greater degree of belief, while inac-
curate ones will lead to less degree of belief. As a 
consequence, when predictions have lower degree of 

belief, investors should strictly control investment rate so 
as to prevent loss caused by wrong predictions. On the 

other hand, when predictions have greater degree of belief, 
investors might as well considering larger sum of invest-

ment so as to obtain more profits. Thus, investors can try 
utilizing belief function to formulate financial manage-

ment and investment strategies to better rate of return and 
risk management. 

 The study uses the defined fuzzy time series, fuzzy rela-
tion and fuzzy-markov-relative matrix to establish fuzzy 

multivariate time series forecast model through fuzzy 
formula's inference, and makes use of fuzzy rule base in 

judging the property of forecast value, which is further 
evaluated by belief functions to verify its degree of belief. 

With the above methodology, we propose a model for 

prediction, incorporating two factors of TAIEX fluctua-
tion and trade volume difference, and establish an 
appropriate multivariate fuzzy time series model, based 

on historical data of weighted stock price index fluctua-
tion and trade volume difference from 2003/January/3 to 

2003/March/ 11. We have measured the accuracy of the 

prediction value generated by the multivariate fuzzy time 
series with average predict rank accuracy, and have evalu-
ated the degree of belief in each of the prediction with 

belief function values. As shown in the practical analysis, 
the forecast model is plausible. With the help of belief 
functions in each prediction, investors not only can obtain 

more accurate predictions, but also can refer to the value 
of belief functions to adjust their investment strategy and 

to increase their ability of risk control as well as rate of 
returns, which is of great financial significance. 

 The following are some issues to be solved and are 
worthy of further investigation in the future. 

1. This study only takes two factors into consideration, 
  i.e. closing price and trade volume difference; however,
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there are still many other factors that may affect 

weighted stock price index, like a company's financial 

structure, exchange rate, interest rate, and government 

policies, etc. Thus, to gain more accurate forecasting, 
other variables may be incorporated into the establish-

ment of forecast models. 

2. Take Taiwan weighted stock price index as an example. 

  A great many quoted companies distribute annual 

  profits at the 2nd quarter, i.e. ex rights and ex dividend. 
  Yet, the peak period for electronic industry is the 4th 

  quarter, which may inspire us to include the seasonal 
  factor in our prediction. 

3. The study adopts five-rank taxonomy and converts 

  time series data into fuzzy values through membership 

  functions. Another common classification method in 

  social science is seven-rank taxonomy, which is an 

  alternative way worthy of trying. The more ranks the 

  classification has, the more complicated the calculation 

  will be. Nonetheless, finer classification will definitely 

  enhance the predicting capability to a certain extent. 

4. Different constructing technique of membership func-

  tions will lead to different predictions. Hence, if we 

  make an effort to improve the technique, it is possible 

  to strengthen the predicting and analyzing potency of 

  the model towards time series data. 

5. The belief function we proposed in the study is created 

to conduct the conversion procedure through maxi-

mum membership grade. If is suggested that we may 

develop alternative and more realistic belief measure 

process in the future study. 
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Table  4.1: Membership Grade of Daily TAIEX Fluctuation

Table 4.2: Membership Grade of Trade Volume Difference

Table 4.3: Membership functions output by the model regarding Taiwan weighted stock price index fluctuation and trade volume 

                                    high/low difference

Table 4.4: Membership functions converted from linguistic vector index functions regarding Taiwan weighted stock price index 

                            fluctuation and trade volume high/low difference
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Table 4.5: Comparison of fitness value for TAIEX fluctuation
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Table 4.6: Comparison of fitness value for TAIEX trade volume high/low difference
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Table 4.7: True value, predicted value and belief function of  TAIEX fluctuation

Table 4.8: True value, predicted value and belief function of TAIEX fluctuation
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