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Preface

In many areas of science and engineering, we have a class (“population”)
of objects, and we are interested in the values of one or several quantities
characterizing objects from this population. For example, we are interested
in the human population in a certain region, and we are interested in their
heights, weights, etc.

Different objects from a population have, in general, different values of the
desired characteristics. Measuring, storing, and processing all these values
is often not practically feasible. Instead of measuring all these values, we
therefore measure the values x1, . . . , xn corresponding to a sample from the
population. Based on these sample values, we need to estimate statistical
characteristics c – i.e., characteristics that describe the population as a whole,
such as the mean and the variance of different quantities, the correlation
between different quantities, etc.

For each desired characteristic c, there exist several algorithms

C(x1, . . . , xn)

for estimating c based on the sample values; these algorithms are known
as statistics. For example, a typical statistic for estimating the mean is the
arithmetic average, in which case

C(x1, . . . , xn) =
x1 + . . .+ xn

n
.

In other words, to estimate, e.g., the average height c of a certain popula-
tion, we measure the heights x1, . . . , xn of several representatives from this

population, and we use the arithmetic mean
x1 + . . .+ xn

n
of these heights

as an estimate for the population height c. Slightly more complex statistics
are used to estimate the variance, the correlation, etc.

Of course, an estimate based on a finite sample is only approximate. To get
more accurate estimates, we need to take larger samples. For most statistics
used in science and engineering, there exist estimates of the accuracy with
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which the sample-based value C def= C(x1, . . . , xn) approximates the desired
statistical characteristic c of the population as a whole. In other words, there
are methods for estimating the difference C − c between the sample-based
estimate C for the desired characteristic and its (unknown) actual value c.

These accuracy estimates are based on the assumption that for each object
i, we know the exact value xi of the corresponding quantity. In practice,
however, the values xi come from measurements (or from expert estimates),
and measurements are never absolutely accurate: the measurement result x̃i

is, in general, different from the actual (unknown) value xi of the measured
quantity. In other words, the estimation error Δxi

def= x̃i − xi is, in general,
different from 0. As a result, the statistic ˜C

def= C(x̃1, . . . , x̃n) computed
based on the measurement results is, in general, different from the ideal value
C

def= C(x1, . . . , xn).
We want to know how accurate are these estimates ˜C, i.e., what is the size

of the quantity ˜C − c. Statistical analysis enables us to estimate a (slightly
different quantity) C − c, with C �= ˜C. Thus, to estimate the value of the
quantity ˜C−c, we need to estimate the difference ( ˜C−c)−(C−c) (= ˜C−C)
between the quantity ˜C − c that we want to estimate and the quantity C − c
that we are already able to estimate. In other words, we need to estimate the
difference ˜C − C.

Estimates for this difference ˜C − C are also known in statistics – but
only for the case when we know the exact probability distribution of all the
measurement errors Δxi. In practice, often, we do not know these distribu-
tions. Usually, we only know the upper bound Δi on the measurement error:
|Δxi| ≤ Δi. In this case, once we know the measurement result x̃i, we can
only conclude that the actual (unknown) value of the quantity xi belongs to
the interval

xi
def= [x̃i −Δi, x̃i +Δi].

In other cases, the values x̃i are expert estimates, and we only have fuzzy
information about the estimation errors Δxi.

The main objective of this book is computing statistics under such interval
and fuzzy uncertainty. In more precise terms, our objective is to estimate the
difference ˜C −C = C(x̃1, . . . , x̃n)−C(x1, . . . , xn) under the assumption that
we only have interval or fuzzy estimates of the differences Δxi = x̃i − xi.

Part I of this book contains the formulation of the problem and a brief
overview of the general techniques that can be used to solve this problem.
Specifically, we formulate the general problem, we briefly describe the general
techniques of interval and fuzzy computations, and we also explain which
statistical characteristics are most frequently used in practice – and why.

In particular, in Part I, we explain that the algorithmic problem of com-
puting statistics under fuzzy uncertainty can be reduced to the problem of
computing statistics under interval uncertainty. Specific algorithms for com-
puting different statistics under interval uncertainty are presented in Part II.
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Algorithms presented in Part II assume that the input data is of “good
quality”, i.e., that the interval inputs are guaranteed to contain the actual
(unknown) values – and that the fuzzy inputs are also in good accordance
with the actual values. In real life, not all inputs may be reliable or accurate.
Part III described how to gauge the quality of the input data.

Part IV contains examples of applications of the resulting techniques. This
part contains applications ranging from computer science (optimal scheduling
of different processors) and computer engineering (design of computer chips)
to data processing in geosciences, radar imaging, and structural mechanics.

In Part V, we sketch possible extensions of our results beyond intervals
and fuzzy sets: to ranges which are more general than interval ranges, to
p-boxes and subsets of p-boxes, to interval-valued and type-2 fuzzy sets, etc.

This work was supported in part by NSF grants HRD-0734825, EAR-
0225670, and EIA-0080940, by Texas Department of Transportation contract
No. 0-5453, by the Japan Advanced Institute of Science and Technology
(JAIST) International Joint Research Grant 2006-08, and by the Max Planck
Institut für Mathematik.

The authors are thankful to all their colleagues and participants of numer-
ous conferences for valuable suggestions.

Las Cruces, New Mexico Hung T. Nguyen
El Paso, Texas Vladik Kreinovich
Taipei, Taiwan Berlin Wu
El Paso, Texas Gang Xiang

August 2011



Contents

Part I Computing Statistics under Interval and Fuzzy
Uncertainty: Formulation of the Problem and an Overview of
General Techniques Which Can Be Used for Solving This Problem

1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Computing Statistics under Probabilistic and Interval

Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Computing Statistics under Fuzzy Uncertainty: Formulation of

the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Computing under Fuzzy Uncertainty Can Be Reduced to

Computing under Interval Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Computing under Interval Uncertainty: Traditional Approach

Based on Uniform Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6 Computing under Interval Uncertainty:

When Measurement Errors Are Small . . . . . . . . . . . . . . . . . . . . . . . . . 29
7 Computing under Interval Uncertainty: General Algorithms . . . . . . 35
8 Computing under Interval Uncertainty: Computational

Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9 Towards Selecting Appropriate Statistical Characteristics:

The Basics of Decision Theory and the Notion of Utility . . . . . . . . . 51
10 How to Select Appropriate Statistical Characteristics . . . . . . . . . . . . 55

Part II Algorithms for Computing Statistics under Interval and
Fuzzy Uncertainty

11 Computing under Fuzzy Uncertainty Can Be Reduced to
Computing under Interval Uncertainty: Reminder . . . . . . . . . . . . . . . 61

12 Computing Mean under Interval Uncertainty . . . . . . . . . . . . . . . . . . . 63
13 Computing Median (and Quantiles) under Interval Uncertainty . . . 65



X Contents

14 Computing Variance under Interval Uncertainty: An Example of
an NP-Hard Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

15 Types of Interval Data Sets: Towards Feasible Algorithms . . . . . . . . 79
16 Computing Variance under Interval Uncertainty:

Efficient Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
17 Computing Variance under Hierarchical Privacy-Related Interval

Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
18 Computing Outlier Thresholds under Interval Uncertainty. . . . . . . . 129
19 Computing Higher Moments under Interval Uncertainty . . . . . . . . . 153
20 Computing Mean, Variance, Higher Moments, and Their Linear

Combinations under Interval Uncertainty: A Brief Summary . . . . . . 167
21 Computing Covariance under Interval Uncertainty . . . . . . . . . . . . . . 169
22 Computing Correlation under Interval Uncertainty . . . . . . . . . . . . . . 173
23 Computing Expected Value under Interval Uncertainty . . . . . . . . . . 177
24 Computing Entropy under Interval Uncertainty. I . . . . . . . . . . . . . . . 181
25 Computing Entropy under Interval Uncertainty. II . . . . . . . . . . . . . . 193
26 Computing the Range of Convex Symmetric Functions under

Interval Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
27 Computing Statistics under Interval Uncertainty: Possibility of

Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
28 Computing Statistics under Interval Uncertainty: Case of Relative

Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Part III Towards Computing Statistics under Interval and Fuzzy
Uncertainty: Gauging the Quality of the Input Data

29 How Reliable Is the Input Data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
30 How Accurate Is the Input Data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Part IV Applications

31 From Computing Statistics under Interval and Fuzzy Uncertainty
to Practical Applications: Need to Propagate the Statistics
through Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

32 Applications to Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
33 Applications to Computer Science: Optimal Scheduling for Global

Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
34 Applications to Information Management: How to Estimate

Degree of Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
35 Applications to Information Management: How to Measure Loss

of Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283



Contents XI

36 Application to Signal Processing: Using 1-D Radar Observations
to Detect a Space Explosion Core among the Explosion
Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

37 Applications to Computer Engineering: Timing Analysis of
Computer Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

38 Applications to Mechanical Engineering: Failure Analysis under
Interval and Fuzzy Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

39 Applications to Geophysics: Inverse Problem . . . . . . . . . . . . . . . . . . . 317

Part V Beyond Interval and Fuzzy Uncertainty

40 Need to Go Beyond Interval and Fuzzy Uncertainty . . . . . . . . . . . . . 333
41 Beyond Interval Uncertainty: Taking Constraints into Account . . . . 335
42 Beyond Interval Uncertainty: Case of Discontinuous Processes

(Phase Transitions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
43 Beyond Interval Uncertainty in Describing Statistical

Characteristics: Case of Smooth Distributions and Info-Gap
Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

44 Beyond Traditional Interval Uncertainty in Describing Statistical
Characteristics: Case of Interval Bounds on the Probability
Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

45 Beyond Interval Uncertainty in Describing Statistical
Characteristics: Case of Normal Distributions . . . . . . . . . . . . . . . . . . . 379

46 Beyond Traditional Fuzzy Uncertainty: Interval-Valued Fuzzy
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

47 Beyond Traditional Fuzzy Uncertainty:
Type-2 Fuzzy Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425



Part I

Computing Statistics under Interval and Fuzzy

Uncertainty: Formulation of the Problem and
an Overview of General Techniques Which

Can Be Used for Solving This Problem



1

Formulation of the Problem

Need for statistical analysis. In many areas of science and engineering, we
have a class (“population”) of objects, and we are interested in the values
of one or several quantities characterizing objects from this population. For
example, we are interested in the human population in a certain region, and
we are interested in their heights, weights, etc.

Different objects from a population have, in general, different values of the
desired characteristics. Measuring, storing, and processing all these values
is often not practically feasible. Instead of measuring all these values, we
therefore measure the values x1, . . . , xn corresponding to a sample from the
population. Based on these sample values, we need to estimate statistical
characteristics c – i.e., characteristics that describe the population as a whole,
such as the mean and the variance of different quantities, the correlation
between different quantities, etc.

Need for computing statistics. For each desired characteristic c, there exist
several algorithms

C(x1, . . . , xn)

for estimating c based on the sample values; these algorithms are known
as statistics. For example, a typical statistic for estimating the mean is the
arithmetic average, in which case

C(x1, . . . , xn) =
x1 + . . .+ xn

n
.

In other words, to estimate, e.g., the average height c of a certain popu-
lation, we measure the heights x1, . . . , xn of several representatives from this

population, and we use the arithmetic mean
x1 + . . .+ xn

n
of these heights

as an estimate for the population height c. Slightly more complex statistics
are used to estimate the variance, the correlation, etc.

How accurate are sample-based estimates? Of course, an estimate based on
a finite sample is only approximate. To get more accurate estimates, we need
to take larger samples. For most statistics used in science and engineering,

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 3–8.
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4 1 Formulation of the Problem

there exist estimates of the accuracy with which the sample-based value
C

def= C(x1, . . . , xn) approximates the desired statistical characteristic c of
the population as a whole.

In other words, there are methods for estimating the difference C − c
between the sample-based estimate C for the desired characteristic and its
(unknown) actual value c; see, e.g., [283, 305].
Main assumption behind the traditional statistical accuracy estimates. The
existing statistical estimates for the difference C−c are based on the assump-
tion that for each object i, we know the exact value xi of the corresponding
quantity.
Measurement and estimation errors. In practice, the values xi come from
measurements (or from expert estimates), and measurements are never ab-
solutely accurate: the measurement result x̃i is, in general, different from the
actual (unknown) value xi of the measured quantity. In other words, the es-
timation error Δxi

def= x̃i − xi is, in general, different from 0. As a result, the
statistic ˜C def= C(x̃1, . . . , x̃n) computed based on the measurement results is,
in general, different from the ideal value C def= C(x1, . . . , xn).
Need to compute statistics under uncertainty. We want to know how accurate
are the estimates ˜C, i.e., what is the size of the quantity ˜C − c. Statistical
analysis enables us to estimate a (slightly different quantity) C − c, with
C �= ˜C. Thus, to estimate the value of the quantity ˜C−c, we need to estimate
the difference ( ˜C−c)− (C−c) (= ˜C−C) between the quantity ˜C−c that we
want to estimate and the quantity C− c that we are already able to estimate.
In other words, we need to estimate the difference ˜C − C.
Computing statistics under uncertainty: what is known. Estimates for the
difference ˜C−C are also known in statistics – for the case when we know the
exact probability distribution of all the measurement errors Δxi; see, e.g.,
[283, 305].
Comment. In most practical applications, it is assumed that the correspond-
ing measurement errors are normally distributed with 0 mean and known
standard deviation. Numerous engineering techniques are known (and widely
used) for processing this uncertainty; see, e.g., [283].
How the probability distribution of Δxi is determined. In practice, we can
determine the desired probabilities of different values of Δxi by comparing

• the result x̃i of measuring a certain quantity with this instrument and
• the result x̃ ′

i of measuring the same quantity by a standard (much more
accurate) measuring instrument.

Since the standard measuring instrument is much more accurate than the one
we use, i.e., |x̃ ′

i −xi| � |x̃i −xi|, we can assume that x̃ ′
i = xi, and thus, that

the difference x̃i − x̃ ′
i between these two measurement results is practically

equal to the measurement error Δxi = x̃i − xi. Thus, the empirical distribu-
tion of the difference x̃i − x̃ ′

i is close to the desired probability distribution
for measurement error.
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Sometimes, we do not know the probabilities. In the traditional approach to
estimating accuracy of the results of data processing, we assume that we
know the probabilities of different values of measurement errors Δxi.

There are two cases when the determination of these probabilities is not
done:

• First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When the Hubble telescope detects the light from a dis-
tant galaxy, there is no “standard” (much more accurate) telescope floating
nearby that we can use to calibrate the Hubble: the Hubble telescope is
the best we have.

• The second case is the case of real industrial applications (such as mea-
surements on the shop floor). In this case, in principle, every sensor can be
thoroughly calibrated, but sensor calibration is so costly – usually costing
several orders of magnitude more than the sensor itself – that manufac-
turers rarely do it (only if it is absolutely necessary).

In both cases, we have no information about the probabilities of Δxi; the
only information we have is the upper bound on the measurement error.

Upper bounds on measurement errors. The manufacturers of a measuring
device usually provide us with an upper bound Δi for the (absolute value
of) possible measurement errors, i.e., with the bound Δi for which we are
guaranteed that |Δxi| ≤ Δi.

The need for such a bound comes from the very nature of a measurement
process. Indeed, if no such bound is provided, this means that the actual
value xi can be as different from the “measurement result” x̃i as possible.
Such a value x̃i – which can be very different from the actual value xi – is
not a measurement, it is a wild guess.

Since the (absolute value of the) measurement error Δxi = x̃i − xi is
bounded by the given bound Δi, we can therefore guarantee that the actual
(unknown) value of the desired quantity belongs to the interval

xi
def= [x̃i −Δi, x̃i +Δi].

Example. If the measured value of a quantity is x̃i = 1.0, and the upper
bound Δi on the measurement error is 0.1, this means that the (unknown)
actual value of the measured quantity can be anywhere between 1−0.1 = 0.9
and 1 + 0.1 = 1.1, i.e., that it can take any value from the interval [0.9, 1.1].

Case of interval uncertainty. In the cases when our only information about
the measurement error is the upper bound, after performing a measurement
and getting a measurement result x̃i, the only information that we have about
the actual value xi of the measured quantity is that it belongs to the interval
xi = [x̃i − Δi, x̃i + Δi]. In other words, we do know not the actual value
xi of the i-th quantity. Instead, we know the interval [x̃i −Δi, x̃i +Δi] that
contains xi.
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Important specific cases of measurement-related interval uncertainty. To de-
scribe specific cases of measurement-related interval uncertainty, let us recall
the main idea of a measurement procedure, and show how different stages of
this procedure contribute to measurement uncertainty.

The main objective of a measuring instrument is to measure the value of a
desired quantity, In some cases – e.g., when measuring current – this quantity
characterizes a signal; in other cases, a sensor transform this quantity into a
signal. For example, a weight is not a signal, but the scale embedded in the
electronic scales translates the weight into a signal.

This signal comes with noise. Part of this noise comes from the outside,
part is generated by the measuring instrument itself. This noise is one of the
main reasons why the measurement result x̃ is, in general, different from the
actual value x.

The signal needs to affect the sensor. Most sensor have inertia – in the
sense that if a signal is below a certain limit, the sensor does not react at all.

For signals below the detection limit, this fact results in measurement
uncertainty.

Once the sensor reacts, it gets into one of the easily distinguishable states
corresponding to different measurement results. Nowadays, most sensors gen-
erate digital signals describing the measurement results; these signals are the
distinguishable states. In the old days, different reading on a scale were dif-
ferent states.

As a result of each measurement, a measuring instrument generates a finite
sequence of bits, and the number of bits B that it can generate during the time
allocated for a measurement is bounded. There are ≤ 2B combinations of B
bits. Thus, each measuring instrument has a finite number ≤ 2B) of possible
measuring results. This discretization also contributes to the measurement
uncertainty.

Case of detection limits. For some measuring instruments, noise and dis-
cretization errors are negligible, and the detection error is the main source of
measurement uncertainty.

In this case, if the actual value x is below the detection limit DL, the sensor
does not measure anything, i.e., we get x̃ = 0. Thus, the measured value x̃ = 0
corresponds to the interval [0, DL] of possible values x. If a sensor, e.g., did
not detect any ozone, this means that the ozone concentration is below its
detection limit DL, i.e., in the interval [0, DL].

For values above the detection limit, the sensor returns, in effect, the actual
value x̃ = x.

Case of discretized data. In other cases, noise and detection limits and neg-
ligible, and discretization is the main source of measurement error.

For example, if we experiment on the fish and watch it daily, and a fish is
alive on Day 5 but dead on Day 6, then all we know about its lifetime is that
it is in the interval [5, 6].
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Interval uncertainty motivated by privacy. In addition to measurement un-
certainty, there is another sources of interval uncertainty: intervals can also
come from the need to preserve privacy.

Indeed, in medicine, in social studies, etc., it is important to perform sta-
tistical data analysis. By performing such an analysis, we can find, e.g., the
correlation between the age and income, between the gender and side effects
of a medicine, etc. People are often willing to supply the needed confidential
data for research purposes. However, many of them are worried that it may
be possible to extract their confidential data from the results of statistical
data processing – and indeed such privacy violations have occurred in the
past.

One way to prevent such privacy violations is to replace the exact values of
the parameters that could be used to identify a person with ranges. Quantities
whose values can be used to identify a person are called quasi-identifiers; see,
e.g., [322].

For example, we divide the set of all possible ages into ranges [0, 10],
[10, 20], [20, 30], etc. Then, instead of storing the actual age of 26 that would
enable us to identify a person, we only store the range [20, 30] which contains
the actual age value. Such ranges are called generalized ranges, to distinguish
them from the actual ranges of the quantities [322].

This approach successfully protects privacy, but it leads to a computational
challenge. For example, if we want to estimate the variance of ages, we can
no longer simply compute the statistic such as population variance

V =
1
n
·

n
∑

i=1

x2
i −

(

1
n
·

n
∑

i=1

xi

)2

;

since we only know the intervals [xi, xi] of possible values of xi, we can only
compute the range V of possible values of this statistic when xi ∈ xi.

Comment about roundoff errors. In many numerical computations, there is
another important source of interval uncertainty: roundoff errors. These er-
rors come from two sources:

• first, many physical formulas use numbers like z =
√

2 or z = π which
are not binary rational and thus, cannot be exactly represented in the
existing computers; even many rational numbers like z = 1/3 or z = 1.2
are not binary rational; similarly, the values of many useful functions like
z = sin(x), z = ln(x), etc., are usually not binary rational and thus, cannot
be exactly represented;

• second, even when two numbers x and y are exactly represented in a com-
puter, with exactly as many binary digits as a computer can handle, their
product z = x · y – while still binary rational – takes twice as many digits
and thus, cannot be exactly represented, it must be rounded off.

In these cases, even for the ideal rounding, all we know about the actual
computational result z is that it belongs to the interval [z̃ − ε, z̃ + ε], where



8 1 Formulation of the Problem

z̃ is the computation result, and ε is the guaranteed upper bound on the
roundoff accuracy.

In general, as it is well known in numerical computations, roundoff errors
are very important. However, in our problem, measurement errors, which are
usually about 10%, 1%, 0.1%, are several orders of magnitude larger than
these roundoff errors of 10−7 for single precision (and even smaller for double
precision). Thus, in comparison with measurement errors, roundoff errors can
be safely ignored.

The additional reason why roundoff errors can be safely ignored is that our
objective is to estimate the values of the statistical characteristics like mean,
variance, etc., based on the sample data. The relative accuracy of determining
a statistical characteristic based on a sample of size n is usually of order 1/

√
n.

Even for n = 103 the resulting uncertainty is ≈ 1/
√

1000 ≈ 3%, much larger
than the roundoff errors.

Need to process fuzzy uncertainty. In some practical situations, we only have
expert estimates for the inputs xi. Sometimes, experts provide guaranteed
bounds on the xi, and even the probabilities of different values within these
bounds. However, such cases are rare. Usually, the experts’ opinions about
the uncertainty of their estimates are described by (imprecise, “fuzzy”) words
from natural language. For example, an expert can say that the value xi of the
i-th quantity is approximately equal to 1.0, with an accuracy most probably
of about 0.1.

The need to process such “fuzzy” information was first emphasized in the
early 1960s by L. Zadeh who designed a special technique of fuzzy logic for
such processing; see, e.g., [156, 252].

Our main objective. The main objective of this book is computing statistics
under such interval and fuzzy uncertainty.

In more precise terms, our objective is to estimate the difference ΔC def=
˜C − C = C(x̃1, . . . , x̃n) − C(x1, . . . , xn) under the assumption that we only
have interval or fuzzy estimates of the differences Δxi = x̃i − xi.

�

. . .

�

�

Δxn, x̃n

Δx2, x̃2

Δx1, x̃1

�ΔCC
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Computing Statistics under Probabilistic and

Interval Uncertainty: A Brief Description

Computing statistics under probabilistic uncertainty. In the case of proba-
bilistic uncertainty, we know the probability distributions for measurement
errors corresponding to all the inputs x1, . . . , xn, and we want to find the
probability distribution corresponding to the statistic C(x1, . . . , xn).

Let us formulate the corresponding problem in more precise terms. We are
given:

• an integer n;
• n measurement results x̃1, . . . , x̃n;
• n probability distributions corresponding to n variables Δxi (with the

assumption that these distributions are independent), and
• an algorithm C(x1, . . . , xn) which transforms n real numbers into a real

number C = C(x1, . . . , xn).

We need to compute the probability distribution of the difference ΔC =
˜C − C, where ˜C def= C(x̃1, . . . , x̃n), C def= C(x1, . . . , xn), and xi

def= x̃i −Δxi.

Case of interval uncertainty. Let us consider the cases when our only infor-
mation about the measurement error is the upper bound. In such cases, as
we have mentioned, for each i, we know the interval xi of possible values of
xi, and we need to find the range

C
def= {C(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}

of the given function C(x1, . . . , xn) over all possible tuples x = (x1, . . . , xn)
with xi ∈ xi.

The process of computing this interval range based on the input intervals
xi is called interval computations; see, e.g., [142, 148].

Since the function C(x1, . . . , xn) is usually continuous, this range is also an
interval, i.e., y = [y, y] for some y and y. So, to find this range, it is sufficient
to find the endpoints y and y of this interval.

Let us formulate the corresponding interval computations problem in pre-
cise terms. We are given:

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 9–10.
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• an integer n;
• n intervals x1 = [x1, x1], . . . , xn = [xn, xn], and
• an algorithm C(x1, . . . , xn) which transforms n real numbers into a real

number C = C(x1, . . . , xn).

We need to compute the endpoints y and y of the interval

C =
[

C,C
]

= {C(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , [xn, xn]}.

�

. . .

�

�

xn

x2

x1

�CC
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Computing Statistics under Fuzzy

Uncertainty: Formulation of the Problem

Need to process fuzzy uncertainty. In many practical situations, we only have
expert estimates for the inputs xi. Sometimes, experts provide guaranteed
bounds on the xi, and even the probabilities of different values within these
bounds. However, such cases are rare. Usually, the experts’ opinions about
the uncertainty of their estimates are described by (imprecise, “fuzzy”) words
from natural language. For example, an expert can say that the value xi of the
i-th quantity is approximately equal to 1.0, with an accuracy most probably
of about 0.1. Based on such “fuzzy” information, what can we say about
y = f(x1, . . . , xn)?

The need to process such “fuzzy” information was first emphasized in the
early 1960s by L. Zadeh who designed a special technique of fuzzy logic for
such processing; see, e.g., [156, 252].

Computing statistics under fuzzy uncertainty: main idea. Intuitively, a value y
is a reasonable value of the statisticC(x1, . . . , xn) quantity if y = C(x1, . . . , xn)
for some reasonable values xi, i.e., if for some values x1, . . . , xn,

• x1 is reasonable,
• x2 is reasonable,
• . . . ,
• xn is reasonable,
• and y = C(x1 . . . , xn).

Thus, to describe to what extent different values of y are reasonable, we must
be able:

• to describe to what extent (to what degree) different values of xi are rea-
sonable, and

• to combine these degrees into the desired degree of belief in reasonability
of y.

Degrees of belief. Let us first introduce the basic concept of degrees of belief
(also known as degree of confidence, or membership degree). For example, we
would like to estimate to what extent the value xi = 0.89 is consistent with

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 11–17.
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12 3 Computing Statistics under Fuzzy Uncertainty

the statement “the value xi of the i-th quantity is approximately equal to
1.0, with an accuracy most probably about 0.1”.

In the absence of uncertainty, every statement is either true or false. In the
computer, “true” is usually represented as 1, and “false” as 0. It is therefore
reasonable to use numbers between 0 and 1 to represent levels of confidence
which are intermediate – intermediate between the absolute confidence that
a given statement is true and the absolute confidence that a given statement
is false.

How do we determine this degree of confidence? For example, we can ask
several (N) experts whether xi = 0.89 is consistent with the above statement,
and if M of them reply “yes”, take the ratio M/N as the desired degree of
confidence. If we do not have access to numerous experts, we can simply
ask the only available expert to describe his or her degree of confidence by
marking a number on a scale from 0 to N (e.g., on a scale from 0 to 5). If an
expert marks his or her degree as M , we take the ratio M/N as the desired
degree of confidence.

Membership functions. To formally describe the original expert’s statement
S about xi, we need to know, for every real number xi, the degree μS(xi) to
which this real number is consistent with this statement S.

By using the above procedure, we can determine this value μS(xi) for ev-
ery given real number xi. This procedure includes asking questions to the
expert. In practice, we can only ask finitely many questions. Thus, no matter
how many questions we ask, by using the above procedure, we can only find
the values μS(xi) for finitely many real numbers xi. To estimate the values
μS(xi) for all other real numbers xi, we must therefore use interpolation and
extrapolation. Usually, a simple piece-wise interpolation is used, but some-
times a more sophisticated procedure is applied: e.g., a piecewise quadratic
interpolation.

The function μS(xi) which is obtained by this approximation is called a
membership function. This function describes, for every real number xi, the
degree μS(xi) to which this real number is consistent with this statement S.

Need for “and”- and “or”-operations: t-norms and t-conorms. As we have
mentioned earlier, we are not directly interested in the degree to which a given
real number xi is consistent with the expert’s knowledge Si about the i-th
input. We are mainly interested in the degree to which x1 is consistent with
the knowledge about the first input and x2 is consistent with the knowledge
about the second input and . . . and xn is consistent with the knowledge about
the n-th input.

In principle, we can determine the degree of belief in such a compos-
ite statement by asking an expert, for each possible combination of values
x1, x2, . . . , xn, what is the degree to which this combination is consistent
with all the available expert knowledge. However, as we have mentioned ear-
lier, even for a single input, we cannot realistically elicit degrees of confidence
about too many values. If we consider N possible values of each input, then
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we would need to elicit the expert’s degree of confidence about Nn � N
possible combinations – which is even less realistic.

Since we cannot directly elicit the expert’s degree of confidence in all com-
posite statements, a natural idea is to estimate the degree of confidence in
the composite statement based on the degrees of confidence in individual
statements – such as “xi is consistent with the expert’s knowledge Si about
the i-th input.”

How can we come up with such an estimate? Let us reformulate this esti-
mation problem:

• we know the expert’s degree of confidence in statements A1, A2, . . . , An,
and

• we want to estimate the expert’s degree of confidence in a composite state-
ment A1 &A2 & . . . &An (i.e., “A1 and A2 and . . . and An”).

Since, e.g., A1 &A2 &A3 can be represented as (A1 &A2)&A3, it is suffi-
cient to solve this estimation problem for the case of two statements. Once
we have a solution for this particular case, we will then be able to solve the
general problem as well:

• first, we apply the two-statement solution to the degrees of certainty in
A1 and A2, and get an estimate for the expert’s degree of certainty in
A1 &A2;

• then, we apply the same solution to the degrees of certainty in A1 &A2

and A3, and get an estimate for the expert’s degree of certainty in
A1 &A2 &A3;

• after that, we apply the same solution to the degrees of certainty in
A1 &A2 &A3 and A4, and get an estimate for the expert’s degree of cer-
tainty in A1 &A2 &A3 &A4;

• etc.

Eventually, we will get the degree of confidence in the desired composite
statement A1 &A2 & . . . &An.

Thus, we need a procedure that would transform the degree of belief d1 in a
statement A1 and the degree of belief d2 in a statement A2 into a (reasonable)
estimate for a degree of belief in a composite statement A1 &A2. Let us
denote the estimate corresponding to given values d1 and d2 by f&(d1, d2).
The procedure f& that maps degrees of belief d1 and d2 in statements A1

and A2 into a degree of belief d = f&(d1, d2) in A1 &A2 is called an “and”-
operation, or, for historical reasons, a t-norm.

Similarly, to estimate the degree of belief in a composite statement A1∨A2

(“A1 or A2”), we need a procedure f∨ that maps degrees of belief d1 and d2 in
statements A1 and A2 into a degree of belief d = f∨(d1, d2) in A1 ∨A2. Such
a procedure is called an “or”-operation. Since in logic, “or” is a kind of dual
to “and”, an “or”-operation can be viewed as a dual to an “and”-operation
(t-norm). Because of this duality, an “or”-operation is also called a t-conorm.
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Properties of “and”- and “or”-operations. From the intended meaning of the
“and”- and “or”-operations, we can deduce reasonable properties of these
operations.

For example, intuitively, “A1 and A2” means the same as “A2 and A1”.
Thus, it is reasonable to require that our estimate f&(d1, d2) for the degree
of confidence in “A1 and A2” should be the same our estimate f&(d2, d1)
for the degree of confidence in “A2 and A1”. In other words, we must have
f&(d1, d2) = f&(d2, d1) for all possible values of d1 and d2. In mathematical
terms, this means that the function f& must be commutative.

Similarly, “(A1 and A2) and A3” means the same as

“A1 and (A2 and A3)”

– because both mean the same as “A1 and A2 and A3”. For each “and”-
operation f&, the expression “(A1 and A2) and A3” means that we:

• first estimate the degree of belief in “A1 and A2” as f&(d1, d2), and
• then estimate the degree of belief in “(A1 and A2) and A3” as

f&(f&(d1, d2), d3).

Similarly, the expression “A1 and (A2 and A3)” means that we:

• first estimate the degree of belief in “A2 and A3” as f&(d2, d3), and
• then estimate the degree of belief in “A1 and (A2 and A3)” as

f&(d1, f&(d2, d3)).

Since the expressions are equivalent, it is reasonable to require that these
estimates coincide, i.e., that f&(f&(d1, d2), d3) = f&(d1, f&(d2, d3)) for all
possible values of d1, d2, and d3. In mathematical terms, this means that the
function f& must be associative.

There are several other reasonable properties of “and”-operations. For ex-
ample, since “A1 and A2” implies A1, our degree of belief in the composite
statement “A1 and A2” cannot exceed our degree of belief in A1. Thus, it
is reasonable to require that the estimate f&(d1, d2) for this degree of belief
should also not exceed our degree of belief d1 in the statement A1. In other
words, we should have f&(d1, d2) ≤ d1 for all possible values of d1 and d2.

If A1 is absolutely true (i.e., d1 = 1), then intuitively, the composite state-
ment “A1 and A2” has exactly the same truth value as A2. Thus, it is rea-
sonable to require that f&(1, d2) = d2 for all possible values of d2.

On the other hand, if A1 is absolutely false (i.e., d1 = 0), then the com-
posite statement “A1 and A2” should also be absolutely false, no matter
how much we may believe in A2. Thus, it is reasonable to require that
f&(0, d2) = 0 for all possible values of d2.

Finally, if, due to a new evidence, our degree of belief in one of the state-
ments A1 and A2 increases, the resulting degree of belief in a composite
statement “A1 and A2” will either increase or stay the same – but it cannot
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decrease. Thus, it is it is reasonable to require that the operation f& be mono-
tonic in the sense that if d1 ≤ d′1 and d2 ≤ d′2, then f&(d1, d2) ≤ f&(d′1, d

′
2).

All these properties are indeed required of an “and”-operation (t-norm).
Similarly, it is reasonable to require that an “or”-operation (t-conorm) f∨
should be commutative, associative, monotonic, and satisfy the conditions
that d1 ≤ f∨(d1, d2), f∨(1, d2) = 1, and f∨(0, d2) = d2 for all possible values
of d1 and d2.
Simplest “and”- and “or”-operations: derivation. There exist many different
“and”- and “or”-operations which satisfy the above properties; see, e.g., [156,
247, 248, 252]. In some applications such as fuzzy control, it is crucial to select
appropriate operations – because we can use the corresponding additional
degrees of freedom to tune the resulting control and make it an even better
fit for the corresponding objective function.

However, in knowledge processing, when we are very uncertain about the
inputs, it is probably more reasonable to select the simplest “and”- and “or”-
operations which are consistent with the expert knowledge. To select such
operations, it makes sense to consider yet another property of “and” and
“or” – that for every statement A, “A and A” means the same as simply A.
Thus, it is reasonable to require that for every statement A with a degree
of confidence d, our estimate f&(d, d) of the expert’s degree of confidence in
“A and A” should be the same as the original degree of confidence d in the
original statement A. Thus, it is reasonable to require that f&(d, d) = d for
all possible values of d. In mathematical terms, this means that the function
f& must be idempotent.

Similarly, since “A or A” means the same as simply A, it is reasonable to
require that f∨(d, d) = d for all possible values of d, i.e., that the function f&
must also be idempotent.

It turns out that this additional requirement leads to a unique “and”-
operation f&(d1, d2) = min(d1, d2) and a unique “or”-operation f∨(d1, d2) =
max(d1, d2); the proof is given at the end of this chapter.

The operations f&(d1, d2) = min(d1, d2) and f∨(d1, d2) = max(d1, d2) were
actually the first designed by L. Zadeh; they are still actively used in various
applications of fuzzy techniques; see, e.g., [156, 252].
Zadeh’s Extension Principle. Let us apply the above simple operations to
computing statistics under fuzzy uncertainty. In this situation:

• We know an algorithm y = C(x1, . . . , xn) that relates the value of the
desired statistic with the sample values x1, . . . , xn.

• We also have expert knowledge about each of the sample values xi. For each
i, this knowledge is described in terms of the corresponding membership
function μi(xi). For each i and for each value xi, the value μi(xi) is the
degree of confidence that this value is indeed a possible value of the i-th
quantity.

Based on this information, we want to find the membership function μ(y)
which describes, for each real number y, the degree of confidence that this
number is a possible value of the desired statistic.
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As we have mentioned earlier, y is a possible value of the desired statistic
if for some values x1, . . . , xn,

• x1 is a possible value of the first input quantity,
• x2 is a possible value of the second input quantity,
• . . . ,
• xn is a possible value of the n-th input quantity, and
• y = C(x1 . . . , xn).

We know:

• that the degree of confidence that x1 is a possible value of the first input
quantity is equal to μ1(x1),

• that the degree of confidence that x2 is a possible value of the second input
quantity is equal to μ2(x2),

• etc.

The degree of confidence d(y, x1, . . . , xn) in an equality y = C(x1 . . . , xn) is,
of course,

• equal to 1 if this equality holds, and
• equal to 0 if this equality does not hold.

We have already agreed to represent “and” as min. Thus, for each combi-
nation of values x1, . . . , xn, the degree of confidence in a composite statement
“x1 is a possible value of the first input quantity, and x2 is a possible value
of the second input quantity, . . . , and xn is a possible value of the n-th input
quantity, and y = C(x1 . . . , xn)” is equal to

min(μ1(x1), μ2(x2), . . . , μn(xn), d(y, x1, . . . , xn)).

We can simplify this expression if we consider two possible cases:

• when the equality y = C(x1 . . . , xn) holds, and
• when this equality does not hold.

When the equality y = C(x1 . . . , xn) holds, we get d(y, x1, . . . , xn) = 1,
and thus, the above degree of confidence is simply equal to

min(μ1(x1), μ2(x2), . . . , μn(xn)).

When the equality y = C(x1 . . . , xn) does not hold, we get d(y, x1, . . . , xn) =
0, and thus, the above degree of confidence is simply equal to 0.

We want to combine these degrees of belief into a single degree of con-
fidence that “for some values x1, . . . , xn, x1 is a possible value of the first
input quantity, and x2 is a possible value of the first input quantity, . . . ,
and y = C(x1 . . . , xn)”. The words “for some values x1, . . . , xn” means that
the following composite property holds either for one combination of real
numbers x1, . . . , xn, or for another combination – until we exhaust all (in-
finitely many) such combinations. We have already agreed to represent “or”
as max. Thus, the desired degree of confidence μ(y) is equal to the maximum
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of the degrees corresponding to different combinations x1, . . . , xn. Since we
have infinitely many possible combinations, the maximum is not necessarily
attained, so we should, in general, consider supremum instead of maximum:

μ(y) = sup min(μ1(x1), μ2(x2), . . . , μn(xn), d(y, x1, . . . , xn)),

where the supremum is taken over all possible combinations.
Since we know that the maximized degree is non-zero only when y =

C(x1 . . . , xn), it is sufficient to only take supremum over such combinations.
For such combinations, we can omit the term d(y, x1, . . . , xn) in the maxi-
mized expression, so we arrive at the following formula:

μ(y) = sup{min(μ1(x1), μ2(x2), . . . , μn(xn)) : y = C(x1, . . . , xn)}.

This formula describes a reasonable way to extend an arbitrary statistic
f(x1, . . . , xn) from real-valued inputs to a more general case of fuzzy in-
puts. It was first proposed by L. Zadeh – for general functions – and is thus
called Zadeh’s extension principle.

This is the main formula that describes computing statistics (and, more
generally, knowledge processing) under fuzzy uncertainty. In the following
section, we will show that from the computational viewpoint, the application
of this formula can be reduced to interval computations – and indeed, this is
how knowledge processing under fuzzy uncertainty is usually done, by using
this reduction; see, e.g., [156, 246, 252].

Proof

Proof that min(d1, d2) is the only idempotent t-norm, and max(d1, d2) is
the only idempotent t-conorm. Let us first show that the only idempotent
“and”-operation is f&(d1, d2) = min(d1, d2). Without loss of generality, let
us assume that d1 ≤ d2. In this case, the desired equality takes the form
f&(d1, d2) = d1. Since the operation f& is idempotent, we have f&(d1, d1) =
d1. Due to d1 ≤ d2, monotonicity implies that f&(d1, d1) ≤ f&(d1, d2), hence
d1 ≤ f&(d1, d2). On the other hand, for an “and”-operation, we always have
f&(d1, d2) ≤ d1. So, we can conclude that f&(d1, d2) = d1, i.e., indeed,
f&(d1, d2) = min(d1, d2).

Let us now prove that the only idempotent “or”-operation is f∨(d1, d2) =
max(d1, d2). Without loss of generality, let us again assume that d1 ≤ d2.
In this case, the desired equality takes the form f∨(d1, d2) = d2. Since the
operation f∨ is idempotent, we have f∨(d2, d2) = d2. Due to d1 ≤ d2, mono-
tonicity implies that f∨(d1, d2) ≤ f∨(d2, d2), hence f∨(d1, d2) ≤ d2. On the
other hand, for an “or”-operation, we always have d2 ≤ f∨(d1, d2). Thus, we
conclude that f∨(d1, d2) = d2, i.e., indeed, f∨(d1, d2) = max(d1, d2).



4

Computing under Fuzzy Uncertainty Can Be

Reduced to Computing under Interval
Uncertainty

An alternative set representation of a membership function: alpha-cuts. To
describe the desired relation between computing under fuzzy uncertainty and
computing under interval uncertainty, we must first reformulate fuzzy tech-
niques in an interval-related form.

In some situations, an expert knows exactly which values of xi are possible
and which are not. In this situation, the expert’s knowledge can be naturally
represented by describing the set of all possible values.

In general, the expert’s knowledge is fuzzy:

• we may still have some values about which the expert 100% believes that
they are possible, and

• we may still have some values about which the expert 100% believes that
they are impossible, but

• in general, the expert is not 100% confident about which values of xi are
possible and which are not.

For example, a geophysicist may be confident that the density xi of some
mineral can take on values ranging from 3.4 to 3.7 g/cm3, and she may know
that values smaller than 3.0 or larger than 4.0 are absolutely impossible, but
she is not sure whether values from 3.0 to 3.4 or from 3.7 to 4.0 are indeed
realistically possible.

As we have mentioned, the ultimate purpose of the measurements and
estimates is to make decisions. In the geophysical example, we have measured
the density at a certain depth, and we need to decide:

• whether it is possible that we have the desired mineral – in which case we
should undertake more measurements, or

• whether it is not possible that we have the desired mineral – in which
case we should not waste our resources on this region and move to more
promising regions.

In practice, decisions are made under uncertainty. If we only have a fuzzy
expert’s description of possible values – in terms of the membership function
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20 4 Fuzzy Computations Reduced to Interval Computations

μS(xi) – which values xi should we then classify as possible ones and which
as impossible?

Under uncertainty, a reasonable idea is to select a threshold α ∈ (0, 1]. In
this case,

• all the values xi for which the expert’s degree of confidence is strong enough
– i.e., for which μS(xi) ≥ α – are classified as possible;

• similarly, all the values xi for which the expert’s degree of confidence is not
sufficiently strong – i.e., for which μS(xi) < α – are classified as impossible.

The resulting set of possible elements

xi(α) def= {xi : μS(xi) ≥ α}
is called the α-cut of the membership function μS(xi).

The choice of a threshold α depends on the practical problem.
For example, if we are looking for a potentially very valuable mineral

deposit, then it makes sense to continue prospecting even when our degree of
confidence is not very high. In this case, it makes sense to select a reasonably
small threshold α.

On the other hand, if the potential benefit is not high and our resources
are limited, it makes sense to limit our search to highly promising regions –
i.e., to select a reasonably high threshold α.

To adequately describe the expert knowledge irrespective of an application,
we therefore need to know the α-cuts corresponding to different thresholds α.
Each α-cut xi(α) describes the set of values which are possible with degree
of confidence at least α.

By definition, α-cuts corresponding to different α are nested: when α ≤ α′,
then μS(xi) ≥ α′ implies μS(xi) ≥ α and thus,

xi(α′) = {xi : μS(xi) ≥ α′} ⊆ xi(α) = {xi : μS(xi) ≥ α}.

Comment. It is worth mentioning that if we know the α-cuts

xi(α) = {xi : μS(xi) ≥ α}
corresponding to all possible values α ∈ (0, 1], then we can uniquely recon-
struct the corresponding membership function μS(xi); see the proofs section
for detail. Thus, we can alternatively view a membership function as a nested
family of α-cuts; see, e.g., [246].

Fuzzy numbers and intervals. In most practical situations, the membership
function starts with 0, continuously increases until a certain value and then
continuously decreases to 0. Such membership function describe usual ex-
pert’s expressions such as “small”, “medium”, “reasonably high”, “approxi-
mately equal to a with an error about σ”, etc. Such examples were given in
the previous chapter. Since membership functions of this type are actively
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used in expert estimates of number-valued quantities, they are usually called
fuzzy numbers.

For a fuzzy number μi(xi), every α-cut xi(α) is an interval. Thus, a fuzzy
number can be viewed as a nested family of intervals xi(α) corresponding to
different degrees of confidence.

Simplest “and”- and “or”-operations: reformulation in terms of sets and
alpha-cuts. The main formulas for fuzzy computations (i.e., for processing
fuzzy data) were derived by using the simplest “and”- and “or”-operations
f&(d1, d2) = min(d1, d2) and f∨(d1, d2) = max(d1, d2). Thus, before we de-
scribe how fuzzy computations can be reduced to interval computations, let
us first reformulate these “and”- and “or”-operations in terms of α-cuts.

Specifically, let us assume that we have two properties A and B which are
described by the membership functions μA(x) and μB(x) and, correspond-
ingly, by the α-cuts xA(α) = {x : μA(x) ≥ α} and xB(α) = {x : μB(x) ≥ α}.
If we use the simplest “and”-operation f&(d1, d2) = min(d1, d2), then the
composite property A&B (“A and B”) is described by the membership func-
tion μA & B(x) = min(μA(x), μB(x)). It turns out that the α-cuts

xA & B(α) = {x : μA & B(x) ≥ α}

corresponding to this membership function, are the intersections of the α-cuts
corresponding to A and B (see the Proofs section for detail):

xA & B(α) = xA(α) ∩ xB(α).

Therefore, to perform the simplest “and”-operation f&(d1, d2) = min(d1, d2),
we simply take the intersection of the corresponding α-cuts. This is a very
natural operation, since, for exactly defined sets and properties, the set of all
the elements which satisfy the property A&B is equal to the intersection of
the set of all elements which satisfy property A and the set of all elements
which satisfy property B.

Similarly, for the simplest “or”-operation f∨(d1, d2) = max(d1, d2), the
composite propertyA∨B (“A orB”) is described by the membership function
μA∨B(x) = max(μA(x), μB(x)). It turns out that the α-cuts

xA∨B(α) = {x : μA∨B(x) ≥ α}

corresponding to this membership function are unions of the α-cuts for A
and B:

xA∨B(α) = xA(α) ∪ xB(α).

Therefore, to perform the simplest “or”-operation f∨(d1, d2) = max(d1, d2),
we simply take the union of the corresponding α-cuts. This is also a very
natural operation, since, for exactly defined sets and properties, the set of all
the elements which satisfy the property A ∨ B is equal to the union of the
set of all elements which satisfy property A and the set of all elements which
satisfy property B.
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Fuzzy computations can be reduced to interval computations: derivation. The
main problem of fuzzy computation can be described as follows:

• We know an algorithm y = C(x1, . . . , xn) that relates the value of the
desired statistic y with the sample values x1, . . . , xn.

• We also know, for every i from 1 to n, a membership function μi(xi) which
describes the expert knowledge about the i-th sample value xi.

Our objective is to compute the function

μ(y) = sup{min(μ1(x1), μ2(x2), . . . , μn(xn)) : y = C(x1, . . . , xn)}.
Let us now describe this relation in terms of α-cuts. This description will

constitute the main relation between fuzzy and interval computing. This re-
lation was first discovered and proved in [90, 245]. To describe this result in
precise terms, let us first make some mathematics-related remarks.

The function y = C(x1, . . . , xn) describes a statistic. In statistics, such a
relation is usually continuous. Thus, we will assume that the function y =
C(x1, . . . , xn) is continuous.

We will also assume the membership functions μi(xi) are continuous. If
we had exact knowledge, then continuity would make no sense, since then
the corresponding degree of confidence would abruptly go from 1 for possible
values to 0 for impossible ones, without ever attaining any intermediate de-
grees. However, for fuzzy knowledge, continuity makes perfect sense. If there
is some degree of confidence that a value xi is possible, then it makes sense
to assume that values close to xi are possible too – with a similar degree of
belief. In practice, as we mentioned earlier in this chapter and in the previous
chapter, membership functions are indeed usually continuous.

It is important to mention that for continuous membership functions
μi(xi), α-cuts {xi : μi(xi) ≥ α} are closed sets (i.e., sets which contain
all their limit points).

Finally, we require that for every i and for every α > 0, the α-cut is a
compact set. For real numbers, since we have already assumed that the α-
cuts {xi : μi(xi) ≥ α} are closed sets, it is sufficient to require that these
sets are bounded. This is true, e.g., if we assume that all the membership
functions correspond to fuzzy numbers; in this case, all α-cuts are intervals.

Suppose that we know the α-cuts xi(α) corresponding to the inputs, and
we want to find the α-cuts y(α) corresponding to the output. It turns out
that the desired α-cut y(α) consists of exactly values y = C(x1, . . . , xn) for
xi ∈ xi(α):

y(α) = {C(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}.
(For details, see the Proofs section.) This is exactly the range that we defined
when we described interval computations, so we can rewrite this formula as

y(α) = C(x1(α), . . . ,xn(α)).

In particular, for fuzzy numbers, when all α-cuts xi(α) are intervals, com-
puting each α-cut y(α) is exactly the problem of interval computations.



4 Fuzzy Computations Reduced to Interval Computations 23

Fuzzy computations can be reduced to interval computations: conclusion. If
the inputs μi(xi) are fuzzy numbers and the function y = C(x1, . . . , xn) is
continuous, then for each α, the α-cut y(α) of y is equal to the range of
possible values of C(x1, . . . , xn) as xi ranges over xi(α) for all i:

y(α) = C(x1(α), . . . ,xn(α)).

Thus, from the computational point of view, the problem of computing statis-
tics under fuzzy uncertainty can be reduced to several problems of computing
statistics under interval uncertainty – as many problems as there are α-levels.

As we have mentioned, this is not just a theoretical observation: this is
exactly how fuzzy data processing in general is usually performed, and this
is how interval computations techniques are explained in fuzzy textbooks.

Proofs

Proof that a membership function can be uniquely reconstructed from α-cuts.
The possibility for such a reconstruction follows from the fact that every
real number r is equal to the largest largest value α for which r ≥ α. In
particular, for every xi, the value μS(xi) is equal to the largest value α for
which μS(xi) ≥ α. By definition of the α-cut, the inequality μS(xi) ≥ α
is equivalent to xi ∈ xi(α). Thus, for every xi, the value μS(xi) can be
reconstructed as the largest value α for which xi ∈ xi(α).

Proof that for the min t-norm, the α-cut of A&B is the intersection of the α-
cuts corresponding to A and B. By definition of the minimum, the minimum
of two real numbers is greater than or equal to α if and only if both of these
numbers are greater than or equal to α. Thus, the condition μA & B(x) =
min(μA(x), μB(x)) ≥ α is equivalent to “μA(x) ≥ α and μB(x) ≥ α”. Hence,
the set xA & B(α) of all the values x for which the condition μA & B(x) =
min(μA(x), μB(x)) ≥ α is satisfied can be found simply as the intersection of
the set of all x for which μA(x) ≥ α and the set of all x for which μB(x) ≥ α.
In other words, for every α, we have

xA & B(α) = xA(α) ∩ xB(α).

The statement is proven.

Proof that for the max t-conorm, the α-cut of A ∨ B is the union of the
α-cuts corresponding to A and B. To prove this statement, we can use the
fact that the maximum of two real numbers is greater than or equal to α if
and only if one of these numbers is greater than or equal to α. Thus, the
condition μA∨B(x) = max(μA(x), μB(x)) ≥ α is equivalent to “μA(x) ≥ α
or μB(x) ≥ α”. Hence, the set xA∨B(α) of all the values x for which the
condition μA∨B(x) = max(μA(x), μB(x)) ≥ α is satisfied can be found simply
as the union of the set of all x for which μA(x) ≥ α and the set of all x for
which μB(x) ≥ α. In other words, for every α, we have
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xA∨B(α) = xA(α) ∪ xB(α).

The statement is proven.

Proof that the α-cut for C(X1, . . . , Xn) is the range of C(x1, . . . , xn) when
each xi belongs to the corresponding α-cut of Xi. By definition of an α-cut,
y ∈ y(α) means that μ(y) ≥ α, i.e., that

sup{min(μ1(x1), μ2(x2), . . . , μn(xn)) : y = C(x1, . . . , xn)} ≥ α.

By definition of the supremum, this means that for every integer k > 2/α,
there exists a tuple

(

x
(k)
1 , x

(k)
2 , . . . , x

(k)
n

)

for which y = C
(

x
(k)
1 , . . . , x

(k)
n

)

and

min
(

μ1

(

x
(k)
1

)

, μ2

(

x
(k)
2

)

, . . . , μn

(

x(k)
n

))

≥ α− 1
k
.

The minimum of several numbers is ≥ α−1/k if and only if all these numbers
are ≥ α−1/k, i.e., μi(x

(k)
i ) ≥ α−1/k for all i. Since k > 2/α, we have 1/k <

α/2 and α− 1/k > α/2. Thus, for each i and all k, the value x(k)
i belongs to

the compact (α/2)-cut xi(α/2). Since the tuples
(

x
(k)
1 , x

(k)
2 , . . . , x

(k)
n

)

belong
to the compact set

x1(α/2) × x2(α/2)× . . .× xn(α/2),

the sequence of these tuples has a convergent subsequence converging to
some tuple (x1, x2, . . . , xn). Since both C and μi are continuous, for this
limit tuple, we get y = C(x1, . . . , xn) and μi(xi) ≥ α. In other words, every
element y ∈ y(α) can be represented as y = C(x1, . . . , xn) for some values
xi ∈ xi(α).

Conversely, if xi ∈ xi(α) and y = C(x1, . . . , xn), then μi(xi) ≥ α and
therefore, min(μ1(x1), μ2(x2), . . . , μn(xn)) ≥ α and hence

sup{min(μ1(x1), μ2(x2), . . . , μn(xn)) : y = C(x1, . . . , xn)} ≥ α,

i.e., μ(y) ≥ α and y ∈ y(α)
Thus, the desired α-cut y(α) indeed consists of exactly values y =

C(x1, . . . , xn) for xi ∈ xi(α):

y(α) = {C(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}.
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Computing under Interval Uncertainty:

Traditional Approach Based on Uniform
Distributions

Traditional statistical approach: main idea. In the case of interval uncer-
tainty, we only know the intervals, we do not know the probability distri-
butions on these intervals. The traditional statistical approach to situations
in which we have several alternatives with unknown probabilities is to use
Laplace Principle of Indifference, according to which,

• if we have several possible alternatives,
• and we have no information about the probability of different alternatives,
• we assume all these probabilities to be equal.

For example, if ten people were present at the place of a theft, and we have no
information about them, it is reasonable to assume that for each of them, the
probability of this person having committed a theft is exactly the same: 1/10.

Similarly, in the continuous case,

• if all we know that the measurement error is somewhere within a given
interval [−Δ,Δ],

• and we do not know which values within this interval are more probable
and which are less probable,

• it is reasonable to assume that all the values from this interval are equally
probable, i.e., that the measurement error is uniformly distributed on this
interval.

Maximum entropy approach. In general, a traditional statistical approach to
the situation when several probability distributions are possible is to select
the “most uncertain” distribution, i.e., the distribution which has the largest
possible value of the entropy S def= − ∫ ρ(x) · ln(ρ(x)) dx (here ρ(x) denotes
the probability density). For details on this Maximum Entropy approach and
its relation to interval uncertainty (and Laplace’s principle of indifference),
see, e.g., Jaynes at al. [144].

Maximum entropy approach leads to the uniform distribution. One can easily
check that for a single variable x1, among all distributions located on a given
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26 5 Uniform Distributions Approach to Interval Uncertainty

interval, the entropy is indeed the largest when this distribution is uniform
on this interval; see the Proof section for details.

Case of several variables. In the case of several variables, we can similarly
conclude that the distribution with the largest value of the entropy is the one
which is uniformly distributed in the corresponding box x1×. . .×xi×. . .×xn,
i.e., a distribution in which:

• each variable Δxi is uniformly distributed on the corresponding interval
[−Δi, Δi], and

• variables corresponding to different inputs are statistically independent.

Resulting engineering approach to interval uncertainty. This is indeed one of
the main ways how interval uncertainty is treated in engineering practice: if
we only know that the value of some variable is in the interval [xi, xi], and
we have no information about the probabilities, then we assume that the
variable xi is uniformly distributed on this interval.

Limitations of the uniform distribution approach. To explain the limitations
of this engineering approach, let us consider the simplest possible algorithm
y = f(x1, . . . , xi, . . . , xn) = x1 + . . . + xi + . . . + xn. For simplicity, let us
assume:

• that the measured values of all n quantities are zeroes: x̃1 = . . . = x̃i =
. . . = x̃n = 0, and

• that all n measurements have the same error bound Δx: Δ1 = . . . = Δxi =
. . . = Δn = Δx.

In this case, Δy = Δx1 + . . .+Δxi + . . .+Δxn. Each of n component mea-
surement errors can take any value from −Δx to Δx, so the largest possible
value of Δy is attained when all of the component errors attain the largest
possible value Δxi = Δx. In this case, the largest possible value Δ of Δy is
equal to Δ = n ·Δx.

Let us see what the maximum entropy approach will predict in this case.
According to this approach, we assume that Δxi are independent random
variables, each of which is uniformly distributed on the interval [−Δ,Δ]. Ac-
cording to the Central Limit theorem (see, e.g., Sheskin [305]), when n→∞,
the distribution of the sum of n independent identically distributed bounded
random variables tends to Gaussian. This means that for large values n, the
distribution of Δy is approximately normal.

A normal distribution is uniquely determined by its mean and variance.
When we add several independent variables, their means and variances add
up. For each uniform distribution Δxi on the interval [−Δx, Δx] of width

2Δx, the probability density is equal to ρ(x) =
1

2Δx
, so the mean is 0 and

the variance is

V =
∫ Δx

−Δx

x2 ·ρ(x) dx =
1

2Δx
·
∫ Δx

−Δx

x2 dx =
1

2Δx
· 1
3
· x3
∣

∣

Δx

−Δx
=

1
3
·Δ2

x. (5.1)
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Thus, for the sum Δy of n such variables, the mean E is 0, and the variance
is equal to (n/3) ·Δ2

x. Hence, the standard deviation is equal to σ =
√
V =

Δx ·
√
n√
3

.

It is known that in a normal distribution, with probability close to 1, all the
values are located within the k·σ vicinity of the mean: for k = 3, it is true with
probability 99.9%, for k = 6, it is true with probability 1 − 10−6%, etc. So,
practically with certainty, Δy is located within an interval [E−k ·σ,E+k ·σ]
whose width grows with n as

√
n.

For large n, we have k ·Δx ·
√
n√
3
� Δx ·n, so we get a serious underestima-

tion of the resulting measurement error. This example shows that estimates
obtained by selecting a uniform distribution can be very misleading.

Proof

Proof that the Maximum Entropy approach leads to the uniform distribution.
A function ρ(x) ≥ 0 is a probability density function on the given interval if
∫

ρ(x) dx = 1. Thus, to find the probability density function that maximizes
entropy, we must maximize entropy − ∫ ρ(x)·ln(ρ(x)) dx under the constraint
∫

ρ(x) dx = 1. According to the Lagrange multiplier method, for some value λ
(Lagrange multiplier), the desired constraint optimization problem is equiv-
alent to an unconstraint optimization problem of maximizing the expression
− ∫ ρ(x) · ln(ρ(x)) dx+λ · (∫ ρ(x) dx−1). Differentiating this expression with
respect to each of the variables ρ(x) and equating the derivative to 0, we con-
clude that − ln(ρ(x)) − 1 + λ = 0, hence ρ(x) = exp(λ − 1). The probability
density has the same value for all x from the given interval, hence we indeed
have a uniform distribution.
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Computing under Interval Uncertainty:

When Measurement Errors Are Small

Linearization: main idea. When the measurement errors Δxi are relatively
small, we can use a simplification called linearization. The main idea of lin-
earization is as follows.

By definition of the measurement errorΔxi = x̃i−xi, hence xi = x̃i−Δxi.
When the measurement errors Δxi of direct measurements are relatively
small, we can expand the expression

Δy = ỹ − y = f(x̃1, . . . , x̃i, . . . , x̃n)− f(x1, . . . , xn) =

f(x̃1, . . . , x̃i, . . . , x̃n) − f(x̃1 −Δx1, . . . , x̃i −Δxi, . . . , x̃n −Δxn) (6.1)

in Taylor series and only keep linear terms in the resulting expansion. Since

y = f(x̃1 −Δx1, . . . , x̃i −Δxi, . . . , x̃n −Δxn) ≈

f(x̃1, . . . , x̃i, . . . , x̃n) −
n
∑

i=1

∂f

∂xi
·Δxi, (6.2)

we conclude that Δy = ỹ − y =
n
∑

i=1

ci ·Δxi, where ci =
∂f

∂xi
.

The dependence of Δy on Δxi is linear: it is

• increasing relative to xi if ci ≥ 0 and
• decreasing if ci < 0.

So, to find the largest possible value Δ of Δy, we must take:

• the largest possible value Δxi = Δi when ci ≥ 0, and
• the smallest possible value Δxi = −Δi when ci < 0.

In both cases, the corresponding term in the sum has the form |ci| · Δi, so
we can conclude that

Δ =
n
∑

i=1

|ci| ·Δi. (6.3)
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30 6 Case of Small Measurement Errors

Similarly, the smallest possible value of Δy is equal to −Δ. Thus, the range
of possible values of y is equal to [y, y] = [ỹ −Δ, ỹ +Δ]. So, to compute Δ,
it is sufficient to know the partial derivatives ci.

Case of analytical formulas. In the simplest case when the algorithm

f(x1, . . . , xi, . . . , xn) (6.4)

consists of a simple analytical expression, we can find explicit analytical for-
mulas for the partial derivatives and thus compute the desired bound Δ.

Techniques based on sensitivity analysis (automatic differentiation). In the
general case, a natural way to compute partial derivatives comes directly
from the definition. By definition, a partial derivative is defined as a limit

∂f

∂xi
=

lim
hi→0

f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) − f(x̃1, . . . , x̃i, . . . , x̃n)
hi

. (6.5)

In turn, a limit, by its definition, means that when the values of hi is small,
the corresponding ratio is very close to the partial derivative. Thus, we can
estimate the partial derivative as the ratio

ci =
∂f

∂xi
≈

f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n)− f(x̃1, . . . , x̃i, . . . , x̃n)
hi

(6.6)

for some small value hi.
After we have computed n such ratios, we can then compute the desired

bound Δ on |Δy| as Δ =
n
∑

i=1

|ci| ·Δi.

In general, this procedure takes n divisions by hi and n multiplications by
Δi. The procedure can be made faster if we select hi = Δi. In this case, we
get

Δ =
n
∑

i=1

|f(x̃1, . . . , x̃i−1, x̃i +Δi, x̃i+1, . . . , x̃n) − ỹ|. (6.7)

Advanced Monte-Carlo simulation techniques. In the above algorithm, we
call the data processing algorithm n+ 1 times:

• first to compute the value ỹ = f(x̃1, . . . , x̃i, . . . , x̃n), and
• then n more times to compute the values

f(x̃1, . . . , x̃i−1, x̃i +Δi, x̃i+1, . . . , x̃n) (6.8)

and thus, the corresponding partial derivatives.
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In many practical situations, the data processing algorithms are time-
consuming, and we process large amounts of data, with the number n of
data points in thousands. In this case, the use of the above linearization
algorithm would take thousands of times longer than data processing itself –
which itself is already time consuming. Is it possible to estimate Δ faster?

The answer is “yes”, it is possible to have a Monte-Carlo-type algorithm
which estimates Δ by using only a constant number of calls to the data
processing algorithm f ; for details, see, e.g. [177, 178].

At first glance, since we know that the measurement errors are located
within the intervals [−Δi, Δi], it sounds reasonable to select distributions
located on these intervals. However, it can be shown that this does not lead
to the desired estimates. It turns out that it is possible to estimate the in-
terval uncertainty if we use a distribution d which is not located on the
interval [−Δi, Δi] – namely, a distribution related to the basic Cauchy distri-

bution with the probability density function ρ(x) =
1

π · (x2 + 1)
. The result-

ing Cauchy deviate method works in the linearized case – when the function
f(x1, . . . , xi, . . . , xn) is reasonably smooth and the box

[x1, x1]× . . .× [xi, xi]× . . .× [xn, xn]

is small enough, so that on this box, we can reasonably approximate the
function f by its linear terms.

If we multiply a random variable distributed according to the above basic
Cauchy distribution d by a value Δ, then we get a Cauchy distribution with a
parameter Δ, i.e., a distribution described by the following density function:

ρ(x) =
Δ

π · (x2 +Δ2)
. It is known that:

• if ξ1, . . . , ξi, . . . , ξn are independent variables distributed according to
Cauchy distributions with parameters Δi,

• then, for every n real numbers c1, . . . , ci, . . . , cn, the corresponding linear
combination c1 · ξ1 + . . .+ ci · ξi + . . .+ cn · ξn is also Cauchy distributed,
with the parameter Δ equal to the desired value

Δ = |c1| ·Δ1 + . . .+ |ci| ·Δi + . . .+ |cn| ·Δn.

Thus, if for some number of iterations N , we simulate δx(k)
i (1 ≤ k ≤ N)

as Cauchy distributed with parameter Δi, then, in the linear approximation,
the corresponding differences

δy(k) def= f
(

x̃1 + δx
(k)
1 , . . . , x̃i + δx

(k)
i , . . . , x̃n + δx(k)

n

)

− ỹ (6.9)

are distributed according to the Cauchy distribution with the parameter Δ.
The resulting values δy(1), . . . , δy(k), . . . , δy(N) are therefore a sample from
the Cauchy distribution with the desired parameter Δ. Based on this sample,
we can estimate the value Δ.
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In order to estimate Δ, we can apply the Maximum Likelihood Method
which leads to the following equation:

1

1 +
(

δy(1)

Δ

)2 + . . .+
1

1 +
(

δy(k)

Δ

)2 + . . .+
1

1 +
(

δy(N)

Δ

)2 =
N

2
. (6.10)

The left-hand side of this equation is an increasing function that is equal to 0
(hence smaller than N/2) for Δ = 0 and larger than N/2 for Δ = max

∣

∣δy(k)
∣

∣;
therefore the solution to this equation can be found by applying a bisection
method to the interval

[

0,max
∣

∣δy(k)
∣

∣

]

.
Simulation of Cauchy distribution with parameter Δi can be based on the

functional transformation of uniformly distributed sample values:

δx
(k)
i = Δi · tan(π · (ri − 0.5)), (6.11)

where ri is uniformly distributed on the interval [0, 1].
As a result, we arrive at the following algorithm (see, e.g., [178, 331]):

• Apply f to the midpoints: ỹ := f(x̃1, . . . , x̃i, . . . , x̃n);
• For k = 1, 2, . . . , N , repeat the following:

• use the standard random number generator to compute n numbers
r
(k)
i , i = 1, 2, . . . , n, that are uniformly distributed on the interval [0, 1];

• compute Cauchy distributed values c(k)
i := tan(π · (r(k)

i − 0.5));
• compute the largest value of |c(k)

i | so that we will be able to normalize
the simulated approximation errors and apply f to the values that are
within the box of possible values: K := maxi |c(k)

i |;
• compute the simulated approximation errors δx(k)

i := Δi · c(k)
i /K;

• compute the simulated “actual values” x(k)
i := x̃i + δx

(k)
i ;

• apply the program f to the simulated measurement results and compute
the simulated approximation error for y:

Δy(k) := K ·
(

f
(

x
(k)
1 , . . . , x

(k)
i , . . . , x(k)

n

)

− ỹ
)

; (6.12)

• Compute Δ by applying the bisection method to solve the equation

1

1 +
(

Δy(1)

Δ

)2 +. . .+
1

1 +
(

Δy(k)

Δ

)2 +. . .+
1

1 +
(

Δy(N)

Δ

)2 =
N

2
. (6.13)

In [178] and [331], we found the number of iterations N that would provide
the desired (relative) accuracy ε in estimatingΔ, i.e., the number of iterations
that are needed to guarantee that

(1 − ε) · ˜Δ ≤ Δ ≤ (1 + ε) · ˜Δ (6.14)

with a given certainty p0.
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In practice, it is reasonable to get a certainty p0 = 95% and accuracy
ε = 0.2 (20%).

To get an accuracy ε with 95% certainty, we must pick N = 8/ε2. In par-
ticular, to get a 20% accuracy (0.2 ·Δ) with 95% certainty, i.e., to guarantee
that

0.8 · ˜Δ ≤ Δ ≤ 1.2 · ˜Δ (6.15)

with certainty ≥ 95%, we need N = 8/(0.2)2 = 200 runs.
In general, the number of calls to a model depends only on the desired

accuracy ε and not on n – so for large n, these methods are much faster.

Comment. It is important to mention that we assumed that the function f
is reasonably linear within the box

[x̃1−Δ1, x̃1 +Δ1]× . . .× [x̃i−Δi, x̃i +Δi]× . . .× [x̃n−Δn, x̃n +Δn]. (6.16)

However, the simulated values δi may be outside the box. When we get such
values, we do not use the function f for them, we use a linearized function
which is equal to f within the box, and which is extended linearly for all
other values.
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Computing under Interval Uncertainty:

General Algorithms

Need for interval computations. In many application areas, it is sufficient to
have an approximate estimate of y – e.g., an estimate obtained from lin-
earization. However, in some applications, it is important to guarantee that
the (unknown) actual value y of a certain quantity does not exceed a certain
threshold y0. The only way to guarantee this is to have an interval Y = [Y , Y ]
which is guaranteed to contain y (i.e., for which y ⊆ Y ) and for which Y ≤ y0.

For example, in nuclear engineering, we must make sure that the tempera-
tures and the neutron flows do not exceed the critical values; when planning
a space flight, we want to guarantee that the space ship lands on the planet
and does not fly past it, etc.

The interval Y which is guaranteed to contain the actual range y is usually
called an enclosure for this range. So, in such situations, we need to compute
either the original range or at least an enclosure for this range. Computing
such an enclosure is also one of the main tasks of interval computations.

Traditional numerical methods are often not sufficient. The main limita-
tions of the traditional numerical mathematics approach to error estimation
was that often, no clear distinction was made between approximate (non-
guaranteed) and guaranteed (= interval) error bounds.

For example, for iterative methods, many papers on numerical mathemat-
ics consider the rate of convergence as an appropriate measure of approxi-
mation error. Clearly, if we know that the error decreases as O(1/n) or as
O(a−n), we gain some information about the corresponding algorithms – and
we also gain a knowledge that for large n, the second method is more accu-
rate. However, in real life, we make a fixed number n of iterations. If the only
information we have about the approximation error is the above asymptotics,
then we still have no idea how close the result of n-th iteration is to the actual
(desired) value.

It is therefore important to emphasize the need for guaranteed methods,
and to develop techniques for producing guaranteed estimates. Such guaran-
teed estimates is what interval computations are about.

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 35–45.
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Interval computations: a brief history. The notion of interval computations is
reasonably recent, it dates back to the 1950s, but the main problem is known
since Archimedes who used guaranteed two-sided bounds to compute π; see,
e.g., Achimedes [14].

Since then, many useful guaranteed bounds have been developed for differ-
ent numerical methods. There have also been several general descriptions of
such bounds, often formulated in terms similar to what we described above.
For example, in the early 20th century, the concept of a function having values
which are bounded within limits was discussed by W. H. Young in [362]. The
concept of operations with a set of multi-valued numbers was introduced by
R. C. Young, who developed a formal algebra of multi-valued numbers [363].
The special case of closed intervals was further developed by P. S. Dwyer
in [92].

Interval computations in their current form were independently invented by
three researchers in three different parts of the world: by M. Warmus in Poland
[342], by T. Sunaga in Japan [319], and by R. Moore in the USA [224].

The active interest in interval computations started with Moore’s 1966
monograph [225]. This interest was enhanced by the fact that in addition
to estimates for general numerical algorithms, Moore’s monograph also de-
scribed practical applications which have already been developed in his earlier
papers and technical reports: in particular, interval computations were used
to make sure that even when we take all the uncertainties into account, the
trajectory of a space flight is guaranteed to reach the Moon.

Since then, interval computations have been actively used in many areas
of science and engineering; see, e.g., interval website [139] and books such as
[142, 229].

Comment. Early papers on interval computations can be found on the inter-
val computations website [139].

First step: interval arithmetic. Our goal is to find the range of a given
function f(x1, . . . , xi, . . . , xn) on the given intervals x1 = [x1, x1], . . . ,xi =
[xi, xi], . . . ,xn = [xn, xn].

This function f(x1, . . . , xi, . . . , xn) is given as an algorithm. In particu-
lar, we may have an explicit analytical expression for f , in which case this
algorithm consists of simply computing this expression.

When we talk about algorithms, we usually mean an algorithm (program)
written in a high-level programming language like Java or C. Such program-
ming languages allows us to use arithmetic expressions and many other com-
plex constructions. Most of these constructions, however, are not directly
hardware supported inside a computer. Usually, only simple arithmetic oper-
ations are implemented: addition, subtraction, multiplication, and 1/x (plus
branching). Even division a/b is usually not directly supported, it is per-
formed as a sequence of two elementary arithmetic operations:

• first, we compute 1/b;
• then, we multiply a by 1/b.
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When we input a general program into a computer, the computer parses it,
i.e., represents it a sequence of elementary arithmetic operations.

Since a computer performs this parsing anyway, we can safely assume
that the original algorithm f(x1, . . . , xi, . . . , xn) is already represented as a
sequence of such elementary arithmetic operations.

Let us start our analysis of the interval computation techniques with the
simplest possible case when the algorithm f(x1, . . . , xi, . . . , xn) simply con-
sists of a single arithmetic operation: addition, subtraction, multiplication,
or computing 1/x.

Let us start by estimating the range of the addition function f(x1, x2) =
x1 + x2 on the intervals [x1, x1] and [x2, x2]. This function is increasing with
respect to both its variables. We already know how to compute the range [y, y]
of a monotonic function. So, the range of addition is equal to [x1+x2, x1+x2].

The desired range is usually denoted as f(x1, . . . ,xi, . . . ,xn); in particu-
lar, for addition, this notation takes the form x1 + x2. Thus, we can define
“addition” of two intervals as follows:

[x1, x1] + [x2, x2] = [x1 + x2, x2 + x2]. (7.1)

This formula makes perfect intuitive sense: if one town has between 700 and
800 thousand people, and it merges with a nearby town whose population is
between 100 and 200 thousand, then:

• the smallest possible value of the total population of the new big town is
when both populations are the smallest possible, 700 + 100 = 800, and

• the largest possible value is when both populations are the largest possible,
i.e., 800 + 200 = 1000.

The subtraction function f(x1, x2) = x1 − x2 is increasing with respect to
x1 and decreasing with respect to x2, so we have

[x1, x1]− [x2, x2] = [x1 − x2, x1 − x2]. (7.2)

These operations are also in full agreement with common sense. For ex-
ample, if a warehouse originally had between 6.0 and 8.0 tons, and we moved
between 1.0 and 2.0 tons to another location, then the smallest amount left
is when we start with the smallest possible value 6.0 and move the largest
possible value 2.0, resulting in 6.0−2.0 = 4.0. The largest amount left is when
we start with the largest possible value 8.0 and move the smallest possible
value 1.0, resulting in 8.0 − 1.0 = 7.0.

For multiplication f(x1, x2) = x1 · x2, the direction of monotonicity de-
pends on the actual values of x1 and x2: e.g.,

• when x2 > 0, the product increases with x1,
• otherwise it decreases with x1.

So, unless we know the signs of the product beforehand, we cannot tell
whether the maximum is attained at x1 = x1 or at x1 = x1. However, we
know that it is always attained at one of these endpoints. So, to find the
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range of the product, it is sufficient to try all 2 · 2 = 4 combinations of these
endpoints:

[x1, x1] · [x2, x2] =

[min(x1 ·x2, x1 ·x2, x1 ·x2, x1 ·x2),max(x1 ·x2, x1 ·x2, x1 ·x2, x1 ·x2)]. (7.3)

Finally, the function f(x1) = 1/x1 is decreasing wherever it is defined
(when x1 �= 0), so if 0 �∈ [x1, x1], then

1
[x1, x1]

=
[

1
x1
,

1
x1

]

. (7.4)

The formulas for addition, subtraction, multiplication, and reciprocal of in-
tervals are called formulas of interval arithmetic.

Straightforward (“naive”) interval computations. Historically the first
method for computing the enclosure for the general case is the method which
is sometimes called “straightforward” interval computations. In this method,
we repeat the computations forming the program f step-by-step, replacing
each operation with real numbers by the corresponding operation of interval
arithmetic. It is known that, as a result, we get an enclosure Y ⊇ y for the
desired range.

In some cases, this enclosure is exact. For example, straightforward inter-
val computations lead to the exact range when f(x1, . . . , xn) is a single-use
expression (SUE), i.e., when in this expression, each variable xi only occurs
once; see, e.g., [131].

In more complex cases (see example below), the enclosure has excess width.

Example. Let us illustrate the above idea on the example of estimating the
range of the function f(x1) = x1 − x2

1 on the interval x1 ∈ [0, 0.8].
We start with parsing the expression for the function, i.e., describing how

a computer will compute this expression; it will implement the following
sequence of elementary operations:

r1 := x1 · x1; r2 := x1 − r1. (7.5)

According to straightforward interval computations, we perform the same
operations, but with intervals instead of numbers:

r1 := [0, 0.8]·[0, 0.8] = [0, 0.64]; r2 := [0, 0.8]−[0, 0.64] = [−0.64, 0.8]. (7.6)

For this function, the actual range is f(x1) = [0, 0.25]; see Fig. 7.1.
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�

�

x1

f(x1)

0.5 0.8 1
0

0.25

Fig. 7.1. Range of the function f(x1) = x1 − x2
1 on the interval [0, 0.8]

Interval computations go beyond straightforward technique. People who are
vaguely familiar with interval computations sometimes erroneously assume
that the above straightforward (“naive”) techniques is all there is in interval
computations. In conference presentations (and even in published papers),
one often encounters a statement: “I tried interval computations, and it did
not work”. What this statement usually means is that they tried the above
straightforward approach and – not surprisingly – it did not work well.

In reality, interval computations is not a single algorithm, it is a problem
for which many different techniques exist. Let us now describe some of such
techniques.

Comment. For each of the known techniques, there are cases when we get an
excess width. The reason is that the problem of computing the exact range is
NP-hard even for polynomial functions f(x1, . . . , xi, . . . , xn) – actually, even
for quadratic functions f (see next chapter).

Mean value form. One of such techniques is the mean value form; see,
e.g., [142]. This technique is based on the same Taylor series expansion ideas
as linearization. We start by representing each interval xi = [xi, xi] in the
form [x̃i −Δi, x̃i +Δi], where x̃i = (xi +xi)/2 is the midpoint of the interval
xi and Δi = (xi − xi)/2 is the half-width of this interval.

After that, we use the Taylor expansion. In linearization, we simply ignored
quadratic and higher order terms. Here, instead, we use the Taylor form with
a remainder term. Specifically, the mean value form is based on the formula

f(x1, . . . , xi, . . . , xn) = f(x̃1, . . . , x̃i, . . . , x̃n)+

n
∑

i=1

∂f

∂xi
(η1, . . . , ηi, . . . , ηn) · (xi − x̃i), (7.7)

where each ηi is some value from the interval xi.
Since ηi ∈ xi, the value of the i-th derivative belongs to the interval range

of this derivative on these intervals. We also know that xi − x̃i ∈ [−Δi, Δi].
Thus, we can conclude that

f(x1, . . . ,xi, . . . ,xn) ⊆ f(x̃1, . . . , x̃i, . . . , x̃n)+
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n
∑

i=1

∂f

∂xi
(x1, . . . ,xi, . . . ,xn) · [−Δi, Δi]. (7.8)

To compute the ranges of the partial derivatives, we can use straightforward
interval computations.

Example. Let us illustrate this method on the above example of estimating
the range of the function f(x1) = x1 − x2

1 over the interval [0, 0.8]. For this
interval, the midpoint is x̃1 = 0.4; at this midpoint, f(x̃1) = 0.24. The half-

width is Δ1 = 0.4. The only partial derivative here is
∂f

∂x1
= 1 − 2x1, its

range on [0, 0.8] is equal to

1 − 2 · [0, 0.8] = [−0.6, 1].

Thus, we get the following enclosure for the desired range y:

y ⊆ Y = 0.24+[−0.6, 1]·[−0.4, 0.4] = 0.24+[−0.4, 0.4] = [−0.16, 0.64]. (7.9)

This enclosure is narrower than the “naive” estimate [−0.64, 0.8], but it still
contains excess width.

How can we get better estimates? In the mean value form, we, in effect,

ignored quadratic and higher order terms, i.e., terms of the type
∂2f

∂xi∂xj
·Δxi ·

Δxj . When the estimate is not accurate enough, it means that this ignored
term is too large. There are two ways to reduce the size of the ignored term:

• we can try to decrease this quadratic term, or
• we can try to explicitly include higher order terms in the Taylor expansion

formula, so that the remainder term will be proportional to say Δx3
i and

thus, be much smaller.

Let us describe these two ideas in detail.

First idea: bisection. Let us first describe the situation in which we try to
minimize the second-order remainder term. In the above expression for this
term, we cannot change the second derivative. The only thing we can decrease
is the difference Δxi = xi − x̃i between the actual value and the midpoint.
This value is bounded by the half-width Δi of the box. So, to decrease this
value, we can subdivide the original box into several narrower subboxes.
Usually, we divide into two subboxes, so this subdivision is called bisection.

The range over the whole box is equal to the union of the ranges over all
the subboxes. The widths of each subbox are smaller, so we get smaller Δxi

and hopefully, more accurate estimates for ranges over each of this subbox.
Then, we take the union of the ranges over subboxes.
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Example. Let us illustrate this idea on the above x1 − x2
1 example. In this

example, we divide the original interval [0, 0.8] into two subintervals [0, 0.4]
and [0.4, 0.8]. For both intervals, Δ1 = 0.2.

In the first subinterval, the midpoint is x̃1 = 0.2, so f(x̃1) = 0.2 − 0.04 =
0.16. The range of the derivative is equal to 1−2·[0, 0.4] = 1−[0, 0.8] = [0.2, 1],
hence we get an enclosure 0.16 + [0.2, 1] · [−0.2, 0.2] = [−0.04, 0.36].

For the second interval, x̃1 = 0.6, f(0.6) = 0.24, the range of the derivative
is 1 − 2 · [0.4, 0.8] = [−0.6, 0.2], hence we get an enclosure

0.24 + [−0.6, 0.2] · [−0.2, 0.2] = [0.12, 0.36]. (7.10)

The union of these two enclosures is the interval [−0.04, 0.36]. This enclosure
is much more accurate than before.

Further bisection leads to even more accurate estimates – the smaller the
subintervals, the more accurate the enclosure.

Bisection: general comment. The more subboxes we consider, the smallerΔxi

and thus, the more accurate the corresponding enclosures. However, once
we have more boxes, we need to spend more time processing these boxes.
Thus, we have a trade-off between computation time and accuracy: the more
computation time we allow, the more accurate estimates we will be able to
compute.

Additional idea: monotonicity checking. If the function f(x1, . . . , xi, . . . , xn)
is monotonic over the original box x1 × . . .× xi . . .× xn, then we can easily
compute its exact range. Since we used the mean value form for the original
box, this probably means that on that box, the function is not monotonic:
for example, with respect to x1, it may be increasing at some points in this
box, and decreasing at other points.

However, as we divide the original box into smaller subboxes, it is quite
possible that at least some of these subboxes will be outside the areas where
the derivatives are 0 and thus, the function f(x1, . . . , xi, . . . , xn) will be mono-
tonic. So, after we subdivide the box into subboxes, we should first check
monotonicity on each of these subboxes – and if the function is monotonic,
we can easily compute its range.

In calculus terms, a function is increasing with respect to xi if its partial

derivative di
def=

∂f

∂xi
is non-negative everywhere on this subbox. Thus, to

check monotonicity, we should find the range [di, di] of this derivative (we
need to do it anyway to compute the mean value form expression):

• if di ≥ 0, this means that the derivative is everywhere non-negative and
thus, the function f is increasing in xi;

• if di ≤ 0, this means that the derivative is everywhere non-positive and
thus, the function f is decreasing in xi.

If di < 0 < di, then we have to use the mean value form.
If the function is monotonic (e.g., increasing) only with respect to some of

the variables xi, then
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• to compute y, it is sufficient to consider only the value xi = xi, and
• to compute y, it is sufficient to consider only the value xi = xi.

For such subboxes, we reduce the original problem to two problems with
fewer variables, problems which are thus easier to solve.
Example. For the example f(x1) = x1 − x2

1, the partial derivative is equal to
1 − 2 · x1.

On the first subbox [0, 0.4], the range of this derivative is 1− 2 · [0, 0.4] =
[0.2, 1]. Thus, the derivative is always non-negative, the function is increasing
on this subbox, and its range on this subbox is equal to [f(0), f(0.4)] =
[0, 0.16].

On the second subbox [0.4, 0.8], the range of the derivative is

1 − 2 · [0.4, 0.8] = [−0.6, 0.2].

Here, we do not have guaranteed monotonicity, so we can use the mean value
form to get the enclosure [0.12, 0.36] for the range.

The union of these two enclosures is the interval [0, 0.36], which is slightly
more accurate than before. Further bisection leads to even more accurate
estimates.
Comment. We got the exact range because of the simplicity of our example,
in which the extreme point 0.5 of the function f(x1) = x1 − x2

1 is exactly in
the middle of the interval [0, 1]. Thus, when we divided the box in two, both
subboxes have the monotonicity property. In the general case, the extremal
point will be inside one of the subboxes, so we will have excess width.
General Taylor techniques. As we have mentioned, another way to get more
accurate estimates is to use so-called Taylor techniques, i.e., to explicitly
consider second-order and higher-order terms in the Taylor expansion; see,
e.g., [42, 242], and references therein.

Let us illustrate the main ideas of Taylor analysis on the case when we
allow second order terms. In this case, the formula with a remainder takes
the form

f(x1, . . . , xi, . . . , xn) = f(x̃1, . . . , x̃i, . . . , x̃n)+
n
∑

i=1

∂f

∂xi
(x̃1, . . . , x̃n) ·(xi− x̃i)+

1
2
·

n
∑

i=1

m
∑

j=1

∂2f

∂xi∂xj
(η1, . . . , ηn) · (xi − x̃i) · (xj − x̃j). (7.11)

Thus, we get the enclosure

f(x1, . . . ,xi, . . . ,xn) ⊆ Y
def= f(x̃1, . . . , x̃i, . . . , x̃n)+

n
∑

i=1

∂f

∂xi
(x̃1, . . . , x̃i, . . . , x̃n) · [−Δi, Δi] + (7.12)

1
2
·

n
∑

i=1

m
∑

j=1

∂2f

∂xi∂xj
(x1, . . . ,xn) · [−Δi, Δi] · [−Δj , Δj ].
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Example. Let us illustrate this idea on the above example of f(x1) = x1−x2
1.

Here, Δ1 = 0.4, x̃1 = 0.4, so f(x̃1) = 0.24 and
∂f

∂x1
(x̃1) = 1 − 2 · 0.4 = 0.2.

The second derivative is equal to −2, so the Taylor estimate takes the form

Y = 0.24 + 0.2 · [−0.4, 0.4]− [−0.4, 0.4]2.

Strictly speaking, if we interpret Δx2
1 as Δx1 ·Δx1 and use the formulas of

interval multiplication, we get the interval

[−0.4, 0.4]2 = [−0.4, 0.4] · [−0.4, 0.4] = [−0.16, 0.16]

and thus, the enclosure

Y = 0.24+[−0.08, 0.08]−[−0.16, 0.16] = [0.16, 0.32]−[−0.16, 0.16] = [0, 0.48]

for the desired range. However, we can view x2 as a special function, for
which the range over [−0.4, 0.4] is known to be [0, 0.16]. In this case, the
above enclosure takes the form

Y = 0.24 + [−0.08, 0.08]− [0, 0.16] = [0.16, 0.32]− [0, 0.16] = [0, 0.32]

which is much closer to the actual range [0, 0.25].

Taylor methods: general comment. The more terms we consider in the Tay-
lor expansion, the smaller the remainder term and thus, the more accurate
the corresponding enclosures. However, once we have more terms, we need to
spend more time computing these terms. Thus, for Taylor methods, we also
have a trade-off between computation time and accuracy: the more computa-
tion time we allow, the more accurate estimates we will be able to compute.

An alternative version of affine and Taylor arithmetic. The main idea of
Taylor methods is to approximate the given function f(x1, . . . , xi, . . . , xn) by
a polynomial of a small order plus an interval remainder term.

In these terms, straightforward interval computations can be viewed as 0-
th order Taylor methods in which all we have is the corresponding interval (or,
equivalently, the constant term plus the remainder interval). To compute this
interval, we repeated the computation of f step by step, replacing operations
with numbers by operations with intervals.

We can do the same for higher-order Taylor expansions as well. Let us
illustrate how this can be done for the first order Taylor terms. We start with
the expressions xi = x̃i−Δxi. Then, at each step, we keep a term of the type

a = ã+
n
∑

i=1

ai ·Δxi + a. (To be more precise, the keep the coefficients ã and

ai and the interval a.)
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Addition and subtraction of such terms are straightforward:
(

ã+
n
∑

i=1

ai ·Δxi + a

)

+

(

˜b+
n
∑

i=1

bi ·Δxi + b

)

=

(ã+˜b) +
n
∑

i=1

(ai + bi) ·Δxi + (a + b);

(

ã+
n
∑

i=1

ai ·Δxi + a

)

−
(

˜b+
n
∑

i=1

bi ·Δxi + b

)

=

(ã−˜b) +
n
∑

i=1

(ai − bi) ·Δxi + (a − b).

For multiplication, we add terms proportional to Δxi · Δxj to the interval
part:

(

ã+
n
∑

i=1

ai ·Δxi + a

)

·
(

˜b+
n
∑

i=1

bi ·Δxi + b

)

=

(ã ·˜b) +
n
∑

i=1

(ã · bi +˜b · ai) ·Δxi+

⎛

⎝ã · b +˜b · a +
n
∑

i=1

ai · bi · [0, Δ2
i ] +

n
∑

i=1

∑

j �=i

ai · bj · [−Δi, Δi] · [Δj ·Δj ]

⎞

⎠ .

(7.13)
At the end, we get an expression of the above type for the desired quantity

y: y = ỹ +
n
∑

i=1

yi · Δxi + y. We already know how to compute the range

of a linear function, so we get the following enclosure for the final range:

Y = ỹ + [−Δ,Δ] + y, where Δ =
n
∑

i=1

|yi| ·Δi.

Example. For f(x1) = x1−x2
1, we first compute x2 = x2

1 and then y = x1−x2.
We start with the interval x1 = x̃1 −Δx1 = 0.4 + (−1) ·Δ1 + [0, 0].

On the next step, we compute the square of this expression. This square
is equal to 0.16 + (−0.8) ·Δx1 + Δx2

1. Since Δx1 ∈ [−0.4, 0.4], we conclude
that Δx2

1 ∈ [0, 0.16] and thus, that x2 = 0.16 + (−0.8) ·Δx1 + [0, 0.16].
For y = x1 − x2, we now have

y = (0.4 − 0.16) + ((−1) − (−0.8)) ·Δx1 + ([0, 0]− [0, 0.16]) =

0.24 + (−0.2) ·Δx1 + [−0.16, 0]. (7.14)

Since Δx1 ∈ [−0.4, 0.4], we get the enclosure

Y = 0.24 + (−0.2) · [−0.4, 0.4] + [−0.16, 0] = [0, 0.32]. (7.15)
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Comment. We have described several methods and several ideas. On our
simple example, some ideas work better, some lead to wider enclosures. The
fact that a method works better on the simple example does not mean that
it always works better, it depends on the function. In large-scale practical
examples, it is useful to combine all these methods and ideas – e.g., bisect
and use mean value form and monotonicity on subboxes; see, e.g., [142].

The interval method – one of the above or their combination – has to be
carefully chosen to match the function at hand. There exist several semi-
empirical heuristics on which method to choose; see, e.g., [142].
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Computing under Interval Uncertainty:

Computational Complexity

In this chapter, we will briefly describe the computational complexity of the
range estimation problem under interval uncertainty.

Linear case. Let us start with the simplest case of a linear function

y = f(x1, . . . , xn) = a0 +
n
∑

i=1

ai · xi.

In this case, substituting the (approximate) measured values x̃i, we get the
approximate value

ỹ = a0 +
n
∑

i=1

ai · x̃i

for y.
The approximation errorΔy = ỹ−y of this approximation can be described

as

Δy =
n
∑

i=1

ai ·Δxi,

where each input error Δxi can take any value from −Δi to Δi.

The sum
n
∑

i=1

ai ·Δxi attains its largest possible value if each term ai ·Δxi

in this sum attains the largest possible value:

• If ai ≥ 0, then this term is a monotonically non-decreasing function of
Δxi, so it attains its largest value at the largest possible value Δxi = Δi;
the corresponding largest value of this term is ai ·Δi.

• If ai < 0, then this term is a decreasing function of Δxi, so it attains its
largest value at the smallest possible value Δxi = −Δi; the corresponding
largest value of this term is −ai ·Δi = |ai| ·Δi.

In both cases, the largest possible value of this term is |ai| ·Δi, so, the largest
possible value of the sum Δy is

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 47–50.
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Δ = |a1| ·Δ1 + . . .+ |an| ·Δn.

Similarly, the smallest possible value of Δy is −Δ.
Hence, the interval of possible values of Δy is [−Δ,Δ], and the interval of

possible values of the actual value y is [ỹ −Δ, ỹ +Δ].
The corresponding range can be computed in linear time, i.e., efficiently.

Quadratic case. Already for quadratic functions

y = f(x1, . . . , xn) = a0 +
n
∑

i=1

ai · xi +
n
∑

i=1

n
∑

j=1

aij · xi · xj ,

the problem of computing the exact range

y = f(x1, . . . ,xn) =

{f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}
over interval inputs xi ∈ xi = [x̃i −Δi, x̃i +Δi] is, in general, NP-hard; see,
e.g., [182, 334].

What is NP-hard? A brief description. NP-hard means, crudely speaking,
that no feasible (polynomial time) algorithm can compute the exact end-
points of the range y for all possible intervals x1, . . . ,xn. (Strictly speaking,
this interpretation is only true under the widely believed but still unproven
hypothesis that P �=NP).

Towards a more precise description of NP-hardness: the notion of a feasible
algorithm. The notion of NP-hardness is related to the fact that some al-
gorithms take so much computation time that even for inputs of reasonable
size, the computation time exceeds the lifetime of the Universe – and thus,
cannot be practically computed. For example, if for n inputs, the algorithm
takes time 2n, then for n ≈ 300-400, the resulting computation time is un-
realistically large. How can we separate “realistic” (“feasible”) algorithms
from non-feasible ones?

The running time of an algorithm depends on the size of the input. In the
computer, every object is represented as a sequence of bits (0s and 1s). Thus,
for every computer-represented object x, it is reasonable to define its size (or
length) len(x) as the number of bits in this object’s computer representation.

It is known that in most feasible algorithms, the running time on an input
x is bounded either by the size of the input, or by the square of the size of
the input, or, more generally, by a polynomial of the size of the input. It
is also known that in most non-feasible algorithms, the running time grows
exponentially (or even faster) with the size, so it cannot be bounded by any
polynomial. In view of this fact, in theory of computation, an algorithm is
usually called feasible if its running time is bounded by a polynomial of the
size of the input. This definition is not perfect: e.g., if the running time on
input of size n is 1040 ·n, then this running time is bounded by a polynomial
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but it is clearly not feasible. However, this definition is the closest to the
intuitive notion of feasible, and thus, the best we have so far.

According to this definition, an algorithm A is called polynomial time if
there exists a polynomial P (n) such that on every input x, the running time
of the algorithm A does not exceed P (len(x)). The class of all the problems
which can be solved by polynomial-time algorithms is denoted by P.

The notion of a problem. What do we mean by “a problem”? In most prac-
tical situations, to solve a problem means to find a solution that satisfies
some (relatively) easy-to-check constraint: e.g., to design a bridge that can
withstand a certain amount of load and wind, to design a spaceship and its
trajectory that enables us to deliver a robotic rover to Mars, etc. In all these
cases, once we have a candidate for a solution, we can check, in reasonable
(polynomial) time whether this candidate is indeed a solution. In other words,
once we guessed a solution, we can check its correctness in polynomial time.
In theory of computation, this procedure of guess-then-compute is called non-
deterministic computation, so the class of all problems for which solution can
be checked in polynomial time is called Non-deterministic Polynomial, or NP,
for short.

The notion of NP-hardness. Most computer scientists believe that not all
problems from the class NP can be solved in polynomial time, i.e., that
NP �= P . However, no one has so far been able to prove that this belief is
indeed true. What is known is that some problems from the class NP are the
hardest in this class – in the sense that every other problem from the class
NP can be reduced to such a problem.

Specifically, a general problem (not necessarily from the class NP) is called
NP-hard if every problem from the class NP can be reduced to particular cases
of this problem. If a problem from the class NP is NP-hard, we say that it is
NP-complete.

Propositional satisfiability: historically the first example of an NP-hard prob-
lem. One of the best known examples of NP-complete problems is the prob-
lem of propositional satisfiability for formulas in 3-Conjunctive Normal Form
(3-CNF). Let us describe this problem is some detail. We start with v Boolean
variables z1, . . . , zv, i.e., variables which can take only values “true” or “false”.
A literal  is defined as a variable zi or its negation ¬zi. A clause is defined
as a formula of the type 1 ∨ 2 ∨ . . . ∨ m. Finally, a propositional formula
in Conjunctive Normal Form (CNF) is defined as a formula F of the type
C1 & . . . &Cn, where C1, . . . , Cn are clauses. This formula is called a 3-CNF
formula if every clause has at most 3 literals, and a 2-CNF formula if every
clause has at most 2 literals.

The propositional satisfiability problem is as follows:

• Given a propositional formula F (e.g., a formula in CNF);
• Find the values of the variables z1, . . . , zv which make the formula F true.
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Other known NP-hard problems. In this book, we will use several other known
NP-hard problem.

One such problem is a subset problem: given n positive integers s1, . . . , sn,
to check whether there exist signs ηi ∈ {−1,+1} for which the signed sum

n
∑

i=1

ηi · si equals 0.

How to prove NP-hardness of different problems. For the propositional satis-
fiability problem, the proof of NP-hardness is somewhat complex. However,
once this NP-hardness is proven, we can prove the NP-hardness of other
problems by reducing satisfiability to these problems.

Indeed, by definition, NP-hardness of satisfiability means that every prob-
lem from the class NP can be reduced to satisfiability. If we can reduce
satisfiability to some other problem, this means that by combining these two
reductions, we can reduce every problem from the class NP to this new prob-
lem – and thus, that this new problem is also NP-hard.

Similarly, if we can reduce a known NP-hard problem (not necessarily
propositional satisfiability) to a new problem, this means that every problem
from the class NP can be reduced to this known problem and this known
problem can be reduced to the new problem. Thus, we can reduce every
problem from the class NP to this new problem – so the new problem is
NP-hard.

For a more detailed and more formal definition of NP-hardness, see, e.g.,
[182, 274].
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Towards Selecting Appropriate Statistical

Characteristics: The Basics of Decision Theory
and the Notion of Utility

In the previous chapter, we mentioned that in general, the problem of esti-
mating statistical characteristics under interval uncertainty is NP-hard. This
means, crudely speaking, that it is not possible to design a feasible algorithm
that would compute all statistics under interval uncertainty. It is therefore
necessary to restrict ourselves to statistical characteristics which are practi-
cally useful.

Which statistical characteristics should we estimate? One of the main ob-
jectives of data processing is to make decisions. Thus, to find the most appro-
priate statistical characteristics, let us recall the traditional way of making
decisions based on user’s preference: the decision theory.

How to describe preferences: general idea. The possibility to describe prefer-
ences in precise terms comes from the fact that a decision maker can always
decide which of the two alternatives is better (preferable). Thus, if we provide
a continuous scale of alternatives, from a very bad to a very good one, then
for each alternative in the middle, there should be an alternative on this scale
which is, to this decision maker, equivalent to the given one.

How to describe preferences: specific ideas. Such a scale can be easy con-
structed as follows. We select two alternatives:

• a very negative alternative A0; e.g., an alternative in which the decision
maker loses all his money (and/or loses his health as well), and

• a very positive alternative A1; e.g., an alternative in which the decision
maker wins several million dollars.

Now, for every value p ∈ [0, 1], we can consider a lottery in which we get
A1 with probability p and A0 with the remaining probability 1 − p. This
probability will be denoted by L(p).

For p = 1, the probability of the unfavorable outcome A0 is 0, so the
lottery L(1) simply means the very positive alternative A1. Similarly, for
p = 0, the probability of the favorable outcome A1 is 0, so the lottery L(0)
simply means the very negative alternative A0. The larger the probability p,
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the more preferable the lottery L(p). Thus, the corresponding lotteries L(p)
form a continuous 1-D scale ranging from the very negative alternative A0 to
the very positive alternative A1.

The resulting notion of utility. Practical alternatives are usually better than
L(0) = A0 but worse than L(1) = A1: L(0) < A < L(1). Thus, for each
practical alternative A, there exists a probability p ∈ (0, 1) for which the
lottery L(p) is, to this decision maker, equivalent to A: L(p) ∼ A. This
“equivalent” probability p is called the utility of the alternativeA and denoted
by u(A).

How can we actually find the value of this utility u(A)? We cannot just com-
pare A with different lotteries L(p) and wait until we get a lottery for which
L(p) ∼ A: there are many different probability values, so such a compari-
son would take an impractically long time. However, there is an alternative
efficient way of determining u(A) which is based on the following bisection
procedure.

The main idea of this procedure is to produce narrower and narrower
intervals containing the desired value u(A). In the beginning, we only know
that u(A) ∈ [0, 1], i.e., we know that u(A) ∈ [u, u] with u = 0 and u = 1.
Let us assume that at some iteration of this procedure, we know that u(A) ∈
[u, u], i.e., that L(u) ≤ A ≤ L(u). To get a narrower interval, let us take the

midpoint m def=
u+ u

2
of the existing interval and compare L(m) with A.

• If A is better than L(m) (L(m) ≤ A), this means that m ≤ u(A) and thus,
that the utility u(A) belongs to the upper half-interval [m,u].

• If A is worse than L(m) (A ≤ L(m)), this means that u(A) ≤ m and thus,
that the utility u(A) belongs to the lower half-interval [u,m].

In both cases, we get a new interval containing u(A) whose width is the half
of the width of the interval [u, u]. We start with an interval of width 1. Thus,
after k iterations, we get an interval [u, u] of width 2−k that contains u(A).
In this case, both endpoints u and u are 2−k-approximations to u(A). In
particular:

• to obtain u(A) with accuracy 1% = 0.01, it is sufficient to perform 7
iterations: since 2−7 = 1/128 < 0.01;

• to obtain u(A) with accuracy 0.1% = 0.001, it is sufficient to perform 10
iterations: since

2−10 = 1/1024 < 0.001;

• to obtain u(A) with accuracy 10−4% = 10−6, it is sufficient to perform 20
iterations: since

2−20 = 1/(1024)2 < 10−6.

The numerical value of the utility depends on the choice of extreme alterna-
tives A0 and A1. In our definition, the numerical value of the utility depends
on the selection of the alternatives A0 and A1: e.g., A0 is the alternative
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whose utility is 0 and A1 is the alternative whose utility is 1. What if we use
a different set of alternatives, e.g., A′

0 < A0 and A′
1 > A1?

Let A be an arbitrary alternative between A0 and A1, and let u(A) be
its utility with respect to A0 and A1. In other words, we assume that A is
equivalent to the lottery in which we have

• A1 with probability u(A) and
• A0 with probability 1− p.

In the scale defined by the new alternatives A′
0 and A′

1, let u′(A0), u′(A1),
and u′(A) denote the utilities of A0, A1, and A. This means, in particular,
that

• A0 is equivalent to the lottery in which we get A′
1 with probability u′(A0)

and A′
0 with probability 1− u′(A0); and

• A1 is equivalent to the lottery in which we get A′
1 with probability u′(A1)

and A′
0 with probability 1− u′(A1).

Thus, the alternative A is equivalent to the compound lottery, in which

• first, we select A1 or A0 with probabilities u(A) and 1 − u(A), and then
• depending on the first selection, we select A′

1 with probability u′(A1) or
u′(A0) – and A′

0 with the remaining probability.

As the result of this compound lottery, we get either A′
0 orA′

1. The probability
p of getting A′

1 in this compound lottery can be computed by using the
formula of full probability

p = u(A) · u′(A1) + (1 − u(A)) · u′(A0) =

u(A) · (u′(A1) − u′(A0)) + u′(A0).

So, the alternative A is equivalent to a lottery in which we get A′
1 with

probability p and A′
0 with the remaining probability 1 − p. By definition of

utility, this means that the utility u′(A) of the alternative A in the scale
defined by A′

0 and A′
1 is equal to this value p:

u′(A) = u(A) · (u′(A1)− u′(A0)) + u′(A0).

So, changing the scale means a linear re-scaling of the utility values:

u(A) → u′(A) = a · u(A) + b

for some a = u′(A1) − u′(A0) > 0 and b = u′(A0).
Vice versa, for every a > 0 and b, one can find appropriate events A′

0 and
A′

1 for which the re-scaling has exactly these values a and b. In other words,
utility is defined modulo an arbitrary (increasing) linear transformation.



54 9 Decision Theory and the Notion of Utility: Reminder

Utility of an action: a derivation of the expected utility formula. What if an
action leads to alternatives a1, . . . , am with probabilities p1, . . . , pm? Suppose
that we know the utility ui = u(ai) of each of the alternatives a1, . . . , am.
By definition of the utility, this means that for each i, the alternative ai is
equivalent to the lottery L(ui) in which we get A1 with probability ui and
ai with probability 1 − ui. Thus, the results of the action are equivalent
to the “compound lottery” in which, with the probability pi, we select a
lottery L(ui). In this compound lottery, the results are either A1 or A0. The
probability p of getting A1 in this compound lottery can be computed by
using the formula for full probability:

p = p1 · u1 + . . .+ pm · um.

Thus, the action is equivalent to a lottery in which we get A1 with probability
p and A0 with the remaining probability 1 − p. By definition of utility, this
means that the utility u of the action in question is equal to

u = p1 · u1 + . . .+ pm · um.

In statistics, the right-hand of this formula is known as the expected value.
Thus, we can conclude that the utility of each action with different possible
alternatives is equal to the expected value of the utility; see, e.g., [150, 210,
285].
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How to Select Appropriate Statistical

Characteristics

Which is the best way to describe the corresponding probabilistic uncertainty?
One of the main objectives of data processing is to make decisions. As we
have seen in the previous chapter, a standard way of making a decision is to
select the action a for which the expected utility (gain) is the largest possible.
This is where probabilities are used: in computing, for every possible action
a, the corresponding expected utility. To be more precise, we usually know,
for each action a and for each actual value of the (unknown) quantity x,
the corresponding value of the utility ua(x). We must use the probability
distribution for x to compute the expected value e[ua(x)] of this utility.

In view of this application, the most useful characteristics of a probabil-
ity distribution would be the ones which would enable us to compute the
expected value e[ua(x)] of different functions ua(x).

Which representations are the most useful for this intended usage? General
idea. Which characteristics of a probability distribution are the most useful
for computing mathematical expectations of different functions ua(x)? The
answer to this question depends on the type of the function, i.e., on how the
utility value u depends on the value x of the analyzed parameter.

Smooth utility functions naturally lead to moments. One natural case is when
the utility function ua(x) is smooth. We have already mentioned, in the pre-
vious text, that we usually know a (reasonably narrow) interval of possible
values of x. So, to compute the expected value of ua(x), all we need to know is
how the function ua(x) behaves on this narrow interval. Because the function
is smooth, we can expand it into Taylor series. Because the interval is narrow,
we can consider only linear and quadratic terms in this expansion and safely
ignore higher-order terms: ua(x) ≈ c0 + c1 · (x−x0)+ c2 · (x−x0)2, where x0

is a point inside the interval. Thus, we can approximate the expected value
of this function by the expected value of the corresponding quadratic expres-
sion: e[ua(x)] ≈ e[c0 + c1 · (x − x0) + c2 · (x − x0)2], i.e., by the following
expression: e[ua(x)] ≈ c0 + c1 · e[x − x0] + c2 · e[(x − x0)2]. So, to compute
the expectations of such utility functions, it is sufficient to know the first and
second moments of the probability distribution.
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In particular, if we use, as the point x0, the average e[x], the second moment
turns into the variance of the original probability distribution. So, instead of
the first and the second moments, we can use the mean E and the variance V .
Case of several variables. In the above text, we assumed that the situation is
fully described by the value of a single random variable x. In practice, usually,
we need several variables to describe the situation. For the case when we have
several random variables x1, . . . , xn, we can similarly expand the dependence
of the smooth utility function ua(x1, . . . , xn) in Taylor series and keep linear
and quadratic terms in this expansion:

ua(x1, . . . , xn) ≈ c0 +
n
∑

i=1

c1i · (xi − xi0) +
n
∑

i=1

c2i · (xi − xi0)2+

n
∑

i=1

∑

j �=i

c2ij · (xi − xi0) · (xj − xj0).

Thus, we can approximate the expectation of this function by the expectation
of the corresponding quadratic expression:

e[ua(x)] ≈ e

[

c0 +
n
∑

i=1

c1i · (xi − xi0) +
n
∑

i=1

c2i · (xi − xi0)2+

n
∑

i=1

∑

j �=i

c2ij · (xi − xi0) · (xj − xj0)

⎤

⎦ ,

i.e., by the following expression:

e[ua(x)] ≈ c0 +
n
∑

i=1

c1i · e[xi − xi0] +
n
∑

i=1

c2i · e
[

(xi − xi0)2
]

+

n
∑

i=1

c2ij · e[(xi − xi0) · (xj − xj0)].

So, to compute the expectations of such utility functions, it is sufficient,
in addition to the first and second moments of all the variables xi, to also
know the “mixed” moments e[(xi − xi0) · (xj − xj0)] – corresponding, e.g., to
covariance.
In decision making, non-smooth utility functions are common. In decision
making, not all dependencies are smooth. There is often a threshold x0 after
which, say, a concentration of a certain chemical becomes dangerous.

This threshold sometimes comes from the detailed chemical and/or physi-
cal analysis. In this case, when we increase the value of this parameter, we see
the drastic increase in effect and hence, the drastic change in utility value.
Sometimes, this threshold simply comes from regulations. In this case, when
we increase the value of this parameter past the threshold, there is no drastic
increase in effects, but there is a drastic decrease of utility due to the necessity
to pay fines, change technology, etc. In both cases, we have a utility function
which experiences an abrupt decrease at a certain threshold value x0.
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Non-smooth utility functions naturally lead to cumulative distribution func-
tions (cdfs). We want to be able to compute the expected value e[ua(x)] of
a function ua(x) which

• changes smoothly until a certain value x0,
• then drops it value and continues smoothly for x > x0.

We usually know the (reasonably narrow) interval which contains all possible
values of x. Because the interval is narrow and the dependence before and
after the threshold is smooth, the resulting change in ua(x) before x0 and
after x0 is much smaller than the change at x0. Thus, with a reasonable
accuracy, we can ignore the small changes before and after x0, and assume
that the function ua(x) is equal to a constant u+ for x < x0, and to some
other constant u− < u+ for x > x0.

The simplest case is when u+ = 1 and u− = 0. In this case, the desired
expected value e[u(0)

a (x)] coincides with the probability that x < x0, i.e.,
with the corresponding value F (x0) of the cumulative distribution function
(cdf). A generic function ua(x) of this type, with arbitrary values u− and u+,
can be easily reduced to this simplest case, because, as one can easily check,
ua(x) = u−+(u+−u−) ·u(0)(x) and hence, e[ua(x)] = u−+(u+−u−) ·F (x0).

Thus, to be able to easily compute the expected values of all possible non-
smooth utility functions, it is sufficient to know the values of the cdf F (x0)
for all possible x0.

Describing the cdf is equivalent to describing the inverse quantile function
– a function that assigns, to every possible probability p ∈ [0, 1], the value
x = x(p) for which F (x) = p. For example, the quantile corresponding to
p = 0.5 is the median of the probability distribution.

Summarizing: which statistical characteristics we select. Our analysis shows
that the most appropriate characteristics are the moments, the covariances,
and the values of the cdf (or, equivalently, the values of the quantiles). In view
of this result, in the following text, we will mainly concentrate on estimating
the values of these characteristics.

How to estimate the values of the selected statistical characteristics? We are
interested in the values of the moments and other statistical characteristics
of the distribution itself. For example, we are interested in the values of the
mean, variance, median, etc.

If we know the probability distribution, then we can determine these char-
acteristics. However, in practice, we usually do not know the probability
distribution. Instead, we only know the measurement results x1, . . . , xn –
which can be viewed as a sample from the actual (unknown) distribution.
It is therefore reasonable to approximate the original (unknown) probability
distribution by the “sample” distribution, in which each of the sample values
occurs with the same probability 1/n. Thus, as an estimate of a statistical
characteristic (such as mean) of the actual distribution, we can take the value
of this characteristic for the sample distribution.
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For example, the mean of the sample distribution is equal to

E
def=

x1 + . . .+ xn

n
;

the variance of the sample distribution is equal to

V
def=

1
n
·

n
∑

i=1

(xi − E)2,

and the median (or, more generally, any quantile) of the sample distribution
is equal to the median (quantile) of the values xi. These estimates are actually
the most widely used in practical applications; thus, in the following text, we
will mostly concentrate on how to estimate these statistical characteristics
under interval uncertainty. We will also mention alternative estimates for the
mean etc., and show how to estimate them as well.
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Algorithms for Computing Statistics under

Interval and Fuzzy Uncertainty
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Computing under Fuzzy Uncertainty Can Be

Reduced to Computing under Interval
Uncertainty: Reminder

In this part, we present algorithms for computing the values of different
statistical characteristics C(x1, . . . , xn) under interval and fuzzy uncertainty.

In Chapter 4, we have explained that the problem of computing these val-
ues under fuzzy uncertainty can be reduced to the problem of computing
the values of this characteristic under interval uncertainty. Namely, for ev-
ery α ∈ [0, 1], the alpha-cut y(α) of the desired fuzzy value is the interval
that corresponds to estimating the same characteristic C(x1, . . . , xn) under
interval uncertainty – specifically, under the assumption that the i-th input
belongs to the α-cut of the corresponding fuzzy number xi ∈ xi(α):

y(α) = {C(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}.

Thus, from the computational point of view, the problem of computing statis-
tics under fuzzy uncertainty can be reduced to several problems of computing
statistics under interval uncertainty. Since the fuzzy degrees come from ex-
pert estimates and thus, cannot be determined with high accuracy anyway,
it is sufficient to consider values α = 0, 0.1, . . . , 0.9, 1.0.

In view of this comment, in this part of the book, we will describe the
algorithms corresponding to the case of interval uncertainty – with the un-
derstanding that by applying these algorithms to α-cuts, we can also compute
the values of statistical characteristics under fuzzy uncertainty as well.

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, p. 61.
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Computing Mean under Interval Uncertainty

We have already mentioned that for the interval data x1 = [x1, x1], . . . ,xn =
[xn, xn], a reasonable estimate for the corresponding statistical characteristic
C(x1, . . . , xn) is the range

C(x1, . . . ,xn) def= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

The arithmetic average E(x1, . . . , xn) =
1
n
·

n
∑

i=1

xi is a monotonically in-

creasing function of each of its n variables x1, . . . , xn. So:

• its smallest possible value E is attained when each value xi is the smallest
possible (xi = xi), and

• its largest possible value is attained when xi = xi for all i.

In other words, the range E = [E,E] of E is equal to

[E(x1, . . . , xn), E(x1, . . . , xn)],

i.e., E =
1
n
· (x1 + . . .+ xn) and E =

1
n
· (x1 + . . .+ xn).

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, p. 63.
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Computing Median (and Quantiles) under

Interval Uncertainty

Need to go beyond arithmetic average. We have mentioned, in the Formula-
tion of the Problem chapter, that an important source of interval uncertainty
is the existence of the lower detection limits for sensors: if a sensor does not
detect any signal this means that the actual value of the measured quantity
is below its detection limit DL, i.e., in the interval [0, DL].

Another practically important source of uncertainty is the fact that many
sensors also have saturation values xmax: if the sensor registers the value
x̃i = xmax, then the only information that we know about the true value x
is that x ≥ xmax, i.e., that x ∈ [xmax,∞). If one of the measurements x̃i

is equal to the saturation value, then, e.g., the arithmetic average E(x) =
1
n
· (x1 + . . .+ xn) of the actual values xi can be arbitrarily large.
For such situations, we need to use different methods for estimating the

expected value (mean) e[x] of a random variable from the sample x1, . . . , xn.
One such method is the median.

Estimating median under interval uncertainty. Since the median is non-
decreasing in x1, . . . , xn, its smallest possible value is attained for x1, . . . , xn,
and its largest possible value is attained for x1, . . . , xn.

So, to compute the exact bounds for the median, it is sufficient to apply
the algorithm for computing the finite population median of n numbers twice:

• first, to the values x1, . . . , xn, to compute the lower endpoint for the finite
population median;

• second, to the values x1, . . . , xn, to compute the upper endpoint for the
finite population median.

To compute each median, we can, e.g., sort the corresponding n values. It
is known that one can sort n numbers in O(n · log(n)) steps; see, e.g., [73].
So, the above algorithm takes O(n · log(n)) steps – and is, therefore, quite
feasible.

As mentioned in [73], the median of n numbers can be computed in lin-
ear time O(n). Since computing median under interval uncertainty means

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 65–66.
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computing two numerical medians, we can thus compute median under in-
terval uncertainty in linear time.

Estimating quantiles under interval uncertainty. Similarly, to compute a
given quantile under interval uncertainty, it is sufficient to compute the quan-
tile of the lower endpoints and the quantile of the upper endpoints. Quantiles
can also be computed in linear time; see, e.g., [73]. For example, to compute
a quartile, i.e., the value that separate the first 1/4 of the sample from the
rest, it is sufficient to compute the median m, then select all the values xi

which are smaller than m, and then compute the median of all these selected
values. A similar “bisection” enables us to compute an arbitrary quantile in
linear time.

Beyond median. Median is a particular case of an important class of sta-
tistical L-estimates: we order the values xi into a (non-strictly) increasing

sequence x(1) ≤ x(2) ≤ . . . ≤ x(n), and then estimate e[x] as
n
∑

i=1

wi · x(i).

Alternative methods for estimating e[x] are also useful in other practical
situations – e.g., if, in addition to measurement results, the values xi con-
tain erroneously recorded values. Other widely used alternative methods for
estimating e[x] include [276, 337]:

• weighted mean Ew that is defined by the condition
n
∑

i=1

(xi − E)2

σ2
i

→ min
E

,

so Ew =
n
∑

i=1

pi · xi, where pi
def=

σ−2
i

n
∑

j=1

σ−2
j

;

• M-estimates:
n
∑

i=1

ψ(|xi − a|) → max
a

for some function ψ(x); average is a

particular case of an M-estimate, corresponding to ψ(x) = x2.

They are all monotonic functions of xi, so their ranges under interval uncer-
tainty can be computed in time O(n).
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Computing Variance under Interval

Uncertainty: An Example of an NP-Hard
Problem

Formulation and Analysis of the Problem

Formulation of the problem: reminder. In many practical applications, we

need to estimate the sample variance V =
1
n
·

n
∑

i=1

(xi − E)2, where E =

1
n
·

n
∑

i=1

xi.

The variance can also be rewritten as V =
1
n
·

n
∑

i=1

x2
i − E2.

As we have mentioned, in many real-life situations, we do not know the
exact values x1, . . . , xn, we only know the intervals x1 = [x1, x1], . . . ,xn =
[xn, xn] that contain the actual (unknown) values of xi.

Intervals coming from measurements have the form [x̃i−Δi, x̃i+Δi], where
x̃i is the measurement result and Δi is an upper bound on the measurement
error. A general interval [xi, xi] can be represented in the same way if we

take the midpoint x̃i =
xi + xi

2
as x̃i and the radius (half-width) as Δi:

Δi =
xi − xi

2
.

In such situations, different values xi ∈ xi lead, in general, to different
values of the variance. We need to find the range

V (x1, . . . ,xn) def= {V (x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}

of possible values of the variance.
Since the function V (x1, . . . , xn) is continuous, its range on the box

[x1, x1] × . . .× [xn, xn]

is an interval. This range interval will be denoted by V = [V , V ].

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 67–78.
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For this problem, traditional interval methods sometimes lead to excess width.
Let us show that for this problem, traditional interval methods sometimes
lead to excess width.

Straightforward interval computations. Let us first show what will happen is
we use “straightforward” interval computations.

As we have mentioned in Chapter 7, in straightforward interval compu-
tations, we repeat the computations forming the program f step-by-step,
replacing each operation with real numbers by the corresponding operation
of interval arithmetic. It is known that, as a result, we get an enclosure for
the desired range.

For the problem of computing the range of finite population average, as we
have mentioned, straightforward interval computations lead to exact bounds.
The reason: in the above formula for E, each interval variable only occurs
once.

For the problem of computing the range of the population variance, the
situation is somewhat more difficult, because in the expression for V , each
variable xi occurs several times:

• explicitly, in (xi − E)2, and
• implicitly, in the expression for E.

In this cases, often, dependence between intermediate computation results
leads to excess width of the results of straightforward interval computations.
Not surprisingly, we do get excess width when applying straightforward in-
terval computations to the formula for V .

For example, for x1 = x2 = [0, 1], the actual variance is V = (x1 − x2)2/4
and hence, its actual range is V = [0, 0.25]. On the other hand, E = [0, 1],
hence

(x1 −E)2 + (x2 −E)2

2
= [0, 1] ⊃ [0, 0.25].

It is worth mentioning that in the alternative formula

V =
1
n
·

n
∑

i=1

x2
i − E2,

each variable xi also occurs several times, as a result of which we also get
excess width: for x1 = x2 = [0, 1], we get E = [0, 1] and

x2
1 + x2

2

2
− V 2 = [−1, 1] ⊃ [0, 0.25].

Unless there is a general formula for computing the variance of a finite
population in which each interval variable only occurs once, then without
using a numerical algorithm (as contrasted with am analytical expression),
it is probably not possible to avoid excess interval width caused by depen-
dence. The fact that we prove that the problem of computing of computing
the exact bound for the finite population variance is computationally difficult



14 Computing Variance under Interval Uncertainty Is NP-Hard 69

(in precise terms, NP-hard) makes us believe that no such formula for finite
population variance is possible.

Mean value form. As we have mentioned in Chapter 7, a better range is often
provided by a mean value form, in which a range f(x1, . . . ,xn) of a smooth
function on a box x1 × . . .× xn is estimated as

f(x1, . . . ,xn) ⊆ f(x̃1, . . . , x̃n) +
n
∑

i=1

∂f

∂xi
(x1, . . . ,xn) · [−Δi, Δi],

where x̃i = (xi + xi)/2 is the interval’s midpoint and Δi = (xi − xi)/2 is its
half-width.

When all the intervals are the same, e.g., when xi = [0, 1], the centered
form does not lead to the desired range. Indeed, the mean value form always
produced an interval centered in the point f(x̃1, . . . , x̃n). In this case, all
midpoints x̃i are the same (e.g., equal to 0.5), hence the population variance
f(x̃1, . . . , x̃n) is equal to 0 on these midpoints. Thus, as a result of applying
the centered form, we get an interval centered at 0, i.e., the interval whose
lower endpoint is negative. In reality, V is always non-negative, so negative
values of V are impossible.

The upper endpoint produced by the mean value form is also different
from the upper endpoint of the actual range: e.g., for x1 = x2 = [0, 1], we

have ∂f
∂x1

(x1, x2) = (x1 − x2)/2, hence

∂f

∂x1
(x1,x2) =

x1 − x2

2
= [−0.5, 0.5].

A similar formula holds for the derivative with respect to x2. Since Δi = 0, 5,
the centered form leads to:

f(x1, . . . ,xn) ⊆ 0+[−0.5, 0.5]·[−0.5, 0.5]+[−0.5, 0.5]·[−0.5, 0.5] = [−0.5, 0.5]

– an excess width in comparison with the actual range [0, 0.25].

For this problem, traditional optimization methods sometimes take unreason-
ably long time. A natural way to solve the problem of computing the exact
range [V , V ] of the population variance is to solve it as a constrained opti-
mization problem. Specifically, to find V , we must find the minimum of the
function V under the conditions x1 ≤ x1 ≤ x1, . . . , xn ≤ xn ≤ xn. Similarly,
to find V , we must find the maximum of the function V under the same
conditions.

There exist optimization techniques that lead to computing “sharp” (ex-
act) values of min(f(x)) and max(f(x)). For example, there is a method
described in [147] (and effectively implemented). However, the behavior of
such general constrained optimization algorithms is not easily predictable,
and can, in general, be exponential in n.
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For small n, this is quite doable, but for large n, the exponential computa-
tion time grows so fast that for reasonable n, it becomes unrealistically large:
e.g., for n ≈ 300, it becomes larger than the lifetime of the Universe.

We need new methods. Summarizing: the existing methods are either not
always efficient, or do not always provide us with sharp estimates for V and
V . So, we need new methods.

In this chapter, after proving that the problem is, in general, NP-hard,
we describe several new methods for computing the variance under interval
uncertainty. These algorithms were first described in [79, 102, 353]

Estimating variance under interval uncertainty is NP-hard. The problem of
computing the exact range V = [V , V ] for the variance V over interval data
xi ∈ [x̃i −Δi, x̃i + Δi] is, in general, NP-hard; this result appeared in [100,
101, 102, 188, 197].

Theorem 14.1. Computing V is NP-hard.

The very fact that computing the range of a quadratic function is NP-hard
was first proven by Vavasis [334] (see also [182]). The above result shows
that this difficulty happens even for the very simple quadratic function V
frequently used in data processing.

A natural question is: maybe the difficulty comes from the requirement that
the range be computed exactly? In practice, it is often sufficient to compute,
in a reasonable amount of time, a usefully accurate estimate ˜V for V , i.e.,
an estimate ˜V which is accurate with a given accuracy ε > 0:

∣

∣

∣

˜V − V
∣

∣

∣
≤ ε.

Alas, for any ε, such computations are also NP-hard:

Theorem 14.2. For every ε > 0, the problem of computing V with accuracy
ε is NP-hard.

Comment. This result shows that the problem of computing variance under
interval uncertainty is NP-hard if we want to find the range of the variable
with absolute accuracy ε. It turns out that if we only need relative accuracy ε
(relative to the measured values), then this range can be actually computed
in polynomial time; see Chapter 28.

It is worth mentioning that V can be computed exactly in exponential
time O(2n):

Theorem 14.3. There exists an algorithm that computes V in exponential
time.

Comment. The algorithms will be presented in the next chapter.
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Proofs

Proof of Theorem 14.1

1◦. By definition, a problem is NP-hard if any problem from the class NP
can be reduced to it. Therefore, to prove that a problem P is NP-hard, it is
sufficient to reduce one of the known NP-hard problems P0 to P .

In this case, since P0 is known to be NP-hard, this means that every
problem from the class NP can be reduced to P0, and since P0 can be reduced
to P , thus, the original problem from the class NP is reducible to P .

For our proof, as the known NP-hard problem P0, we take a subset problem
(see Chapter 8): given n positive integers s1, . . . , sn, to check whether there

exist signs ηi ∈ {−1,+1} for which the signed sum
n
∑

i=1

ηi · si equals 0.

We will show that this problem can be reduced to the problem of com-
puting V , i.e., that to every instance (s1, . . . , sn) of the problem P0, we can
put into correspondence such an instance of the V -computing problem that
based on its solution, we can easily check whether the desired signs exist.

As this instance, we take the instance corresponding to the intervals
[xi, xi] = [−si, si]. We want to show that for the corresponding problem,
V = C0, where we denoted

C0
def=

1
n
·

n
∑

i=1

s2i , (14.1)

if and only if there exist signs ηi for which
n
∑

i=1

ηi · si = 0.

2◦. Let us first show that in all cases, V ≤ C0.

Indeed, it is known that the formula for the finite population variance can
be reformulated in the following equivalent form:

V =
1
n
·

n
∑

i=1

x2
i − E2. (14.2)

Since xi ∈ [−si, si], we can conclude that x2
i ≤ s2i hence

n
∑

i=1

x2
i ≤

n
∑

i=1

s2i . Since

E2 ≥ 0, we thus conclude that

V ≤ 1
n
·

n
∑

i=1

s2i = C0.

In other words, every possible value V of the population variance is smaller
than or equal to C0. Thus, the largest of these possible values, i.e., V , also
cannot exceed C0, i.e., V ≤ C0.
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3◦. Let us now prove that if the desired signs ηi exist, then V = C0.

Indeed, in this case, for xi = ηi · si, we have E = 0 and x2
i = s2i , hence

V =
1
n
·

n
∑

i=1

(xi − E)2 =
1
n
·

n
∑

i=1

s2i = C0.

So, the population variance V is always ≤ C0, and it attains the value C0 for
some xi. Therefore, V = C0.

4◦. To complete the proof of Theorem 14.1, we must show that, vice versa,
if V = C0, then the desired signs exist.

Indeed, let V = C0. Finite population variance is a continuous function on a
compact set x1× . . .×xn, hence its maximum on this compact set is attained
for some values x1 ∈ x1 = [−s1, s1], . . . , xn ∈ xn = [−sn, sn]. In other words,
for the corresponding values of xi, the variance V is equal to C0.

Since xi ∈ [−si, si], we can conclude that x2
i ≤ s2i ; since E2 ≥ 0, we get

V ≤ C0. If |xi|2 < s2i or E2 > 0, then we would have V < C0. Thus, the
only way to have V = C0 is to have x2

i = s2i and E = 0. The first equality
leads to xi = ±si, i.e., to xi = ηi · si for some ηi ∈ {−1,+1}. Since E is, by
definition, the (arithmetic) average of the values xi, the equality E = 0 then

leads to
n
∑

i=1

ηi · si = 0. So, if V = C0, then the desired signs do exist.

The theorem is proven.

Proof of Theorem 14.2

1◦. Let ε > 0 be fixed. We will show that the subset problem can be reduced
to the problem of computing V with accuracy ε, i.e., that to every instance
(s1, . . . , sn) of the subset problem P0, we can put into correspondence such
an instance of the ε-approximate V -computation problem that based on its
solution, we can easily check whether the desired signs exist.

For this reduction, we will use two parameters. The first one – C0 – is
the same as in the proof of Theorem 14.1. We will also need a new real-
valued parameter k; its value depend on ε and n. We could produce this
value right away, but we believe that the proof will be much clearer if we
keep it undetermined until it becomes clear what value k we need to choose
for the proof to be valid.

As the desired instance, we take the instance corresponding to the intervals
[xi, xi] = [−k · si, k · si] for an appropriate value k. Let ˜V be a number
produced, for this problem, by a ε-accurate computation algorithm, i.e., a
number for which

∣

∣

∣

˜V − V
∣

∣

∣ ≤ ε. We want to to show that ˜V ≥ k2 · C0 − ε if

and only if there exist signs ηi for which
n
∑

i=1

ηi · si = 0.

2◦. When we multiply each value xi by a constant k, the variance is multiplied
by k2. As a result, the upper bound V corresponding to xi ∈ [−k · si, k · si]
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is exactly k2 times larger than the upper bound v corresponding to k times
smaller values zi ∈ [−si, si]: v = V /k2.

Hence, when ˜V approximates V with an accuracy ε, the corresponding
value ˜v def= ˜V /k2 approximates v (= V /k2) with the accuracy δ def= ε/k2.

In terms of ˜v, the above inequality ˜V ≥ k2 · C0 − ε takes the following
equivalent form: ˜v ≥ C0 − δ.

Thus, in terms of ˜v, the desired property can be formulated as follows:
˜v ≥ C0 − δ if and only if there exist signs ηi for which

n
∑

i=1

ηi · si = 0.

3◦. Let us first show that if the desired signs ηi exist, then ˜v ≥ C0 − δ.

Indeed, in this case, similarly to the proof of Theorem 14.1, we can conclude
that v = C0. Since ˜v is a δ-approximation to the actual upper bound v, we
can therefore conclude that ˜v ≥ v − δ = C0 − δ. The statement is proven.

4◦. Vice versa, let us assume that ˜v ≥ C0 − δ. Let us prove that in this case,
the desired signs exist.

4.1◦. Since ˜v is a δ-approximation to the upper bound v, we thus conclude
that v ≥ ˜v − δ and therefore, v ≥ C0 − 2δ.

Similarly to the proof of Theorem 14.1, we can conclude that the maximum
is attained for some values zi ∈ [−si, si] and therefore, there exist values
zi ∈ [−si, si] for which the finite population variance v exceeds C0 − 2δ:

v
def=

1
n
·

n
∑

i=1

z2
i − E2

z ≥ C0 − 2δ,

where

Ez
def=

1
n
·

n
∑

i=1

zi,

i.e., substituting the expression (14.1) for C0, that

1
n
·

n
∑

i=1

z2
i − (Ez)2 ≥ 1

n
·

n
∑

i=1

s2i − 2δ. (14.3)

4.2◦. The following proof will be similar to the corresponding part of the proof
of Theorem 14.1. The main difference is that we have approximate equalities
instead of exact ones:

• In the proof of Theorem 14.1, we used the fact that V = C0 to prove that
the corresponding values xi are equal to ±si, and that their sum is equal
to 0.



74 14 Computing Variance under Interval Uncertainty Is NP-Hard

• Here, v is only approximately equal to C0. As a result, we will only be
able to show that the values zi are close to ±si, and that the sum of zi

is close to 0. From these closenesses, we will then be able to conclude (for
sufficiently large k) that the sum of the corresponding terms ±si is exactly
equal to 0.

4.3◦. Let us first prove that for every i, the value z2
i is close to s2i . Specifically,

we know that z2
i ≤ s2i ; we will prove that

z2
i ≥ s2i − 2(n− 1) · δ. (14.4)

We will prove this inequality by reduction to a contradiction. Indeed, let us
assume that for some i0, this inequality is not true. This means that

z2
i0 < s2i0 − 2(n− 1) · δ. (14.5)

Since zi ∈ [−si, si], for all i, in particular, for all i �= i0, we conclude, for all
i �= i0, that

z2
i ≤ s2i . (14.6)

Adding the inequality (14.5) and (n− 1) inequalities (14.6) corresponding to
all values i �= i0, we get

n
∑

i=1

z2
i <

n
∑

i=1

s2i − 2(n− 1) · δ. (14.7)

Dividing both sides of this inequality by n − 1, we get a contradiction with
(14.3). This contradiction shows that (14.4) indeed holds for every i.

4.4◦. The inequality (14.4) says, crudely speaking, that z2
i is close to s2i .

According to our “action plan” (as outlined in Part 4.2 of this proof), we
want to conclude that zi is close to ±si, i.e., that |zi| is close to si.

To be able to make a meaningful conclusion about zi from the inequality
(14.4), we must make sure that the right-hand side of the inequality (14.4)
is positive: otherwise, this inequality is true simply because its left-hand side
is non-negative, and the right-hand side is non-positive.

The value si is a positive integer, so s2i ≥ 1. Therefore, to guarantee that
the right-hand side of (14.4) is positive, it is sufficient to select k for which,
for the corresponding value δ = ε/k2, we have

2(n− 1) · δ < 1. (14.8)

In the following text, we will assume that this condition is indeed satisfied.

4.5◦. Let us show that under the condition (14.8), the value |zi| is indeed
close to si. To be more precise, we already know that |zi| ≤ si; we are going
to prove that
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|zi| ≥ si − 2(n− 1) · δ. (14.9)

Indeed, since the right-hand side of the inequality (14.4) is supposed to be
close to si, it makes sense to represent it as s2i times a factor close to 1. To be
more precise, we reformulate the inequality (14.4) in the following equivalent
form:

z2
i ≥ s2i ·

(

1 − 2(n− 1) · δ
s2i

)

. (14.10)

Since both sides of this inequality are non-negative, we can extract the square
root from both sides and get the following inequality:

|zi| ≥ si ·
√

1 − 2(n− 1) · δ
s2i

. (14.11)

The square root in the right-hand side of (14.11) is of the type
√

1 − t, with
0 ≤ t ≤ 1. It is known that for such t, we have

√
1 − t ≥ 1 − t. Therefore,

from (14.11), we can conclude that

|zi| ≥ si ·
√

1 − 2(n− 1) · δ
s2i

≥ si ·
(

1 − 2(n− 1) · δ
s2i

)

,

i.e., that

|zi| ≥ si − 2(n− 1) · δ
si

.

Since si ≥ 1, we have

2(n− 1) · δ
si

≤ 2(n− 1) · δ,

hence

|zi| ≥ si − 2(n− 1) · δ
si

≥ si − 2(n− 1) · δ.

So, the inequality (14.9) is proven.

4.6◦. Let us now prove that for the values zi selected on Step 4.1, the average
Ez is close to 0. To be more precise, we will prove that

(Ez)2 ≤ 2δ. (14.12)

Similarly to Part 4.3 of this proof, we will prove this inequality by reduction
to a contradiction. Indeed, assume that this inequality is not true, i.e., that

(Ez)2 > 2δ. (14.13)
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Since z2
i ≤ s2i , we therefore conclude that

n
∑

i=1

z2
i ≤

n
∑

i=1

s2i ,

hence
1
n
·

n
∑

i=1

z2
i ≤ 1

n
·

n
∑

i=1

s2i . (14.14)

Adding, to both sides of the inequality (14.14), the inequality (14.13), we get
an inequality

1
n
·

n
∑

i=1

z2
i − (Ez)2 <

1
n

n
∑

i=1

s2i − 2δ,

which contradicts to (14.3). This contradiction proves that that the inequality
(14.12) is true.

4.7◦. From the fact that the average Ez is close to 0, we can now conclude
that the sum

∑

zi is also close to 0. Specifically, we will now prove that

∣

∣

∣

∣

∣

n
∑

i=1

zi

∣

∣

∣

∣

∣

≤ n ·
√

2δ. (14.15)

Indeed, from (14.12), we conclude that (Ez)2 ≤ 2δ, hence |Ez| ≤
√

2δ. Multi-
plying both sides of this inequality by n, we get the desired inequality (14.15).

4.8◦. Let us now show that for appropriately chosen k, we will be able to
conclude that there exist signs ηi for which

∑

ηi · si = 0.

From the inequalities (14.9) and |zi| ≤ si, we conclude that

|si − |zi|| ≤ 2(n− 1) · δ. (14.16)

Hence, |zi| ≤ si − 2(n− 1) · δ. Each value si is a positive integer, so si ≥ 1.
Due to the inequality (14.8), we have 2(n − 1) · δ < 1, so |zi| > 1 − 1 = 0.
Therefore, zi �= 0, hence each value zi has a sign. Let us take, as ηi, the sign
of the value zi. Then, the inequality (14.16) takes the form

|ηi · si − zi| ≤ 2(n− 1) · δ. (14.17)

Since the absolute value of the sum cannot exceed the sum of absolute values,
we therefore conclude that

∣

∣

∣

∣

∣

n
∑

i=1

ηi · si −
n
∑

i=1

zi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

(ηi · si − zi)

∣

∣

∣

∣

∣

≤
n
∑

i=1

|ηi · si − zi| ≤
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n
∑

i=1

2(n− 1) · δ = 2n · (n− 1) · δ. (14.18)

From (14.18) and (14.15), we conclude that
∣

∣

∣

∣

∣

n
∑

i=1

ηi · si

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n
∑

i=1

zi

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n
∑

i=1

ηi · si −
n
∑

i=1

zi

∣

∣

∣

∣

∣

= n ·
√

2δ+2n ·(n−1) ·δ. (14.19)

All values si are integers, hence, the sum
n
∑

i=1

ηi · si is also an integer, and so

is its absolute value
∣

∣

∣

∣

n
∑

i=1

ηi · si

∣

∣

∣

∣

. Thus, if we select k for which the right-hand

side of the inequality (14.19) is less than 1, i.e., for which

n ·
√

2δ + 2n · (n− 1) · δ < 1, (14.20)

we therefore conclude that the absolute value of an integer
n
∑

i=1

ηi ·si is smaller

than 1, so it must be equal to 0:
n
∑

i=1

ηi · si = 0.

Thus, to complete the proof, it is sufficient to find k for which, for the
corresponding value δ = ε/k2, both the inequalities (14.8) and (14.20) hold.
To guarantee the inequality (14.20), it is sufficient to have

n ·
√

2δ ≤ 1
3

(14.21)

and
2n · (n− 1) · δ ≤ 1

3
. (14.22)

The inequality (14.21) is equivalent to

δ ≤ 1
18n2

;

the inequality (14.22) is equivalent to

δ ≤ 1
6n · (n− 1)

;

and the inequality (14.8) is equivalent to

δ ≤ 1
2(n− 1)

.

Thus, to satisfy all three inequalities, we must choose δ for which δ = ε/k2 =
δ0, where we denoted

δ0
def= min

(

1
18n2

,
1

6n · (n− 1)
,

1
2(n− 1)

)

.
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The original expression for the population variance V only works for n ≥ 2.
For such n, 18n2 > 6n · (n−1) and 18n2 > 2(n−1), hence the above formula
can be simplified into

δ0 =
1

18n2
.

To get this δ as δ0 = ε/k2, we must take k =
√

ε/δ0 = 3n · √2ε. For this k,
as we have shown before, the reduction holds, so the theorem is proven.

Proof of Theorem 14.3. The proof is straightforward: by computing the ap-
propriate second derivatives, we can check that the function V (x1, . . . , xn) is
convex. Therefore, it maximum is attained at one of the 2n vertices of the
box x1 × . . .× xn.

For readers who are not very familiar with the ideas of convexity, we can
provide a slightly longer version of this proof. Let x(0)

1 ∈ x1, . . . , x
(0)
n ∈ xn be

the values for which the population variance V attains maximum on the box.
Let us pick one of the n variables xi, and let fix the values of all the other

variables xj (j �= i) at xj = x
(0)
j . When we substitute xj = x

(0)
j for all j �= i

into the expression for population variance, V becomes a quadratic function
of xi.

This function of one variable should attain its maximum on the interval
xi at the value x(0)

i .
By definition, the population variance V is a sum of non-negative terms;

thus, its value is always non-negative. Therefore, the corresponding quadratic
function of one variable always has a global minimum. This function is de-
creasing before this global minimum, and increasing after it. Thus, its maxi-
mum on the interval xi is attained at one of the endpoints of this interval.

In other words, for each variable xi, the maximum is attained either for
xi = xi, or for xi = xi. Thus, to find V , it is sufficient to compute V for 2n

possible combinations (x±1 , . . . , x
±
n ), where x−i

def= xi and x+
i

def= xi, and find
the largest of the resulting 2n numbers.
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Types of Interval Data Sets: Towards Feasible

Algorithms

Types of Interval Data Sets: General Idea

Need to consider specific types of interval data sets. The main objective of
this book is to compute statistics under interval uncertainty. The simplest and
most widely used statistical characteristics are mean and variance. We already
know that computing the mean under interval uncertainty is straightforward.
However, as the previous chapter shows, computing variance V under interval
uncertainty is, in general, an NP-hard (computationally difficult) problem.
As we will see in the following chapters, a similar problem is NP-hard for
many other statistical characteristics C as well.

Crudely speaking, NP-hardness means that (unless P=NP), it is not pos-
sible to have an efficient algorithm that always computes the desired range
C. It is therefore desirable to describe practically meaningful cases – i.e.,
practically meaningful types of interval data sets – when such a computa-
tion is possible. Several such cases are described in this chapter. In the next
chapter, we show how variance can be computed for some of these cases; in
the following chapters, we show how other characteristics can be efficiently
computed under such cases.

How to describe different types of interval data sets. To get a full understand-
ing of an interval data set, we need to know two things:

• the procedure that was used to obtain these intervals; e.g., whether the
interval uncertainty came from measurements or it was introduced artifi-
cially to maintain privacy, and

• the results of this procedure, i.e., the intervals themselves.

In general, the procedure affects the results – some sets of intervals can appear
as the result of this procedure, some cannot. For example, intervals introduced
to maintain privacy are formed by fixing a sequence of thresholds like 0, 10,
20, 30, etc., so we can have intervals [0, 10], [20, 30], [10, 20] in which each
pair either does not intersect or coincide or have a single common point, but
we cannot have intervals [0, 10] and [5, 15].

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 79–94.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Thus, it is reasonable to expect that both the procedure and the intervals
themselves affect the complexity of computing statistical characteristics based
on the corresponding intervals. Because of this, we will start by classifying
interval data sets in a similar way:

• by the procedure, and
• by the results.

Of course, ideally, we should take both the procedure and the results into
account. Therefore, in addition to types corresponding only to procedure or
only to the results, we will also describes types of interval data that are
characterized by both.
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types

by by by
procedure results both

Types of Interval Data Sets: Classification by Procedure

Classification based on procedure. As we have mentioned earlier, interval un-
certainty can originate from several different sources:

• it can come from measurement uncertainty, and
• it can come from our desire to preserve privacy.

�
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�
�

� �
�
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�

�

procedure

from from
measurements privacy

Let us analyze the interval data sets originated from these two types of
procedures in detail.

Intervals coming from measurements: general case. First, intervals can come
from measurements, when the only information about the actual (unknown)
values xi of the corresponding quantity is that it belongs to the interval
xi = [xi, xi] = [x̃i −Δi, x̃i +Δi], where x̃i is the measurement result and Δi

is the upper bound on the measurement error Δxi = x̃i − xi.
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Single measuring instrument vs several measuring instruments. In some
cases, all the measurements are performed by a single measurement instru-
ment (MI). In other situations, several different measuring instruments are
used.
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�
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�

�

from measurements

single several
measuring measuring
instrument instruments

Single measuring instrument: case of the same accuracy. It is often reason-
able to assume that the instrument with which we perform the measurements
has the same accuracy over the whole range. In this case, all the values Δi

are the same: Δ1 = Δ2 = . . . = Δn = Δ for some Δ > 0.
Then, all resulting intervals xi = [x̃i − Δ, x̃i + Δ] have the same width

2 ·Δ – and are, therefore, not proper subsets of one another.
Single measuring instrument: general case. In other cases, the accuracy may
differ across the range. However, even in this case, it is not reasonable to
expect that one of the intervals is a proper subset of another one. Informally,
the upper endpoint xi is obtained from the measured value x̃i by adding
the value Δ1 corresponding to the accuracy of this measuring instrument.
If x̃i increases, i.e., if x̃i < x̃j , then the sum should increase (or at least
non-decrease) too, i.e., we should have xi ≤ xj . Similarly, it is reasonable to
expect that the same is true for lower endpoints: xi ≤ xj .

Thus, it is not possible to have [xi, xi] ⊆ (xj , xj), because in this case, we
would have xj < xi but xi < xj .

In other words, it is quite possible to get two intervals [5.0, 6.0] and [5.4, 5.6]
by using two different measuring instruments – a less accurate one and a
more accurate one, but it is not realistic to expect that the same measuring
instrument can exhibit two different accuracies within the same range of
values.

Thus, formally, we can describe the general case of a single measuring
instrument as the following no-subset (no-nesting) property: no interval is a
proper subset of another one in the sense that [xi, xi] �⊆ (xj , xj).
Single measuring instrument: case of detection limits. In some cases, as we
have mentioned earlier, the sensors are reasonably accurate, so accurate that
we can safely ignore the corresponding measurement error and assume that
each measured value x̃i is simply equal to the actual value. However, this is
only true when the actual value exceeds a certain detection limit DL below
which the sensor does not work, i.e., its reading x̃i stays at 0.

In this case, the sensor can produce the value x̃i = 0 and all possible values
x̃i ≥ DL:
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• the value x̃i = 0 corresponds to the interval [0, DL], while
• every value x̃i ≥ DL corresponds to the degenerate interval xi = [x̃i, x̃i].

Single measuring instrument: case of discretized data. As we have mentioned
earlier, in some cases, discretization is the main source of measurement error.
For example, we have a fixed sequence of observation times t0, t1, . . . , tk, . . . ,
and for each change, we only know that the moment of time at which this
change occurred is somewhere between tk and tk+1; in this case, we only have
intervals of the type [tk, tk+1], with values tk from a pre-defined sequence.
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Case of several (m) measuring instruments. In this case, intervals can be
divided into m families within each of which intervals satisfy the no-subset
property.

In this case, we have two different classifications by measurement results:

• similar to the case of a single measuring instrument, we can classify the
intervals based on individual intervals;

• we can also distinguish between the case when we know the provenance
of each interval, i.e., we know which interval comes from which measuring
instrument, and the case when we only have the intervals, but we have not
recorded which intervals was measured by which measuring instrument.

Case of several (m) measuring instruments: classification based on individual
intervals. In this case, similarly to the case of a single measuring instrument,
we can distinguish between four different types of instruments.
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Case of several measuring instruments: case of same accuracy. In this case,
we have m families of intervals, and within each family i, all intervals corre-
spond to the same accuracy, i.e., have the form [x̃ij − Δi, x̃ij + Δi] for the
same value Δi.

Case of several measuring instruments: general case. In the general case,
there is no restriction on intervals coming from different measuring instru-
ments. So, in this case, the information about the number of measuring
instruments does not in any way restrict the resulting collection of intervals
– it is simply a general collection of intervals.

Case of several measuring instruments: detection limits. In the case of detec-
tion limits, we have several intervals of the type [0, DLi] for different values
DLi, and several degenerate intervals [x, x].

Case of several measuring instruments: discretized data. This situation is
reasonable because in data processing, we often combine data from different
sources, and different sources may have different schedules of observation
times. If we combine m different sources, this means that the intervals can be
divided into m families within each of which intervals are of the type [tk, tk+1]
for some pre-defined sequence tk (different sequences for different families).

Case of several (m) measuring instruments: classification based on prove-
nance. We consider two possibilities:

• the case when we know the provenance of each interval, i.e., we know which
interval comes from which measuring instrument, and

• the case when we only have the intervals, but we have not recorded which
intervals was measured by which measuring instrument.
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Case when we have a limited number of different types of measuring instru-
ments, but we do not know which measurement was made by which instru-
ment. In practice, often, the provenance of different measurement results is
not recorded, so we may not know which measurement was made by which
instrument. In this case, all we know are the intervals.

Since we know the number m of different types of measuring instruments
that could be used, we know that these intervals can be separated into ≤ m
families each of which satisfies a no-subset property (≤ m since it is possible
that not all measuring instruments were used). It is therefore desirable to
separate the intervals into ≤ m such families.
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It should be mentioned that these families do not have to necessarily relate
to the measuring instruments – as long as we have ≤ m families with the non-
subset property, we can apply the above algorithm.

We claim that the following algorithm provides the desired separation (the
justification is given in the Proofs and Justifications section).

Algorithm for separation into families: description. To prepare for the sep-
aration (i.e., for the assignment of intervals to families), we check, for every
two intervals [xi, xi] and [xj , xj ], whether [xi, xi] ⊆ (xj , xj). If this relation
holds, we denote it by i ≺ j.

It is clear that the relation ≺ is transitive: if xi is a proper subset of xj ,
and xj is a proper subset of xk, then xi is a proper subset of xk.

In the beginning, no interval is assigned to a family, so the list of all not-
yet-assigned intervals consists of all n original intervals xi.

On the first iteration, from the list of all not-yet-assigned intervals, we
select all the intervals xi which are not proper subsets of other intervals from
this list. These non-subset intervals then form Family 1.

We then remove these intervals from the list of all not-yet-assigned in-
tervals, and repeat the same procedure: from the list of not-yet-assigned
intervals, we select all the intervals xi which are not proper subsets of other
intervals from this list. These non-subset intervals then form Family 2.

We then repeat the same procedure again and again until all the intervals
from the original list are assigned to corresponding families.

Algorithm for separation into families: computation time. What is the com-
putation time of this algorithm? Comparing all pairs of intervals takes time
n2. On each iteration, it takes linear time O(n) to check whether each of ≤ n
intervals in the not-yet-assigned list should be selected, each iteration takes
≤ O(n) · n = O(n2) steps. Thus, for each constant m, the total time for this
algorithm is m ·O(n2) = O(n2).

Privacy-related intervals: case of a single database. In addition to instru-
ments coming from measurement inaccuracy, intervals can also come from
the situations when we have the (more) exact values, but, to protect privacy,
we only use intervals that contain these values.

In this case, to minimize the loss of privacy, we have a pre-defined sequence
of thresholds t0, t1, . . . , tk, . . . , and we replace each original value x ∈
[tk, tk+1] (that we do not want to disclose) with the corresponding interval
[tk, tk+1].

Privacy-related intervals: case of several databases. Similarly to the case of
discretized data, we may want to jointly process several different databases
in which different thresholds were selected.

For example, assume that we want to compute an average salary of US
and Canadian scientists by using two databases:

• the US database, in which the salary was replaced by intervals like
[70, 80] K based on US dollars, and
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• the Canadian database, in which the salary was replaced by intervals like
[70, 80] K based on Canadian dollars.

We can easily translate the Canadian salaries into US dollars, but the re-
sulting thresholds will be different from the thresholds used in the US salary
database.
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Types of Interval Data Sets: Classification by Results

Classification based on intervals themselves: general idea. As we have men-
tioned earlier, when intervals are narrow, we can easily estimate the range
by using linearization techniques. So, it is reasonable to classify the interval
data sets depending on the narrowness of the corresponding intervals.

To describe this classification, let us recall that we are interested in the
values of statistical characteristics. This fact implies that the actual (un-
known) values x1, . . . , xn randomly deviate from their mean value E. It is
also usually assumed that the random variables xi are independent. This, in
turn, implies that these actual values x1, . . . , xn are all different – since for
the usual probability distributions on the real line, the probability to get the
exact same value twice is 0.

Case of narrow intervals. In practice, we do not observe the actual values
x1, . . . , xn, we only observe the intervals xi = [xi, xi] = [x̃i − Δi, x̃i + Δi]
that contain the corresponding values xi. When the measurements are very
accurate, the bounds Δi on the measurement errors are small. Thus, when
they are sufficiently small, the intervals xi do not intersect.

We can therefore use this no-intersection property (xi ∩ xj = ∅ for i ≤ j)
as a definition of narrow intervals.

Next case: few intersections. Whenwe further increase the bounds Δi, we
will start getting intersection between the intervals.

At first, we will get intersection between intervals corresponding to the
closest measurement results x̃i and x̃j . In this case, we may have intersections
between pairs of intervals, but every set of three intervals has an empty
intersection.

When we increase the values Δi even further, we may get intersections
between triples of intervals, but every of set of four intervals has an empty
intersection, etc.
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In general, for some integer c0, we can have a property that no set of c0
intervals has a common intersection. In this case, we will say that the original
interval set has “few intersections of order c0,” or “c0-few intersections”, for
short.

The no-intersection case of narrow intervals corresponds to c0 = 2. In
general, the smaller c0, the more accurate the corresponding measurements.
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Types of Interval Data Sets: Classification Based on
Both Procedure and Results

Due to engineering progress, measurements become more and more accurate,
i.e., the corresponding upper bounds Δi on the measurement errors decrease.

For each interval [x̃i − Δi, x̃i + Δi], and for each factor λ > 1, we can
envision a λ times improvement in accuracy. After this improvement, the

values Δi turn into
Δi

λ
and the original intervals are replaced by narrowed

intervals
[

x̃i − Δi

λ
, x̃i +

Δi

λ

]

.

In view of this future development, if a certain property of intervals is not yet
satisfied for the original intervals, it is reasonable to estimate the “degree”
of this non-satisfaction by checking whether the corresponding property hold
for the appropriately narrowed intervals.

If the property holds for the narrowed intervals, this means that the in-
terval data set retains some features that make computations easier, so we
expect that in this case, computations will still be sometimes easier than in
the general case. In the following chapters, we will show that these expecta-
tions are indeed true. For example, it turns out that efficient algorithms for
computing the range of the variance are possible not only when the original
intervals satisfy a non-subset property (corresponding to a single measuring

instrument), but also when the narrowed intervals
[

x̃i − Δi

n
, x̃i +

Δi

n

]

satisfy

this property, i.e., when
[

x̃i − Δi

n
, x̃i +

Δi

n

]

�⊂
(

x̃j − Δj

n
, x̃j +

Δj

n

)

for all i �= j.
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Similarly, we can consider the case when the intervals can be divided into
m subfamilies within each of which narrowed intervals satisfy the no-subset
property.

Relation Between Different Types of Interval Data Sets

Interval data sets of different types are related. In the previous section, we
listed a large number of different types of interval data sets, types that cor-
respond to different origins of interval uncertainty. In this section, we ana-
lyze different types and show that from the mathematical and computational
viewpoint, all these types can be reduced to a few basic ones. As a result,
when designing algorithms for processing statistical data under interval un-
certainty, it is sufficient to design them for a few basic ones.

Our analysis is based on a few simple observations.

First observation: privacy is equivalent to discretized data. Among the cases
listed above, several were subcases of the case of single measuring instrument
– the case that we called no-subset case. In particular, one important subcase
was the case of discretized data.

In addition to the cases of a single and multiple measuring instruments,
we also considered the privacy case. Let us show that from the mathematical
and computational viewpoint, the privacy case is equivalent to the case of
discretized data (and is, thus, also a subcase of the measurement cases).
Specifically:

• the case of privacy-related data from single database is equivalent to the
case of a single measuring instrument with discretized data, and

• the case of privacy-related data from several databases is equivalent to the
case of several measuring instruments with discretized data.

Second observation: narrow intervals are a subcase of the no-subset case. In
addition to classification by procedure, we also considered classification by
result. We started with the case of narrow intervals, when no two intervals
intersect. One can easily check that in this case, no interval is a subset of
another one – so this case is also a subcase of the no-subset case.

Similarly, if the narrowed intervals satisfy the no-intersection property,
then these narrowed intervals satisfy the no-subset property as well. So, both
for original intervals and for narrowed intervals, the narrow interval property
is a particular subcase of the no-subset case.

The only property which is not directly reducible to the no-subset class is
the property of having c0-few intersections with c0 > 2. Thus, we arrive at
the following conclusion.

Conclusion: basic types of interval data sets. The above observations show
that all previously considered cases can be reduced either to the no-subset
case (of a single measuring instrument), or to the case of several measuring
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instruments, or to the case of c0-few intersections – either about the original
intervals or about the narrowed intervals.

Thus, for processing each statistical characteristic under interval uncer-
tainty, it is sufficient to design algorithms for the following basic cases:

• the no-subset case when for every two intervals [xi, xi] and [xj , xj ], we have
[xi, xi] �⊆ (xj , xj);

• the case when the intervals can be divided into m families each of which
has a no-subset property; and

• the case when for some integer c0 ≥ 2, every group of c0 intervals has an
empty intersection.

In addition to these three classes, we also need to consider situations when
narrowed intervals belongs to these classes.

These are the cases for which we will present algorithms.

Auxiliary observation: properties of the original intervals vs. properties of
narrowed intervals. One can check that:

• if the original intervals satisfy the no-subset property, then the narrowed
intervals also satisfy the no-subset property;

• if the original intervals do not intersect, then the corresponding narrowed
intervals also do not intersect, etc.

The first implication may not be easy to observe, but it easily follows from
the fact – stated and proved in the next section – that the no-subset property
is equivalent to the inequalities |x̃i− x̃j | ≥ |Δi−Δj |. By definition, narrowed
intervals have the same midpoints x̃i and x̃j , but λ times smaller half-widths.
Clearly, for λ > 1, the inequality |x̃i − x̃j | ≥ |Δi − Δj | (that describes the
no-subset property for the original intervals) implies the inequality |x̃i −
x̃j | ≥

∣

∣

∣

∣

Δi

λ
− Δj

λ

∣

∣

∣

∣

, an inequality that describes a no-subset property for the

narrowed intervals.
Thus, if we find algorithms that work when the narrowed intervals belong

to one of the three basic classes, then these same algorithms are also applica-
ble when the original intervals belongs to these classes – so there is no need
to develop new algorithms for the original case.

How to Detect Interval Data Sets of Different Types

How can we check whether an interval data set belongs to the given interval
data type? Most above criteria can be directly detected. Let us describe the
corresponding checking algorithms one by one.

Case of measurements with the same accuracy. By definition, this case means
that Δ1 = Δ2 = . . . = Δn. This condition can be easily checked in time O(n).
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Checking whether intervals come from the same measuring instruments. In
this case, we need to check whether the given intervals [xi, xi] satisfies the no-
subset property [xi, xi] �⊆ (xj , xj) is satisfied for all i and j. In other words,
we need to check that for all i and j, the following formula is true:

¬(xj < xi & xi < xj),

i.e., equivalently,
xj ≥ xi ∨ xi ≥ xj .

To check this property for all i and j, we need to performO(n2) computations.
If the intervals are given in the form of lower and upper endpoints, then

this is a reasonable way to check the non-subset property. If each interval
is given by its midpoint x̃i and its half-width Δi (which is typical in the
measurement case), then we can formulate an alternative criterion in terms
of these given values:

|x̃i − x̃j | ≥ |Δi −Δj |;
(the proof of this equivalence is given in the Proofs and Justifications part of
this chapter).

Case of detection limits. This case is easy to check: in this case, all intervals
are degenerate (consist of a single point) except for intervals of type [0, DL]
for some value DL > 0 – and this value DL is the same for all non-degenerate
intervals and is smaller than or equal to all the other values.

Obviously, this can be done in linear time.

Case of discretized data. In this case, every endpoint of every interval is one
of the threshold values tk. Thus, to check whether the given set of intervals
comes from the discretized data, we can sort all the endpoints of all the given
intervals into a sequence t1 ≤ t2 ≤ . . . ≤ tk ≤ . . ., and check whether each
given interval has the form [tk, tk+1] for some k. If all given intervals have
this form, this means that we do have discretized data, otherwise, if one of
the given intervals has the form [tk, tk+p] for some p ≥ 2, we have a more
complex case.

Sorting takes timeO(n·log(n)). After sorting, the above checking algorithm
takes linear time O(n), so the overall checking time is

O(n · log(n)) +O(n) = O(n · log(n)).

Several (m) measuring instruments: case when we know the provenance.
When we know which interval comes from which family, the only things
we need to check is whether each of these families satisfies the no-subset
property.

In the case of a single measuring instrument, we check all pairs (i, j) and
it takes time O(n2). In the case of several measuring instruments, we only
need to check the pairs that belong to the same family, so this checking takes
even less time – i.e., still O(n2).
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Several (m) measuring instruments: case when we do not know the prove-
nance. In this case, we need to apply the above O(n2) time algorithm to
divide the intervals into m families.

Case of several (m) measuring instruments: detection limits. In this case,
we have at most m different non-degenerate intervals, and all these intervals
should be of the type of the type [0, DLi], plus several degenerate intervals
[x, x] with x ≥ DLi for some i.

This can be checked in linear time.

Case of several measuring instruments: discretized data. In this case, if we
know that intervals come from m different measuring schemes, we can divide
these intervals into m families by using the following algorithm.

First, we sort the intervals by their lower endpoints. As a result, we get a
set of intervals for which x1 ≤ x2 ≤ . . . ≤ xn.

We then start forming Family 1. At each stage, we keep track of the largest
value v from all the intervals that have already been added to Family 1. We
start with an interval [x1, x1] whose lower endpoint is x1, and assign this
interval [x1, x1] to Family 1. As a result of this assignment, we get v = x1.

At each stage of this family forming, we select the smallest i for which
xi ≥ v, and add the i-th interval [xi, xi] to Family 1. As a result of this
assignment, we get v = xi. Once there are no more intervals to add, Family
1 is formed.

Then, we take the remaining lower endpoints, take the smallest one, and
start similarly forming Family 2, etc.

What is the computation time of this algorithm? Sorting takes time
O(n · log(n)). At each step, finding the smallest i for which xi ≥ v means a
search in a sorted sequence, which takes O(log(n)) steps. Thus, to find such
place for all n original intervals, we spend time n ·O(log(n)) = O(n · log(n)).
So, overall, this algorithm takes time O(n · log(n)) + O(n · log(n)) = O(n ·
log(n)).

The justification of this algorithm is given in the Proofs and Justifications
section of this chapter.

Case of narrow intervals. One way to check whether n given intervals [xi, xi],
1 ≤ i ≤ n, have a no-intersection property is to sort them in the increasing
order of their lower endpoints x1 ≤ x1 . . . ≤ xn, If any of these two lower end-
points coincide, the corresponding intervals have a non-empty intersection.
If they are all different, i.e., if x1 < . . . < xn, then it is sufficient to check
whether xi < xi+1 for all i.

Indeed, if xi < xi+1 for all i, then clearly no two intervals have a common
point. Vice versa, if xi ≥ xi+1 for some i, then the intervals [xi, xi] and
[xi+1, xi+1] both contain the point xi+1.

Sorting takes time O(n · log(n)), checking n inequalities takes time O(n),
so overall, this checking takes time O(n · log(n)) +O(n) = O(n · log(n)).
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Case of few intersections. For each given integer c0 ≥ 2, to check whether
every subfamily of c0 intervals has an empty intersection, we can sort all 2n
endpoints xi and xi into a non-decreasing sequence z1 < z2 < . . . < zm for
some m ≤ 2n. As a result, the real line is divided into m+ 1 zones (−∞, z1],
[z1, z2], . . . , [zm−1, zm], and [zm,+∞). For each zone, we will compute the
number N of intervals to which elements of this zone belong. Numbers from
the first zone (−∞, z1) do not belong to any of the given intervals, so we get
N1 = 0. When we move from each zone [zk−1, zk) to the next one [zk, zk+1),
we add one for each i for which zk = xi (i.e., for which we enter an interval),
and check whether the resulting value is < c0. If the resulting value is ≥ c0,
we stop the algorithm and conclude that there is a point that belongs to at
least c0 different intervals. If the resulting value is < c0, we subtract one for
each i for which zk = xi (i.e., for which we exit an interval), and continue the
procedure. If after checking all the zones, we never got N ≥ c0, this means
that the desired property is indeed satisfied.

Sorting takes time O(n · log(n)), computing the values N takes time O(n),
so overall, this checking takes time O(n · log(n)) +O(n) = O(n · log(n)).

Cases formulated in terms of narrowed intervals can be handled as follows:
first, we compute the narrowed intervals (which takes time O(n)), and then
we use the above described algorithms to check that these narrowed inter-
vals satisfy the corresponding property: e.g., that that they have a no-subset
property, or that they can be divided into m subfamilies with each of which
narrowed intervals satisfy the no-subset property.

Proofs and Justifications

Proof that the algorithm for dividing intervals into families satisfying the no-
subset property is correct. To prove correctness of our algorithm, we need to
prove two things:

• first, that all the families generated by the algorithm satisfy the no-subset
property;

• second, that if the original intervals come from m families with the no-
subset property, then the algorithm will lead to ≤ m families.

To prove these properties, let us observe that Family 1 is formed by intervals
xi for which i �≺ j for all j. In other words, Family 1 is formed by intervals i
for which the largest number of elements e in a chain (= totally ordered set)
i = i1 ≺ i2 ≺ . . . ≺ ie starting with i is 1.

For intervals xi from Family 2, we may have i ≺ j for some j – namely, for
intervals xj from Family 1. Thus, Family 2 is formed by intervals for which
the largest number of elements e in a chain starting with i is 2.

Similarly, for every k ≤ m, Family k consists of all the intervals for which
the largest number of elements e in a chain starting with i is k. Thus, if an
interval xi belongs to Family k, then every chain starting with i must have
≤ k elements.
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Let us first prove that each such family satisfies the no-subset property.
We will prove it by contradiction. Let us assume that i ≺ j for some intervals
xi and xj from Family k. By definition of Family k, this means that there is a
chain with k elements starting with j: j1 = j ≺ j2 ≺ . . . ≺ jk. By adding i in
front of this chain, we get a chain i ≺ j = j1 ≺ j2 . . . ≺ jk with k+1 elements
starting with i – which contradicts to the fact that the interval xi belongs to
the same Family k and so, every such chain must have ≤ k elements.

Let us now prove that when the intervals come from m families with no-
subset property, our algorithm will assign each of these intervals to ≤ m
families. We will also prove this by contradiction. Let us assume that our
algorithm assigns some interval to a Family with number e > m. By our
equivalent description of the families, this means that there is a chain with
e > m elements. Since all these elements belong to m original families, by
the pigeonhole principle, at least two different elements i ≺ j from this chain
belong to the same original family – which contradicts to the fact that each
original family has a no-subset property, meaning that i �≺ j for all i and j
from this family.

Proof that the inequality |x̃i − x̃j | ≥ |Δi −Δj | is equivalent to the no-subset
property. The condition |x̃i − x̃j | ≥ |Δi −Δj | means that if x̃i ≥ x̃j , then we
have

x̃i − x̃j ≥ Δi −Δj ,

i.e.,
x̃i −Δi ≥ x̃j −Δj

and also
x̃i − x̃j ≥ Δj −Δi,

i.e.,
x̃i +Δi ≥ x̃j +Δj .

This means that no interval is a proper subinterval of the interior of another
interval.

Vice versa, if one of the intervals is a proper subinterval of another one,
then the above condition is not satisfied. Thus, the above condition indeed
means that two intervals are proper subintervals of each other.

Proof that the algorithm for dividing intervals into families corresponding to
discretized data is correct. First, let us prove that, as each of the families
obtained by applying this algorithm corresponds to discretized data. All the
families are obtained by applying the same procedure, so it is sufficient to
prove this for Family 1. We form this family step by step: we start with one
interval, and then add intervals one by one. Let us denote the interval added
to Family 1 on the k-th step by [y

k
, yk].

We start with the interval [y
1
, y1] = [x1, x1] with the smallest lower end-

point. In this case, we have v = x1 = y1. As the second element of Family
1, we select the interval [xi, xi] for which the xi ≥ y1, so we get y

2
≥ y1.

At this step, we get v = y2. At the next step, we add an interval for which
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y
3
≥ v = y2; after this step, we get v = y3, etc. As a result, we get a sequence

of intervals
[y

1
, y1], [y2

, y2], . . . , [yk
, yk], . . . ,

for which yi ≤ y
i+1

. Thus, all the endpoints of these intervals are sorted in
the natural order:

y
1
≤ y1 ≤ y

2
≤ y2 ≤ . . . ≤ y

k
≤ yk ≤ . . .

So, each of the intervals [y
k
, yk] is formed by the two neighboring “thresh-

olds”, which means that we do have a discretized case here.
Let us now prove that if we start with the intervals that come from m

different families F (0)
1 , . . . , F (0)

m each of which corresponds to the discretized
data, then the algorithm described in this chapter results in ≤ m families.
On each step of this algorithm, some intervals are assigned to families. We
will prove, by induction over the steps, that this assignment can be extended
to all intervals in such a way that we have ≤ m families each of which
satisfies the discretized data property. Then, at the end of the procedure,
when all intervals are assigned, we conclude that we get a subdivision into
≤ m families.

Indeed, at the first step, only one interval [x1, x1] is assigned to a family. In
this case, we simply assign each interval to one of the original families F (0)

j .
Let us now assume that we are forming Family 1, and that the desired

property is proven for the current step k, when we have assigned intervals
[y

1
, y1], . . . , [y

k
, yk] to Family 1. This means that these k intervals belong to

one family with a discretized data property, a family which we will denote by
F (k)1, while each of the remaining intervals belongs to one of the m families
F

(k)
1 , . . . , F (k)m. On this step, v = yk. On the next step, we assign, to Family

1, a new interval [y
k+1

, yk+1] for which yk ≤ y
k+1

and for which no other
interval has the lower endpoint xi ∈ [yk, yk+1

).

If the new interval [y
k+1

, yk+1] belongs to the same family F (k)
1 , then the

desired statement for the (k + 1)-st step holds for the same families F (k)
j as

for the k-th step: F (k+1)
� = F

(k)
� for all .

Let us now consider the case when the new interval [y
k+1

, yk+1] belongs to

a different family F (k)
j �= F

(k)
1 . In this case, we can “swap” the parts of F (k)

1

and F
(k)
j that start with y

k+1
. Namely, we keep all the families F (k)

� ,  �= 1

and  �= j, the same F (k+1)
� = F

(k)
� , but instead of the two families F (k)

1 and
F

(k)
j we form two new families F (k+1)

1 and F (k+1)
j as follows:

• to the family F
(k+1
1 , we assign all the thresholds from F

(k)
1 which are

≤ y
k+1

, and all the thresholds from F
(k)
j which are ≥ y

k+1
;

• to the family F
(k+1)
j , we assign all the thresholds from F

(k)
j which are

≤ y
k+1

, and all the thresholds from F
(k)
1 which are ≥ y

k+1
.
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Let us show that the new families also have the discretized data property,
i.e., in each of these new families, if two intervals [x, x] and [y, y] are different,
then one of them is completely to the left of the other one, i.e., either x ≤ y
or y ≤ x.

Indeed, the family F
(k)
1 has an interval [y

k
, yk] with yk ≤ y

k+1
, and all

larger intervals have lower endpoints ≥ y
k+1

; thus, each of its intervals either
ends before y

k+1
, or starts after y

k+1
. Due to the discretized data property,

the same is true for the family F ′
j ; every interval from this family either ends

before y
k+1

, or starts after y
k+1

. Thus, the intervals from both new families

F
(k+1)
1 and F (k+1)

j also have the discretized data property.
This can be illustrated as follows. We start with the families

F
(k)
j

F
(k)
1

y
k

yk

y
k+1

yk+1

After the swap, we get the new families:

F
(k+1)
j

F
(k+1)
1

y
k

yk y
k+1

yk+1

A similar swap can be described when we form Family 2, Family 3, etc.
As a result, at each step of our algorithm, the assignment to families can
be extended to all intervals in such a way that we have ≤ m families each
of which satisfies the discretized data property (we have ≤ m since it may
happen that after the swap, the new family F

(k+1)
j is empty). Thus, at the

end, we conclude that our algorithm divides the intervals into ≤ m families.
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Computing Variance under Interval

Uncertainty: Efficient Algorithms

Algorithms: General Description

We have shown that the problem of computing the upper endpoint V is,
in general, NP-hard (later on, in this chapter, we will see that the lower
endpoint V can be always computed in feasible (polynomial) time). Since we
cannot always efficiently compute the upper endpoint V , we therefore need
to consider cases when such an efficient computation may be possible.

As we have shown in the previous chapter, it is reasonable to consider the
following cases of interval data sets:

• case when the intervals (or, better yet, narrowed intervals) satisfy the no-
subset property; this case corresponds, e.g., to the case when we process
measurement results produced by the same measuring instrument;

• case when intervals can be divided into m classes within each of which
the no-subsect property is satisfied; this case corresponds, e.g., to the case
when we process measurement results produced by m different measuring
instruments; and

• case when for some c0 ≥ 2, every group of c0 intervals has an empty inter-
section; this case corresponds, e.g., to the case when measuring instruments
are sufficiently accurate.

We will show that in all these cases, there are efficient algorithms for com-
puting the upper endpoint V . Actually, efficient algorithms for computing V
will appear as natural modifications of algorithms for computing V .

Algorithms for Computing V : Case When Narrowed
Intervals Satisfy No-Subset Property

Let us start with the first case, of the no-subset property.

An O(n · log(n)) time algorithm for computing V when narrowed intervals
satisfy the no-subset property. Let us consider the case when no two narrowed

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 95–117.
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intervals [x−i , x
+
i ] (where x−i

def= x̃i − Δi

n
and x+

i
def= x̃i +

Δi

n
) are proper

subsets of one another, i.e., when [x−i , x
+
i ] �⊆ (x−j , x

+
j ) for all i and j. Here, as

before, x̃i is a midpoint of the i-th interval, and Δi its radius (= half-width).
In the previous chapter, we have shown that this condition is equivalent

to the condition that the following inequality is satisfied for all i and j:

|x̃i − x̃j | ≥ |Δi −Δj |
n

.

Let us show that under this condition, we can compute V in time O(n·log(n)).
The corresponding algorithm is as follows:

• First, we sort the values x̃i into an increasing sequence. Without losing
generality, we can assume that x̃1 ≤ x̃2 ≤ . . . ≤ x̃n.

• Then, for every k from 0 to n, we compute the value V (k) = M (k)−(E(k))2

of the population variance V for the vector x(k) =(x1, . . . , xk, xk+1, . . . , xn).
(For k = 0, x(0) = (x1, . . . , xn).)

• Finally, we compute V as the largest of n+ 1 values V (0), . . . , V (n).

To compute the values V (k), first, we explicitly compute M (0) =
1
n
·

n
∑

i=1

(xi)2,

E(0) =
1
n
·

n
∑

i=1

xi, and V (0) = M (0) − (E(0))2. Once we know the values M (k)

and E(k), we can compute M (k+1) = M (k) +
1
n
· (xk+1)

2 − 1
n
· (xk+1)2 and

E(k+1) = E(k) +
1
n
· xk+1 −

1
n
· xk+1.

Towards a faster algorithm for computing V . In the O(n · log(n)) algorithm,
the main computation time is used on sorting: once the values x̃i are sorted,
this algorithm takes linear time.

It is possible to avoid sorting when estimating variance under interval
uncertainty (see, e.g., [106, 353]), and use instead the known fact that we
can compute the median of a set of n elements in linear time (see, e.g., [73]).
(This use of median is similar to the one from [52, 132].)

It is worth mentioning, however, that while asymptotically, the linear time
algorithm for computing the median is faster than sorting, this median com-
puting algorithm is still rather complex – so, for reasonable size n, sorting is
faster than computing the median – and thus, sorting-based algorithms are
actually faster than median-based ones.

Linear-time algorithm for computing V for the case when narrowed intervals
satisfy the no-subset property. For simplicity, let us first consider the case
when all the intervals are non-degenerate, i.e., when Δi > 0 for all i.
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The proposed algorithm is iterative. At each iteration of this algorithm we
have three sets:

• the set I− of all the indices i from 1 to n for which we already know that
for the optimal vector x, we have xi = xi;

• the set I+ of all the indices j for which we already know that for the
optimal vector x, we have xj = xj ;

• the set I = {1, . . . , n} \ (I− ∪ I+) of the indices i for which we are still
undecided.

In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration we
also update the values of two auxiliary quantities E− def=

∑

i∈I−
xi and E+ def=

∑

j∈I+
xj . In principle, we could compute these values by computing these sums.

However, to speed up computations on each iteration, we update these two
auxiliary values in a way that is faster than re-computing the corresponding
two sums. Initially, since I− = I+ = ∅, we take E− = E+ = 0.

At each iteration we do the following:

• first, we compute the median m of the set I (median in terms of sorting
by x̃i);

• then, by analyzing the elements of the undecided set I one by one, we divide
them into two subsets P− = {i : x̃i ≤ x̃m} and P+ = {j : x̃j > x̃m};

• we compute e− = E− +
∑

i∈P−
xi and e+ = E+ +

∑

j∈P+
xj ;

• if n · x−m < e− + e+, then we replace I− with I− ∪ P−, E− with e−, and
I with P+;

• if n · x−m > e− + e+, then we replace I+ with I+ ∪P+, E+ with e+, and I
with P−;

• if n · x−m = e− + e+, then we replace I− with I− ∪ P−, I+ with I+ ∪ P+,
and I with ∅.

At each iteration the set of undecided indices is divided in half. Iterations
continue until all indices are decided. After this we return, as V , the value
of the population variance for the vector x for which xi = xi for i ∈ I− and
xj = xj for j ∈ I+.

Comments

• This same algorithm can be easily applied if one of the intervals consists of
a single point only. This value is plugged in and the variable is eliminated.

• As with all asymptotic results, two natural questions arise:
1) How practical is the new linear time O(n) algorithm?
2) For which n is it better than the known O(n · log(n)) algorithm for

computing V ?
In general, the answer to these questions depends on the constants in the
corresponding asymptotics. The constant for the known O(n · log(n)) al-
gorithm is ≈ 1. As one can see from the proof, for our new algorithm, the
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constant is the same as for known linear time algorithm for computing
the median, i.e., it is ≈ 20 [73]; thus, the new algorithm is better when
log2(n) > 20, i.e., when n > 106. We have mentioned that in many prac-
tical applications we do need to process millions of data points; in such
applications, the new algorithm for computing V is indeed faster.

Algorithms for Computing V

As we have mentioned earlier, efficient algorithms for computing the lower
endpoint V can be obtained by modifying the above algorithms for comput-
ing V .

An O(n · log(n)) algorithm for computing V . The algorithm is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n).
• Second, we compute μ and μ and select all “small intervals” [x(k), x(k+1)]

that intersect with [μ, μ].
• For each of the selected small intervals [x(k), x(k+1)], we compute the ratio
rk = Sk/Nk, where

Sk
def=

∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj ,

and Nk is the total number of such i’s and j’s. For k > 1, when computing
the corresponding sums and the value of Nk, we take into account the
previously computed sums (used in computing Sk−1) and the previous
value Nk−1, and only add new terms (in the second sum) or delete un-
necessary terms (in the first sum).
If rk ∈ [x(k), x(k+1)], then we compute

V ′
k

def=
1
n
·
⎛

⎝

∑

i:xi≥x(k+1)

(xi − rk)2 +
∑

j:xj≤x(k)

(xj − rk)2

⎞

⎠ .

These sums can also be computed based on the previous ones. For example,
by explicitly performing the squaring, we conclude that the first sum has
the equivalent form

∑

i:xi≥x(k+1)

x2
i − 2 · rk ·

∑

i:xi≥x(k+1)

xi + #{i : xi ≥ x(k+1)} · r2k,

in which both new sums can be computed by using the sums corresponding
to k − 1.
If Nk = 0, we take V ′

k
def= 0.

• Finally, we return the smallest of the values V ′
k as V .
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Linear-time algorithm for computing V . The algorithm is iterative. At each
iteration of this algorithm we have three sets:

• the set J− of all the endpoints xi and xj for which we already know that
for the optimal vector x we have, correspondingly, xi �= xi (for xi) or
xj = xj (for xj);

• the set J+ of all the endpoints xi and xj for which we already know that
for the optimal vector x we have, correspondingly, xi = xi (for xi) or
xj �= xj (for xj);

• the set J of the endpoints xi and xj for which we have not yet decided
whether these endpoints appear in the optimal vector x.

In the beginning, J− = J+ = ∅ and J is the set of all 2n endpoints. At
each iteration we also update the values N− = #(J−), N+ = #(J+), E− =
∑

xj∈J−
xj , and E+ =

∑

xi∈J+
xi. Initially, N− = N+ = E− = E+ = 0.

At each iteration we do the following.

• First we compute the median m of the set J .
• Then, by analyzing the elements of the undecided set J one by one, we

divide them into two subsets

Q− = {x ∈ J : x ≤ m}, Q+ = {x ∈ J : x > m}.

We also compute m+ = min{x : x ∈ Q+}.
• We compute e− = E− +

∑

xj∈Q−
xj , e+ = E+ +

∑

xi∈Q+
xi,

n− = N− + #{xj ∈ Q−}, n+ = N+ + #{xi ∈ Q+},

and r =
e− + e+

n− + n+
.

• If r < m, then we replace J− with J− ∪Q−, E− with e−, J with Q+, and
N− with n−.

• If r > m+, then we replace J+ with J+ ∪ Q+, E+ with e+, J with P−,
and N+ with n+.

• If m ≤ r ≤ m+, then we replace J− with J− ∪Q−, J+ with J+ ∪Q+, J
with ∅, E− with e−, E+ with e+, N− with n−, and N+ with n+.

At each iteration the set of undecided indices is divided in half. Iterations
continue until all indices are decided. After this we return, as V , the value of
the population variance for the vector x for which:

• xj = xj for indices j for which xj ∈ J−,
• xi = xi for indices i for which xi ∈ J+, and
• xi = r for all other indices i.
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Algorithms for Computing V : Case When Narrowed
Intervals Can Be Divided into m Classes Each of Which
Satisfies No-Subset Property

Case when all the measurements are performed by the same measuring instru-
ment: reminder. For each measuring instrument, the reading of x̃ means that
the actual value x of the measured quantity is within the interval [x̃−Δ, x̃+Δ],
whereΔ is the measurement accuracy – i.e., the upper bound on the (absolute
value of) the measurement error Δx = x̃− x.

If we use the same measuring instrument, we do not necessarily get the
same measurement accuracy Δ: the accuracy may be different for different
values x. For example, a measuring instrument is sometimes characterized not
by the absolute accuracy Δ, but by relative accuracy δ: e.g., δ = 5% = 0.05.
In this case, by definition of the relative accuracy, the absolute accuracy Δ
changes with the measured value x̃ as Δ = δ · x̃; see, e.g., [283].

However, for all the possible dependencies, the intervals x corresponding to
different measurement results are not proper subintervals of each other. For
example, if, as result of some measurement, we get the interval [0.90, 1.10],
then it is possible that for some other measured value, we get an interval
[0.92, 1.18] but we do not expect, by using the same measuring instrument,
to get an interval [0.89, 1.18] that would strictly contain the original interval.

We have just shown that we can effectively compute V under the condition

that no two narrowed intervals
[

x̃i − Δi

n
, x̃i +

Δi

n

]

are proper subintervals

of each other. We have also shown that this no-subset condition is equivalent

to the inequality |x̃i − x̃j | ≥ |Δi −Δj |
n

being true for all i and j.

Similarly, the condition that no two original intervals xi = [x̃i−Δi, x̃i+Δi]
are proper subsets of each other is equivalent to the inequality |x̃i − x̃j | ≥
|Δi −Δj | being true for all i and j. If |x̃i − x̃j | ≥ |Δi −Δj |, then, of course,

|x̃i − x̃j | ≥ |Δi −Δj |
n

and thus, the above efficient algorithm for computing

V is applicable.

Case when we have a limited number of different types of measuring instru-
ments, and we know which measurement was made by which instrument. In
practice, we may have measuring instruments of different type. In this case,
the interval data consists of m families of intervals such that within each
family, no two intervals are proper subsets of each other.

We usually know which measurement was made with which measuring
instrument, so we know which interval belongs to which family.

Similarly to the justification of the above efficient algorithm for computing
V , we can conclude that if we sort the measured values x̃i from each family
α in the increasing order

x̃1 ≤ x̃2 ≤ . . . ≤ x̃n,
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then, within each family, the maximum of V is attained on one of the se-
quences (x1, . . . , xkα

, xkα+1, . . . , xn). Thus, to find the desired maximum V ,
it is sufficient to know the value kα ≤ n corresponding to each of m families.
Overall, there are ≤ nm combinations of such values. For the first combina-
tion, computing the corresponding value of the variance requires O(n) steps.

Each next combination differs from the previous one by a single term, so
overall, we need O(nm) steps to compute all the values of the variance – and
thus, to find the largest of them, which is V .

Case when we have a limited number of different types of measuring instru-
ments, and we do not know which measurement was made by which instru-
ment. The above O(nm) algorithm assumes that we know the provenance
of each measurement, i.e., we know which measurement was made by which
instrument. In practice, often, the provenance of different measurement re-
sults is not recorded, so we may not know which measurement was made by
which instrument. In this case, all we know are the intervals. In the previous
chapter, we showed that in this case, the intervals can be separated into ≤ m
families each of which satisfies a no-subset property (≤ m since it is possible
that not all measuring instruments were used), and this separation can be
performed in time O(n2).

Once the intervals are assigned to ≤ m families, we can apply the above
O(nm) algorithm. This algorithm makes sense if we have at least two families,
i.e., when m ≥ 2; in this case, n2 ≤ nm, so O(n2) + O(nm) = O(nm). Thus,
even when we need to separate the intervals into m families, the computation
of V takes the same asymptotic time O(nm) as when this separation is already
given.

Case when intervals can be divided into m families with no-subset property
for narrowed intervals. The same algorithm works if the given intervals can
be divided into m families within each of which no two narrowed intervals
are proper subsets of one another.

Algorithms for Computing V : Case of c0-Few
Intersections

Finally, let us consider the case when for some integer c0 ≥ 2, every group
of c0 narrowed intervals has an empty intersection. Let us show that in this
case, we can also efficiently compute the upper endpoint V .

An algorithm that takes quadratic time. Before we start describing an O(n ·
log(n)) algorithm, let us first describe a simpler-to-describe quadratic-time
algorithm for computing V in such situations:

• First, we sort all 2n endpoints of the narrowed intervals x̃i − Δi/n and
x̃i + Δi/n into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n). This enables us
to divide the real line into 2n + 1 zones [x(k), x(k+1)], where we denote

x(0)
def= −∞ and x(2n+1)

def= +∞.
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• Second, we compute E and E and pick all zones [x(k), x(k+1)] that intersect
with [E,E].

• For each of remaining zones [x(k), x(k+1)], for each i from 1 to n, we pick
the following value of xi:
• if x(k+1) ≤ x̃i −Δi/n, then we pick xi = xi;
• if x̃i +Δi/n ≤ x(k), then we pick xi = xi;
• for all other i, we consider both possible values xi = xi and xi = xi.

• As a result, we get one or several sequences of xi. For each of these se-
quences, we check whether the average E of the selected values x1, . . . , xn

is indeed within this zone, and if it is, compute the variance by using the
formula (2).

• Finally, we return the largest of the computed variances as V .

An algorithm that takes time O(n · log(n)). This algorithm is, in effect, a
modification of the above quadratic-time algorithm.

1◦. First, we sort the lower endpoints x̃i−Δi/n of the narrowed intervals into
an increasing sequence. Without losing generality, we can therefore assume
that these lower endpoints are ordered in increasing order:

x̃1 −Δ1/n ≤ x̃1 −Δ2/n ≤ . . .

2◦. Then, we sort all the endpoints of the narrowed intervals into a sequence
x(1) ≤ x(2) ≤ . . . ≤ x(k) ≤ . . . ≤ x(2n). Sorting means that for every i, we
know which element k−(i) represents the lower endpoint of the i-th narrowed
interval and which element k+(i) represents the upper endpoint of the i-th
narrowed interval.

3◦. On the third stage, we produce, for each of the resulting zones [x(k), x(k+1)],
the set Sk of all the indices i for which the i-th narrowed interval

[x̃i −Δi/n, x̃i +Δi/n]

contains this zone.
As we have mentioned, for each i, we know the value k = k−(i) for which

x̃i −Δi/n = x(k). So, for each i, we place i into the set Sk−(i) corresponding
to the zone [x(k−(i)), x(k−(i)+1)], into the set corresponding to the next zone,
etc., until we reach the zone for which the upper endpoint is exactly x̃i+Δi/n.

4◦. On the fourth stage, for all integers p from 0 to n, we compute the sums

Ep
def=

1
n
·

p
∑

i=1

xi +
1
n
·

n
∑

i=p+1

xi;

Mp
def=

1
n
·

p
∑

i=1

(xi)
2 +

1
n
·

n
∑

i=p+1

(xi)2.
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We compute these values sequentially. Once we know Ep and Mp, we can
compute Ep+1 and Mp+1 as Ep+1 = Ep + xp+1 − xp+1 and Mp+1 = Mp +
(xp+1)

2 − (xp+1)2.

5◦. Finally, for each zone k, we compute the corresponding values of the
variance. For that, we first find the smallest index i for which x(k+1) ≤
x̃i −Δi/n. We will denote this value i by p(k).

Since the values x̃i − Δi/n are sorted, we can find this i by using bisec-
tion [73].

Once i ≥ p(k), then x̃i −Δi/n ≥ x̃p(k) −Δp(k)/n ≥ x(k+1). So, we select
xi = xi, as in the sums Ep(k) and Mp(k).

The only values i < p(k) for which we may also select xi = xi are the
values for which the i-th narrowed intervals contains this zone. These values
are listed in the set Sk of no more than c0 such intervals. So, to find all
possible values of V , we can do the following.

We consider all subsets s ⊆ Sk of the set Sk; there are no more than 2c
0

such subsets. For each subset s, we replace, in Ep(k) and Mp(k), values xi and
(xi)

2 corresponding to all i ∈ s, with, correspondingly, xi and (xi)2. Once
we have E and V corresponding to the subset s, we can check whether E
belongs to the analyzed zone and, if yes, compute V = M − E2.

6◦. Finally, we find the largest of the resulting values V – this will be the
desired value V .

Proofs and Justifications of the Algorithms

Justification of an O(n · log(n)) algorithm for computing V when narrowed
intervals satisfy the no-subset property. Let us first show that the above al-
gorithm indeed takes O(n · log(n)) steps. Indeed, sorting takes O(n · log(n))
steps; see, e.g., [73]. Computing the initial values M (0), E(0), and V (0) takes
linear time O(n). For each k from 0 to n− 1, we need a constant number of
steps to compute the next valuesM (k+1), E(k+1), and V (k+1). Finally, finding
the largest of n+ 1 values V (k) also takes O(n) steps. Thus, overall, we need

O(n · log(n)) +O(n) +O(n) +O(n) = O(n · log(n))

steps.
It is worth mentioning that if the measurement results x̃i are already

sorted, then we only need linear time to compute V .
Let us now get to the justification of the algorithm’s correctness. With

respect to each variable xi, the population variance is a quadratic function
which is non-negative for all xi. It is well known that a maximum of such a
function on each interval [xi, xi] is attained at one of the endpoints of this
interval. Thus, the maximum V of the population variance is attained at a
vector x = (x1, . . . , xn) in which each value xi is equal either to xi or to xi.
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We will first justify our algorithm for the case when |x̃i − x̃j | > |Δi −Δj |
n

for all i �= j and Δi > 0 for all i.
To justify our algorithm, we need to prove that this maximum is attained

at one of the vectors x(k) in which all the lower bounds xi precede all the
upper bounds xi. We will prove this by reduction to a contradiction. Indeed,
let us assume that the maximum is attained at a vector x in which one of
the lower bounds follows one of the upper bounds. In each such vector, let i
be the largest upper bound index preceded by the lower bound; then, in the
optimal vector x, we have xi = xi and xi+1 = xi+1.

Since the maximum is attained for xi = xi, replacing it with xi = xi−2·Δi

will either decrease the value of the variance or keep it unchanged. Let us
describe how variance changes under this replacement. In the sum for M , we
replace (xi)2 with

(xi)
2 = (xi − 2 ·Δi)2 = (xi)2 − 4 ·Δi · xi + 4 ·Δ2

i .

Thus, the value M changes into M +ΔMi, where

ΔMi = − 4
n
·Δi · xi +

4
n
·Δ2

i .

The population mean E changes into E+ΔEi, where ΔEi = −2 ·Δi

n
. Thus,

the value E2 changes into (E +ΔEi)2 = E2 +Δ(E2)i, where

Δ(E2)i = 2 · E ·ΔEi +ΔE2
i = − 4

n
· E ·Δi +

4
n2

·Δ2
i .

So, the variance V changes into V +ΔVi, where

ΔVi = ΔMi −Δ(E2)i = − 4
n
·Δi · xi +

4
n
·Δ2

i +
4
n
· E ·Δi − 4

n2
·Δ2

i =

4
n
·Δi ·

(

−xi +Δi + E − Δi

n

)

.

By definition, xi = x̃i +Δi, hence −xi +Δi = −x̃i. Thus, we conclude that

ΔVi =
4
n
·Δi ·

(

−x̃i + E − Δi

n

)

.

Since V attains maximum at x, we have ΔVi ≤ 0, hence

E ≤ x̃i +
Δi

n
. (16.1)

Similarly, since the maximum is attained for xi+1 = xi, replacing it with
xi+1 = xi+1 + 2 ·Δi+1 will either decrease the value of the variance or keep
it unchanged. Let us describe how variance changes under this replacement.
In the sum for M , we replace (xi+1)

2 with
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(xi+1)2 = (xi+1 + 2 ·Δi+1)2 = (xi+1)
2 + 4 ·Δi+1 · xi+1 + 4 ·Δ2

i+1.

Thus, the value M changes into M +ΔMi+1, where

ΔMi+1 =
4
n
·Δi+1 · xi+1 +

4
n
·Δ2

i+1.

The population mean E changes into E +ΔEi+1, where ΔEi+1 =
2 ·Δi+1

n
.

Thus, the value E2 changes into (E +ΔEi+1)2 = E2 +Δ(E2)i+1, where

Δ(E2)i+1 = 2 · E ·ΔEi+1 +ΔE2
i+1 =

4
n
· E ·Δi+1 +

4
n2

·Δ2
i+1.

So, the variance V changes into V +ΔVi+1, where

ΔVi+1 = ΔMi+1 −Δ(E2)i+1 =

4
n
·Δi+1 · xi+1 +

4
n
·Δ2

i+1 −
4
n
· E ·Δi+1 − 4

n2
·Δ2

i+1 =

4
n
·Δi+1 ·

(

xi+1 +Δi+1 − E − Δi+1

n

)

.

By definition, xi+1 = x̃i+1 − Δi+1, hence xi+1 + Δi+1 = x̃i+1. Thus, we
conclude that

ΔVi+1 =
4
n
·Δi+1 ·

(

x̃i+1 − E − Δi+1

n

)

.

Since V attains maximum at x, we have ΔVi+1 ≤ 0, hence

E ≥ x̃i+1 − Δi+1

n
. (16.2)

We can also change both xi and xi+1 at the same time. In this case, the
change ΔM in M is simply the sum of the changes coming from xi and
xi+1: ΔM = ΔMi +ΔMi+1, and the change ΔE in E is also the sum of the
corresponding changes: ΔE = ΔEi +ΔEi+1. So, for

ΔV = ΔM −Δ(E2) = ΔM − 2 ·E ·ΔE −ΔE2,

we get
ΔV = ΔMi +ΔMi+1−

2 · E ·ΔEi − 2 · E ·ΔEi+1 − (ΔEi)2 − (ΔEi+1)2 − 2 ·ΔEi ·ΔEi+1.

Hence,

ΔV = (ΔMi − 2 ·E ·ΔEi − (ΔEi)2) + (ΔMi+1 − 2 ·E ·ΔEi+1 − (ΔEi+1)2)

−2 ·ΔEi ·ΔEi+1,
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i.e.,
ΔV = ΔVi +ΔVi+1 − 2 ·ΔEi ·ΔEi+1.

We already have the expressions for ΔVi, ΔVi+1, ΔEi = −2 ·Δi

n
, and

ΔEi+1 =
2 ·Δi+1

n
, so we conclude that ΔV =

4
n
·D(E), where

D(E) def= Δi ·
(

−x̃i + E − Δi

n

)

+

Δi+1 ·
(

x̃i+1 − E − Δi+1

n

)

+
2
n
·Δi ·Δi+1. (16.3)

Since the function V attains maximum at x, we have ΔV ≤ 0, hence D(E) ≤
0 (for the population mean E corresponding to the optimizing vector x).

The expression D(E) is a linear function of E. From (16.1) and (16.2), we
know that

x̃i+1 − Δi+1

n
≤ E ≤ x̃i +

Δi

n
.

For E = E− def= x̃i+1 − Δi+1

n
, we have

D(E−) = Δi ·
(

−x̃i + x̃i+1 − Δi+1

n
− Δi

n

)

+
2
n
·Δi ·Δi+1 =

Δi ·
(

−x̃i + x̃i+1 +
Δi+1

n
− Δi

n

)

.

We consider the case when |x̃i+1−xi| > |Δi −Δi+1|
n

. Since the values x̃i are
sorted in increasing order, we have x̃i+1 ≥ x̃i, hence

x̃i+1 − x̃i = |x̃i+1 − x̃i| > |Δi −Δi+1|
n

≥ Δi

n
− Δi+1

n
.

So, we conclude that D(E−) > 0.

For E = E+ def= x̃i +
Δi

n
, we have

D(E+) = Δi+1 ·
(

x̃i+1 − x̃i − Δi

n
− Δi+1

n

)

+
2
n
·Δi ·Δi+1 =

Δi+1 ·
(

−x̃i + x̃i+1 +
Δi

n
− Δi+1

n

)

.

Here, from |x̃i+1 − x̃i| > |Δi −Δi+1|
n

, we also conclude that D(E+) > 0.

Since the linear function D(E) is positive on both endpoints of the interval
[E−, E+], it must be positive for every value E from this interval, which
contradicts to our conclusion that D(E) ≥ 0 for the actual population mean



16 Computing Variance under Interval Uncertainty: Efficient Algorithms 107

value E ∈ [E−, E+]. This contradiction shows that the maximum of the
population variance V is indeed attained at one of the values x(k), hence the
algorithm is justified.

The general case when |x̃i − x̃j | ≥ |Δi −Δj |
n

and Δi ≥ 0 can be obtained
as a limit of cases when we have strict inequalities. Since the function V is
continuous, the value V continuously depends on the input bounds, so by
tending to a limit, we can conclude that our algorithm works in the general
case as well.

Proof that the algorithm for computing V indeed takes linear time. At each
iteration, computing median takes linear time, and all other operations with
I take time t linear in the number of elements |I| of I: t ≤ C · |I| for some C.
We start with the set I of size n. On the next iteration, we have a set of size
n/2, then n/4, etc. Thus, the overall computation time is ≤ C · (n + n/2 +
n/4 + . . .) ≤ C · 2n, i.e. linear in n.

Proof that under the no-subset property for narrowed intervals, the linear-
time algorithm always computes V . In our justification of an O(n · log(n))
algorithm, we have shown that when we sort the intervals by their midpoints
x̃i, then in this sorting the value V is attained at one of the vectors x(k) =
(x1, . . . , xk, xk+1, . . . , xn), i.e. that V = V (x(k)) for some k.

We have also analyzed the change in V (x(k)) when we replace x(k) with
x(k−1), i.e. when we replace xk with xk = xk + 2Δk. We have shown that

Vk−1 − Vk =
4Δk

n
· (x−k − Ek), where Ek

def= E(x(k)).

Hence Vk−1 < Vk if and only if x−k < Ek. Multiplying both sides of this
inequality by n we get an equivalent inequality x−k < n · Ek, where n · Ek =
k
∑

i=1

xi +
n
∑

j=k+1

xj . Similarly Vk−1 > Vk if and only if x−k > Ek, and Vk−1 = Vk

if and only if x−k = Ek.
When we go from k to k + 1, we replace the larger value xk+1 in the sum

n ·Ek by a smaller value xk. Thus, the sequence n ·Ek is strictly decreasing
with k, while x−k is (maybe non-strictly) increasing with k. Therefore, once
we have n ·x−k < Ek, i.e., Vk−1 < Vk, these inequalities will hold for smaller k
as well. Similarly, once we have n ·x−k > Ek, i.e., Vk−1 > Vk, these inequalities
will hold for larger k as well.

Once we have n ·x−k = Ek, i.e., Vk−1 = Vk, then we will have Vk > Vk+1 >
. . . and Vk = Vk−1 > Vk−2 > . . ., i.e. Vk = Vk−1 will be the largest value
of V .

In other words, the sequence Vk first increases (Vk > Vk−1 for k = 1, 2, . . .)
and then starts decreasing (Vk < Vk−1 for larger k), with one or two top
values.

For each m, if Vm−1 < Vm (i.e. if n · x−m < Em) this means that the value
kmax corresponding to the maximum of V is ≤ m. Hence for all the indices
i ≤ m we already know that in the optimal vector x we have xi = xi. Thus
these indices can be added to the set I−.
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If Vm > Vm−1 (i.e. if n · x−m > Em) this means that the value kmax cor-
responding to the maximum of V is > m. Hence for all the indices i > m
we already know that in the optimal vector x we have xi = xi. Thus these
indices can be added to the set I+.

Finally, if Vm = Vm−1 (i.e. if n · x−m = Em) then this m is where the
maximum is attained.

The algorithm has been justified.

Proof that the algorithm for computing V is correct. Let us prove that the
above algorithm for computing V is indeed correct.

1◦. Indeed, let x(0)
1 ∈ x1, . . . , x

(0)
n ∈ xn be the values for which the sample

variance V attains minimum on the box x1 × . . .× xn.
Let us pick one of the n variables xi, and let fix the values of all the other

variables xj (j �= i) at xj = x
(0)
j . When we substitute xj = x

(0)
j for all j �= i

into the expression for sample variance, V becomes a quadratic function of
xi.

This function of one variable should attain its minimum on the interval xi

at the value x(0)
i .

2◦. Let us start with the analysis of the quadratic function of one variable
we described in Part 1 of this proof.

By definition, the sample variance V is a sum of non-negative terms; thus,
its value is always non-negative. Therefore, the corresponding quadratic func-
tion of one variable always has a global minimum. This function is decreasing
before this global minimum, and increasing after it.

3◦. Where is the global minimum of the quadratic function of one variable
described in Part 1?

It is attained when ∂V/∂xi = 0. Differentiating the formula for V with
respect to xi, we conclude that

∂V

∂xi
=

1
n
·
⎛

⎝2(xi − E) +
n
∑

j=1

2(E − xj) · ∂E
∂xj

⎞

⎠ . (16.4)

Since ∂E/∂xi = 1/n, we conclude that

∂V

∂xi
=

2
n
·
⎛

⎝(xi − E) +
n
∑

j=1

(E − xj) · 1
n

⎞

⎠ . (16.5)

Here,
n
∑

j=1

(E − xj) = n ·E −
n
∑

j=1

xj . (16.6)

By definition of the average E, this difference is 0, hence the formula (16.5)
takes the form
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∂V

∂xi
=

2
n
· (xi − E).

So, this function attains the minimum when xi − E = 0, i.e., when xi = E.
Since

E =
xi

n
+

∑

j:j �=i

xj

n
,

the equality xi = E means that

xi =
xi

n
+

∑

j:j �=i

x
(0)
j

n
.

Moving terms containing xi into the left-hand side and dividing by the coef-
ficient at xi, we conclude that the minimum is attained when

xi = E′
i

def=

∑

j:j �=i

x
(0)
j

n− 1
,

i.e., when xi is equal to the arithmetic average E′
i of all other elements.

4◦. Let us now use the knowledge of a global minimum to describe where the
desired function attains its minimum on the interval xi.

In our general description of non-negative quadratic functions of one vari-
able, we mentioned that each such function is decreasing before the global
minimum and increasing after it. Thus, for xi < E′

i, the function V is de-
creasing, for xi > E′

i, this function in increasing. Therefore:

• If E′
i ∈ xi, the global minimum of the function V of one variable is attained

within the interval xi, hence the minimum on the interval xi is attained
for xi = E′

i.
• If E′

i < xi, the function V is increasing on the interval xi and therefore,
its minimum on this interval is attained when xi = xi.

• Finally, if E′
i > xi, the function V is decreasing on the interval xi and

therefore, its minimum on this interval is attained when xi = xi.

5◦. Let us reformulate the above conditions in terms of the average

E =
1
n
· xi +

n− 1
n

· E′
i.

• In the first case, when xi = E′
i, we have xi = E = E′

i, so E ∈ xi.
• In the second case, we have E′

i < xi and xi = xi. Therefore, in this case,
E < xi.

• In the third case, we have E′
i > xi and xi = xi. Therefore, in this case,

E > xi.
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Thus:

• If E ∈ xi, then we cannot be in the second or third cases. Thus, we are in
the first case, hence xi = E.

• If E < xi, then we cannot be in the first or the third cases. Thus, we are
the second case, hence xi = xi.

• If E > xi, then we cannot be in the first or the second cases. Thus, we are
in the third case, hence xi = xi.

6◦. So, as soon as we determine the position of E with respect to all the
bounds xi and xi, we will have a pretty good understanding of all the values
xi at which the minimum is attained.

Hence, to find the minimum, we will analyze how the endpoints xi and xi

divide the real line, and consider all the resulting sub-intervals.
Let the corresponding subinterval [x(k), x(k+1)] by fixed. For the i’s for

which E �∈ xi, the values xi that correspond to the minimal sample variance
are uniquely determined by the above formulas.

For the i’s for which E ∈ xi the selected value xi should be equal to E.
To determine this E, we can use the fact that E is equal to the average of all
thus selected values xi, in other words, that we should have

E =
1
n
·
⎛

⎝

∑

i:xi≥x(k+1)

xi + (n−Nk) ·E +
∑

j:xj≤x(k)

xj

⎞

⎠ , (16.7)

where (n−Nk)·E combines all the points for which E ∈ xi. Multiplying both
sides of (16.7) by n and subtracting n · E from both sides, we conclude that
(in notations of the algorithm), we have E = Sk/Nk – what we denoted, in
the algorithm’s description, by rk. If thus defined rk does not belong to the
subinterval [x(k), x(k+1)], this contradiction with our initial assumption shows
that there cannot be any minimum in this subinterval, so this subinterval can
be easily dismissed.

The corresponding sample variance is denoted by V ′
k. If Nk = 0, this means

that E belongs to all the intervals xi and therefore, that the lower endpoint
V is exactly 0 – so we assign V ′

k = 0.

The correctness is proven.

Proof that the algorithm for computing V takes time O(n · log(n)). Indeed,
sorting takes O(n · log(n)) steps (see, e.g., [73]). For k = 1, the algorithm
takes linear time (O(n)) to compute all the original sums and then a constant
(O(1)) number of steps to perform all the computations.

On each following iteration, we re-calculate the corresponding sums. In
each of these sums, each endpoint is processed only once, so totally, all these
re-calculations take O(n) steps. Thus, the total computation time is indeed
O(n · log(n))) +O(n) = O(n · log(n)).
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Proof that the new algorithm for computing V takes linear time. At each
iteration, computing median takes linear time. All other operations with J
take time t linear in the number of elements |J | of J . We start with the set
J of size n. On the next iteration, we have a set of size n/2, then n/4, etc.
Thus, the overall computation time is ≤ C · (n+ n/2 + n/4 + . . .) ≤ C · 2n,
i.e. linear in n.

Proof that the new algorithm always computes V . In the above justification
of the O(n · log(n)) algorithm, we proved that if we sort all 2n endpoints into
a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n), then for some k = kmin the minimum
V is attained for the vector x for which the following holds:

• For all indices j for which xj ≤ x(k) we have xj = xj .
• For all indices i for which xi ≥ x(k+1) we have xi = xi.

• For all other indices i we have xi = rk
def=

Ek

Nk
, where

Ek =
∑

j:xj≤x(k)

xj +
∑

i:xi≥x(k+1)

xi; Nk = #{j : xj ≤ x(k)}+#{i : xi ≥ x(k+1)}.

It has also been proven that for the optimal k we have rk ∈ [x(k), x(k+1)].

In general, the condition x(k) ≤ rk =
Ek

Nk
is equivalent to

Nk · x(k) ≤ Ek =
∑

j:xj≤x(k)

xj +
∑

i:xi≥x(k+1)

xi.

Subtracting x(k) from each of Nk terms in the right-hand side (RHS) and
moving the sum of the resulting non-positive differences into the left-hand
side (LHS), we conclude that

∑

j:xj≤x(k)

(x(k) − xj) ≤
∑

i:xi≥x(k+1)

(xi − x(k)). (16.8)

When we increase k, we get (in general) more terms in the LHS and fewer
in the RHS. Hence LHS (non-strictly) increases while the RHS non-strictly
decreases. So if the inequality (16.8) holds for some k, it holds for all smaller
values of k as well. Thus this inequality holds for all k until a certain value k0.

Similarly, the condition x(k+1) ≥ rk =
Ek

Nk
is equivalent to

Nk · rk+1 ≥
∑

j:xj≤x(k)

xj +
∑

i:xi≥x(k+1)

xi.

Subtracting x(k+1) from each of Nk terms in RHS and moving the sum of the
resulting non-positive differences into LHS, we conclude that

∑

j:xj≤x(k)

(x(k+1) − xj) ≥
∑

i:xi≥x(k+1)

(xi − x(k+1)). (16.9)
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When we increase k, the LHS (non-strictly) increases, while the RHS non-
strictly decreases. So if the inequality (16.9) holds for some k, it holds for all
larger values of k as well. Thus this inequality holds for all k after a certain
value l0.

So both conditions (16.8) and (16.9) are satisfied (which is equivalent to
the condition rk ∈ [x(k), x(k+1)]) either for a single value kmin or for several
sequential values l0, l0+1, . . . , k0. Let us show that if this condition is satisfied
for several sequential values, this simply means that the same minimum V
is attained for all these values. For that it is sufficient to show that if both
conditions (16.8) and (16.9) holds for k and for k+1 then the variance V has
the same value for both k and k+ 1. Indeed, since (16.8) is true for k+ 1, we
have

∑

j:xj≤x(k+1)

(x(k+1) − xj) ≤
∑

i:xi≥x(k+2)

(xi − x(k+1)).

The LHS of this new inequality is smaller than or equal to the LHS of the
inequality (16.9), and its RHS is larger than or equal to the RHS of the
inequality (16.9). Thus the only way for both inequalities to hold is when
both sides are equal, i.e. when replacing x(k) with x(k+1) and replacing x(k+1)

with x(k+2) does not change which endpoints are in I− and which are in I+

– and thus, does not change the corresponding value of the variance.
So:

• for k < kmin, we have rk > x(k+1),
• for k > kmin, we have rk < x(k), and
• for k = kmin (or, to be more precise, for l0 ≤ k ≤ k0), we have x(k) ≤ rk ≤
x(k+1).

Hence:

• if rk < x(k), then we cannot have k < kmin and k = kmin, hence k > kmin;
• if rk > x(k+1), then we cannot have k > kmin and k = kmin, hence k < kmin;
• if x(k) ≤ rk ≤ x(k+1), then we cannot have k < kmin and k > kmin, hence
k = kmin.

Thus the above algorithm finds the correct value of kmin and thence, the
correct value of V .

Justification of an O(n2) algorithm for computing V for the case of c0-few
intersections.

1◦. In order to find the maximum of V , it turns out to be useful to first find
where the variance V attains its minimum. Let x(0)

1 ∈ x1, . . . , x
(0)
n ∈ xn be

the values for which the finite population variance V attains minimum on
the box x1 × . . .× xn.

Let us pick one of the n variables xi, and let fix the values of all the other
variables xj (j �= i) at xj = x

(0)
j . When we substitute xj = x

(0)
j for all j �= i

into the expression for finite population variance, V becomes a quadratic
function of xi.
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This function of one variable should attain its minimum on the interval xi

at the value x(0)
i .

2◦. By definition, the variance V is a sum of non-negative terms; thus, its
value is always non-negative. Therefore, the corresponding quadratic function
of one variable always has a global minimum. This function is decreasing
before this global minimum, and increasing after it.
3◦. Where is the global minimum of the quadratic function of one variable
described in Part 1 of this proof?

It is attained when
∂V

∂xi
= 0. Differentiating the formula for the variance

with respect to xi, we conclude that

∂V

∂xi
=

1
n
·
⎛

⎝2(xi − E) +
n
∑

j=1

2(E − xj) · ∂E
∂xj

⎞

⎠ .

Since
∂E

∂xi
= 1/n, we conclude that

∂V

∂xi
=

2
n
·
⎛

⎝(xi − E) +
n
∑

j=1

(E − xj) · 1
n

⎞

⎠ .

Here,
n
∑

j=1

(E − xj) = n ·E −
n
∑

j=1

xj .

By definition of the average E, this difference is 0, hence the above formula
takes the form

∂V

∂xi
=

2
n
· (xi − E).

So, this function attains the minimum when xi − E = 0, i.e., when xi = E.
Since

E =
xi

n
+

∑

j:j �=i

xj

n
,

the equality xi = E means that

xi =
xi

n
+

∑

j:j �=i

x
(0)
j

n
.

Moving terms containing xi into the left-hand side and dividing by the coef-
ficient at xi, we conclude that the minimum is attained when

xi = E′
i

def=

∑

j:j �=i

x
(0)
j

n− 1
,

i.e., when xi is equal to the arithmetic average E′
i of all other elements.
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4◦. Let now x1, . . . , xn be the values at which the finite population variance
attain its maximum on the box x1 × . . .× xn. If we fix the values of all the
variables but one xi, then V becomes a quadratic function of xi. When the
function V attains maximum over x1 ∈ x1, . . . , xn ∈ xn, then this quadratic
function of one variable will attain its maximum on the interval xi at the
point xi.

We have already shown that this quadratic function has a (global) mini-
mum at xi = E′

i, where E′
i is the average of all the values x1, . . . , xn except

for xi. Since this quadratic function of one variable is always non-negative,
it cannot have a global maximum. Therefore, its maximum on the interval
xi = [xi, xi] is attained at one of the endpoints of this interval.

An arbitrary quadratic function of one variable is symmetric with respect
to the location of its global minimum, so its maximum on any interval is
attained at the point which is the farthest from the minimum. There is exactly
one point which is equally close to both endpoints of the interval xi: its
midpoint x̃i. Depending on whether the global minimum is to the left, to the
right, or exactly at the midpoint, we get the following three possible cases:

1. If the global minimum E′
i is to the left of the midpoint x̃i, i.e., if E′

i <
x̃i, then the upper endpoint is the farthest from E′

i. In this case, the
maximum of the quadratic function is attained at its upper endpoint,
i.e., xi = xi.

2. Similarly, if the global minimum E′
i is to the right of the midpoint x̃i, i.e.,

if E′
i > x̃i, then the lower endpoint is the farthest from E′

i. In this case,
the maximum of the quadratic function is attained at its lower endpoint,
i.e., xi = xi.

3. If E′
i = x̃i, then the maximum of V is attained at both endpoints of the

interval xi = [xi, xi].

5◦. In the third case, we have either xi = xi or xi = xi. Depending on
whether xi is equal to the lower or to the upper endpoints, we can “combine”
the corresponding situations with Cases 1 and 2. As a result, we arrive at the
conclusion that one of the following two situations happen:

1. either E′
i ≤ x̃i and xi = xi;

2. either E′
i ≥ x̃i and xi = xi.

6◦. Let us reformulate these conclusions in terms of the average E of the
maximizing values x1, . . . , xn.

The average E′
i can be described as

∑

j:j �=i

xj

n− 1
.

By definition,
∑

j:j �=i

xj =
n
∑

j=1

xj − xi. By definition of E, we have
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E =

n
∑

j=1

xj

n
,

hence
n
∑

j=1

xj = n · μ. Therefore,

E′
i =

n ·E − xi

n− 1
.

Let us apply this formula to the above three cases.
6.1◦. In the first case, we have x̃i ≥ E′

i. So, in terms of E, we get the inequality

x̃i ≥ n · E − xi

n− 1
.

Multiplying both sides of this inequality by n− 1, and using the fact that in
this case, xi = xi = x̃i +Δi, we conclude that

(n− 1) · x̃i ≥ n ·E − x̃i −Δi.

Moving all the terms but n · E to the left-hand side and dividing by n, we
get the following inequality:

E ≤ x̃i +
Δi

n
.

6.2◦. In the second case, we have x̃i ≤ E′
i. So, in terms of E, we get the

inequality

x̃i ≤ n · E − xi

n− 1
.

Multiplying both sides of this inequality by n− 1, and using the fact that in
this case, xi = xi = x̃i −Δi, we conclude that

(n− 1) · x̃i ≤ n ·E − x̃i +Δi.

Moving all the terms but n · E to the left-hand side and dividing by n, we
get the following inequality:

E ≥ x̃i − Δi

n
.

7◦. Parts 6.1 and 6.2 of this proof can be summarized as follows:

• In Case 1, we have E ≤ x̃i +Δi/n and xi = xi.
• In Case 2, we have E ≥ x̃i −Δi/n and xi = xi.

Therefore:

• If E < x̃i −Δi/n, this means that we cannot be in Case 2. So we must be
in Case 1 and therefore, we must have xi = xi.
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• If E > x̃i + Δi/n, this means that we cannot be in Case 1. So, we must
be in Case 2 and therefore, we must have xi = xi.

The only case when we do not know which endpoint for xi we should choose
is the case when μ belongs to the narrowed interval [x̃i −Δ/n, x̃i +Δi].
8◦. Hence, once we know where E is with respect to the endpoints of all
narrowed intervals, we can determine the values of all optimal xi – except for
those that are within this narrowed interval. Since we consider the case when
no more than c0 narrowed intervals can have a common point, we have no
more than c0 undecided values xi. Trying all possible combinations of lower
and upper endpoints for these ≤ c0 values requires ≤ 2c0 steps.

Thus, the overall number of steps is O(2c0 ·n2). Since c0 is a constant, the
overall number of steps is thus O(n2).

Justification of a O(n·log(n)) algorithm for computing V for the the case when
intervals have c0-few intersections. To prove that the algorithm computes
the exact upper endpoint in time o(n cot log(n)), let us follow this algorithm
stage-by-stage.

1◦. First, we sort the lower endpoints x̃i − Δi/n of the narrowed intervals
into an increasing sequence. It is well known that sorting requires time O(n ·
log(n)).

2◦. Then, we sort all the endpoints of the narrowed intervals into a sequence
x(1) ≤ x(2) ≤ . . . ≤ x(k) ≤ . . . ≤ x(2n). This sorting also requires O(n · log(n))
steps.

3◦. On the third stage, we produce, for each of the resulting zones [x(k), x(k+1)],
the set Sk of all the indices i for which the i-th narrowed interval

[x̃i −Δi/n, x̃i +Δi/n]

contains this zone.
As we have mentioned, for each i, we know the value k = k−(i) for which

x̃i −Δi/n = x(k). So, for each i, we place i into the set Sk−(i) corresponding
to the zone [x(k−(i)), x(k−(i)+1)], into the set corresponding to the next zone,
etc., until we reach the zone for which the upper endpoint is exactly x̃i+Δi/n.

Here, we need one computational step for each new entry of i into the set
corresponding to a new zone. Therefore, filling in all these sets requires as
many steps as there are items in all these sets. For each of 2n+ 1 zones, as
we have mentioned, there are no more than c items in the corresponding set;
therefore, overall, all the sets contain no more than c · (2n+ 1) = O(n) steps.
Thus, this stage requires O(n) time.

4◦. On the fourth stage, for all integers p from 0 to n, we compute the sums

Ep
def=

1
n
·

p
∑

i=1

xi +
1
n
·

n
∑

i=p+1

xi;
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Mp
def=

1
n
·

p
∑

i=1

(xi)
2 +

1
n
·

n
∑

i=p+1

(xi)2.

We compute these values sequentially. Once we know Ep and Mp, we can
compute Ep+1 and Mp+1 as Ep+1 = Ep + xp+1 − xp+1 and Mp+1 = Mp +
(xp+1)

2 − (xp+1)2.
Transition from Ep and Mp to Ep+1 and Mp+1 requires a constant number

of computational steps; so overall, we need O(n) steps to compute all the
values Ep and Mp.

5◦. Finally, for each zone k, we compute the corresponding values of the
variance. For that, we first find the smallest index i for which x(k+1) ≤
x̃i −Δi/n. We will denote this value i by p(k).

Since the values x̃i−Δi/n are sorted, we can find this i by using bisection.
It is known that bisection requires O(log(n)) steps, so finding such p(k) for
all 2n+ 1 zones requires O(n · log(n)) steps.

Once i ≥ p(k), then x̃i − Δi/n ≥ x̃p(k) − Δp(k)/n ≥ x(k+1). So, in ac-
cordance with the above justification for the quadratic-time algorithm, we
should select xi = xi, as in the sums Ep(k) and Mp(k).

In accordance with the same justification, the only values i < p(k) for
which we may also select xi = xi are the values for which the i-th narrowed
intervals contains this zone. These values are listed in the set Sk of no more
than c0 such intervals. So, to find all possible values of V , we can do the
following.

We then consider all subsets s ⊆ Sk of the set Sk; there are no more than
2c such subsets. For each subset s, we replace, in Ep(k) and Mp(k), values xi

and (xi)
2 corresponding to all i ∈ s, with, correspondingly, xi and (xi)2.

Each replacement means subtracting no more than c0 terms and then
adding no more than c0 terms, so each computation requires no more than
2c0 steps. Once we have E and V corresponding to the subset s, we can check
whether E belongs to the analyzed zone and, if yes, compute V = M − E2.

For each subset, we need no more than 2c0 + 2 computations, so for all no
more than 2c0 subsets, we need no more than (2c0 + 2) · 2c0 computations.
For a fixed c0, this value does not depend on n; in other words, for each zone,
we need O(1) steps.

To perform this computation for all 2n+1 zones, we need (2n+1) ·O(1) =
O(n) steps.

6◦. Finally, we find the largest of the resulting values V – this will be the
desired value V .

Finding the largest of O(n) values requires O(n) steps.

Overall, we need

O(n·log(n))+O(n·log(n))+O(n)+O(n)+O(n·log(n))+O(n) = O(n·log(n))

steps. Thus, we have proven that our algorithm computes V in O(n · log(n))
steps.
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Computing Variance under Hierarchical

Privacy-Related Interval Uncertainty

Formulation and Analysis of the Problem and the
Resulting Algorithms

Need for hierarchical statistical analysis. In the above text, we assumed that
we have all the data in one large database, and we process this large statistical
database to estimate the desired statistical characteristics.

To prevent privacy violations, we replace the original values of the quasi-
identifier variables with ranges. For example, we divide the set of all possible
ages into ranges [0, 10], [10, 20], [20, 30], etc. Then, instead of storing the
actual age of 26, we only store the range [20, 30] which contains the actual
age value.

In reality, the data is often stored hierarchically. For example, it makes
sense to store the census results by states, get averages and standard devi-
ations per state, and then combine these characteristics to get nation-wide
statistics. In many real-life situations, several research groups independently
perform statistical analysis of different data sets. The more data we use for
statistical analysis, the better the estimates. So, it is desirable to get esti-
mates based on the data from all the data sets. In principle, we can combine
the data sets and re-process the combined data. However, this would take a
large amount of time for data processing. It is known that for many statis-
tics (e.g., for population variance), we can avoid these lengthy computations:
the statistic for the combined data can be computed based on the results of
processing individual data sets.

In this chapter, we show that a similar computational simplification is
possible when instead of processing the exact values, we process privacy-
related interval ranges for these values.

Its main results first appeared in [209] and [356].

Formulas behind hierarchical statistical analysis. Let the data values x1 . . . , xn

be divided into m < n groups I1, . . . , Im. For each group j, we know the fre-
quency pj of this group (i.e., the number nj of elements of this group divided

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 119–127.
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by the overall number of records), the average Ej over this group, and the
population variance Vj within j-th group.

In this case, the overall average E can be described as

E =
1
n
·

n
∑

i=1

xi =
1
n
·

m
∑

j=1

∑

i∈Ij

xi.

By definition of the group average Ej , we have Ej =
1
nj

·
∑

i∈Ij

xi, where

nj = pj · n denotes the overall number of elements in the j-th group. Thus,
∑

i∈Ij

xi = nj ·Ej = pj · n · Ej , hence

E =
m
∑

j=1

pj · Ej . (17.1)

Similarly, the overall variance V can be described as

V =
1
n
·

n
∑

i=1

x2
i − E2 =

1
n
·

m
∑

j=1

∑

i∈Ij

x2
i − E2.

For each j and for each i ∈ Ij , we have xi = (xi − Ej) + Ej , hence

x2
i = (xi − Ej)2 + E2

j + 2(xi − Ej) · Ej .

Therefore,
∑

i∈Ij

x2
i =

∑

i∈Ij

(xi − Ej)2 + nj · E2
j + 2Ej ·

∑

i∈Ij

(xi − Ej).

The first sum, by definition of population variance Vj , is equal to nj · V 2;
the third sum, by definition of the population mean, is equal to 0. Thus,
∑

i∈Ij

x2
i = nj · (Vj + E2

j ), where nj = pj · n, and thus,

V = VE + Vσ, (17.2)

where VE
def=

m
∑

j=1

pj · E2
j − E2 and Vσ

def=
m
∑

j=1

pj · Vj .

Hierarchical case: situation with interval uncertainty. When we start with
values xi which are only known with interval uncertainty, we end up knowing
Ej and Vj also with interval uncertainty. In other words, we only know the
intervals Ej = [Ej , Ej ] and [V j , V j ] that contain the actual (unknown) values
of Ej and Vj . In such situations, we must find the ranges of the possible values
for the population mean E and for the population variance V .
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Analysis of the interval problem. The formula that describes the dependence
of E on Ej is monotonic in Ej . Thus, we get an explicit formula for the range

[E,E] of the population mean E: E =
m
∑

j−1

pj ·Ej and E =
m
∑

j−1

pj · Ej .

Since the terms VE and Vσ in the expression for V depend on different
variables, the range [V , V ] of the population variance V is equal to the sum of
the ranges [V E , V E ] and [V σ, V σ] of the corresponding terms: V = V E +V σ

and V = V E + V σ. Due to similar monotonicity, we can find an explicit

expression for the range [V σ, V σ] for Vσ: V σ =
m
∑

j=1

pj ·V j and V σ =
m
∑

j=1

pj ·V j .

Thus, to find the range of the population variance V , it is sufficient to find
the range of the term VE . So, we arrive at the following problem:

Formulation of the problem in precise terms

GIVEN: an integer m ≥ 1, m numbers pj > 0 for which
m
∑

j=1

pj = 1, and m

intervals Ej = [Ej, Ej ].

COMPUTE the range V E = {VE(E1, . . . , Em) |E1 ∈ E1, . . . , Em ∈ Em},
where

VE
def=

m
∑

j=1

pj ·E2
j − E2; E

def=
m
∑

j=1

pj · Ej .

Main result. Since the function VE is convex, we can compute its minimum
V E on the box E1 × . . . × Em by using known polynomial-time algorithms
for minimizing convex functions over interval domains; see, e.g., [334].

For computing maximum V E , even the particular case when all the values
pj are equal p1 = . . . = pm = 1/m, is known to be NP-hard. Thus, the more
general problem of computing V E is also NP-hard. Let us show that in a
reasonable class of cases, there exists a feasible algorithm for computing V E .

For each interval Ej, let us denote its midpoint by ˜Ej
def=

Ej + Ej

2
, and

its half-width by Δj
def=

Ej − Ej

2
. In these terms, the j-th interval Ej takes

the form [ ˜Ej −Δj , ˜Ej +Δj ].

In this chapter, we consider “narrowed” intervals [E−
j , E

+
j ], where E−

j
def=

˜Ej − pj ·Δj and E+
j

def= ˜Ej + pj ·Δj . We show that there exists an efficient
O(m·log(m)) algorithm for computing V E for the case when no two narrowed
intervals are proper subsets of each other, i.e., when [E−

j , E
+
j ] �⊆ (E−

k , E
+
k )

for all j and k.

Algorithm

• First, we sort the midpoints ˜E1, . . . , ˜Em into an increasing sequence. With-
out losing generality, we can assume that ˜E1 ≤ ˜E2 ≤ . . . ≤ ˜Em.
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• Then, for every k from 0 to m, we compute the value V (k)
E = M (k)−(E(k))2

of the quantity VE for the vector E(k) = (E1, . . . , Ek, Ek+1, . . . , Em).
• Finally, we compute V E as the largest of m+ 1 values V (0)

E , . . . , V
(m)
E .

To compute the values V (k)
E , first, we explicitly compute M (0), E(0), and

V
(0)
E = M (0) − E(0). Once we computed the values M (k) and E(k), we can

compute

M (k+1) = M (k) + pk+1 · (Ek+1)
2 − pk+1 · (Ek+1)2 and

E(k+1) = E(k) + pk+1 · Ek+1 − pk+1 · Ek+1.

Number of computation steps.

• It is well known that sorting takes O(m · log(m)) steps.
• Computing the initial values M (0), E(0), and V (0)

E takes linear time O(m).
• For each k from 0 to m − 1, we need a constant number O(1) of steps to

compute the next values M (k+1), E(k+1), and V (k+1)
E .

• Finally, finding the largest of m+ 1 values V (k)
E also takes O(m) steps.

Thus, overall, we perform

O(m · log(m)) +O(m) +m ·O(1) +O(m) = O(m · log(m)) steps.

Auxiliary result: what if the frequencies are also only known with interval
uncertainty? In the previous text, we assumed that we know the exact values
of the frequencies pj . In practice, we usually only know the frequencies with
uncertainty. Let us show how to take this uncertainty into account.

Reminder: hierarchical statistical data processing. If we know the frequency
of the group j, the mean Ej of the group j, and its second moment Mj =

Vj + E2
j =

1
pj · n ·

∑

i∈Ij

x2
i , then we can compute the overall mean E and the

overall variance as E =
m
∑

j=1

pj ·Ej and V =
m
∑

j=1

pj ·Mj − E2.

Reminder: hierarchical statistical data processing under interval uncertainty.
In the above text, we considered the case when the statistical characteris-
tics Ej and Vj corresponding to different groups are known with interval
uncertainty, but the frequencies pj are known exactly.

New situation. In practice, the frequencies pj may also only be known with
interval uncertainty. This may happen, e.g., if instead of the full census we
extrapolate data – or if we have a full census and try to take into account
that no matter how thorough the census, a certain portion of the population
will be missed.

In practice, the values xi (age, salary, etc.) are usually non-negative. In
this case, Ej ≥ 0. In this section, we will only consider this non-negative case.
Thus, we arrive at the new formulation of the problem:
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GIVEN: an integer m ≥ 1, and for every j from 1 to m, intervals [p
j
, pj ],

[Ej , Ej ], and [M j ,M j ] for which p
j
≥ 0, Ej ≥ 0, and M j ≥ 0.

COMPUTE the range E = [E,E] of E =
m
∑

j=1

pj · Ej and the range M =

[M,M ] of M =
m
∑

j=1

pj · Mj − E2 under the conditions that pj ∈ [p
j
, pj ],

Ej ∈ [Ej , Ej ], Mj ∈ [M j ,M j ], and
m
∑

j=1

pj = 1.

Derivation of an algorithm for computing E. When the frequencies pj are
known, we can easily compute the bounds for E. In the case when pj are
also known with interval uncertainty, it is no longer easy to compute these
bounds.

Since E monotonically depends on Ej , the smallest value E of E is attained
when Ej = Ej for all j, so the only problem is to find the corresponding
probabilities pj . Suppose that p1, . . . , pn are minimizing probabilities, and
for two indices j and k, we change pj to pj + Δp (for some small Δp) and

pk to pk −Δp. In this manner, the condition
m
∑

j=1

pj is preserved. After this

change, E changes to E +ΔE, where ΔE = Δp · (Ej − Ek).
Since we start with the values at which E attains its minimum, we must

haveΔE ≥ 0 for allΔp. If both pj and pk are strictly inside the corresponding
intervals, then we can haveΔp of all signs hence we should have Ej = Ek. So,
excluding this degenerate case, we should have at most one value pi strictly
inside – others are at one of the endpoints.

If pj = p
j

and pk = pk, then we can have Δp > 0, so ΔE ≥ 0 implies
Ej ≥ Ek. So, the values Ej for all j for which pj = p

j
should be ≤ than

all the values Ek for which pk = pk. This conclusion can be reformulated as
follows: if we sort the groups in the increasing order of Ej , we should get
first pj then all p

k
. Thus, it is sufficient to consider only such arrangements

of probabilities for which we have p1, . . . pl0−1, plo , pl0+1
, . . . p

m
. The value l0

can be uniquely determined from the condition that
m
∑

j=1

pj = 1. Thus, we

arrive at the following algorithm:
Algorithm for computing E. To compute E, we first sort the values Ej in
increasing order. Let us assume that the groups are already sorted in this
order, i.e., that E1 ≤ E2 ≤ . . . ≤ Em.

For every l from 0 to k, we then compute Pl = p1 + . . .+pl +pl+1
+ . . .+p

n

as follows: we explicitly compute the sum P0, and then consequently compute
Pl+1 as Pl+(pl+1−pl+1

). This sequence is increasing. Then, we find the value

l0 for which Pl0 ≤ 1 ≤ Pl0+1, and take E =
l0−1
∑

j=1

pj ·Ej+pl0 ·El0+
m
∑

j=l0+1

p
j
·Ej ,

where pl0 = 1 −
l0−1
∑

j=1

pj −
m
∑

j=l0+1

p
j
.
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Computation time. We need O(m · log(m)) time to sort, O(m) time to com-
pute P0, O(m) time to compute all Pl and hence, to find l0, and O(m) time
to compute E – to the total of O(m · log(m)).

Algorithm for computing E. Similarly, we can compute E in time

O(m · log(m)).

We first sort the values Ej in increasing order. Let us assume that the groups
are already sorted in this order, i.e., that E1 ≤ E2 ≤ . . . ≤ Em.

For every l from 0 to k, we then compute Pl = p
1
+ . . .+p

l
+pl+1 + . . .+pn

as follows: we explicitly compute the sum P0, and then consequently compute
Pl+1 as Pl−(pl+1−pl+1

). This sequence is decreasing. Then, we find the value

l0 for which Pl0 ≥ 1 ≥ Pl0+1, and take E =
l0−1
∑

j=1

p
j
·Ej+pl0 ·El0+

m
∑

j=l0+1

pj ·Ej ,

where pl0 = 1 −
l0−1
∑

j=1

p
j
−

m
∑

j=l0+1

pj.

Derivation of an algorithm for computing M . First, we notice that the mini-
mum is attained when Mj are the smallest (Mj = M j) and Ej are the largest
(Ej = Ej). So, the only problem is to find the optimal values of pj .

Similarly to the case of E, we add Δp to pj and subtract Δp from pk. Since
we started with the values at which the minimum is attained we must have
ΔM ≤ 0, i.e., Δ · [M j −Mk − 2E · (Ej −Ek)] ≤ 0. So, at most one value pj

is strictly inside, and if pj = p
j

and pk = pk, we must have

M j −Mk − 2E · (Ej − Ek) ≤ 0,

i.e., M j − 2E · Ej ≤Mk − 2E · Ej .
Once we knowE, we can similarly sort and get the optimal pj. The problem

is that we do not know the value E, and for different values E, we have
different orders. The solution to this problem comes from the fact that the

above inequality is equivalent to comparing 2E with the ratio
M j −Mk

Ej − Ek

.

Thus, if we compute all n2 such ratios, sort them, then within each zone
between the consequent values, the sorting will be the same. Thus, we arrive
at the following algorithm.

Algorithm for computing M . To compute M , we first compute all the ratios
M j −Mk

Ej − Ek

, sort them, and take Es between two consecutive values in this

sorting.
For each such E, we sort the groups according to the value of the expression

M j − 2E · Ej . In this sorting, we select the values

pj = (p1, . . . , pl0−1, pl0 , pl0+1
, . . . , p

m
)
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and pick l0 in the same manner as when we computed E. For the resulting

pj , we then compute M =
m
∑

j=1

pj ·M j −
(

m
∑

j=1

pj · Ej

)2

.

Computation time. We need O(m · log(m)) steps for each of m2 zones, to the
(still polynomial) total time O(m3 · log(m))).

Algorithm for computing M . A similar polynomial-time algorithm can be

used to compute M . We first compute all the ratios
M j −Mk

Ej − Ek

, sort them,

and take Es between two consecutive values in this sorting.
For each such E, we sort the groups according to the value of the expression

M j − 2E · Ej . In this sorting, we select the values

pj = (p
1
, . . . , p

l0−1
, pl0 , pl0+1, . . . , pm)

and pick l0 in the same manner as when we computed E. For the resulting

pj , we then compute M =
m
∑

j=1

pj ·M j −
(

m
∑

j=1

pj · Ej

)2

.

Justifications of the Algorithm

Proof of the algorithm’s correctness. The function VE is convex. Thus, its
maximum V E on the box E1 × . . . × Em is attained at one of the vertices
of this box, i.e., at a vector (E1, . . . , Em) in which each value Ej is equal to
either Ej or to Ej .

To justify our algorithm, we need to prove that this maximum is attained
at one of the vectors E(k) in which all the lower bounds Ej precede all the
upper bounds Ej . We will prove this by reduction to a contradiction. Indeed,
let us assume that the maximum is attained at a vector in which one of the
lower bounds follows one of the upper bounds. In each such vector, let i be the
largest upper bound index followed by the lower bound; then, in the optimal
vector (E1, . . . , Em), we have Ei = Ei and Ei+1 = Ei+1.

Since the maximum is attained for Ei = Ei, replacing it with Ei = Ei−2Δi

will either decrease the value of VE or keep it unchanged. Let us describe how
VE changes under this replacement. Since VE is defined in terms of M and
E, let us first describe how E and M change under this replacement. In the
sum for M , we replace (Ei)2 with

(Ei)
2 = (Ei − 2Δi)2 = (Ei)2 − 4 ·Δi · Ei + 4 ·Δ2

i .

Thus, the value M changes into M +ΔiM , where

ΔiM = −4 · pi ·Δi · Ei + 4 · pi ·Δ2
i .
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The population mean E changes into E + ΔiE, where ΔiE = −2 · pi · Δi.
Thus, the value E2 changes into (E +ΔiE)2 = E2 +Δi(E2), where

Δi(E2) = 2 · E ·ΔiE + (ΔiE)2 = −4 · pi · E ·Δi + 4 · p2
i ·Δ2

i .

So, the variance V changes into V +ΔiV , where

ΔiV = ΔiM−Δi(E2) = −4 ·pi ·Δi ·Ei +4 ·pi ·Δ2
i +4 ·pi ·E ·Δi−4 ·p2

i ·Δ2
i =

4 · pi ·Δi · (−Ei +Δi + E − pi ·Δi).

By definition, Ei = ˜Ei +Δi, hence −Ei +Δi = − ˜Ei. Thus, we conclude that
ΔiV = 4 · pi ·Δi · (− ˜Ei +E − pi ·Δi). So, the fact that ΔiV ≤ 0 means that
E ≤ ˜Ei + pi ·Δi = E+

i . Similarly, since the maximum of VE is attained for
Ei+1 = Ei+1, replacing it with Ei+1 = Ei+1 + 2Δi+1 will either decrease the
value of VE or keep it unchanged. In the sum for M , we replace (Ei+1)

2 with

(Ei+1)2 = (Ei+1 + 2Δi+1)2 = (Ei+1)
2 + 4 ·Δi+1 · Ei+1 + 4 ·Δ2

i+1.

Thus, the value M changes into M +Δi+1M , where

Δi+1M = 4 · pi+1 ·Δi+1 ·Ei+1 + 4 · pi+1 ·Δ2
i+1.

The population mean E changes into E +Δi+1E, where Δi+1E = 2 · pi+1 ·
Δi+1. Thus, the value E2 changes into E2 +Δi+1(E2), where

Δi+1(E2) = 2 ·E ·Δi+1E + (Δi+1E)2 = 4 · pi+1 ·E ·Δi+1 + 4 · p2
i+1 ·Δ2

i+1.

So, the term VE changes into VE +Δi+1V , where

Δi+1V = Δi+1M −Δi+1(E2) =

4 · pi+1 ·Δi+1 ·Ei+1 + 4 · pi+1 ·Δ2
i+1 − 4 · pi+1 · E ·Δi+1 − 4 · p2

i+1 ·Δ2
i+1 =

4 · pi+1 ·Δi+1 · (Ei+1 +Δi+1 − E − pi+1 ·Δi+1).

By definition, Ei+1 = ˜Ei+1 − Δi+1, hence Ei+1 + Δi+1 = ˜Ei+1. Thus, we
conclude that

Δi+1V = 4 · pi+1 · ( ˜Ei+1 − E − pi+1 ·Δi+1).

Since VE attains maximum at (E1, . . . , Ei, Ei+1, . . . , Em), we have Δi+1V ≤
0, hence E ≥ ˜Ei+1 − pi+1 ·Δi+1 = E−

i+1.
We can also change both Ei and Ei+1 at the same time. In this case, from

the fact that VE attains maximum, we conclude that ΔVE ≤ 0.
Here, the change ΔM in M is simply the sum of the changes coming from

Ei and Ei+1: ΔM = ΔiM +Δi+1M , and the change in E is also the sum of
the corresponding changes:ΔE = ΔiE+Δi+1E. So, for ΔV = ΔM−Δ(E2),
we get

ΔV = ΔiM +Δi+1M − 2 ·E ·ΔiE − 2 · E ·Δi+1E − (ΔiE)2 − (Δi+1E)2−
2 ·ΔiE ·Δi+1E.
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Hence,

ΔV = (ΔiM−2·Ei·ΔiE−(ΔiE)2)+(Δi+1M−2·Ei+1 ·Δi+1E−(Δi+1E)2)−

2 ·ΔEi ·ΔEi+1,

i.e., ΔV = ΔiV +Δi+1V − 2 ·ΔiE ·Δi+1E.
We already have expressions for ΔiV , Δi+1V , ΔiE, and Δi+1E, and we

already know that E−
i+1 ≤ E ≤ E+

i . Thus, we have D(E) ≤ 0 for some
E ∈ [E−

i+1, E
+
i ], where

D(E) def= 4·pi ·Δi ·(−E+
i +E)+4·pi+1 ·Δi+1 ·(E−

i+1−E)+8·pi ·Δi ·pi+1 ·Δi+1.

Since the narrowed intervals are not subsets of each other, we can sort them
in lexicographic order; in which order, midpoints are sorted, left endpoints
are sorted, and right endpoints are sorted, hence E−

i ≤ E−
i+1 and E+

i ≤ E+
i+1.

For E = E−
i+1, we get

D(E−
i+1) = 4 · pi ·Δi · (−E+

i + E−
i+1) + 8 · pi ·Δi · pi+1 ·Δi+1 =

4 · pi ·Δi · (−E+
i + E−

i+1 + 2 · pi+1 ·Δi+1).

By definition, E−
i+1 = Ei+1 − pi+1 ·Δi+1, hence E−

i+1 +2 · pi+1 ·Δi+1 = E+
i+1,

and D(E−
i+1) = 4 · pi ·Δi · (E+

i+1 − E+
i ) ≥ 0. Similarly,

D(E+
i ) = 4 · pi+1 ·Δi+1 · (E−

i+1 − E+
i ) ≥ 0.

The only possibility for both values to be 0 is when interval coincide; in this
case, we can easily swap them. In all other cases, all intermediate values
D(E) are positive, which contradicts to our conclusion that D(E) ≤ 0. The
statement is proven.
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Computing Outlier Thresholds under Interval

Uncertainty

In many application areas, it is important to detect outliers. The traditional
engineering approach to outlier detection is that we start with some “nor-
mal” values x1, . . . , xn, compute the sample average E, the sample standard
variation σ, and then mark a value x as an outlier if x is outside the k0-sigma
interval [E−k0 ·σ,E+k0 ·σ] (for some pre-selected parameter k0). In real life,
we often have only interval ranges [xi, xi] for the normal values x1, . . . , xn. In
this case, we only have intervals of possible values for the “outlier threshold”
– bounds E−k0 ·σ and E+k0 ·σ. We can therefore identify outliers as values
that are outside all k0-sigma intervals.

Once we identify a value as an outlier for a fixed k0, it is also desirable to
find out to what degree this value is an outlier, i.e., what is the largest value
k0 for which this value is an outlier.

In this chapter, we analyze the problem of computing outlier thresholds
under interval uncertainty. The main results of this chapter first appeared in
[80, 186, 187, 191].

Formulation of the Problem

Outlier detection is important. In many application areas, it is important
to detect outliers, i.e., unusual, abnormal values. In medicine, unusual values
may indicate disease (see, e.g., [164, 348, 349]); in geophysics, abnormal values
may indicate a mineral deposit or an erroneous measurement result (see, e.g.,
[121, 214, 295, 344]); in structural integrity testing, abnormal values may
indicate faults in a structure (see, e.g., [95, 123, 164, 271, 272, 348, 349, 350]),
etc.

The traditional engineering approach to outlier detection (see, e.g., [88,
283, 337]) is as follows:

• first, we collect measurement results x1, . . . , xn corresponding to normal
situations;

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 129–151.
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• then, we compute the sample average E =
x1 + . . .+ xn

n
of these nor-

mal values and the (sample) standard deviation σ =
√
V , where V =

(x1 − E)2 + . . .+ (xn − E)2

n
;

• finally, a new measurement result x is classified as an outlier if it is outside
the interval [L,U ] (i.e., if either x < L or x > U), where L def= E − k0 · σ,
U

def= E + k0 · σ, and k0 > 1 is some pre-selected value (most frequently,
k0 = 2, 3, or 6).

Outlier detection under interval uncertainty. As we have mentioned in Part I
of this book, in some practical situations, we only have intervals xi = [xi, xi]
of possible values of xi. For different values xi ∈ xi, we get different bounds L
and U . Possible values of L form an interval – we will denote it by L

def= [L,L];
possible values of U form an interval U = [U,U ].

How do we now detect outliers? There are two possible approaches to
this question: we can detect possible outliers and we can detect guaranteed
outliers:

• a value x is a possible outlier if it is located outside one of the possible
k0-sigma intervals [L,U ] (but is may be inside some other possible interval
[L,U ]);

• a value x is a guaranteed outlier if it is located outside all possible k0-sigma
intervals [L,U ].

Which approach is more reasonable depends on a possible situation:

• if our main objective is not to miss an outlier, e.g., in structural integrity
tests, when we do not want to risk launching a spaceship with a faulty
part, it is reasonable to look for possible outliers;

• if we want to make sure that the value x is an outlier, e.g., if we are plan-
ning a surgery and we want to make sure that there is a micro-calcification
before we start cutting the patient, then we would rather look for guaran-
teed outliers.

The two approaches can be described in terms of the endpoints of the intervals
L and U :

A value x guaranteed to be normal – i.e., it is not a possible outlier – if
x belongs to the intersection of all possible intervals [L,U ]; the intersection
corresponds to the case when L is the largest and U is the smallest, i.e., this
intersection is the interval [L,U ]. So, if x > U or x < L, then x is a possible
outlier, else it is guaranteed to be a normal value.

If a value x is inside one of the possible intervals [L,U ], then it can still be
normal; the only case when we are sure that the value x is an outlier is when
x is outside all possible intervals [L,U ], i.e., is the value x does not belong to
the union of all possible intervals [L,U ] of normal values; this union is equal
to the interval [L,U ]. So, if x > U or x < L, then x is a guaranteed outlier,
else it can be a normal value.
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In real life, the situation may be slightly more complicated because, as
we have mentioned, measurements often come with interval inaccuracy; so,
instead of the exact value x of the measured quantity, we get an interval
x = [x, x] of possible values of this quantity.

In this case, we have a slightly more complex criterion for outlier detection:

• the actual (unknown) value of the measured quantity is a possible outlier
if some value x from the interval [x, x] is a possible outlier, i.e., is outside
the intersection [L,U ]; thus, the value is a possible outlier if one of the two
inequalities hold: x < L or U < x.

• the actual (unknown) value of the measured quantity is guaranteed to be an
outlier if all possible values x from the interval [x, x] are guaranteed to be
outliers (i.e., are outside the union [L,U ]); thus, the value is a guaranteed
outlier if one of the two inequalities hold: x < L or U < x.

Thus:

• to detect possible outliers, we must be able to compute the values L and U ;
• to detect guaranteed outliers, we must be able to compute the values L

and U .

In this chapter, we consider the problem of computing these bounds.
Once we identify a value as an outlier for a fixed k0, it is also desirable

to find out to what degree this value is an outlier, i.e., what is the largest
value k0 for which this value is an outlier. In this chapter, we analyze the
algorithmic solvability and computational complexity of this problem as well.

Computing degree of outlier-ness. Once we identify a value x as an outlier
for a fixed k0, it is also desirable to find out to what degree this value is an
outlier, i.e., what is the largest value k0 for which this value x is outside the
corresponding k0-sigma interval [E − k0 · σ,E + k0 · σ].

If we know the exact values of the measurement results x1, . . . , xn, then
we can compute the exact values of E and σ and thus, determine this “degree
of outlier-ness” as the ratio r def= |x− E|/σ. If we only know the intervals xi

of possible values of xi, then different values xi ∈ xi may lead to different
values of this ratio. In this situation, it is desirable to know the interval of
possible values of r.

It is not enough to compute the ranges of E and σ. To detect outliers under
interval uncertainty, we must be able to compute the range L = [L,L] of
possible values of L = E − k0 · σ and the range U = [U,U ] of possible values
of U = E + k0 · σ.

In the previous chapters, we have shown how to compute the intervals
E = [E,E] and [σ, σ] of possible values for E and σ. In principle, we can
use the general ideas of interval computations to combine these intervals and
conclude, e.g., that U always belongs to the interval E + k0 · [σ, σ]. However,
as often happens in interval computations, the resulting interval for L is wider
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than the actual range – wider because the values E and σ are computed based
on the same inputs x1, . . . , xn and cannot, therefore, change independently.

As an example that we may lose precision by combining intervals for E
and σ, let us consider the case when x1 = x2 = [0, 1] and k0 = 2. In this
case, the range E of E = (x1 + x2)/2 is equal to [0, 1], where the largest
value 1 is attained only if x1 = x2 = 1. For the variance, we have V =
((x1 − E)2 + (x2 − E)2)/2 = (x1 − x2)2/4; so, the range V of V is [0, 0.25]
and, correspondingly, the range for σ =

√
V is [0, 0.5]. The largest value

σ = 0.5 is only attained in two cases: when x1 = 0 and x2 = 1, and when
x1 = 1 and x2 = 0. When we simply combine the intervals, we conclude that
U ∈ [0, 1] + 2 · [0, 0.5] = [0, 2]. However, it is easy to see that U cannot be
equal to 2:

• The only way for U to be equal to 2 is when both E and σ attain their
largest values: E = 1 and σ = 0.5.

• However, the only pair on which the mean E attains its largest value 1 is
x1 = x2 = 1, and for this pair, σ = 0.

So, the actual range of U must be narrower than the result [0, 2] of combining
intervals for E and σ.

We mark a value x as an outlier if it is outside the interval [L,U ]. Thus,
if, instead of the actual ranges for L and U , we use wider intervals, we may
miss some outliers. It is therefore important to compute the exact ranges for
L and U . In this chapter, we show how to compute these exact ranges.

Detecting Possible Outliers: Algorithms

To find possible outliers, we must know the values U and L. In this section,
we design feasible algorithms for computing the exact lower bound U of the
function U and the exact upper bound L of the function L. Specifically, our
algorithms take O(n · log(n)) computational steps (arithmetic operations or
comparisons) for n interval data points xi = [xi, xi].

The algorithms AU for computing U and AL for computing L are as
follows:

• In both algorithms, first, we sort all 2n values xi, xi into a sequence x(1) ≤
x(2) ≤ . . . ≤ x(2n); take x(0) = −∞ and x(2n+1) = +∞. Thus, the real
line is divided into 2n+1 zones (x(0), x(1)], [x(1), x(2)], . . . , [x(2n−1), x(2n)],
[x(2n), x(2n+1)).

• For each of these zones [x(k), x(k+1)], k = 0, 1, . . . , 2n, we compute the
values

ek
def=

∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj ,

mk
def=

∑

i:xi≥x(k+1)

(xi)
2 +

∑

j:xj≤x(k)

(xj)2,
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and nk = the total number of such i’s and j’s. Then, we solve the quadratic
equation

Ak −Bk · μ+ Ck · μ2 = 0,

where
Ak

def= e2k · (1 + α2) − α2 ·mk · n; α
def= 1/k0,

Bk
def= 2 · ek ·

(

(1 + α2) · nk − α2 · n) ; Ck
def= nk ·

(

(1 + α2) · nk − α2 · n) .
For computing U , we select only those solutions for which μ · nk ≤ ek and
μ ∈ [x(k), x(k+1)]; for computing L, we select only those solutions for which
μ · nk ≥ ek and μ ∈ [x(k), x(k+1)]. For each selected solution, we compute
the values of

Ek =
ek

n
+
n− nk

n
· μ, Mk =

mk

n
+
n− nk

n
· μ2,

Uk = Ek + k0 ·
√

Mk − (Ek)2 or Lk = Ek − k0 ·
√

Mk − (Ek)2.

• Finally, if we are computing U , we return the smallest of the values Uk; if
we are computing L, we return the smallest of the values Lk.

Theorem 18.1. The algorithms AU and AL always compute U and L in
time O(n · log(n)).

In General, Detecting Guaranteed Outliers Is NP-Hard

As we have mentioned in the beginning of this chapter, to be able to detect
guaranteed outliers, we must be able to compute the values L and U . In
general, this is an NP-hard problem:

Theorem 18.2. For every k0 > 1, computing the upper endpoint U of the
interval [U,U ] of possible values of U = E + k0 · σ is NP-hard.

Theorem 18.3. For every k0 > 1, computing the lower endpoint L of the
interval [L,L] of possible values of L = E − k0 · σ is NP-hard.

Comment. The proofs of Theorems 18.2 and 18.3 show that the decision
problems related to the computation of L and U are NP-complete. Therefore,
NP-hardness of the computational problems does not mean that the problems
are located somewhere higher in the polynomial hierarchy.
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Detecting Guaranteed Outliers: Results and Algorithms

How can we actually compute these values? First, we will show that if 1 +
(1/k0)2 < n (which is true, e.g., if k0 > 1 and n ≥ 2), then the maximum of U
(correspondingly, the minimum of L) is always attained at some combination
of endpoints of the intervals xi; thus, in principle, to determine the values U
and L, it is sufficient to try all 2n combinations of values xi and xi:

Theorem 18.4. If 1 + (1/k0)2 < n, then the maximum of the function U
and the minimum of the function L on the box x1 × . . .× xn are attained at
its vertices, i.e., when for every i, either xi = xi or xi = xi.

NP-hard means, crudely speaking, that there are no general ways for solving
all particular cases of this problem (i.e., computing U and L) in reasonable
time.

However, we show that there are algorithms for computing U and L for
many reasonable situations. Namely, we propose efficient algorithms that
compute U and L for the case when all the interval midpoints (“measured
values”) x̃i

def= (xi +xi)/2 are definitely different from each other, in the sense
that the “narrowed” intervals

[

x̃i − 1 + α2

n
·Δi, x̃i +

1 + α2

n
·Δi

]

– where α = 1/k0 and Δi
def= (xi − xi)/2 is the interval’s half-width – do not

intersect with each other.

The algorithms AU and AL are as follows:

• In both algorithms, first, we sort all 2n endpoints of the narrowed intervals

x̃i − 1 + α2

n ·Δi and x̃i + 1 + α2

n ·Δi into a sequence x(1) ≤ x(2) ≤ . . . ≤
x(2n). This enables us to divide the real line into 2n+1 zones [x(i), x(i+1)],

where we denoted x(0)
def= −∞ and x(2n+1)

def= +∞.
• For each of zones [x(i), x(i+1)], we do the following: for each j from 1 to n,

we pick the following value of xj :

• if x(i+1) < x̃j − 1 + α2

n ·Δj , then we pick xj = xj ;

• if x(i+1) > x̃j + 1 + α2

n ·Δj , then we pick xj = xj ;
• for all other j, we consider both possible values xj = xj and xj = xj .
As a result, we get one or several sequences of xj for each zone.

• To compute U , for each of the sequences xj , we check whether, for the
selected values x1, . . . , xn, the value of E − α · σ is indeed within the
corresponding zone, and if it is, compute the value U = E+k0 ·σ. Finally,
we return the largest of the computed values U as U .

• To compute L, for each of the sequences xj , we check whether, for the
selected values x1, . . . , xn, the value of E + α · σ is indeed within the
corresponding zone, and if it is, compute the value L = E− k0 ·σ. Finally,
we return the smallest of the computed values L as L.
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Theorem 18.5. Let 1/n+1/k2
0 < 1. The algorithms AU and AL compute U

and L in time O(n · log(n)) for all the cases in which the “narrowed” intervals
do not intersect with each other.

These algorithms also work when, for some fixed c0, no more than c0 “nar-
rowed” intervals can have a common point:

Theorem 18.6. Let 1 + (1/k0)2 < n. For every positive integer c0, the
algorithms AU and AL compute U and L in time O(n · log(n)) for all the
cases in which no more than c0 “narrowed” intervals can have a common
point.

For each zone, we can determine the values of all optimal xi – except for
the case when the zone intersects with the corresponding narrowed interval.
Since we consider the case when no more than c0 narrowed intervals can have
a common point, we have no more than c0 undecided values xi. Trying all
possible combinations of lower and upper endpoints for c0 different values
i takes 2c0 steps. Thus, the corresponding computation times are feasible
(polynomial) in n but grow exponentially with c0. So, when c0 grows, this
algorithm takes more and more computation time. It is worth mentioning
that the examples on which we prove NP-hardness (see proof of Theorem
18.2) correspond to the case when n/2 out of n narrowed intervals have a
common point.

Another possible generalization is to a more general case of the no-subset
property, when no two narrowed intervals are proper subsets of one another
– in the sense that one of them is a subset of the interior of the second one.
This is a more general case because if they do not intersect, them, of course,
they cannot be proper subsets of one another.

Theorem 18.7. There exist algorithms that compute U and L in time
O(n · log(n)) for all the cases in which no two “narrowed” intervals are proper
subsets of one another.

Let us first describe the algorithms themselves. Without losing generality, we
can describe an algorithm for computing U .

• First, we sort of the values x̃i into an increasing sequence. Without losing
generality, we can assume that x̃1 ≤ x̃2 ≤ . . . ≤ x̃n.

• Then, for every k from 0 to n, we compute the value V (k) = M (k)−(E(k))2

of the population variance V for the vector x(k) =(x1, . . . , xk, xk+1, . . . , xn),
and we compute U (k) = E(k) + k0 ·

√
V (k).

• Finally, we compute U as the largest of n+ 1 values U (0), . . . , U (n).

To compute the values V (k), first, we explicitly compute M (0), E(0), and
V (0) = M (0) − (E(0))2. Once we know the values M (k) and E(k), we can
compute

M (k+1) = M (k) +
1
n
· (xk+1)

2 − 1
n
· (xk+1)2

and E(k+1) = E(k) +
1
n
· xk+1 −

1
n
· xk+1.
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Comment. It is worth mentioning that if the measurement results x̃i are
already sorted, then we only need linear time to compute U .

Computing Degree of Outlier-Ness: Algorithms

Simplification of the problem. In order to compute the interval of possible
values of the degree of outlier-ness, let us first reduce the problem of comput-
ing this interval to a simpler problem. This reduction will be done in three
steps.

First, it turns out that the value of r does not change if, instead of the
original variables xi with values from intervals xi, we consider new variables
x′i

def= xi − x and a new value x′ = 0. Indeed, in this case, E′ = E − x hence
E′ − x′ = E − x, and the standard deviation σ does not change if we simply
shift all the values xi. Thus, without losing generality, we can assume that
x = 0, and we are therefore interested in the ratio |E|/σ.

Second, the lower bound of the ratio r is attained when the reverse ratio
1/r = σ/|E| is the largest, and vice versa. Thus, to find the interval of
possible values for |E|/σ, it is necessary and sufficient to find the interval of
possible values of σ/|E|. Computing this interval is, in its turn, equivalent to
computing the interval for the square V/E2 of the reverse ratio 1/r.

Finally, since V = M − E2, where M
def=

x2
1 + . . .+ x2

n

n
is the second

moment, we have V/E2 = M/E2 − 1, so computing the sharp bounds for
V/E2 is equivalent to computing the sharp bounds for the ratio R def= M/E2.

In this section, we will describe how to compute the sharp bounds R and
R for the ratio R; based on these sharp bounds, we can compute the desired
sharp bounds on k0.

Computing R: algorithm. The algorithm AR for computing R is as follows.
If all the original intervals have a common point, then we take R

def= 1.
Otherwise, we do the following:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n);
take x(0) = −∞ and x(2n+1) = +∞. Thus, the real line is divided into
2n+ 1 zones (x(0), x(1)], [x(1), x(2)], . . . , [x(2n−1), x(2n)], [x(2n), x(2n+1)).

• For each of these zones [x(k), x(k+1)], k = 0, 1, . . . , 2n, we compute the
values

ek
def=

∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj ,

mk
def=

∑

i:xi≥x(k+1)

(xi)
2 +

∑

j:xj≤x(k)

(xj)2,

and nk = the total number of such i’s and j’s. Then, we find λk
def= mk/ek.

If λk ∈ [x(k), x(k+1)], then we compute
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Ek =
ek

n
+
n− nk

n
· λk, Mk =

mk

n
+
n− nk

n
· λ2

k,

and Rk
def= Mk/E

2
k.

• Finally, we return the smallest of the values Rk as R.

Theorem 18.8. The algorithm AR always computes R in time O(n · log(n)).

Computing R. In principle, we can have R = +∞ – e.g., if 0 ∈ [E,E]. If
0 �∈ [E,E] – e.g., if E > 0 – then we can guarantee that R < +∞. In this
case, we can bound R by the ratio M/E2.

When R < n, the maximum R is always attained at the endpoints:

Theorem 18.9. When R < n, the maximum R of the function R = M/E2

on the box x1× . . .×xn is attained at one of its vertices, i.e., when for every
i, either xi = xi or xi = xi.

In this case, we are able to efficiently compute R if the “narrowed” intervals
[x−i , x

+
i ] have few intersections, where:

x−i
def=

x̃i

1 +
Δi

E · n
; x+

i
def=

x̃i

1 − Δi

E · n
, (18.1)

and E def=
x1 + . . .+ xn

n
where x̃i

def= (xi + xi)/2 and Δi
def= (xi − xi)/2.

The corresponding algorithm AR is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n),
take x(0) = −∞ and x(2n+1) = +∞, and thus divide the real line into
2n+ 1 zones (x(0), x(1)], [x(1), x(2)], . . . , [x(2n−1), x(2n)], [x(2n), x(2n+1)).

• For each of these zones [x(k), x(k+1)], k = 0, 1, . . . , 2n, and for each variable
xi, we take:
• xi = xi if x+

i ≤ x(k);
• xi = xi if x−i ≥ x(k+1);
• both values xi = xi and xi = xi otherwise.
For each of these combinations, we compute E, M , and λ = M/E, and
check if λ is within the zone; if it is, we compute Rk = M/E2.

The largest of these computed values Rk is the desired upper endpoint R.

Theorem 18.10. For every positive integer c0, the algorithm AR computes
R in time O(n · log(n)) for all the cases in which R < n and no more than
c0 “narrowed” intervals can have a common point.

Summary

In many application areas, it is important to detect outliers. Traditional en-
gineering approach to outlier detection is that we start with some “normal”
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values x1, . . . , xn, compute the sample average E, the sample standard vari-
ation σ, and then mark a value x as an outlier if x is outside the k0-sigma
interval [E − k0 · σ,E + k0 · σ] (for some pre-selected parameter k0).

In real life, we often have only interval ranges xi = [xi, xi] for the normal
values x1, . . . , xn. For different values xi ∈ xi, we get different values of
L

def= E − k0 · σ and U
def= E + k0 · σ – and thus, different k0-sigma intervals

[L,U ]. We can therefore identify guaranteed outliers as values that are outside
all k0-sigma intervals, and possible outliers as values that are outside some k0-
sigma intervals. To detect guaranteed and possible outliers, we must therefore
be able to compute the range L = [L,L] of possible values of L and the range
U = [U,U ] of possible values of U .

In the previous chapters, we have shown how to compute the intervals
E = [E,E] and [σ, σ] of possible values for E and σ. In principle, we can
combine these intervals and conclude, e.g., that L always belongs to the
interval E− k0 · [σ, σ]. However, the resulting interval for L is wider than the
actual range – wider because the values E and σ are computed based on the
same inputs x1, . . . , xn and are, therefore, not independent from each other.

If, instead of the actual ranges for L and U , we use wider intervals, we may
miss some outliers. It is therefore important to compute the exact ranges for
L and U .

In this chapter, we showed that computing these ranges is, in general, NP-
hard, and we provided efficient algorithms that compute these ranges under
reasonable conditions.

Once a value is identified as an outlier for a fixed k0, we also show how to
find out to what degree this value is an outlier, i.e., what is the largest value
k0 for which this value is an outlier.

Proofs

Proof of Theorem 18.1. We will only prove the result for U ; for L, the proof
is practically identical.

Our proof is based on the fact that the minimum of a differentiable function
of xi on an interval [xi, xi] is attained either inside this interval or at one of

the endpoints. If the minimum is attained inside, the derivative
∂U

∂xi
is equal

to 0; if it is attained at xi = xi, then
∂U

∂xi
≥ 0; finally, if it is attained at

xi = xi, then
∂U

∂xi
≤ 0. For our function,

∂U

∂xi
=

1
n

+ k0 · xi − E

σ · n ;
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thus,
∂U

∂xi
= 0 if and only if xi = μ

def= E−α·σ; similarly, the non-positiveness

and non-negativeness of the derivative can be described by comparing xi with
μ. Thus:

• either xi ∈ (xi, xi) and xi = μ,
• or xi = xi and xi = xi ≥ μ,
• or xi = xi and xi = xi ≤ μ.

Hence, if we know how the value μ is located with respect to all the intervals
[xi, xi], we can find the optimal values of xi:

• if xi ≤ μ, then minimum cannot be attained inside or at the lower endpoint,
so it is attained when xi = xi;

• if μ ≤ xi, then, similarly, the minimum is attained when xi = xi;
• if xi < μ < xi, then the minimum is attained when xi = μ.

Hence, to find the minimum, we will analyze how the endpoints xi and xi

divide the real line, and consider all the resulting zones.
Let the corresponding zone [x(k), x(k+1)] be fixed. For the i’s for which

μ �∈ (xi, xi), the values xi that correspond to the minimal sample variance
are uniquely determined by the above formulas.

For the i’s for which μ ∈ (xi, xi), the selected value xi should be equal to
the same value μ. To determine this μ, we will use the fact that, by definition,
μ = E − α · σ, where E and σ are computed by using the same value of μ.
This equation is equivalent to E−μ ≥ 0 and α2 ·σ2 = (μ−E)2. Substituting
the above values of xi into the formula for the mean E and for the standard
deviation σ, we get the quadratic equation for μ which is described in the
algorithm. So, for each zone, we can uniquely determine the values xi that
may correspond to a minimum of U .

For the actual minimum, the value μ is inside one of these zone, so the
smallest of the values Uk is indeed the desired minimum.

In this algorithm, sorting takes O(n · log(n)) steps (see, e.g., [73]). The rest
of the algorithm takes linear time (O(n)) for the first zone, and then (similarly
to algorithm for computing variance) each value xi is updated once when we
go from one zone to another, so we need the total linear time. Thus, overall,
we need time O(n) +O(n · log(n)) = O(n · log(n)). The theorem is proven.

Proof of Theorem 18.2. Since U = E + k0 · σ = k0 · J , where J def= σ + α · E
and α = 1/k0, we have U = k0 · J , where J is the upper endpoint of the
interval of possible values of J . Thus, to prove that computing U is NP-hard,
it is sufficient to prove that computing J is NP-hard.

To prove that the problem of computing J is NP-hard, we will prove that
the known NP-hard subset problem P0 can be reduced to it in polynomial
time. In the subset problem, given m positive integers s1, . . . , sm, we must
check whether there exist signs ηi ∈ {−1,+1} for which the signed sum
m
∑

i=1

ηi · si equals 0.
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We will show that this problem can be reduced to the problem of comput-
ing J in polynomial time, i.e., that to every instance (s1, . . . , sm) of the prob-
lem P0, we can put into correspondence such an instance of the J-computing
problem that based on its solution, we can easily check whether the desired
signs exist.

For that, we compute three auxiliary values

S
def=

1
m

·
m
∑

i=1

s2i ; N
def= α ·

√

2S
1− α2

; J0
def= (1 + α2) ·

√

S

2 · (1 − α2)
;

since k0 > 1, we have α < 1, so these definitions make sense. Then, we take
n = 2 · m, [xi, xi] = [−si, si] for i = 1, 2, . . . ,m, and [xi, xi] = [N,N ] for
i = m+1, . . . , 2 ·m. We want to show that for the corresponding problem, we
always have J ≤ J0, and J = J0 if and only if there exist signs ηi for which
∑

ηi · si = 0.
Let us first prove that J ≤ J0. Since J is the upper endpoint of the interval

of possible values of J , this inequality is equivalent to proving that J ≤ J0

for all possible values J – i.e., for the values J corresponding to all possible
values xi ∈ xi.

Indeed, it is known that V = M − E2, where M def= (1/n) ·
n
∑

i=1

x2
i is the

sample second moment; therefore, J =
√
M − E2 +α ·E. This expression for

J can be viewed as a scalar (dot) product a ·b of two 2-D vectors a def= (1, α)
and b def= (

√
M − E2, E). It is well known that for arbitrary vectors a and b,

we have a ·b ≤ ‖a‖ · ‖b‖. In our case, ‖a‖ =
√

1 + α2 and ‖b‖ =
√
M , hence

J ≤ √
1 + α2 · √M .

Since |xi| ≤ si for i ≤ m and xi = N for i > m, we conclude that

M ≤ 1
2 ·m ·

m
∑

i=1

x2
i +

1
2 ·m ·

2·m
∑

i=m+1

x2
i =

1
2
· S +

1
2
·N2;

therefore, J ≤ √
1 + α2 ·√(S +N2)/2. Substituting the expression that de-

fines N into this formula, we conclude that J ≤ J0.
To complete our proof, we will show that if J = J0, then xi = ηi · si for

i ≤ m, and
m
∑

i=1

xi =
m
∑

i=1

ηi · si = 0. Let us first prove that xi = ±si. Indeed:

• we know that J = J0 and that J0 =
√

1 + α2 · √(S +N2)/2, so J =√
1 + α2 ·√(S +N2)/2;

• we have proved that in general, J≤√
1 + α2·√M≤√

1 + α2·√(S +N2)/2.

Therefore, J =
√

1 + α2 ·√(S +N2)/2 =
√

1 + α2 · √M , hence M = (S +
N2)/2. If |xj | < sj for some j ≤ m, then, from the fact that |xi| ≤ si for
all i ≤ m and xi = N for all i > m, we conclude that M < (S + N2)/2.
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Thus, for every i from 1 to m, we have |xi| = si, hence xi = ηi · si for some
ηi ∈ {−1, 1}.

Let us now show that a def= 1
m ·

m
∑

i=1

xi = 0. Indeed, since xi = N for i > m,

we have

E =
1

2 ·m ·
m
∑

i=1

xi +
1

2 ·m ·
2·m
∑

i=m+1

xi =
1
2
· a+

1
2
·N ;

therefore, to prove that a = 0, it is sufficient to prove that E = N/2. The
value of E can deduced from the following:

• we have just shown that in our case, J =
√

1 + α2 · √M , where M =
(S +N2)/2, and

• we know that in general, J = a ·b ≤ ‖a‖ · ‖b‖ =
√

1 + α2 ·√M , where the
vectors a and b are defined above.

Therefore, in this case, a · b = ‖a‖ · ‖b‖, and hence, the vectors a = (1, α)
and b = (

√
M − E2, E) are parallel (proportional) to each other, i.e.,√

M − E2/1 = E/α hence E = α · √M − E2. From this equality, we con-
clude that E > 0 and, squaring both sides, that E2 = α2 · (M − E2) hence
(1+α2) ·E2 = α2 ·M = α2 · (S+N2)/2 and E2 = α2 · (S+N2)/(2 · (1+α2)).
Substituting the expression that defines N into this formula, we conclude
that E2 = N2/4, so, since E > 0, we conclude that E = N/2 – and therefore,
that a = 0. The theorem is proven.
Proof of Theorem 18.3. This proof is similar to the proof of Theorem 18.2,
with the only difference that we consider J = σ−α ·E and we take xi = −N
for i > m.
Proof of Theorem 18.4. We will only prove the result for U ; for L, the proof
is practically identical.

When a function U attains its largest possible value at the value xi inside

the interval [xi, xi], then at this inside point,
∂U

∂xi
= 0 and

∂2U

∂x2
i

≤ 0. For our

function U , we have
∂U

∂xi
=

1
n

+ k0 · xi − E

σ · n ;

∂2U

∂x2
i

=
k0

σ3 · n ·
((

1 − 1
n

)

· σ2 − 1
n
· (xi − E)2

)

.

Since
∂U

∂xi
= 0, we have xi − E = −α · σ, hence

∂2Ui

∂x2
i

=
k0

σ3 · n ·
((

1 − 1
n

)

− α2

n

)

· σ2.

Since we assumed that 1+(1/k0)2 = 1+α2 < n, we conclude that 1−(1/n)−
(α2/n) > 0, so the second derivative is positive and therefore, we cannot have
a maximum in an internal point. The theorem is proven.



142 18 Computing Outlier Thresholds under Interval Uncertainty

Proof of Theorems 18.5 and 18.6. Similarly to the case of the previous two
theorems, we will only provide the result for U ; for L, the proof is, in effect,
the same.

Let us first prove that the algorithm described in the main text is indeed
correct. Since 1 + (1/k0)2 < n, we can use Theorem 18.4 and conclude that
the maximum of the function U is attained when for every i, either xi = xi

or xi = xi. For each i, we will consider both these cases.
If the maximum is attained for xi = xi, this means, in particular, that

if we keep all the other values xj the same (x′j = xj) but replace xi by
x′i = xi = xi − 2 · Δi, then the value U will decrease. We will denote the
values of E, U , etc., that correspond to (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn), by

E′, U ′, etc. In these terms, the desired inequality takes the form U ≥ U ′,
where U = E + k0 · σ and U ′ = E′ + k0 · σ′. We can represent this inequality
as k0 · σ ≥ (E′ − E) + k0 · σ′, hence either (E′ − E) + k0 · σ′ ≤ 0, or

k2
0 · σ2 ≥ (E′ − E)2 + k2

0 · (σ′)2 + 2(E − E′) · k0 · σ′.

In the second case, we move the terms linear in σ′ to one side of the inequality
and square both sides again. As a result, we get an inequality that only
contains variances V = σ2 = M−E2 (whereM is the sample second moment)
and V ′ = (σ′)2 = M ′ − (E′)2 and no longer contains square roots.

For our choice of x′i, we have E′ = E − (2 ·Δi)/n and

M ′ = M − 4 ·Δi · xi

n
+

4 ·Δ2
i

n
.

Substituting these expressions into the above-described inequality and sim-
plifying the resulting algebraic expression, we conclude that

x̃i +Δi · 1 + α2

n
≥ E − α · σ.

Similarly, if the maximum is attained for xi = xi, this means, in particular,
that if we keep all the other values xj the same but replace xi by x′i = xi =
xi+2·Δi, then the value U will decrease. This property leads to the inequality

x̃i −Δi · 1 + α2

n
≤ E − α · σ.

So:

• if xi = xi, then E − α · σ ≤ x̃i +Δi · 1 + α2

n ;

• if xi = xi, then E − α · σ ≥ x̃i −Δi · 1 + α2

n .

Therefore, if we know the value of E − α · σ, then:

• if x̃i +Δi · 1 + α2

n < E−α ·σ, then we cannot have xi = xi hence xi = xi;

• similarly, if x̃i − Δi · 1 + α2

n > E − α · σ, then we cannot have xi = xi

hence xi = xi.
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The only case when we do not know what value to choose is the case when

x̃i −Δi · 1 + α2

n
≤ E − α · σ ≤ x̃i +Δi · 1 + α2

n
,

i.e., when the value E − α · σ belongs to the i-th narrowed interval; in this
case, we can, in principle, have both xi = xi and xi = xi. Thus, the algorithm
is indeed correct.

Let us prove that this algorithm takes time O(n · log(n)). Indeed, once
we know where E is with respect to the endpoints of all narrowed intervals,
we can determine the values of all optimal xi – except for those that are
within this narrowed interval. Since we consider the case when no more than
c0 narrowed intervals can have a common point, we have no more than c0
undecided values xi. Trying all possible combinations of lower and upper
endpoints for these ≤ c0 values takes ≤ 2c0 steps. For each zone and for each
of these combinations, we need a linear time (O(n)) to compute U . Thus, for
each zone, we need O(2c0 ·n) computational steps. Since c0 is a constant, the
overall number of steps is thus O(n).

For the first zone, we need all this time; for every other zone, each value
xi is updated once. Thus, the overall number of steps after sorting is O(n),
and the total number of steps is O(n · log(n)). The theorem is proven.

Proof of Theorem 18.7. To find the values xi which maximize U , we reduce
the interval computation problem to the constraint satisfaction problem with
the following constraints:

• for every i, if in the maximizing assignment we have xi = xi, then replacing
this value with xi = xi will either decrease U or leave U unchanged;

• similarly, for every i, if in the maximizing assignment we have xi = xi,
then replacing this value with xi = xi will either decrease U or leave U
unchanged;

• finally, for every i and j, replacing both values xi and xj with the opposite
ends of the corresponding intervals xi and xj will either decrease U or
leave U unchanged.

We will show that the solution to the resulting constraint satisfaction problem
indeed leads to the above efficient algorithm for computing U .

Let us first show that the above algorithm indeed takes O(n · log(n)) com-
putation steps. It is well known that sorting takes O(n · log(n)) steps (see,
e.g., [73]). Computing the initial values M (0), E(0), and V (0) takes linear
time O(n). For each k from 0 to n − 1, we need a constant number of steps
to compute the next values M (k+1), E(k+1), and V (k+1). Computing U (k+1)

also takes a constant number of steps. Finally, finding the largest of n + 1
values U (k) also takes O(n) steps. Thus, overall, we need

O(n · log(n)) +O(n) +O(n) +O(n) = O(n · log(n)) steps.
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It is worth mentioning that if the measurement results x̃i are already
sorted, then we only need linear time to compute U .

Now, we need to justify our algorithm. We have already proven that the
maximum U of the function U is attained at a vector x = (x1, . . . , xn) in
which each value xi is equal either to xi or to xi.

To justify our algorithm, we need to prove that this maximum is attained
at one of the vectors x(k) in which all the lower bounds xi precede all the
upper bounds xi. We will prove this by reduction to a contradiction. Indeed,
let us assume that the maximum is attained at a vector x in which one of
the lower bounds follows one of the upper bounds. In each such vector, let i
be the largest upper bound index followed by the lower bound; then, in the
optimal vector x, we have xi = xi and xi+1 = xi+1.

Since the maximum is attained for xi = xi, replacing it with xi = xi−2·Δi

will either decrease the value of U or keep it unchanged. Let us describe how
U changes under this replacement. Since U is defined in terms of E, M , and
V , let us first describe how E, M , and V change under this replacement. In
the sum for M , we replace (xi)2 with

(xi)
2 = (xi − 2 ·Δi)2 = (xi)2 − 4 ·Δi · xi + 4 ·Δ2

i .

Thus, the value M changes into M +ΔMi, where

ΔMi = − 4
n
·Δi · xi +

4
n
·Δ2

i . (18.2)

The population mean E changes into E +ΔEi, where

ΔEi = −2 ·Δi

n
. (18.3)

Thus, the value E2 changes into (E +ΔEi)2 = E2 +Δ(E2)i, where

Δ(E2)i = 2 ·E ·ΔEi +ΔE2
i = − 4

n
· E ·Δi +

4
n2

·Δ2
i . (18.4)

So, the variance V changes into V +ΔVi, where

ΔVi = ΔMi −Δ(E2)i = − 4
n
·Δi · xi +

4
n
·Δ2

i +
4
n
· E ·Δi − 4

n2
·Δ2

i =

4
n
·Δi ·

(

−xi +Δi + E − Δi

n

)

.

By definition, xi = x̃i +Δi, hence −xi +Δi = −x̃i. Thus, we conclude that

ΔVi =
4
n
·Δi ·

(

−x̃i + E − Δi

n

)

. (18.5)
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The function U = E+k0 ·σ attains its maximum if and only if the function
u

def= α · U = α · E + σ attains its maximum. After the change, the value u
changes into

u+Δui = α · (E +ΔEi) +
√

V +ΔVi,

so the condition u+Δui ≤ u leads to

α · (E +ΔEi) +
√

V +ΔVi ≤ α · E + σ.

By moving the term proportional to α to the right-hand side, we conclude
that

√
V +ΔVi ≤ σ−α ·ΔEi. In the new inequality, the left-hand side is the

new value of the standard deviation, so it is a non-negative number, hence
the right-hand side is also non-negative, so we can square both sides of the
inequality and conclude that

V +ΔVi ≤ σ2 − 2 · α · σ ·ΔEi + α2 · (ΔEi)2.

Moving all the terms to the left-hand side and using the fact that V = σ2,
we conclude that

zi
def= ΔVi + 2 · α · σ ·ΔEi − α2 · (ΔEi)2 ≤ 0. (18.6)

Substituting the known values of ΔVi and ΔEi, we get:

zi =
4
n
·Δi · ei, (18.7)

where
ei = −x̃i + E − Δi

n
− α · σ − α2 · Δi

n
,

i.e.,

ei = (E − α · σ) −
(

x̃i +
1 + α2

n
·Δi

)

. (18.8)

Thus, from zi ≤ 0, we conclude that

E − α · σ ≤ x̃i +
1 + α2

n
·Δi. (18.9)

Similarly, since the maximum of u is attained for xi+1 = xi+1, replacing
it with xi+1 = xi+1 + 2 · Δi+1 will either decrease the value of u or keep it
unchanged. Let us describe how variance changes under this replacement. In
the sum for M , we replace (xi+1)

2 with

(xi+1)2 = (xi+1 + 2 ·Δi+1)2 = (xi+1)
2 + 4 ·Δi+1 · xi+1 + 4 ·Δ2

i+1.

Thus, the value M changes into M +ΔMi+1, where

ΔMi+1 =
4
n
·Δi+1 · xi+1 +

4
n
·Δ2

i+1. (18.10)
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The population mean E changes into E +ΔEi+1, where

ΔEi+1 =
2 ·Δi+1

n
. (18.11)

Thus, the value E2 changes into

(E +ΔEi+1)2 = E2 +Δ(E2)i+1,

where

Δ(E2)i+1 = 2 · E ·ΔEi+1 +ΔE2
i+1 =

4
n
·E ·Δi+1 +

4
n2

·Δ2
i+1. (18.12)

So, the variance V changes into V +ΔVi+1, where

ΔVi+1 = ΔMi+1−Δ(E2)i+1 =
4
n
·Δi+1 ·xi+1+

4
n
·Δ2

i+1−
4
n
·E·Δi+1− 4

n2
·Δ2

i+1

=
4
n
·Δi+1 ·

(

xi+1 +Δi+1 − E − Δi+1

n

)

.

By definition, xi+1 = x̃i+1 − Δi+1, hence xi+1 + Δi+1 = x̃i+1. Thus, we
conclude that

ΔVi+1 =
4
n
·Δi+1 ·

(

x̃i+1 − E − Δi+1

n

)

. (18.13)

Since u attains maximum at x, we have Δui+1 ≤ 0, i.e., zi+1 ≤ 0, where

zi+1
def= ΔVi+1 + 2 · α · σ ·ΔEi+1 − α2 · (ΔEi+1)2. (18.14)

Substituting the expressions (18.13) for ΔVi+1 and (18.11) for ΔEi+1 into
this formula, we conclude that

zi+1 =
4
n
·Δi+1 · ei+1, (18.15)

where

ei+1
def= −(E − α · σ) +

(

x̃i+1 − 1 + α2

n
·Δi+1

)

(18.16)

and

E − α · σ ≥ x̃i+1 − 1 + α2

n
·Δi+1. (18.17)

We can also change both xi and xi+1 at the same time. In this case, from
the fact that u attains the maximum at x, we conclude that u+Δu ≤ u, i.e.,
that

z
def= ΔV + 2 · α · σ ·ΔE − α2 · (ΔE)2. (18.18)

Here, the change ΔM in M is simply the sum of the changes coming from xi

and xi+1:
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ΔM = ΔMi +ΔMi+1, (18.19)

and the change ΔE in E is also the sum of the corresponding changes:

ΔE = ΔEi +ΔEi+1. (18.20)

So, for
ΔV = ΔM −Δ(E2) = ΔM − 2 ·E ·ΔE −ΔE2,

we get

ΔV = ΔMi +ΔMi+1 − 2 · E ·ΔEi − 2 · E ·ΔEi+1 − (ΔEi)2 − (ΔEi+1)2−

2 ·ΔEi ·ΔEi+1.

Hence,

ΔV = (ΔMi − 2 ·E ·ΔEi − (ΔEi)2)+ (ΔMi+1 − 2 ·E ·ΔEi+1 − (ΔEi+1)2)−

2 ·ΔEi ·ΔEi+1,

i.e.,
ΔV = ΔVi +ΔVi+1 − 2 ·ΔEi ·ΔEi+1. (18.21)

Substituting expressions (18.19), (18.20), and (18.21) into the formula (18.18)
for z, we conclude that

z = ΔV + 2 · α · σ ·ΔE − α2 · (ΔE)2 = ΔVi +ΔVi+1 − 2 ·ΔEi ·ΔEi+1+

2α · σ ·ΔEi + 2α · σ ·ΔEi+1−
α2 · (ΔEi)2 − α2 · (ΔEi+1)2 − 2 · α2 ·ΔEi ·ΔEi+1.

Hence,

z = (ΔVi+2·α·σ·ΔEi−α2 ·(ΔEi)2)+(ΔVi+1+2·α·σ·ΔEi+1−α2 ·(ΔEi+1)2)−

2 · (1 + α2) ·ΔEi ·ΔEi+1.

From the formulas (18.6) and (18.14), we know that the first expression is zi

and that the second expression is zi+1, so

z = zi + zi+1 − 2 · (1 + α2) ·ΔEi ·ΔEi+1.

We already have the expressions (18.7), (18.8), (18.15), (18.16), (18.3), and
(18.11) for, correspondingly, zi, zi+1, ΔEi, and ΔEi+1, so we conclude that

z =
4
n
·D(E′), where E′ def= E − α · σ and
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D(E′) def= Δi ·
(

E′ −
(

x̃i +
1 + α2

n
·Δi

))

+

Δi+1 ·
(

−E′ +
(

x̃i+1 − 1 + α2

n
·Δi+1

))

+ 2 · (1 + α2) · Δi ·Δi+1

n
. (18.22)

Since z ≤ 0, we have D(E′) ≤ 0 (for the value E′ = E − α · σ corresponding
to the optimizing vector x).

The expression D(E′) is a linear function of E′. From (18.9) and (18.17),
we know that

x̃i+1 − 1 + α2

n
·Δi+1 ≤ E′ ≤ x̃i +

1 + α2

n
·Δi.

For E′ = E− def= x̃i+1 − 1 + α2

n
·Δi+1, we have

D(E−) = Δi · fi +
2 · (1 + α2)

n
·Δi ·Δi+1,

where

fi
def= −x̃i + x̃i+1 − 1 + α2

n
·Δi+1 − 1 + α2

n
·Δi,

hence D(E−) = Δi · gi, where

gi
def= −x̃i + x̃i+1 +

1 + α2

n
·Δi+1 − 1 + α2

n
·Δi.

We assumed that no narrowed interval is a proper subset of any other.
How can we describe this condition in algebraic terms? Let us denote δi

def=
1 + α2

n
·Δi; then, the i-th narrowed interval has the form [x̃i − δi, x̃i + δi]. If

[x̃i − δi, x̃i + δi] is a proper subinterval of [x̃j − δj , x̃j + δj ], this means that
x̃i − δi > x̃j − δj and x̃i + δi < x̃j + δj, i.e., equivalently, that

δi − δj < x̃i − x̃j < δj − δi.

This inequality is equivalent to δj > δi and |x̃i − x̃j | < δj − δi. Similarly, the
condition that the j-th narrowed interval is a proper subinterval of the i-th is
equivalent to δj < δi and |x̃i − x̃j | < δi − δj . Both cases can be described by
a single inequality |x̃i − x̃j | < |δi − δj|. Thus, the condition that no narrowed
interval can be a proper subinterval of any other narrowed interval can be
described as

|x̃i − x̃j | ≥ |δi − δj |. (18.23)

In particular, we have |x̃i − x̃i+1| ≥ |δi − δi+1|.
Let us first consider the case when

|x̃i+1 − xi| > |δi − δi+1|.
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Since the values x̃i are sorted in increasing order, we have x̃i+1 ≥ x̃i, hence

x̃i+1 − x̃i = |x̃i+1 − x̃i| > |δi − δi+1| ≥ δi − δi+1.

So, we conclude that D(E−) > 0.

For E = E+ def= x̃i +
1 + α2

n
·Δi, we have

D(E+) = Δi+1 · fi+1 +
2 · (1 + α2)

n
·Δi ·Δi+1,

where

fi+1
def= −x̃i + x̃i+1 − 1 + α2

n
·Δi+1 − 1 + α2

n
·Δi,

hence D(E+) = Δi+1 · gi+1, where

gi+1
def= −x̃i + x̃i+1 +

1 + α2

n
·Δi − 1 + α2

n
·Δi+1.

Here, from |x̃i+1 − x̃i| > |δi − δi+1|, we also conclude that D(E+) > 0.
Since the linear functionD(E′) is positive on both endpoints of the interval

[E−, E+], it must be positive for every value E′ from this interval, which
contradicts to our conclusion that D(E′) ≤ 0 for the actual value E′ =
E − α · σ ∈ [E−, E+]. This contradiction shows that the maximum of U is
indeed attained at one of the values x(k), hence the algorithm is justified.

The general case when |x̃i − x̃j | ≥ |δi − δj | can be obtained as a limit of
cases when we have strict inequality. Since the function U is continuous, the
value U continuously depends on the input bounds, so by tending to a limit,
we can conclude that our algorithm works in the general case as well.
Proof of Theorem 18.8. Let us first consider the case when all the intervals
intersect. We know that the variance V = M − E2 is always non-negative;
therefore, M ≥ E2 and R ≥ 1; hence R ≥ 1. If all the intervals have a
common point, it is possible that all the values xi are equal to this common
point; in this case, V = 0 hence R = 1. Thus, in this case, R = 1.

Let us now consider the case when the intersection of n intervals is empty.
For this case, the proof is similar to the proof of Theorem 18.1. Indeed, the
minimum of a differentiable function of xi on an interval [xi, xi] is attained
either inside this interval or at one of the endpoints. If the minimum is at-

tained inside, the derivative
∂R

∂xi
is equal to 0; if it is attained at xi = xi, then

∂R

∂xi
≥ 0; finally, if it is attained at xi = xi, then

∂R

∂xi
≤ 0. For our function,

∂R

∂xi
=

2
n · E3

· (E · xi −M);

thus,
∂R

∂xi
= 0 if and only if xi = λ

def= M/E; similarly, the non-positiveness

and non-negativeness of the derivative can be described by comparing xi with
λ. Thus:
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• either xi ∈ (xi, xi) and xi = λ,
• or xi = xi and xi = xi ≥ λ,
• or xi = xi and xi = xi ≤ λ.

The proof continues just like for Theorem 18.1.

Proof of Theorem 18.9. This proof is similar to the proof of Theorem 18.4.
When a function R = M/E2 attains its largest possible value R at the value

xi inside the interval [xi, xi], then at this inside point,
∂R

∂xi
= 0 and

∂2R

∂x2
i

≤ 0.

For our function R, we have

∂R

∂xi
=

2
n · E3

· (E · xi −M);

∂2R

∂x2
i

=
2

n · E4
·
[

(

E − xi

n

)

·E − 2(E · xi −M) · 1
n

]

.

Since
∂R

∂xi
= 0, we have xi = M/E, hence

∂2Ri

∂x2
i

=
2

n ·E2

(

1 − xi

n · E
)

=
2

n · E2

(

1 − M

n · E2

)

=
2

n · E2

(

1 − R

n

)

.

Since we assumed that R < n, we conclude that the second derivative is
positive and therefore, we cannot have a maximum in an internal point. The
theorem is proven.

Proof of Theorem 18.10. This proof is similar to the proof of Theorems 18.5
and 18.6. Let us first prove that the algorithm described in the main text
is indeed correct. Since R, we can use Theorem 18.9 and conclude that the
maximum of the function R is attained when for every i, either xi = xi or
xi = xi. For each i, we will consider both these cases.

If the maximum is attained for xi = xi, this means, in particular, that if we
keep all the other values xj the same (x′j = xj) but replace xi by x′i = xi =
xi−2 ·Δi, then the value R = M/E2 will decrease. We will denote the values
of E and M that correspond to (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn), by E′, and

M ′. In these terms, the desired inequality takes the form M/E2 ≥M ′/(E′)2,
i.e., equivalently, M · (E′)2 ≥M ′ · E2.

In the proof of Theorems 18.5 and 18.6, we had expressions for E′ and M ′.
Substituting these expressions into the above inequality and simplifying the
resulting algebraic expression, we conclude that

x̃i ≤ λ ·
(

1 +
Δi

E · n
)

,

where λ def= M/E.



18 Computing Outlier Thresholds under Interval Uncertainty 151

Similarly, if the maximum is attained for xi = xi, we have

x̃i ≥ λ ·
(

1 − Δi

E · n
)

.

Therefore, if we know the value of λ = M/E, then:

• if
x̃i

1 + Δi
E · n

> λ, then we cannot have xi = xi hence xi = xi;

• if
x̃i

1 − Δi
E · n

< λ, then we cannot have xi = xi hence xi = xi.

Similarly to the proof of Theorems 18.5 and 18.6, we can now conclude that
the algorithm described in the main text is correct and that this algorithm
takes time O(n · log(n)).



19

Computing Higher Moments under Interval

Uncertainty

Higher central moments Mh =
1
n
·

n
∑

i=1

(xi − E)h are very useful in statistical

analysis: the third moment M3 characterizes asymmetry of the correspond-
ing probability distribution, the fourth moment M4 describes the size of the
distribution’s tails, etc. To be more precise, skewness M3/σ

3 is used to char-
acterize asymmetry, and kurtosis M4/σ

4 − 3 is used to characterize the size
of the tails (3 is subtracted so that kurtosis is 0 for the practically frequent
case of a normal distribution).

In addition to central moments Mh, sometimes, non-central sample mo-

ments are also used: M ′
h =

xh
1 + . . .+ xh

n

n
.

When we know the exact values x1, . . . , xn, we can use known formulas
for computing the corresponding sample central moments. In many practical
situations, however, we only know intervals x1, . . . ,xn of possible values of
xi; in such situations, we want to know the range of possible values of Mh.
In this chapter, we propose algorithms that compute such ranges.

Algorithms

Case of non-central moments. Due to monotonicity, we can easily compute
the exact bounds for non-central moments M ′

h for odd h:

M ′
h =

(x1)
h + . . .+ (xn)h

n
; M

′
h =

(x1)h + . . .+ (xn)h

n
.

For example, for h = 3 and x1 = x2 = x3 = [−1, 1], we get M ′
3 = [−1, 1].

For even h, it is known (see, e.g., [142]) that the range of xh when
x ∈ [x, x] is equal to [(min(|x|, |x|))h, (max(|x|, |x|))h] when 0 �∈ [x, x] and
to [0, (max(|x|, |x|))h] otherwise. Thus,

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 153–166.
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M ′
h =

Fh(x1, x1) + . . .+ Fh(xn, xn)
n

,

where F (a, b) = 0 if a ≤ 0 ≤ b and min(|a|, |b|) otherwise, and

M
′
h =

(max(|x1|, |x1|))h + . . .+ (max(|xn|, |xn|))h

n
.

For example, for [−1, 1] and h = 4, we have [−1, 1]4 = [0, 1] hence M ′
4 = [0, 1]

– which again makes perfect sense: this moment can be 0 if all the values xi

are equal to 0; it can be equal to 1 if all the values are equal to 1; and it
cannot be larger than 1 because it is the average of three values x4

i , each of
which is ≤ 1.

Theorem 19.1. For every even h, there exists an algorithm that computes
Mh in time O(n · log(n)).

This algorithm is as follows.

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n).
This sequence divides the real line into 2n+1 segments [x(k), x(k+1)], where

k = 0, . . . , 2n, x(0)
def= −∞, and x(2n+1)

def= +∞.
• For each segment [x(k), x(k+1)], we do the following:

– First, define n values x1, . . . , xn as follows:
· if xi ≥ x(k+1), we take xi = xi;
· if xi ≤ x(k), we take xi = xi;
· in all other cases, let xi = α, where α is a new auxiliary variable.

– Based on these expressions for the xi, we find each as a linear function
of α: xi = xi(α); combining these expressions, we get the expression for
the sample average E as a linear function of α:

E(α) =
x1(α) + . . .+ xn(α)

n
.

– Then, we substitute these expressions for xi and E into the equation

1
n
·

n
∑

i=1

(xi(α) − E(α))h−1 = (α− E(α))h−1.

This equation is a polynomial equation of order ≤ h− 1 in terms of the
unknown α, so it has ≤ h− 1 solutions. We compute these solutions.

– For each of the solutions that is inside the segment [x(k), x(k+1)], we
assign it to α in the formulas for xi and E, giving values for xi and E.
Based on these values, we compute

Mh =
1
n
·

n
∑

i=1

(xi − E)h.

• The smallest of the computed values for Mh for each k and for each case
of α in [x(k), x(k+1)] is the desired lower bound Mh.
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Example. For example, when x1 = x2 = x3 = [−1, 1] and h = 4, this
algorithm produces the correct bound M4 = 0. That bound is attainable if,
e.g., x1 = x2 = x3 = 0.

Computing Mh for even h in time 2n. We have already mentioned that for
h = 2, the problem of computingMh is NP-hard, but it is possible to compute
this bound in time 2n. This computation is practical when the number of
observations n is small. A similar algorithm is possible for all even h:

Theorem 19.2. For every even h, there exists an algorithm that computes
Mh in time O(2n).

The algorithm is as follows: for each i, we select either xi = xi or xi = xi. For
each i from 1 to n, there are two options, so totally, we have 2n combinations
to try. For each of these combinations, we compute Mh; the largest of the
resulting 2n values is the desired upper bound Mh.

In particular, for x1 = x2 = x3 = [−1, 1] and h = 4, this algorithm
produces the boundM4 = 32/27 ≈ 1.19 – that is attainable if, e.g., x1 = x2 =
1 and x3 = −1. Once can check that for all other combinations xi ∈ [−1, 1],
we get smaller (or equal) value of the 4th central moment M4.

Third result: computing Mh for even h in quadratic time (case when intervals
have c0-few intersections). Sets S1, . . . , Sn are called pairwise disjoint if every
pair has an empty intersection, i.e., if Si ∩ Sj = ∅ for all i �= j. We can
generalize this definition from pairs to tuples of arbitrary size C:

Definition 19.1. Let c0 ≥ 2 be an integer. We say that a sequence of sets
S1, . . . , Sn has c0-few intersections if for every c0 different indices i1, . . . , ic0,
we have Si1 ∩ . . . ∩ Sic0

= ∅.
Theorem 19.3. For every even h and for every c0 ≥ 2, there exists an
algorithm that computes Mh in time O(n · log(n)) when the input intervals
x1, . . . ,xn have c0-few intersections.

This algorithm is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n).
This sequence divides the real line into 2n+1 segments [x(k), x(k+1)], where

k = 0, . . . , 2n, x(0)
def= −∞, and x(2n+1)

def= +∞.
• For each of these segments [x(k), x(k+1)], we do the following:

– First, we describe several combinations (x1, . . . , xn) as follows:
· if xi < x(k), we take xi = xi;
· if xi > x(k+1), we take xi = xi;
· for all other indices i (there are ≤ c0 of them), we consider all possible

combinations of xi = xi and xi = xi.
As a result, we get ≤ 2c0 different combinations.

– For each resulting combination (x1, . . . , xn), we compute E as the av-
erage of all the values xi, then we compute
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Mh−1 =
1
n
·

n
∑

i=1

(xi − E)h−1,

and α = E +M
1/(h−1)
h−1 .

– For each combination for which the resulting value α is within the seg-
ment [x(k), x(k+1)], we compute

Mh =
1
n
·

n
∑

i=1

(xi − E)h.

• The largest of thus computed values Mh is the desired upper bound Mh.

In particular, for x1 = x2 = x3 = [−1, 1], h = 4, and c0 = 4, we get the
correct bound M4 = 32/27 ≈ 1.19.

Fourth result: computing Mh and Mh for odd h in quadratic time (case when
intervals have c0-few intersections).

Theorem 19.4. For every odd h and for every c0 ≥ 2, there exists an algo-
rithm that computes Mh in quadratic time when the input intervals x1, . . . ,xn

have c0-few intersections.

The algorithm for computing Mh is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n).
This sequence divides the real line into 2n+1 segments [x(k), x(k+1)], where

k = 0, . . . , 2n, x(0)
def= −∞, and x(2n+1)

def= +∞.
• For each pair of segments [x(k), x(k+1)] and [x(l), x(l+1)], k ≤ l, we do the

following:
– First, we describe several combinations (x1, . . . , xn) as linear functions

of α− and α+ as follows:
· if xi < x(k), we take xi = xi;
· if xi > x(k+1), we take xi = xi;
· for all other indices i (there are ≤ 2c0 of them), we consider all

possible combinations of xi = xi, xi = xi, xi = α− (if [x(k), x(k+1)] ⊆
xi) and xi = α+ (if [x(l), x(l+1)] ⊆ xi).

As a result, we get ≤ 42c0 different combinations.
– For each resulting combination (x1, . . . , xn), we find the expression for
E as the average of all the values xi. Then, we substitute the expressions
for xi and E into the system of equations

1
n
·

n
∑

i=1

(xi − E)h−1 = (E − α−)h−1;

1
n
·

n
∑

i=1

(xi − E)h−1 = (α+ − E)h−1.
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We compute all solutions of this system of polynomial equations with
unknowns α− and α+.

– For each of the solutions for which α− ∈ [x(k), x(k+1)] and α+ ∈
[x(l), x(l+1)], we substitute the corresponding values α− and α+ into
the formulas for xi and E, thus, we compute xi and E; based on these
values, we compute

Mh =
1
n
·

n
∑

i=1

(xi − E)h.

• The smallest of thus computed values Mh is the desired lower bound Mh.

Theorem 19.5. For every odd h and for every c0 ≥ 2, there exists an algo-
rithm that computes Mh in quadratic time when the input intervals x1, . . . ,xn

have c0-few intersections.

Since h is odd, the h-th central moment of the values x1, . . . , xn is equal to
minus the h-th moment of the values −x1, . . . ,−xn. Turning to −xi changes
largest and smallest values and vice versa. Thus, to compute Mh for the
intervals xi = [xi, xi], it is sufficient to compute the lower bound Mh for the
intervals −xi = [−xi,−xi], and then change the sign of the resulting bound.
Since we can use the above cubic-time algorithm to compute Mh, we thus
get a cubic-time algorithm for computing Mh.

In particular, for x1 = x2 = x3 = [−1, 1], h = 3, and c0 = 4, we get the
bounds M3 = 80/81 ≈ 0.988 and M3 = −80/81. The largest value M3 is
attained when x1 = x2 = 1 and x3 = −1; the smallest value M3 is attained,
e.g., when x1 = x2 = −1 and x3 = 1.

Fifth result: computing the bounds M3 and M3 in quadratic time (case when
intervals satisfy the no-subset property). We say that intervals [xi, xi] satisfy
a no-subset property if [xi, xi] �⊆ (xj , xj) for all i and j.

Comment. As we have mentioned when we discussed computing variance
under interval uncertainty, this property holds, e.g., when we perform all
the measurements with the same measuring instrument. Another case when
this property is satisfied is when we have a database in which, for privacy
purposes, we select thresholds t1 < t2 < . . . < tk, and each value x is replaced
by the thresholds interval [tj , tj+1] that contains this value.

Theorem 19.6. There exists an algorithm that computes M3 and M3 in
quadratic time when the intervals satisfy the no-subset property.

When we have a limited number m of measuring instruments, then the re-
sulting intervals can be divided into C families corresponding to different
intervals. In this case, for each m, it is also possible to have a polynomial-
time algorithm for computing the third central moment.
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Theorem 19.7. There exists an algorithm that computes M3 and M3 in
time O(n2m) when the intervals can be divided into m families each of which
satisfies the no-subset property.

Proofs of Theoretical Results and Justifications of
Algorithms

Proof of Theorem 19.1. The central moment Mh is a continuous function of
n variables; thus, its smallest possible value on a compact box x1 × . . .×xn

is attained at some point x(0) = (x(0)
1 , . . . , x

(0)
n ). Since the function Mh is

also smooth, for each variable i for which the interval xi is non-degenerate
(i.e., of finite width), the minimum is attained either when x(0)

i is inside the
corresponding interval (xi, xi) and value Mm,i of the derivative ∂Mh/∂xi at
xi = x

(0)
i is equal to 0, or when x

(0)
i coincides with one of the endpoints of

this interval. To be more precise, we must have one of the following three
situations:

• either x(0)
i ∈ (xi, xi) and ∂Mh/∂xi = 0 at xi = x

(0)
i ;

• or x(0)
i = xi and ∂Mh/∂xi ≥ 0 at xi = x(0);

• or x(0)
i = xi and ∂Mh/∂xi ≤ 0 at xi = x(0).

Differentiating Mh w.r.t. xi, and taking into consideration that ∂E/∂xi =
1/n, we conclude that

∂Mh

∂xi
=

1
n
· h · (xi − E)h−1 +

1
n
·

n
∑

j=1

h · (xj − E)h−1 ·
(

− 1
n

)

.

The summation in this formula is proportional to the (h− 1)-st central mo-
ment Mh−1, and allows the above formula can be simplified into:

∂Mh

∂xi
=
m

n
· ((xi − E)h−1 −Mh−1). (19.1)

Therefore,

Mm,i =
∂Mh

∂xi
(x(0)

1 , . . . , x(0)
n ) =

h

n
· ((x(0)

i − E(0))h−1 −M
(0)
h−1), (19.2)

where

E(0) def=
x

(0)
1 + . . .+ x

(0)
n

n

and

M
(0)
h−1 =

(x(0)
1 − E(0))h−1 + . . .+ (x(0)

n − E(0))h−1

n
.
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Due to this formula:

• if
∂Mh

∂xi
= 0 at xi = x

(0)
i , then (x(0)

i − E(0))h−1 = M
(0)
h−1, hence x(0)

i =

E(0) + (M (0)
h−1)

1/(h−1) def= α;

• if
∂Mh

∂xi
≥ 0 at xi = x

(0)
i , then (x(0)

i − E(0))h−1 ≥ M
(0)
h−1, hence (since the

function z → z1/(h−1) is increasing for even h) x(0)
i ≥ α;

• if
∂Mh

∂xi
≤ 0 at xi = x

(0)
i , then (x(0)

i − E(0))h−1 ≤M
(0)
h−1, hence x(0)

i ≤ α.

Therefore, the above conditions on x(0)
i can be reformulated as follows:

• either x(0)
i ∈ (xi, xi) and x(0)

i = α; in this case, xi < α < xi;
• or x(0)

i = xi and x(0)
i ≥ α;

• or x(0)
i = xi and x(0)

i ≤ α.

Hence, once we know α, we can determine all n values x(0)
i as follows:

• if xi ≤ α, then we cannot have the first case (when α < xi) or the second
case (when α ≤ xi hence α < xi); therefore, we can only have the third
case, when x(0)

i = xi;
• similarly, if α ≤ xi, then we must have x(0)

i = xi;
• finally, when xi < α < xi, then we must have x(0)

i = α.

The only thing that remains is to find α. Once we know to which of the
2n + 1 segments [x(k), x(k+1)] the value α belongs (and if α is an endpoint,
it can belong to two segments), we then can tell for which of the original
intervals [xi, xi] = xi the value leading to the minimal value of Mh is not
an endpoint (i.e., not xi or xi). We can uniquely describe all the values xi

as linear functions of α, and then define α from the condition that α =
E + M

1/(h−1)
h−1 , i.e., equivalently, that Mh−1 = (α − E)h−1. This is exactly

what our algorithm does.
This proves that our algorithm is correct. To complete the proof, we must

also show that this algorithm takes time O(n · log(n)).
Indeed, sorting takes O(n·log(n)) steps, and the rest of the algorithm takes

linear time (O(n)) for each of 2n segments. Computations corresponding to
the first segment take linear time O(n). Then, we can use the some corre-
sponding to each segment to compute the sums corresponding to the next
segment. For each of the input intervals, the corresponding value in each of
the sums changes only once. Thus, overall, all these changes in sums take
linear time O(n). So, the total computation time is

O(n · log(n)) +O(n) +O(n) = O(n · log(n)).

The theorem is proven.
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Proof of Theorem 19.2. Similarly to the proof of Theorem 19.1, we an con-
clude that for every i, the maximum of Mh over the interval xi is attained
either inside the interval (when the partial derivative is 0) or at one of the
endpoint of this interval. Thus, to prove that our algorithm is correct, we
must show that the maximum of Mh cannot be attained for xi ∈ (xi, xi),
when ∂Mh/∂xi = 0. Indeed, in the maximum point, the second derivative
∂2Mh/∂x

2
i must be non-positive. In the proof of Theorem 19.1, we have al-

ready derived an explicit formula (19.2) for ∂Mh/∂xi. The formula (19.2)
describes this derivative in terms of Mh−1, so when we differentiate both
sides of the formula (19.2), we can use the same expression for the derivative
of Mh−1. As a result, we get the following:

∂2Mh

∂x2
i

=
h

n
· T,

where
T = (h− 1) · (xi − E)h−2 − (h− 1) · (xi − E)h−2 · 1

n
−

h− 1
n

· (xi − E)h−2 +
h− 1
n

·Mh−2 =

h− 1
n

· ((n− 2) · (xi − E)h−2 +Mh−2

)

.

In the trivial case of n = 1, all central moments are 0. When n ≥ 2, both
terms are non-negative, so the second derivative is non-negative. We know
that the second derivative must be non-positive, so it must be equal to 0.
Since the sum of two non-negative numbers is equal to 0, both numbers are
equal to 0, in particular,

Mh−2 =
1
n
·

n
∑

i=1

(xi − E)h−2 = 0.

Therefore, all the values xi are identically equal to E. In this case, Mh = 0,
so this cannot be where the largest possible value of Mh is attained. This
contradiction shows that the maximum cannot be attained inside the interval
xi, hence it attained at the endpoints. The theorem is proven.

Proof of Theorem 19.3. We have already proven, in Theorem 19.2, that max-
imum can only be attained at one of the endpoints of the interval [xi, xi], i.e.,
when x

(0)
i = xi or x(0)

i = xi. Hence, for each i, we have one of the following
two situations:

• either x(0)
i = xi and ∂Mh/∂xi ≤ 0;

• or x(0)
i = xi and ∂Mh/∂xi ≥ 0.

We already know, from the proof of Theorem 1, that the condition ∂Mh/∂xi ≤
0 is equivalent to xi ≤ α, and the condition ∂Mh/∂xi ≥ 0 is equivalent to
xi ≥ α. Thus, the above two situations can be reformulated a follows:
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• either x(0)
i = xi and x(0)

i = xi ≤ α;
• or x(0)

i = xi and x(0)
i = xi ≥ α.

Hence:

• if xi < α, then we cannot have the second case (when xi ≥ α) and there-
fore, we can only have the first case, when x(0)

i = xi;
• similarly, if α < xi, then we must have x(0)

i = xi.

The only case when the knowledge of α does not help us determine xi is the
case when xi ≤ α ≤ xi, i.e., when α ∈ xi.

Since intervals have c0-few intersections, for each α, there can be no more
than c0 such intervals, so we can try all 2c0 possible assignments for each
segment. In other words, the time increases by a constant (≤ 2c0) over the
running time of the algorithm described in Theorem 19.1. This justifies the
algorithm and proves that it runs in time O(n · log(n)).

Proof of Theorem 19.4. Similarly to the proof of Theorem 19.1, we conclude
that for the point where the function Mh attains its minimum, we have:

• either x(0)
i ∈ (xi, xi) and ∂Mh/∂xi = 0;

• or x(0)
i = xi and ∂Mh/∂xi ≥ 0;

• or x(0)
i = xi and ∂Mh/∂xi ≤ 0.

Here, the derivative ∂Mh/∂xi is described by the same formula (19.2) as in
the proof of Theorem 19.1. The difference is that h is now odd, so:

• if ∂Mh/∂xi = 0, then (xi − E)h−1 = Mh−1, hence |xi − E| = M
1/(h−1)
h−1 ,

so either xi is equal to α− def= E − M
1/(h−1)
h−1 , or xi is equal to α+ def=

E +M
1/(h−1)
h−1 ;

• if ∂Mh/∂xi ≥ 0, then (xi −E)h−1 ≥Mh−1, hence |xi −E| ≥M
1/(h−1)
h−1 , so

xi ≤ α− or xi ≥ α+;
• if ∂Mh/∂xi ≤ 0, then (xi −E)h−1 ≤Mh−1, hence |xi −E| ≤M

1/(h−1)
h−1 , so

α− ≤ xi ≤ α+.

Therefore, the above conditions on x(0)
i can be reformulated as follows:

• in the first case, x(0)
i ∈ (xi, xi) and either x(0)

i = α− or x(0)
i = α+; in this

case, either xi < α− < xi or xi < α+ < xi;
• in the second case, x(0)

i = xi and either x(0)
i = xi ≤ α− or x(0)

i = xi ≥ α+;
• in the third case, x(0)

i = xi and α− ≤ x
(0)
i = xi ≤ α+.

Hence, once we know α− and α+, we can determine (at least some) some
values x(0)

i as follows:

• if α− < xi < xi < α+, then we cannot have the first case (when α− > xi or
α+ < xi), and we cannot have the second case (when xi ≤ α− or xi ≥ α+);
therefore, we can only have the third case, when x(0)

i = xi;
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• if α+ ≤ xi, then we cannot have the first case (when either α+ > xi,
or α− > xi hence α+ > xi), and we cannot have the third case (when
xi ≤ α+ hence xi < α+); therefore, we can only have the second case,
when x(0)

i = xi;
• similarly, if xi < α−, then we cannot have the first case (when either
α− < xi, or α+ < xi hence α− < xi), and we cannot have the third
case (when α− ≤ xi); therefore, we can only have the second case, when
x

(0)
i = xi.

We have described all the cases in which neither of the two auxiliary values
α− and α+ is in the interval xi; in all these cases, we can uniquely determine
the value x(o)

i . The only cases when we cannot uniquely determine the value
x

(0)
i are the cases when either α− or α+ is within the interval xi.
Once we choose segments that contain α− and α+, we have no more than

c0 intervals xi that contain α− and no more than c0 intervals that contain
α+. Thus, for the remaining ≥ n− 2c0 indices i, we can uniquely determine
xi. For the 2c0 indices, we try all possible combinations. This is exactly what
we do in our algorithm. Thus, the algorithm is indeed correct.

The algorithm takes linear time O(n) for each pair of segments. There are
O(n2) pairs of segments, and for each segment, we can modify the sums from
the previous pair, so all this computation takes O(n2) time. Thus, overall,
we take O(n · log(n)) time for sorting, O(n) for the first pair, and quadratic
time for computing the values for all the pairs. The resulting time is thus

O(n · log(n)) +O(n) +O(n2) = O(n2),

hence the algorithm takes quadratic time. The theorem is proven.

Proof of Theorem 19.6.

1◦. Let us denote M3 by S. We have already mentioned that for odd h (in-
cluding our case h = 3), S, then we can use the fact that S is an odd
function S(−x1, . . . ,−xn) = −S(x1, . . . , xn) to compute S as well: since
S(−x1, . . . ,−xn) = −S(x1, . . . ,xn), we conclude that S(−x1, . . . ,−xn) =
−S(x1, . . . ,xn) and thus, S(x1, . . . ,xn) = −S(−x1, . . . ,−xn)

In view of this comment, in the remaining part of the proof, we will only
consider an algorithm for computing S.

2◦. As we have shown while proving the results about variance, since the
interval data satisfies the subset property, after we sort these elements in
lexicographic order, both the lower endpoints xi and the upper endpoints xi

are sorted in non-decreasing order: xi ≤ xi+1 and xi ≤ xi+1.

3◦. The maximum of a differentiable function S(x1, . . . , xn) on an interval
[xi, xi] can be attained either in an internal point of this interval, or at one
of the endpoints.

If the maximum is attained at an internal point, then the first derivative is

0
(

∂S

∂xi
= 0
)

and the second derivative should be non-positive
(

∂2S

∂x2
i

≤ 0
)

.



19 Computing Higher Moments under Interval Uncertainty 163

If the maximum is attained at the left endpoint, the function S cannot be

increasing at this point, so we must have
∂S

∂xi
≤ 0. Similarly, if the maximum

is attained at the right endpoint, the function S cannot be decreasing at this

point, so we must have
∂S

∂xi
≥ 0.

For skewness,

∂S

∂xi
=

3
n
· (xi − E)2 − 3

n
·

n
∑

j=1

(xj − E)2 · ∂E
∂xi

.

Since
∂E

∂xi
=

1
n
, we thus get

∂S

∂xi
=

3
n
· ((xi−E)2−V ). So, the first derivative

of S has the same sign as the expression (xi − E)2 − V .
To compute the second derivative of S, we must take into account that

∂V

∂xi
=

2
n
· (xi − E), hence

∂2S

∂x2
i

=
3
n
·
⎛

⎝2(xi − E) − 2(xi − E) · 1
n
− 2
n
· (xi − E) +

2
n
·

n
∑

j=1

(xj − E) · 1
n

⎞

⎠ .

Since
n
∑

j=1

(xj − E) = 0, we conclude that

∂2S

∂x2
i

=
3
n
· 2 ·

(

1 − 2
n

)

· (xi − E).

We have already mentioned that the problem of computing skewness only
makes sense for n > 2, because for n ≤ 2, the skewness is identically 0. For

n > 2, the second derivative
∂2S

∂x2
i

has the same sign as the expression xi −E.

Thus, for skewness, we value xi at which the maximum is attained satisfies
one of the following three conditions:

• either xi < xi < xi, (xi − E)2 − V = 0, and xi − E ≤ 0,
• or xi = xi and (xi − E)2 − V ≤ 0,
• or xi = xi and (xi − E)2 − V ≥ 0.

In the first case, (xi −E)2 = V = σ2, hence xi −E = ±σ. Since xi − E ≤ 0,
we cannot have xi − E = σ, so in this case, xi = E − σ. In the second
case, (xi − E)2 ≤ V = σ2, hence E − σ ≤ xi ≤ E + σ. In the third case,
(xi − E)2 ≥ V = σ2, so either xi ≤ E − σ or xi ≥ E + σ. So:

• either xi < xi = E − σ < xi,
• or xi = xi and E − σ ≤ xi ≤ E + σ,
• or xi = xi and either xi ≤ E − σ or xi ≥ E + σ.
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In all three cases, the desired maximum of the skewness S is attained when
xi is either at one of the endpoints of the corresponding interval xi, or has
the value μ def= E − σ.

4◦. Let us now deduce a more specific information about the values xi at
which the maximum is attained.

Based on the above description of possible cases, once we know how the
intervals are located in relation to E − σ and E + σ, we can sometimes
uniquely determine the value xi at which the maximum is attained. Namely,

• If xi ≤ E − σ, then the maximum cannot be attained at an internal point
and it cannot be attained at the value xi, so it is attained when xi = xi.

• If xi ≤ E−σ ≤ xi ≤ E+σ, then the maximum can only be attained when
xi = E − σ.

• If E − σ ≤ xi ≤ E + σ, then the maximum is attained at xi = xi.
• Finally, if E + σ ≤ xi, then the maximum is attained at xi = xi.

These conclusions can be described in the following graphical manner, in
which the arrows indicate the direction towards the corresponding maximum:

E − σ E + σ

� � �

The only case when we cannot exactly determine the optimal value xi is
when the interval xi contains the value E + σ: it this case, we may have
xi = xi, and we may also have xi = max(E − σ, xi).

5◦. Let us show that the maximum of skewness is always attained at a vector
x = (x1, . . . , xn) which can be divided into three consequent fragments (some
of which may be empty):

• first, we have values xi which are smaller than E − σ;
• then, we have the values max(E − σ, xi);
• finally, we have the values xi which are larger than E + σ.

All the intervals xi that do not contain E + σ inside naturally fall into
this scheme. The only intervals that we do need to consider to prove this
result are the intervals that do contain E + σ. For each of these intervals,
the corresponding values xi are either max(E − σ, xi) or xi. What we claim
is that after we sort the intervals in lexicographic order, we will first have
the values equal to max(E − σ, xi), and then the values equal to xi. In other
words, once we have a value xi = xi, all the following values will also be of
the same type.
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We will show that if there is an optimizing vector at which this condition
is not satisfied, then we can rearrange it into a new vector with the same
optimal value of S for which this condition holds.

Indeed, let us start with a vector for which, for some i, for two consequent
intervals xi and xi+1, a value xi = xi ≥ E + σ is followed by a value xi+1 =
max(E − σ, xi+1) ≤ E + σ. If there are several such indices i, we take the
smallest i with this property.

According to Part 2 of this proof, we have xi ≤ xi+1 ≤ E+σ and E+σ ≤
xi ≤ xi+1. Thus, xi = xi ≤ xi+1 and xi = xi ≥ E + σ ≥ xi+1; hence,
xi ∈ xi+1. Similarly, xi+1 ∈ xi. Thus, we can “swap” the values xi and xi+1:
as a new value of xi, we take the old value of xi+1, and vice versa. The swap
does not change the average E and does not change the sample skewness S,
so the function S attains the maximum at the new values as well.

As a result of this swap, if there is now a value i′ for which xi′ is followed
by max(E − σ, xi′+1), this value i′ has to be equal to at least i+ 1. If there
still is such an index i′, we apply a new swap again and thus again increase
the smallest problematic value i. After ≤ n such swaps, there will be no
problematic cases anymore, so we will get a sequence which has the desired
property.

6◦. To determine the optimal vector x, we must thus select a zone [x(p), x(p+1)]
that contains μ = E−σ, and an index k at which the optimal value xi switches
from max(μ, xi) to xi.

Once p and k are fixed, we can uniquely determine each of the optimal
values xi – some as known numbers, some as equal to the (unknown) value μ:

• when xi ≤ x(p), we have xi = xi;
• when xi < x(p) < x(p+1) ≤ xi and i < k, we have xi = μ;
• when x(p+1) ≤ xi and i < k, we have xi = xi;
• finally, when i ≥ k, we have xi = xi.

To find μ, we must use the fact that μ = E − σ. Specifically, the average E
can be determined as

1
n
·
∑

i∈N ′
xi +

n− n′

n
· (E − σ) = E,

where the sum is taken over the set N ′ of all the indices for which xi is
known, and n′ is the total number of such indices. Similarly, the sample
second moment E2 + σ2 can be determined as

1
n
·
∑

i∈N ′
x2

i +
n− n′

n
· (E − σ)2 = E2 + σ2.

From the first of these equations, we can determine σ as a linear function of
E. Substituting this expression into the second equation, we get a quadratic
equation with the only unknown σ, from which we can determine σ. Then,
we can use the first equation to find E – and hence find μ = E − σ.



166 19 Computing Higher Moments under Interval Uncertainty

If the resulting value of μ is indeed within the zone [x(p), x(p+1)], then we
compute the sample skewness for the corresponding values xi. Specifically,
the skewness can be computed as

1
n
·

n
∑

i=1

(xi − E)3 =
1
n
·

n
∑

i=1

x3
i −

3 ·E
n

·
n
∑

i=1

x2
i +

3 ·E2

n
·

n
∑

i=1

xi − E3 =

1
n
·

n
∑

i=1

x3
i −

3 ·E
n

·
n
∑

i=1

x2
i + 2 · E3 =

1
n
·
∑

i∈N ′
x3

i +
n− n′

n
· μ3 − 3 · E

n
·
(

∑

i∈N ′
x2

i + (n− n′) · μ2

)

+ 2 · E3.

The largest of these skewnesses is the desired value S.

7◦. How much times does this algorithm take? Sorting takes time O(n·log(n)).
For n interval data points, we have 2n possible zone and n possible indices

k – totally, O(n2) possible pairs (p, k). For the first pair, computing the
corresponding values n′,

∑

i∈N ′
xi,

∑

i∈N ′
x2

i , and
∑

i∈N ′
x3

i takes linear time. For

each next pair, we, in general, change one value in comparison with the
previous pair, so each new computation takes a constant number of steps.
Thus, for O(n2) pairs, we take O(n2) time. (In some cases, we change more
than one value, but still, each value changes only once, so we still take O(n2)
times).

So, overall, we take time O(n · log(n)) +O(n) +O(n2) = O(n2).
The theorem is proven.

Proof of Theorem 19.7. In this case, the interval data consists of C families
of intervals such that within each family, no two intervals are proper subsets
of each other.

Similarly to the proof of the previous Theorem 19.6, we can conclude that
if we sort each family in lexicographic order, then, within each family, the
maximum of S is attained on one of the sequences described in Part 6◦ of
proof of the previous theorem. Thus, to find the desired maximum S, it is
sufficient to know the values pα ≤ n and kα ≤ n corresponding to each of m
families.

For each family α, there are ≤ n2 such combinations, so overall, there are
≤ (n2)m = n2m combinations of such values. For the first combination, com-
puting the corresponding value of S takes O(n) steps. Each next combination
differs from the previous one by a single term, so overall, we take O(n2m)
steps to compute all the values of S – and thus, to find the largest of them,
which is S.
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Computing Mean, Variance, Higher Moments,

and Their Linear Combinations under Interval
Uncertainty: A Brief Summary

In the previous chapters, we described several results and algorithms for
computing:

• the mean E,

• the variance V = σ2 =
1
n
·

n
∑

i=1

(xi − E)2,

• more generally, higher central moments Mh =
1
n
·

n
∑

i=1

(xi − E)h, and

• statistically useful linear combinations of these characteristics – such as
the lower and upper endpoints of the confidence interval L = E − k0 · σ
and U = E + k0 · σ, where the parameter k0 is usually taken as k0 = 2,
k0 = 3, and k0 = 6.

For most of these problems, we considered the following situations:

• case when the intervals (or, better yet, narrowed intervals) satisfy the no-
subset property; this case corresponds, e.g., to the case when we process
measurement results produced by the same measuring instrument (MI);
the privacy case is another case when intervals satisfy the no-subset prop-
erty;

• case when intervals can be divided into m classes within each of which
the no-subsect property is satisfied; this case corresponds, e.g., to the case
when we process measurement results produced by m different measuring
instruments (MI); and

• case when for some c0 ≥ 2, every group of c0 intervals has an empty
intersection; this case corresponds to narrow intervals, e.g., to the case
when measuring instruments are sufficiently accurate.

The results of these chapters can be summarized in the following table; for
comparison, we also add the complexity of the general case, when we have
an arbitrary collection of intervals.

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 167–168.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2012



168 20 Computing Mean, Variance, etc.: A Brief Summary

Case E V L, U M3 Mh

Single MI O(n) O(n) O(n · log(n)) O(n2) ?

Several (m) MI O(n) O(nm) O(nm) O(n2m) ?

Narrow intervals O(n) O(n) O(n · log(n)) O(n2) O(n2)

General O(n) NP-hard NP-hard ? NP-hard
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Computing Covariance under Interval

Uncertainty

Formulation of the Problem

When we have two sets of data x1, . . . , xn and y1, . . . , yn, we normally com-
pute finite population covariance

Cxy =
1
n

n
∑

i=1

(xi − Ex) · (yi − Ey),

where

Ex =
1
n

n
∑

i=1

xi; Ey =
1
n

n
∑

i=1

yi.

Finite population covariance is used to describe the correlation between xi

and yi.
If we take interval uncertainty into consideration, then, after each mea-

surement, we do not get the exact values of x1, . . . , xn, y1, . . . , yn; instead,
we only have intervals [x1, x1], . . . , [xn, xn], [y

1
, y1], . . . , [yn

, yn]. Depending
on what are the actual values of x1, . . . , xn, y1, . . . , yn within these intervals,
we get different values of finite population covariance. To take the interval
uncertainty into consideration, we need to be able to describe the interval
[Cxy, Cxy] of possible values of the finite population covariance Cxy.

So, we arrive at the following problems: given the intervals [xi, xi], [y
i
, yi],

compute the lower and upper bounds Cxy and Cxy for the interval of possible
values of finite population covariance.

Results

It turns out that, similarly to the problem of estimating variance under in-
terval uncertainty, the problems problems of estimating covariance are also
NP-hard:

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 169–171.
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Theorem 21.1. The problem of computing Cxy from the interval inputs
[xi, xi], [y

i
, yi] is NP-hard.

Theorem 21.2. The problem of computing Cxy from the interval inputs
[xi, xi], [y

i
, yi] is NP-hard.

Comment. These results first appeared in [102] and [271].

Proofs

1◦. Similarly to the proof of Theorem 14.1, we reduce a subset problem to
the problem of computing Cxy.

Each instance of the subset problem is as follows: given n positive integers
s1, . . . , sn, to check whether there exist signs ηi ∈ {−1,+1} for which the

signed sum
n
∑

i=1

ηi · si equals 0.

We will show that this problem can be reduced to the problem of comput-
ing Cxy, i.e., that to every instance (s1, . . . , sn) of the subset problem P0, we
can put into correspondence such an instance of the Cxy-computing problem
that based on its solution, we can easily check whether the desired signs exist.

As this instance, we take the instance corresponding to the intervals
[xi, xi] = [y

i
, yi] = [−si, si]. We want to to show that for the corresponding

problem, Cxy = C0 (where C0 is the same as in the proof of Theorem 14.1)

if and only if there exist signs ηi for which
n
∑

i=1

ηi · si = 0.

2◦. Let us first show that in all cases, Cxy ≤ C0.

Indeed, it is known that the finite population covariance Cxy is bounded
by the product σx · σy of finite population standard deviations σx =

√
Vx

and σy =
√

Vy of x and y. In the proof of Theorem 14.1, we have already
proven that the finite population variance Vx of the values x1, . . . , xn satisfies
the inequality Vx ≤ C0; similarly, the finite population variance Vy of the
values y1, . . . , yn satisfies the inequality Vy ≤ C0. Hence, Cxy ≤ σx · σy ≤√
C0 · √C0 = C0. In other words, every possible value Cxy of the finite

population covariance is smaller than or equal to C0. Thus, the largest of
these possible values, i.e., Cxy, also cannot exceed C0, i.e., Cxy ≤ C0.

3◦. Let us now show that if Cxy = C0, then the desired signs exist.

Indeed, if Cxy = C, this means that for the corresponding values of xi and
yi, the finite population covariance Cxy is equal to C0, i.e.,

Cxy = C0 =
1
n
·

n
∑

i=1

s2i .
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On the other hand, we have shown that in all cases (and in this case in
particular), Cxy ≤ σx · σy ≤ √

C0 ·
√
C0 = C0. If σx <

√
C0, then we would

have Cxy < C0. So, if Cxy = C0, we have σx = σy =
√
C0, i.e., Vx = Vy = C0.

We have already shown, in the proof of Theorem 14.1, that in this case the
desired signs exist.

4◦. To complete the proof of Theorem 21.1, we must show that, vice versa,
if the desired signs ηi exist, then Cxy = C0.

Indeed, in this case, for xi = yi = ηi ·si, we have μx = μy = 0 and xi ·yi = s2i ,
hence

Cxy =
1
n
·

n
∑

i=1

(xi − Ex) · (yi − Ey) =
1
n
·

n
∑

i=1

s2i = C0.

The theorem is proven.

Proof of Theorem 21.2. This proof is similar to the proof of Theorem 21.1,
with the only difference that in this case, we use the other part of the in-
equality |Cxy| ≤ σx · σy, namely, that Cxy ≥ −σx · σy, and in the last part of
the proof, we take yi = −xi.
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Computing Correlation under Interval

Uncertainty

Formulation of the Problem

As we have mentioned in Chapter 21, finite population covariance C between
the data sets x1, . . . , xn and y1, . . . , yn is often used to compute finite popu-
lation correlation

ρ =
C

σx · σy
, (22.1)

where σx =
√
Vx is the finite population standard deviation of the values

x1, . . . , xn, and σy =
√

Vy is the finite population standard deviation of the
values y1, . . . , yn.

When we only have intervals [x1, x1], . . . , [xn, xn], [y
1
, y1], . . . , [yn

, yn], we
have an interval [ρ, ρ] of possible value of correlation.

Results

It turns out that, similar to finite population covariance, computation of the
endpoints of this interval problems is also an NP-hard problem:

Theorem 22.1. The problem of computing ρ from the interval inputs [xi, xi],
[y

i
, yi] is NP-hard.

Theorem 22.2. The problem of computing ρ from the interval inputs [xi, xi],
[y

i
, yi] is NP-hard.

Proofs

Proof of Theorem 22.1.

1◦. Similarly to the proof of Theorems 14.1 and 21.1, we reduce a subset
problem to the problem of computing ρ.
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2012



174 22 Computing Correlation under Interval Uncertainty

Each instance of the subset problem is as follows: given m positive integers
s1, . . . , sm, to check whether there exist signs ηi ∈ {−1,+1} for which the

signed sum
m
∑

i=1

ηi · si equals 0.

We will show that this problem can be reduced to the problem of com-
puting ρ, i.e., that to every instance (s1, . . . , sm) of the subset problem P0,
we can put into correspondence such an instance of the ρ-computing problem
that based on its solution, we can easily check whether the desired signs exist.

As this instance, we take the instance corresponding to the following
intervals:

• n = m+2 (note the difference between this reduction and reductions from
the proofs of Theorems 14.1 and 21.1, where we have n = m);

• [xi, xi] = [−si, si] and yi = [0, 0] for i = 1, . . . ,m;
• xm+1 = ym+2 = [1, 1]; xm+2 = ym+1 = [−1,−1].

Like in the proof of Theorem 14.1, we define C1 as

C1 =
m
∑

i=1

s2i . (22.2)

We will prove that for the corresponding problem, ρ = −
√

2
C1 + 2 if and

only if there exist signs ηi for which
n
∑

i=1

ηi · si = 0.

2◦. The correlation coefficient is defined as ρ = C/
√
Vx ·√Vy. To find the

range for ρ, it is therefore reasonable to first find ranges for C, Vx, and Vy .

3◦. Of these three, the variance Vy is the easiest to compute because there is
no interval uncertainty in yi at all. For yi, we have Ey = 0 and therefore,

Ey =
1
n
·

n
∑

i=1

y2
i − (Ey)2 =

2
n

=
2

m+ 2
. (22.3)

4◦. To find the range for the covariance, we will use the known equivalent
formula

C =
1
n
·

n
∑

i=1

xi · yi − Ex · Ey. (22.4)

Since Ey = 0, the second sum in this formula is 0, so C is equal to the first
sum. In this first sum, the first m terms are 0’s because for i = 1, . . . ,m, we
have yi = 0. The only non-zero terms correspond to i = m+1 and i = m+2,
so

C = − 2
n

= − 2
m+ 2

. (22.5)
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5◦. Substituting the formulas (22.3) and (22.5) into the definition of the
correlation, we conclude that

ρ = −
2

m+ 2
√

2
m+ 2 · √Vx

= −
√

2
(m+ 2) · Vx

. (22.6)

Therefore, the finite population correlation ρ attains its maximum ρ if and
only if the finite population variance Vx takes the largest possible value V x:

ρ = −
√

2
(m+ 2) · V x

. (22.7)

Thus, if we can know ρ, we can reconstruct Vx as

V x =
2

(m+ 2) · (ρ)2 . (22.8)

In particular, the desired value ρ = −
√

2
C1 + 2 corresponds to V x = C1 + 2

m+ 2 .

Therefore, to complete our proof, we must show that V x = C1 + 2
m+ 2 if and

only if there exist signs ηi for which
n
∑

i=1

ηi · si = 0.

6◦. Similarly to the proof of Theorem 14.1, we will use the equivalent expres-
sion for the finite population variance Vx; we will slightly reformulate this
expression by substituting the definition of Ex into it:

Vx =
1
n
·

n
∑

i=1

x2
i −

(

n
∑

i=1

xi

)2

. (22.9)

We can (somewhat) simplify this expression by substituting the values n =
m+ 2, xm+1 = 1, and xm+2 = −1. We have

n
∑

i=1

xi =
m
∑

i=1

xi + xm+1 + xm+2 =
m
∑

i=1

xi

and
n
∑

i=1

x2
i =

m
∑

i=1

x2
i + x2

m+1 + x2
m+2 =

m
∑

i=1

xi + 2.

Therefore,

Vx =
1

m+ 2
·

m
∑

i=1

x2
i +

2
m+ 2

− 1
(m+ 2)2

·
(

m
∑

i=1

xi

)2

. (22.10)

Similarly to the proof of Theorem 14.1, we can show that always Vx ≤ C1 + 2
m+ 2 ,

and that V x = C1 + 2
m+ 2 if and only if there exist the signs ηi for which
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n
∑

i=1

ηi · si = 0.

The theorem is proven.

Proof of Theorem 22.2. This proof is similar to the proof of Theorem 22.1,
with the only difference that we take ym+1 = 1 and ym+2 = −1. In this case,

C =
2

m+ 2
,

hence

ρ =

√

2
(m+ 2) · Vx

,

and so the largest possible value of Vx corresponds to the smallest possible
value of ρ.
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Computing Expected Value under Interval

Uncertainty

Formulation of the Problem

In statistics, the values of the statistical characteristics are estimated ei-
ther directly from the sample x1, . . . , xn, or indirectly: based on the values of
other statistical characteristics that have already been estimated based on the
sample.

In most of the previous chapters, we considered the situations in which:

• we want to compute the statistical characteristics of a probability distri-
bution based on a sample x1, . . . , xn, and

• we know the values xi with interval uncertainty.

The only exception so far was a chapter on hierarchical statistical analysis,
where the desired characteristics – the overall mean and variance – were
estimated based on the means and variances of several subsamples. In this
hierarchical case, due to the interval uncertainty with which we know the
sample values, the subsample means and variances are also only known with
interval uncertainty.

Another natural case of an indirect estimation is when:

• we know the probabilities p1, . . . , pn of different situations,
• we know the values a1, . . . , an of a certain quantity in these situation, and

• we want to find the expected value a =
n
∑

i=1

ai · pi of this quantity.

Since we assume that the probabilities pi are estimated based on the sample,
and this sample is known with interval uncertainty, the probabilities are also
known with interval uncertainty, i.e., we only know the intervals [p

i
, pi] that

contain the actual (unknown) probabilities pi.

By taking the midpoints p̃i
def=

p
i
+ pi

2
and the radii Δi

def=
pi − p

i

2
, we can

represent these intervals in the form [p̃i −Δi, p̃i +Δi].

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 177–180.
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In this case, we arrive at the following problem:

• we know the values a1, . . . , an;
• we know the intervals [p

i
, pi];

• we want to find the range [a, a] of possible values of the sum
n
∑

i=1

ai · pi

under the constraints pi ∈ [p
i
, pi] and

n
∑

i=1

pi = 1.

Algorithms

For this problem, linear-time algorithms are known; see, e.g., [52] and [130].
Let us give an example of such a linear-time algorithm. For simplicity

of description, our algorithm will be a minor modification of a linear-time
algorithm for computing the upper endpoint V for the variance (possible
when narrowed intervals satisfy the no-subset property).

Before we describe the algorithm, let us mention that the smallest possible

value a of the linear form
n
∑

i=1

ai · pi under given constraints is equal to −b,

where b is the largest possible value of the form
n
∑

i=1

bi · pi, with bi = −ai.

Thus, it is sufficient to describe how to compute the upper endpoint a.
For simplicity, let us first consider the case when all the intervals are non-

degenerate, i.e., when Δi > 0 for all i.
The proposed algorithm is iterative. At each iteration of this algorithm,

we have three sets:

• the set I− of all the indices i from 1 to n for which we already know that
for the optimal vector p, we have pi = p

i
;

• the set I+ of all the indices j for which we already know that for the
optimal vector p, we have pj = pj ;

• the set I = {1, . . . , n} \ (I− ∪ I+) of the indices i for which we are still
undecided.

In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration we
also update the values of two auxiliary quantities E− def=

∑

i∈I−
p

i
and E+ def=

∑

j∈I+
pj . In principle, we could compute these values by computing these sums.

However, to speed up computations on each iteration, we update these two
auxiliary values in a way that is faster than re-computing the corresponding
two sums. Initially, since I− = I+ = ∅, we take E− = E+ = 0.

At each iteration we do the following:

• first, we compute the median m of the set I (median in terms of sorting
by the values ai);

• then, by analyzing the elements of the undecided set I one by one, we
divide them into two subsets P− = {i : p̃i ≤ p̃m} and P+ = {j : p̃j > p̃m};
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• we compute e− = E− +
∑

i∈P−
p

i
and e+ = E+ +

∑

j∈P+
pj ;

• If e− + e+ > 1, then we replace I− with I− ∪ P−, E− with e−, and I
with P+.

• If e− + e+ +2Δm < 1, then we replace I+ with I+ ∪P+, E+ with e+, and
I with P−.

• Finally, if e− + e+ ≤ 1 ≤ e− + e+ + 2Δm, then we replace I− with
I− ∪ (P− − {m}), I+ with I+ ∪ P+, I with {m}, E− with e− − p

m
,

and E+ with e+.

At each iteration the set of undecided indices is divided in half. Iterations
continue until we have only one undecided index I = {k}.

After this we return, as a, the value of the linear function
n
∑

i=1

ai · pi for the

vector p for which pi = p
i
for i ∈ I−, pj = pj for j ∈ I+, and pk = 1−e−−e+

for the remaining value k.

Proof of the Algorithm’s Correctness

Let us assume that the indices have already been sorted by the values ai, i.e.,
that a1 ≤ a2 ≤ . . . ≤ an.

Let us now show that we can always select an optimal tuple in which:

• at most one pk is strictly inside the corresponding interval,
• all the values pi with i < k are equal to the corresponding lower endpoints
pi = p

i
, and

• all the values pj with j > k are equal to the corresponding upper endpoints
pj = pj .

Indeed, there is always an optimal tuple. If for some optimal tuple, we have
two different values pi and pj , i < j, for which pi > p

i
and pj < pj, then,

for an arbitrarily small Δ > 0, replacing pi with pi −Δ and pj with pj +Δ

does not change the condition
n
∑

i=1

pi = 1, while the value of the desired linear

function increases by (aj − ai) · Δ. Since i < j, we have ai ≤ aj and thus,
aj − ai ≥ 0. If aj − ai > 0, then we would be able to increase the value of a –
which contradicts our assumption that the tuple was optimal. Thus, ai = aj .
In this case, replacing pi with pi −Δ and pj with pj +Δ does not change the
value of a at all. As Δ increases, the value pi goes towards p

i
and the value

pj goes towards pj . We can therefore select Δ for which one of these values
reaches the corresponding endpoint.

This procedure can be repeated until for every i < j, we have pi = p
i

or
pj = pj . This implies that we can have at most one k for which pk is strictly
within the corresponding interval: otherwise, if we had two such values pk

and pk′ , with k < k′, we would have pk > p
k

and pk′ < pk′ . Similarly, we
can show that for all i < k, we have pi = p

i
, and that for all j > k, we have

pj = p
j
.
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In the resulting optimal tuple p1, . . . , pn, the first elements are equal to p
i
,

then we may have one element which is strictly inside its interval, and then
we have values pj = pj .

For the resulting vector p = (p
1
, . . . , p

k−1
, pk, pk+1, . . . , pn), with p

k
≤

pk ≤ pk, the condition
n
∑

i=1

pi = 1 implies that Σk ≤ 1 ≤ Σk−1, where

Σk
def=

k
∑

i=1

p
i
+

n
∑

j=k+1

pj . When we go from Σk to Σk+1, we replace a larger

value pk+1 with a smaller value p
k+1

. Hence Σk > Σk+1. Thus there has to
be exactly one kmax for which Σk ≤ 1 ≤ Σk−1.

So if we have Σm > 1, this means that the value kmax corresponding to
the maximum of the linear form is > m. Hence for all the indices i ≤ m we
already know that in the optimal vector p we have pi = p

i
. Thus these indices

can be added to the set I−.
If Σm−1 (= Σm +2Δm) < 1, this means that the value kmin corresponding

to the maximum of the linear form is < m. Hence for all the indices j ≥ m
we already know that in the optimal vector p we have pj = pj . Thus these
indices can be added to the set I+.

Finally, if Σm ≤ 1 ≤ Σm−1 then this m is where the maximum of the
linear form is attained.

The algorithm has been justified.

Comment. This same algorithm can be easily applied if one of the intervals
consists of a single point only. This value is plugged in and the variable is
eliminated.
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Computing Entropy under Interval

Uncertainty. I

Measurement results (and, more generally, estimates) are never absolutely
accurate: there is always an uncertainty, the actual value x is, in general,
different from the estimate x̃. Sometimes, we know the probability of differ-
ent values of the estimation error Δx def= x̃ − x, sometimes, we only know
the interval of possible values of Δx, sometimes, we have interval bounds on
the cdf of Δx. To compare different measuring instruments, it is desirable to
know which of them brings more information – i.e., it is desirable to gauge the
amount of information. For probabilistic uncertainty, this amount of informa-
tion is described by Shannon’s entropy; similar measures can be developed
for interval and other types of uncertainty. In this chapter, we start analyz-
ing the problem of estimating information amount under different types of
uncertainty.

Formulation and Analysis of the Problem

Uncertainty is inevitable. For each type of information that we are soliciting,
there are several ways to acquire this information.

For example, if we are interested in measuring the value of a physical
quantity x, we may use different types of sensors. No matter how accurate
the sensor, the measured value x̃ is, in general, different from the actual value
x of the measured quantity.

Types of uncertainty: in brief. For different sensors, we have different type of
information about this difference Δx def= x̃− x:

In some cases, we know which values of Δx are possible and what is the
frequency of each of the different possible values. In other words, we know a
probability distribution on Δx. This type of uncertainty is usually called
a probabilistic uncertainty. It is reasonable to describe the corresponding
probability distribution by a cumulative distribution function (cdf, for short)
F (t) def= Prob(x ≤ t).

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 181–191.
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In other cases, the only information we have is an upper bound Δ on
the measurement error. In this case, after we got the measured value x̃, the
only information that we have about the actual (unknown) value x of the
measured quantity is that x belongs to the interval [x̃ − Δ, x̃ + Δ]. This is
the case of interval uncertainty.

So far, we have described two extreme cases:

• Probabilistic uncertainty describes the case when we have a complete in-
formation about the probability distribution.

• Interval uncertainty corresponds to the case when we have no information
about the probabilities.

In most practical situations, we have some information about the probabilities.
As we have mentioned, to get a complete description of a probability distri-

bution, we need to know the values of cdf F (t) for all possible real numbers t.
When we have a partial information about the probabilities, this means that
we only have a partial information about the values F (t). In other words,
for every t, instead of the actual; (unknown) value F (t), we only know the
interval [F (t), F (t)] that contains the (unknown) actual value F (t). In other
words, we have a probability box (p-box, for short) that contains the actual
(unknown) cdf F (t).

In measurements, the p-box is probably the most general description of
possible uncertainty. In many practical situations, however, we cannot get all
the information from measurements, we must also use human expertise. The
accuracy of human expertise is rarely described solely in terms of guaranteed
bounds. For expert estimates, in addition to guaranteed bounds on Δx and
on F (t), we also have expert estimates that provide better bounds but with
limited confidence.

For example, by looking at a medical image such as an X-ray image, an
expert medical doctor can guarantee that the size of the tumor is, say, between
1 and 2 cm. However, with 80% certainty, she can say that the size is between
1.2 and 1.7 cm.

To take such uncertainty into consideration, we can use fuzzy techniques.
For example, a nested family of intervals corresponding to different levels of
certainty forms a fuzzy number (the intervals are the α-cuts of this fuzzy
number). For p-boxes, we have, similarly, a nested family of p-boxes corre-
sponding to different levels of certainty – i.e., a fuzzy-valued cdf.

Need to compare different types of uncertainty. Often, there is a need to com-
pare different types of uncertainty. For example, we may have two sensors:
one with a smaller bound on a systematic (interval) component of the mea-
surement error, the other with the smaller bound on the standard deviation
of the random component of the measurement error. If we can only afford one
of these sensors, which one should we buy? Which of the two sensors brings
us more information about the measured signal?
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To be able to make such decisions, we must be able to compare which of
the uncertainties corresponding to the two sensors carries more information
– and for that, we must be able to gauge this amount of information.

Traditional amount of information: brief reminder. The traditional Shan-
non’s notion of the amount of information is based on defining information
as the (average) number of “yes”-“no” (binary) questions that we need to ask
so that, starting with the initial uncertainty, we will be able to completely
determine the object.

After each binary question, we can have 2 possible answers. So, if we ask q
binary questions, then, in principle, we can have 2q possible results. Thus, if
we know that our object is one of n objects, and we want to uniquely pinpoint
the object after all these questions, then we must have 2q ≥ n. In this case,
the smallest number of questions is the smallest integer q that is ≥ log2(n).
This smallest number is called a ceiling and denoted by �log2(n)�.

For discrete probability distributions, we get the standard formula for the
average number of questions −∑pi · log2(pi). For the continuous case, we
can estimate the average number of questions that are needed to find an
object with a given accuracy ε – i.e., divide the whole original domain into
sub-domains of radius ε and diameter 2ε.

For example, if we start with an interval [a, b] of width b−a, then we need
to subdivide it into n ∼ (b− a)/(2ε) sub-domains, so we must ask

log2(n) ∼ log2(b − a)− log2(ε)− 1

questions. In the limit, the term that does not depend on ε leads to

log2(b− a).

For continuous probability distributions, we get the standard Shannon’s ex-
pression log2(n) ∼ S − log2(2ε), where S = − ∫ ρ(x) · log2 ρ(x) dx.

How to extend these formulas to p-boxes etc.? Axiomatic approach. To extend
the formulas for information to more general uncertainty, i.e., to come up
with generalized information theory, several researchers use an axiomatic
approach: they find properties of information, and look for generalizations
that satisfy as many of these properties as possible; see, e.g. [157, 158] and
[162].

This approach has led to many interesting results, but sometimes, there
are several possible generalizations, so which of them should we choose?

Our idea. A natural idea is to choose the definition that kind of coincides
with the average number of binary questions that we need to ask.

Since we want to extend the information to the case when probabilities
are not known exactly, the average number of questions may also depend on
which exactly distribution is actually there. So, it is reasonable to consider
the worst-case average number of questions – this is in line with the definition
for intervals.
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What we do in this chapter. In this and following chapters, we describe how
this idea can be transformed into a formal definition of the amount of infor-
mation corresponding to different types of uncertainty, and how to compute
the corresponding amounts of information.

Comment. Several of our results first appeared in [54, 58, 195, 355, 353].

Traditional amount of information: detailed reminder. Our objective is to
extend estimates of the average number of binary questions from the proba-
bility distributions to a more general case. To do that, let us recall, in detail,
how this number is estimated for probability distributions. The need for such
a reminder comes from the fact that while most researchers are familiar with
Shannon’s formula for the entropy, most researchers are not aware how this
formula was (or can be) derived.

Discrete case: no information about probabilities. Let us start with the sim-
plest situation when we know that we have n possible alternativesA1, . . . , An,
and we have no information about the probability (frequency) of different
alternatives. Let us show that in this case, the smallest number of binary
questions that we need to determine the alternative is indeed q def= �log2(n)�.

We have already shown that the number of questions cannot be smaller
than �log2(n)�; so, to complete the derivation, let us show that it is sufficient
to ask q questions.

Indeed, let’s enumerate all n possible alternatives (in arbitrary order) by
numbers from 0 to n− 1, and write these numbers in the binary form. Using
q binary digits, one can describe numbers from 0 to 2q − 1. Since 2q ≥ n,
we can thus describe each of the n numbers by using only q binary digits.
So, to uniquely determine the alternative Ai out of n given ones, we can ask
the following q questions: “is the first binary digit 0?”, “is the second binary
digit 0?”, etc, up to “is the q-th digit 0?”.

Case of a discrete probability distribution. Let us now assume that we also
know the probabilities p1, . . . , pn of different alternatives A1, . . . , An. If we
are interested in an individual selection, then the above arguments show
that we cannot determine the actual alternative by using fewer than log2(n)
questions. However, if we have many (N) similar situations in which we need
to find an alternative, then we can determine all N alternatives by asking
� N · log2(n) binary questions.

To show this, let us fix i from 1 to n, and estimate the number of events
Ni in which the output is i.

This number Ni is obtained by counting all the events in which the output
was i, so Ni = n1 + n2 + . . .+ nN , where nk equals to 1 if in k-th event the
output is i and 0 otherwise. The average e(nk) of nk equals to pi·1+(1−pi)·0 =
pi. The mean square deviation σ[nk] is determined by the formula

σ2[nk] = pi · (1 − e(nk))2 + (1 − pi) · (0 − e(nk))2.

If we substitute here e(nk) = pi, we get σ2[nk] = pi · (1 − pi). The outcomes
of all these events are considered independent, therefore nk are independent
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random variables. Hence the average value of Ni equals to the sum of the
averages of nk: e[Ni] = e[n1] + e[n2] + . . . + e[nN ] = Npi. The mean square
deviation σ[Ni] satisfies a likewise equation σ2[Ni] = σ2[n1] + σ2[n2] + . . . =
N · pi · (1 − pi), so σ[Ni] =

√

pi · (1 − pi) ·N .
For big N the sum of equally distributed independent random variables

tends to a Gaussian distribution (the well-known Central Limit Theorem),
therefore for big N , we can assume that Ni is a random variable with a
Gaussian distribution. Theoretically a random Gaussian variable with the
average a and a standard deviation σ can take any value. However, in practice,
if, e.g., one buys a voltmeter with guaranteed 0.1V standard deviation, and
it gives an error 1V, it means that something is wrong with this instrument.
Therefore it is assumed that only some values are practically possible. Usually
a “k-sigma” rule is accepted that the real value can only take values from
a−k ·σ to a+k ·σ, where k is 2, 3, or 4. So in our case we can conclude that
Ni lies between N ·pi−k ·

√

pi · (1 − pi) ·N and N ·pi +k ·√pi · (1 − pi) ·N .
Now we are ready for the formulation of Shannon’s result.

Comment. In this quality control example the choice of k matters, but, as
we’ll see, in our case the results do not depend on k at all.

Definition 24.1

• Let a real number k > 0 and a positive integer n be given. The number n
is called the number of outcomes.

• By a probability distribution, we mean a sequence {pi} of n real numbers,
pi ≥ 0,

∑

pi = 1. The value pi is called a probability of i-th event.
• Let an integer N is given; it is called the number of events.
• By a result of N events we mean a sequence rk, 1 ≤ k ≤ N of integers

from 1 to n. The value rk is called the result of k-th event.
• The total number of events that resulted in the i-th outcome will be denoted

by Ni.
• We say that the result of N events is consistent with the probability distri-

bution {pi} if for every i, we have N · pi − k · σi ≤ Ni ≤ N + k · σi, where
σi

def=
√

pi · (1 − pi) ·N.
• Let’s denote the number of all consistent results by Ncons(N).
• The number �log2(Ncons(N))� will be called the number of questions, nec-

essary to determine the results of N events and denoted by Q(N).
• The fraction Q(N)/N will be called the average number of questions.
• The limit of the average number of questions when N → ∞ will be called

the information.

Theorem. (Shannon) When the number of events N tends to infinity, the
average number of questions tends to S(p) def= −∑ pi · log2(pi).
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Comments

• Shannon’s theorem says that if we know the probabilities of all the outputs,
then the average number of questions that we have to ask in order to get a
complete knowledge equals to the entropy of this probabilistic distribution.

• As we promised, this average number of questions does not depend on the
threshold k.

• Since we somewhat modified Shannon’s definitions, we cannot use the orig-
inal proof. Our proof (and proof of other results) is given at the end of
this chapter.

Case of a continuous probability distribution. After a finite number of “yes”-
“no” questions, we can only distinguish between finitely many alternatives.
If the actual situation is described by a real number, then, since there are
infinitely many different possible real numbers, after finitely many questions,
we can only get an approximate value of this number.

Once we fix the accuracy ε > 0, we can talk about the number of questions
that are necessary to determine a number x with this accuracy ε, i.e., to
determine an approximate value r for which |x− r| ≤ ε.

Once an approximate value r is determined, possible actual values of x
form an interval [r − ε, r + ε] of width 2ε. Vice versa, if we have located x
on an interval [x, x] of width 2ε, this means that we have found x with the
desired accuracy ε: indeed, as an ε-approximation to x, we can then take the
midpoint (x+ x)/2 of the interval [x, x].

Thus, the problem of determining x with the accuracy ε can be reformu-
lated as follows: we divide the real line into intervals [xi, xi+1] of width 2ε
(xi+1 = xi + 2ε), and by asking binary questions, find the interval that con-
tains x. As we have shown, for this problem, the average number of binary
question needed to locate x with accuracy ε is equal to S = −∑ pi · log2(pi),
where pi is the probability that x belongs to i-th interval [xi, xi+1].

In general, this probability pi is equal to
∫ xi+1

xi
ρ(x) dx, where ρ(x) is the

probability distribution of the unknown values x. For small ε, we have pi ≈
2ε · ρ(xi), hence log2(pi) = log2(ρ(xi)) + log2(2ε). Therefore, for small ε, we
have

S = −
∑

ρ(xi) · log2(ρ(xi)) · 2ε−
∑

ρ(xi) · 2ε · log2(2ε).

The first sum in this expression is the integral sum for the integral

S(ρ) def= −
∫

ρ(x) · log2(x) dx

(this integral is called the entropy of the probability distribution ρ(x)); so,
for small ε, this sum is approximately equal to this integral (and tends to
this integral when ε→ 0). The second sum is a constant log2(2ε) multiplied
by an integral sum for the interval

∫

ρ(x) dx = 1. Thus, for small ε, we have

S ≈ −
∫

ρ(x) · log2(x) dx − log2(2ε).



24 Computing Entropy under Interval Uncertainty. I 187

So, the average number of binary questions that are needed to determine x
with a given accuracy ε, can be determined if we know the entropy of the
probability distribution ρ(x).

Our results: in brief. Of course, the abstract definition is a good idea, but the
big challenge is translating this abstract definition into explicit easy-to-use
analytical formulas and/or algorithms. This is what we do in this paper.

Comment. In our previous work [69, 286, 287] we provided such formulas
for fuzzy numbers and for Dempster-Shafer knowledge bases. In this chapter,
we provide similar analytical (or at least computable) formulas for the more
general case of p-boxes and fuzzy-valued probability distributions.

Partial information about probability distribution: discrete case. In many
real-life situations, instead of having complete information about the proba-
bilities p = (p1, . . . , pn) of different alternatives, we only have partial informa-
tion about these probabilities – i.e., we only know a set P of possible values
of p.

If it is possible to have p ∈ P and p′ ∈ P , then it is also possible that
we have p with some probability α and p′ with the probability 1 − α. In
this case, the resulting probability distribution α · p+ (1− α) · p′ is a convex
combination of p and p′. Thus, it it reasonable to require that the set P
contains, with every two probability distributions, their convex combinations
– in other words, that P is a convex set; see, e.g., [338].

Definition 24.2

• By a probabilistic knowledge, we mean a convex set P of probability dis-
tributions.

• We say that the result of N events is consistent with the probabilistic knowl-
edge P if this result is consistent with one of the probability distributions
p ∈ P .

• Let’s denote the number of all consistent results by Ncons(N).
• The number �log2(Ncons(N))� will be called the number of questions, nec-

essary to determine the results of N events and denoted by Q(N).
• The fraction Q(N)/N will be called the average number of questions.
• The limit of the average number of questions when N → ∞ will be called

the information.

Definition 24.2. By the entropy S(P ) of a probabilistic knowledge P , we
mean the largest possible entropy among all distributions p ∈ P ; S(P ) def=
max
p∈P

S(p).

Proposition 24.1. When the number of events N tends to infinity, the av-
erage number of questions tends to the entropy S(P ).
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Partial information about probability distribution: continuous case. In the
continuous case, we also often encounter situations in which we only have
partial information about the probability distribution; one such case is the
case of p-boxes. In such situations, instead of knowing the exact probability
distribution ρ(x), we only know a (convex) class P that contains the (un-
known) distribution.

In such situations, we can similarly ask about the average number of ques-
tions that are needed to determine x with a given accuracy ε.

Once we fix an accuracy ε and a subdivision of the real line into intervals
[xi, xi+1] of width 2ε, we have a discrete problem of determining the interval
containing x. Due to Proposition 24.1, for this discrete problem, the average
number of “yes”-“no” questions is equal to the largest entropy S(p) among
all the corresponding discrete distributions pi =

∫ xi+1

xi
ρ(x) dx. As we have

mentioned, for small ε, S(p) ∼ S(ρ) − log2(2ε), where S(ρ) = − ∫ ρ(x) ·
log2(ρ(x)) dx is the entropy of the corresponding continuous distribution.
Thus, the largest discrete entropy S(p) comes from the distribution ρ(x) ∈ P
for which the corresponding (continuous) entropy S(ρ) attains the largest
possible value.

Computing the amount of information. According to the above results, the
amount of information in p-box – or more generally, in a class of distributions
P – is equal to the largest entropy among all the distributions from the given
class P .

Good news is that a lot of research has gone into algorithms for finding
distributions with the largest entropy among different classes P – largely as
a part of the Maximum Entropy approach in which when we only know a
class of distributions P , then we assume that the actual distribution is the
one with the largest entropy from P ; see, e.g., [144].

Because of this, for many classes P , we already know the corresponding
maximum entropy distribution, so we can explicitly compute the correspond-
ing amount of information. For classes P for which the corresponding max-
imum entropy distribution is not known, finding such a distribution means
maximizing a convex function (entropy) over a convex set P ; it is known that
maximizing a convex function over a convex set is a computationally feasible
problem; see, e.g., [334].

Problem with our definition: we need a multi-dimensional notion of informa-
tion. In our approach, we measure the information as the average number
of “yes”-“no” questions that are needed to locate an object with a given
accuracy.

According to our results, for a p-box, thus defined amount of information
is equal to the amount of information corresponding to the distribution with
the largest entropy among all the distributions from a given p-box.

So, by the above definition of the amount of information, we are not be
able to distinguish between this distribution and entire p-box. This is counter-
intuitive. For example, it is well known that the Gaussian distribution has the
largest entropy among all the distribution with the same standard deviation
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σ, but clearly, we have more information if we know that the distribution is
Gaussian than if we simply know its standard deviation but not its shape.

To account for this difference, we must supplement the average number
of questions by additional characteristics describing the desired amount of
information. Thus, to describe the amount of information for general uncer-
tainty, instead of a single number, we need several different numbers, which
form a multi-dimensional measure of uncertainty.

In the following chapter, we explore two natural ways to implement this
idea.

Proofs

Proof of Shannon’s Theorem. Let’s first fix some values Ni, that are consis-
tent with the given probabilistic distribution. Due to the inequalities that
express the consistency demand, the ratio fi = Ni/N tends to pi as N →∞.
Let’s count the total number C of results, for which for every i the number
of events with outcome i is equal to this Ni. If we know C, we will be able
to compute Ncons by adding these C’s.

Actually we are interested not in Ncons itself, but in Q(N) ≈ log2(Ncons),
and moreover, in lim(Q(N)/N). So we’ll try to estimate not only C, but also
log2(C) and lim log2(C)/N .

To estimate C means to count the total number of sequences of length N ,
in which there are N1 elements, equal to 1, N2 elements, equal to 2, etc. The
total number C1 of ways to choose N1 elements out of N is well-known in

combinatorics, and is equal to
(

N1

N

)

=
N !

(N1)! · (N −N1)!
. When we choose

these N1 elements, we have a problem in choosing N2 out of the remaining
N −N1 elements, where the outcome is 2; so for every choice of 1’s we have

C2 =
(

N2

N −N1

)

possibilities to choose 2’s. Therefore in order to get the

total number of possibilities to choose 1’s and 2’s, we must multiply C2 by
C1. Adding 3’s, 4’s, . . . , n’s, we get finally the following formula for C:

C = C1 · C2 · . . . · Cn−1 =

N !
N1!(N −N1)!

· (N −N1)!
N2!(N −N1 −N2)!

· . . . = N !
N1!N2! . . . Nn!

To simplify computations let’s use the well-known Stirling formula k! ∼
(k/e)k · √2π · k. Then, we get

C ≈

(

N

e

)N √
2π ·N

(

N1

e

)N1

· √2π ·N1 · . . . ·
(

Nn

e

)Nn

· √2π ·Nn

Since
∑

Ni = N , terms eN and eNi cancel each other.
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To get further simplification, we substitute Ni = N · fi, and correspond-
ingly NNi

i as (N · fi)N ·fi = NN ·fi · fi
N ·fi . Terms NN is the numerator and

NN ·f1 · NN ·f2 . . . · NN ·fn = NN ·f1+N ·f2+...+N ·fn = NN in the denominator
cancel each other. Terms with

√
N lead to a term that depends on N as

c ·N−(n−1)/2. So, we conclude that

log2(C) ≈ −N · f1 · log2(f1) − . . .−N · fn log2(fn)−
n− 1

2
· log2(N) − const.

When N →∞, we have 1/N → 0, log2(N)/N → 0, and fi → pi, therefore

log2(C)
N

→ −p1 · log2(p1) − . . .− pn · log2(pn),

i.e., log2(C)/N tends to the entropy of the probabilistic distribution. The
proposition is proven.

Comment. Strictly speaking, we need to prove that the ratio Q(N)/N = S
also tends to this entropy. This can be done similarly to what we did in [69].

Proof of Proposition 24.1. By definition, a result is consistent with the proba-
bilistic knowledge P if and only if it is consistent with one of the distributions
p ∈ P . Thus, the set of all the results which are consistent with P can be
represented as a union of the sets of all the results consistent with different
probability distributions p ∈ P . In the proof of Shannon’s theorem, we have
shown that for each p ∈ P , the corresponding number is asymptotically equal
to exp(N · S(p)).

To be more precise, for every N , the number C of results with given fre-
quencies {fj} (fj ≈ pj) has already been computed in the proof of Shannon’s
theorem: lim (log2(C))/N = −∑ fj log2(fj).

The total number of the results Ncons which are consistent with a given
probabilistic knowledge P is equal to the sum of Nco different values of C
that correspond to different fj . For a given N , there are at most N + 1
different values of N1 = N · f1 (0,1,. . . ,N), at most N + 1 different values
of N2, etc., totally at most (N + 1)n different sets of {fj}. So, we get an
inequality Cmax ≤ Ncons ≤ (N + 1)n · Cmax, from which we conclude that
limQ(N)/N = lim log2(Cmax)/N .

Now, that we have found an asymptotics for C, let’s compute Ncons and
Q(N)/N . For a given probabilistic distribution {pi} and every i, possible
values of Ni form an interval of length Li

def= 2k · √pi · (1 − pi) ·
√
N . So

there are no more than Li possible values of Ni. The maximum value for
pi · (1− pi) is attained when pi = 1/2, therefore pi · (1− pi) ≤ 1/4, and hence
Li ≤ 2k ·√N/4 = (k/2) · √N . For every i from 1 to n there are at most
(k/2)·√N possible values of Ni, so the total number of possible combinations
of N1, . . . , Nn is smaller than ((k/2) · √N)n. Let us denote this number of
combinations by N(p).
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The total number Ncons of consistent results is the sum of N(p) different
values of C (values that correspond to N(p) different combinations of N1, N2,
. . . , Nn). Let’s denote the biggest of these values C by Cmax. Since Ncons

is the sum of N(p) terms, and each of these terms is not larger than the
largest of them Cmax, we conclude that Ncons ≤ N(p) · Cmax. On the other
hand, the sum Ncons of non-negative integers is not smaller than the largest
of them, i.e., Cmax ≤ Ncons. Combining these two inequalities, we conclude
that Cmax ≤ Ncons ≤ N(p) ·Cmax. Since N(p) ≤ ((k/2) · √N)n, we conclude
that Cmax ≤ Ncons ≤ ((k/2)·√N)n·Cmax. Turning to logarithms, we find that
log2(Cmax) ≤ log2(Ncons) ≤ log2(Cmax) + (n/2) · log2(N) + const. Dividing
by N , tending to the limit N → ∞ and using the fact that log2(N)/N → 0
and the (already proved) fact that log2(Cmax)/N tends to the entropy S, we
conclude that limQ(N)/N = S.
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Computing Entropy under Interval

Uncertainty. II

Formulation and Analysis of the Problem, and the
Corresponding Results and Algorithms

Formulation of the problem. In most practical situations, our knowledge is
incomplete: there are several (n) different states which are consistent with
our knowledge. How can we gauge this uncertainty? A natural measure of
uncertainty is the average number of binary (“yes”-“no”) questions that we
need to ask to find the exact state. This idea is behind Shannon’s information
theory: according to this theory, when we know the probabilities p1, . . . , pn of
different states (for which

∑

pi = 1), then this average number of questions

is equal to S = −
n
∑

i=1

pi · log2(pi). In information theory, this average number

of question is called the amount of information.
In practice, we rarely know the exact values of the probabilities pi; these

probabilities come from experiments and are, therefore, only known with
uncertainty. Usually, from the experiments, we can find confidence intervals
pi = [p

i
, pi], i.e., intervals which contain the (unknown) values pi. Since

pi ≥ 0 and
∑

pi = 1, we must have p
i
≥ 0 and

∑

p
i
≤ 1 ≤ ∑ pi. How can

we estimate the amount of information under such interval uncertainty?
For different values pi ∈ pi, we get, in general, different values of the

amount of information S. Since S is a continuous function, the set of possible
values of S is an interval. So, to gauge the corresponding uncertainty, we
must find the range S = [S, S] of possible values of S.

Thus, we arrive at the following computational problem: given n intervals
pi = [p

i
, pi], find the range

S = [S, S] =

{

−
n
∑

i=1

pi · log2(pi)

∣

∣

∣

∣

∣

pi ∈ pi &
n
∑

i=1

pi = 1

}

.

Comment. Some of the results presented in this chapter first appeared in
[353] and [355].

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 193–209.
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Computation of S is feasible (takes polynomial time). Since the function S
is concave, computation of S is feasible; see [182] and [334].

The following algorithm computes S in time O(n · log(n)):

• First, we sort 2n endpoints p
i
and pi into a sequence

0 = p(0) < p(1) < p(2) < . . . < p(m) < p(m+1) = 1.

In the process of this sorting, for each k from 1 to m, we form the sets
A−

k = {i : p
i
= p(k)} and A+

k = {i : pi = p(k)}.
• Then, for each k from 0 to m, we compute the values Mk, Pk, and nk as

follows.
– We start with M0 = −

n
∑

i=1

p
i
· log2(pi

), P0 =
n
∑

i=1

p
i
, and n0 = n.

– Once we know Mk, Pk, and nk, we compute the next values of these
quantities as follows:

Mk+1 = Mk +
∑

j∈A−
k+1

p
j
· log2(pj

) −
∑

j∈A+
k+1

pj · log2(pj);

Pk+1 = Pk −
∑

j∈A−
k+1

p
j
+

∑

j∈A+
k+1

pj ; nk+1 = nk −#(A−
k+1) + #(A+

k+1).

• If nk = n, we take Sk = Mk.

• If nk < n, then we compute p =
1 − Pk

n− nk
.

– If p ∈ [p(k), p(k+1)], then we compute

Sk = Mk − (n− nk) · p · log2(p).

– Otherwise, we ignore this k.
• Finally, we find the largest of these values Sk as the desired bound S.

Linear-time algorithm for computing S. It is possible to compute S in lin-
ear time. The corresponding algorithm is iterative. At each iteration of this
algorithm we have three sets:

• the set J− of all the endpoints p
i
and pj for which we already know that for

the optimal vector p we have, correspondingly, pi �= p
i

(for p
i
) or pj = pj

(for pj);
• the set J+ of all the endpoints p

i
and pj for which we already know that for

the optimal vector p we have, correspondingly, pi = p
i

(for p
i
) or pj �= pj

(for pj);
• the set J of the endpoints p

i
and pj for which we have not yet decided

whether these endpoints appear in the optimal vector p.

In the beginning, J− = J+ = ∅ and J is the set of all 2n endpoints. At
each iteration we also update the values N− = #(J−), N+ = #(J+), E− =
∑

pj∈J−
pj , and E+ =

∑

p
i
∈J+

p
i
. Initially, N− = N+ = E− = E+ = 0.
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At each iteration we do the following.

• First we compute the median m of the set J .
• Then, by analyzing the elements of the undecided set J one by one, we

divide them into two subsets

Q− = {p ∈ J : p ≤ m}, Q+ = {p ∈ J : p > m}.
We also compute m+ = min{p : p ∈ Q+}.

• We compute e− = E− +
∑

pj∈Q−
pj , e

+ = E+ +
∑

p
i
∈Q+

p
i
,

n− = N− + #{pj ∈ Q−}, n+ = N+ + #{p
i
∈ Q+},

and r =
1 − e− − e+

N − n− − n+
.

• If r < m, then we replace J− with J− ∪Q−, E− with e−, J with Q+, and
N− with n−.

• If r > m+, then we replace J+ with J+ ∪ Q+, E+ with e+, J with P−,
and N+ with n+.

• If m ≤ r ≤ m+, then we replace J− with J− ∪Q−, J+ with J+ ∪Q+, J
with ∅, E− with e−, E+ with e+, N− with n−, and N+ with n+.

At each iteration the set of undecided indices is divided in half. Iterations
continue until all indices are decided. After this we return, as S, the value of
the entropy for the vector x for which:

• pj = pj for indices j for which pj ∈ J−,
• pi = p

i
for indices i for which p

i
∈ J+, and

• pi = r for all other indices i.

Computing S is, in general, NP-hard. Several algorithms for computing S
are known; see, e.g., [1, 2, 3, 4, 5]. In the worst case, these algorithms take
time that grows exponentially with n.

The following result shows that this exponential time is caused by the
complexity of the problem.

Proposition 25.1 The problem of computing S is NP-hard.

Effective algorithms for computing S when intervals are not contained in
each other. Usually, when we know pi with some uncertainty, we know the
approximate values p̃i and the accuracy Δ of this approximation. In this
case, we know that the actual (unknown) value of pi belongs to the interval
[p̃i − Δ, p̃i + Δ]. Since these intervals all have the same width 2Δ, none
of them can be a proper subset of the other. It turns out that if we restrict
ourselves to intervals that satisfy this condition, then it is possible to compute
S efficiently.

Definition 25.1. We say that intervals [p
i
, pi] satisfy the no-subset property

if [p
i
, pi] �⊂ (p

j
, pj) for all i and j (for which the intervals pi and pj are

non-degenerate).
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An O(n · log2(n)) algorithm that computes S for all cases when the no-subset
property holds

• First, we sort n intervals pi in lexicographic order:

p1 ≤lex p2 ≤lex . . . ≤lex pn,

where [a, a] ≤lex [b, b] if and only if either a < b, or a = b and a ≤ b.
• Second, for each i from 1 to n, we compute

Mi =
∑

j:j<i

f(p
j
) +

∑

m:m>i

f(pm); Pi =
∑

j:j<i

p
j
+
∑

m:m>i

pm.

First, we compute M1 =
n
∑

j=2

f(pj) and P1 =
n
∑

j=2

pj ; then, we sequentially

compute other values as

Mi = Mi−1 + f(p
i−1

)− f(pi); Pi = Pi−1 + p
i−1

− pi.

• For every i, we compute pi =
1 − Pi

n− 1
. If pi ∈ [p

i
, pi], we compute

Si = Mi + f(pi).

• Finally, we return the smallest of these values Si as S.

Linear-time algorithm for computing S for the case when narrowed intervals
satisfy the no-subset property For simplicity, let us consider the case when
all the intervals are non-degenerate, i.e., when Δi > 0 for all i.

The proposed algorithm is iterative. At each iteration of this algorithm we
have three sets:

• the set I− of all the indices i from 1 to n for which we already know that
for the optimal vector p, we have pi = p

i
;

• the set I+ of all the indices j for which we already know that for the
optimal vector p, we have pj = pj ;

• the set I = {1, . . . , n} \ (I− ∪ I+) of the indices i for which we are still
undecided.

In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration we
also update the values of two auxiliary quantities E− def=

∑

i∈I−
p

i
and E+ def=

∑

j∈I+
pj . In principle, we could compute these values by computing these sums.

However, to speed up computations on each iteration, we update these two
auxiliary values in a way that is faster than re-computing the corresponding
two sums. Initially, since I− = I+ = ∅, we take E− = E+ = 0.

At each iteration we do the following:

• first, we compute the median m of the set I (median in terms of sorting
by p̃i);
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• then, by analyzing the elements of the undecided set I one by one, we
divide them into two subsets P− = {i : p̃i ≤ p̃m} and P+ = {j : p̃j > p̃m};

• we compute e− = E− +
∑

i∈P−
p

i
and e+ = E+ +

∑

j∈P+
pj ;

• If e− + e+ > 1, then we replace I− with I− ∪ P−, E− with e−, and I
with P+.

• If e− + e+ +2Δm < 1, then we replace I+ with I+ ∪P+, E+ with e+, and
I with P−.

• Finally, if e− + e+ ≤ 1 ≤ e− + e+ + 2Δm, then we replace I− with

I− ∪ (P− − {m}),

I+ with I+ ∪ P+, I with {m}, E− with e− − p
m

, and E+ with e+.

At each iteration the set of undecided indices is divided in half. Iterations
continue until we have only one undecided index I = {k}. After this we
return, as S, the value of the entropy for the vector p for which pi = p

i
for

i ∈ I−, pj = pj for j ∈ I+, and pk = 1 − e− − e+ for the remaining value k.

Continuous (p-box) case: formulation of the problem and a seemingly natural
solution. As we have mentioned, in the traditional statistical approach, the
uncertainty in a probability distribution is usually described by Shannon’s
entropy

S = −
∫

ρ(x) · log2(ρ(x)) dx,

where ρ(x) = F ′(x) is the probability density function of this distribution.
In the situations when we have partial information about the probability

distribution F (x) – e.g., when we only know that F (x) belongs to a non-
degenerate p-box F(x) = [F (x), F (x)], a reasonable estimate for an arbitrary
statistical characteristic S is the range of possible values of S over all possible
distributions F (x) ∈ F(x).

It therefore seems natural to apply this approach to entropy as well – and
return the range of entropy as a gauge of uncertainty of a p-box; see, e.g.,
[158] and [355].

Limitations of the above (seemingly natural) solution. The problem with the
above approach is that every non-degenerate p-box includes discrete distri-
butions, i.e., distributions which take discrete values x1, . . . , xn with finite
probabilities. For such distributions, Shannon’s entropy is −∞.

Thus, for every non-degenerate p-box, the resulting interval [S, S] has the
form [−∞, S]. Thus, once the distribution with the largest entropy S is fixed,
we cannot distinguish between a very narrow p-box or a very thick p-box –
in both case, we end up with the same interval [−∞, S].

It is therefore desirable to develop a new approach that would enable us
to distinguish between these two cases.
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Case of p-boxes: description of the situation. The traditional approach of
interval-valued entropy does not allow us to distinguish between narrow and
wide p-boxes. For a wide p-box, it is OK to make a wide interval like [−∞, S],
but for narrow p-boxes, we would like to have narrower estimates. Let us
therefore consider narrow p-boxes.

Since entropy is defined for smooth (differentiable) cdfs F (x), it is rea-
sonable to start with the case when the central function of a p-box is also
smooth. In other words, we consider p-boxes of the type

F(x) = [F0(x) −ΔF (x), F0(x) +ΔF (x)],

where F0(x) is differentiable, with derivative ρ0(x)
def= F ′

0(x), and ΔF (x) is
small.

Formulation of the problem. For each ε > 0 and for each distribution F (x) ∈
F(x), we can use the above formulas to estimate the average number Sε(F ) of
“yes”-“no” question that we need to ask to determine the actual value with
accuracy ε. Our objective is to compute the range [S, S] = {Sε(F ) : F ∈ F}.
Estimates. We have mentioned earlier that asymptotically,

S ∼ −
∫

ρ0(x) · log2(ρ0(x)) dx − log2(2ε).

It turns out that for the lower bound, we have the following asymptotics:

S ∼ −
∫

ρ0(x) · log2(max(2ΔF (x), 2ε · ρ0(x))) dx.

Comment. This result holds when ε and the width of ΔF both tends to 0.
If instead we fix the width ΔF and let ε → 0, then S → ∞ but S remains
finite.

Alternative approach: an entropy of determining the probability distribution.
We started with the situation when we do not know the object, we only know
the probabilities of different objects, and we wanted to find out how many
“yes”-“no” questions we need to find the object x.

In the new situation, in addition to not knowing the object x, we also do
not know the exact probability distribution ρ(x). It is therefore reasonable, in
addition to finding out how many binary questions we need to find x, to also
find out how many “yes”-“no” questions we need to find the exact probability
distribution ρ(x).

Of course, just like we cannot determine the real number x after finitely
many “yes”-“no” questions, we are not able to determine ρ(x) exactly af-
ter finitely many questions, we can only obtain an approximate value of a
probability distribution.

A natural way to describe a probability distribution is via its cdf F (x).
There are two reasons why the approximate cdf may be different from the
actual one: we may get the probabilities only approximately, and we may get
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the values at which these probabilities are attained only approximately. It is
therefore reasonable to fix two accuracy values ε (accuracy with which we
approximate probabilities) and δ (accuracy with which we approximate x)
and try to find an approximation ˜F (x) to F (x) in which, for every x, we have
| ˜F (x̃) − F (x)| ≤ ε for some x̃ for which |x̃− x| ≤ δ.

When P is a p-box, then, for every number x0, we have the interval
[F (x0), F (x0)] of possible values of the probability F (x0) = Prob(X ≤ x0).
We want to find the actual value of ε with the accuracy ε. We have already
mentioned that this is equivalent to localizing F (x0) within an interval of
width 2ε. Within the original interval of width w(x0)

def= F (x0) − F (x0),
there are n(x0)

def= w(x0)/(2ε) such subintervals, so, to localize F (x0), we
need ∼ log2(n(x0)) = log2(w(x0)) − log2(2ε) questions.

To get the spatial accuracy δ, we need to repeat this procedure for the
values x1, x2 = x1+2δ, etc. Overall, we thus need

∑

log2(w(xi))−
∑

log2(2ε)
questions. If we multiply the first sum by 2δ, then we get the integral sum
for
∫

log2(w(x)) dx; so, the first sum is ∼ ∫ log2(w(x)) dx/(2δ). The second
sum is a constant that does not depend on the p-box at all.

Thus, for a p-box [F (x), F (x)], the overall number of questions that we
need to ask to determine the probability distribution F (x) with a given ac-
curacy is determined by the integral

∫

log2(F (x) − F (x)) dx. This easy-to-
compute integral can thus serve as an additional information measure for
p-boxes.

Adding fuzzy uncertainty. The main idea behind fuzzy uncertainty is that,
instead of just describing which objects are possible, we also describe, for
each object, the degree to which this object is possible. For each degree of
possibility α, we can determine the set of objects that are possible with at
least this degree of possibility – the α-cut of the original fuzzy set. Vice versa,
if we know α-cuts for every α, then, for each object x, we can determine the
degree of possibility that x belongs to the original fuzzy set.

A fuzzy set can be thus viewed as a nested family of its α-cuts.
Thus, if instead of a (crisp) set P of possible probability distributions (e.g.,

a p-box), we have a fuzzy set P of possible probability distributions, then we
can view this information as a family of nested crisp sets P(α) – α-cuts of
the given fuzzy set.

In this case, once we fix a measure of information I(P ) for crisp sets of
distributions – e.g., the maximum entropy, we can then extend this measure
to fuzzy sets P – by defining I(P) as a fuzzy number whose α-cut coincides
with I(P(α)).

Comment. Instead of describing the information in a fuzzy set by a fuzzy
number, we can, alternatively, interpret degree of possibility in probabilis-
tic terms and compute the corresponding information by using probability
formulas; see, e.g., [286] and [287].
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Proofs of Theoretical Results and Justifications of
Algorithms

Proof that an O(n · log2(n)) algorithm for computing S is correct. Let

(p1, . . . , pn)

be the values of probabilities at which the entropy S attains its maximum.
The fact that S attains its maximum means that if we change the values pi,
then the corresponding change ΔS in S is non-positive: ΔS ≤ 0. We will use
this condition for different changes in pi.

For each value of pi, we have three possibilities:

• this value can be strictly inside the corresponding interval [p
i
, pi];

• this value can be at the left end of this interval, i.e., pi = p
i
; and

• this value can be at the right end of this interval, i.e., pi = pi.

Let us consider these possibilities one by one.
Let us first consider the values pj which are strictly inside the corre-

sponding intervals. If for some j and k, the corresponding probabilities are
strictly inside the corresponding intervals, i.e., if we have pj ∈ (p

j
, pj) and

pk ∈ (p
k
, pk), then for a sufficiently small real number Δ, we can replace pj

with pj +Δ and pk with pk −Δ and still get a sequence of probabilities for
which pi ∈ [p

i
, pi] for all i and

∑

pi = 1. For small Δ, the corresponding
change ΔS in entropy is equal to

(

∂S

∂xj
− ∂S

∂xj

)

·Δ+ o(Δ) = (− log2(pj) + log2(pk)) ·Δ+ o(Δ).

Since Δ can be positive or negative, the only way to have ΔS ≤ 0 for all
small Δ is to make sure that the coefficient at Δ is equal to 0, i.e., that
− log2(pj) + log2(pk) = 0. This implies that pj = pk – i.e., that all the values
pj which are inside the corresponding intervals coincide. Let us denote this
common value of pj by p.

Let us now consider the situation when pj is at the left end of the corre-
sponding interval, i.e., when pj = p

j
. If for some other k, the corresponding

value pk is at the right end or strictly inside the corresponding interval, then
pk > p

k
. In this case, we can only make a similar change pj → pj + Δ and

pk → pk−Δ when Δ > 0. Then, the requirement that ΔS ≤ 0 means that the
coefficient at Δ should be non-positive, i.e., that − log2(pj) + log2(pk) ≤ 0.
Thus, we conclude that pk ≤ pj . In particular, for the case when pk is in-
side the corresponding interval – and is, thus, equal to p – we conclude that
p ≤ pj.

Similarly, if pj is at the right end of the corresponding interval, i.e., if
pj = pj , then, for every k for which pk > p

k
, we conclude that pk ≥ pj . In

particular, we can conclude that pj ≤ p.
Let us now consider the case when there are some values pi strictly inside

the corresponding interval, so there is a value p. Let us show that is we know
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where p is located in comparison with all the endpoints [p
i
, pi], then we can

uniquely determine all the values pi.
Indeed, if the entire interval [p

i
, pi] is located to the left of p, i.e., if pi < p,

then:

• the minimum cannot be attained strictly inside the interval – because it
would have been attained at the point pi = p, and we are considering the
case when the entire interval [p

i
, pi] is located to the left of p;

• similarly, the minimum cannot be attained for pi = pi, because then, as
we have proven, we should have p ≤ pi, and the entire interval [p

i
, pi] is

located to the left of p.

Thus, in this case, the only remaining possibility is pi = pi.
Similarly, if the entire interval [p

i
, pi] is located to the right of p, i.e., if

p < p
i
, then pi = p

i
.

If p
i
< p < pi, then, similarly, we cannot have pi = p

i
and pi = pi, so we

must have pi inside and hence, pi = p.
To exploit this conclusion, let us formalize how we can describe the location

of p in relation to 2n endpoints. If we sort these endpoints p
i

and pi into a
sequence p(1) ≤ p(2) ≤ . . . ≤ p(2n), then we divide the entire real line into

2n+ 1 “zones” [p(k), p(k+1)], where we denoted p(0)
def= 0 and p(2n+1)

def= 1.
Let us pick a zone [p(k), p(k+1)], and show how we can find the possibly

optimal values pi (and the corresponding value of the entropy) under the
assumption that the (unknown) value p belongs to the this zone.

If pi < p, then we must have pi ≤ p(k) – otherwise, if pi > p(k), then, since
p(k) describe all the endpoints, we would have pi ≥ p(k+1) and hence pi > p.
Thus, in the optimal arrangement of probabilities, we have pi = pi.

Similarly, if p
i
> p, then we have pi = p

i
. For all other i, we have pi = p.

This value p can be computed based on the fact that
∑

pi = 1.
For each of 2n + 1 zones, we need to analyze n values pi; thus, for each

of the zones, we need O(n) computation steps. Overall, we get a quadratic
algorithm for computing S.

Before we describe this algorithm, we should mention that the above de-
scription only works when we actually have an index i for which pi is strictly
inside the corresponding interval. If no such index exists, then we can still
conclude that every value pj = pj is smaller than or equal than every value
pk = p

k
. Thus, there exists a value p that is greater than or equal than all

j for which pj = pj and less than or equal than all k for which pk = p
k
. By

using this p, we arrive at the same conclusion about the values pi.
Thus, in general, we arrive at the following quadratic-time algorithm for

computing S (first described in [168]):

• First, we sort 2n endpoints of n intervals pi into an increasing sequence
p(0) = 0 < p(1) < p(2) < . . . < p(m) < p(m+1) = 1. (If all the endpoints are
different, then m = 2n, but since some endpoints may coincide, we may
have m < 2n; in general, m ≤ 2n.)
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• Second, for every k from 0 to m−1, we compute the following three values:

Mk = −
∑

i:pi≤p(k)

pi · log2(pi) −
∑

j:p
j
≥p(k+1)

p
j
· log2(pj

);

Pk =
∑

i:pi≤p(k)

pi +
∑

j:p
j
≥p(k+1)

p
j
; nk = #{i : pi ≤ p(k) ∨ pi

≥ p(k+1)}.

• If nk = n, we take Sk = Mk.

• If nk < n, then we compute p =
1 − Pk

n− nk
.

– If p ∈ [p(k), p(k+1)], then we compute Sk = Mk − (n− nk) · p · log2(p).
– Otherwise, we ignore this k.

• Finally, we find the largest of these values Sk as the desired bound S.

Let us show that the computation time for this algorithm can be reduced
to O(n · log2(n)). Indeed, sorting takes O(n · log2(n)) steps; see, e.g., [73].
Once we have a sorted list, we can find, for each of the 2n endpoints p

i
and

pi, where they are in this sorting. We can thus, for each of the values p(j),
mark which endpoints coincide with this value.

The initial computation of the values M0, P0, and n0 takes O(n) steps.
Once we go from Mk to Mk+1 (or from Pk to Pk+1), we only need to update
the values corresponding to the endpoints of this zone. Overall, for all the
updates, we thus need as much time as there are updated values pi overall.

Each endpoint in this arrangement changes only once, so overall, we need
a linear number of steps (2n) to update all the values Mk, all the values Pk,
and all the values nk. Thus, overall, this algorithm takes time O(n · log2(n))+
O(n) +O(n) = O(n · log2(n)).

Proof that the above fast algorithm always computes S in linear time. Let us
first prove that the fast algorithm described in the main text always computes
the desired bound S. Indeed, in the previous proof, we have shown that if we
sort all 2n endpoints into a sequence p(1) ≤ p(2) ≤ . . . ≤ p(2n), then for some
k = kmax the maximum S is attained for the vector p for which the following
holds:

• For all indices j for which pj ≤ p(k), we have pj = pj .
• For all indices i for which p

i
≥ x(k+1), we have pi = p

i
.

• For all other indices, we have pi = const. Since
n
∑

i=1

pi = 1, we conclude

that this constant is equal to rk
def=

1 − Ek

n−Nk
, where

Ek =
∑

j:pj≤p(k)

pj +
∑

i:p
i
≥p(k+1)

p
i
;

Nk = #{j : pj ≤ p(k)} + #{i : p
i
≥ p(k+1)}.
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It can also be proven that for the optimal k we have rk ∈ [p(k), p(k+1)].
These facts can proven by the same analysis (adding Δp to one value pj and
subtracting Δp from another value pk) as in our above analysis.

Let us first prove that if rk =
1 − Ek

n−Nk
≤ p(k+1) then the similar inequality

rk+1 =
1 − Ek+1

n−Nk+1
≤ p(k+2) holds for the next value k. Indeed, the given

inequality
1 − Ek

n−Nk
≤ p(k+1) is equivalent to 1 − Ek ≤ (n−Nk) · p(k+1).

The only difference between the sums Ek =
∑

j:pj≤p(k)

pj +
∑

i:p
i
≥p(k+1)

p
i
and

Ek+1 =
∑

j:pj≤p(k+1)

pj +
∑

i:p
i
≥p(k+2)

p
i
is that:

• some terms equal to p(k+1) may be added (if there are j for which pj =
p(k+1)), and

• some other terms equal to to p(k+1) may be subtracted (if there are i for
which p

i
= p(k+1)).

In general, Ek+1 = Ek + ck · p(k+1) for some integer ck (positive, negative,
or zero), and Nk+1 = Nk + ck. Subtracting ck · p(k+1) from both sides of the
given inequality 1 − Ek ≤ (n − Nk) · p(k+1), we conclude that 1 − Ek+1 ≤
(n −Nk+1) · p(k+1), i.e. that rk+1 =

1 − Ek+1

n−Nk+1
≤ p(k+1). Since the sequence

p(k) is sorted, we thus conclude that p(k+1) ≤ p(k+2) and hence rk+1 ≤ p(k+2).
So if the inequality rk ≤ p(k+1) holds for some k, it holds for all larger

values of k as well. Thus this inequality holds for all k after a certain value l0.
Similarly, we can prove that if the inequality rk ≥ p(k) holds for some k,

then it holds for k−1 as well – since the only difference between Ek and Ek−1

consists of adding and/or subtracting some values p(k). So if the inequality
rk ≥ p(k) holds for some k, it holds for all smaller values of k as well. Thus,
this inequality holds for all k until a certain value k0.

Similarly to the proof about V , we can prove that if there are several values
k = l0, l0 +1, . . . , k0 for which both inequalities hold p(k) ≤ rk ≤ p(k+1), then
for these k, the entropy has exactly the same value.

So:

• for k < kmax, we have rk > p(k+1),
• for k > kmax, we have rk < p(k), and
• for k = kmax (or, to be more precise, for l0 ≤ k ≤ k0), we have

p(k) ≤ rk ≤ p(k+1).

Hence:

• if rk < p(k), then we cannot have k < kmax and k = kmax, hence k > kmax;
• if rk > p(k+1), then we cannot have k > kmax and k = kmax, hence
k < kmax;
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• if p(k) ≤ rk ≤ p(k+1), then we cannot have k < kmin and k > kmin, hence
k = kmax.

Thus, the above algorithm finds the correct value of kmax and thence, the
correct value of S.

To complete our proof, we must show that the proposed algorithm for
computing S takes linear time. Indeed, at each iteration, computing median
takes linear time, and all other operations with J take time t linear in the
number of elements |J | of J : t ≤ C · |J | for some C. We start with the set J
of size 2n. On the next iteration, we have a set of size 2n/2 = n, then n/2,
etc. Thus, the overall computation time is ≤ C · (2n+n+n/2+ . . .) ≤ C ·4n,
i.e. linear in n.

Proof of Proposition 25.1, that the problem of computing S is NP-hard. By
definition, a problem is called NP-hard if every problem from the class NP
can be reduced to it. To prove that a problem P is NP-hard, it is sufficient
to reduce one of the known NP-hard problems P0 to P . The reason for this
is as follows: since P0 is known to be NP-hard, it means that every problem
from the class NP can be reduced to P0, and since P0 can be reduced to P ,
thus, we can deduce that every problem from the class NP can be reduced
to P .

1◦. For our proof, we will select the following subset problem as the known
NP-hard problem P0: given n positive integers s1, . . . , sn, check whether there

exist signs ηi ∈ {−1,+1} for which the signed sum
n
∑

i=1

ηi · si equals to 0.

We will eventually prove that this problem can be reduced to the problem
of computing S; this computational problem will be denoted by P . However,
directly proving that P0 can be reduced to P seems to be difficult. Therefore,
we introduce the following auxiliary problem, denoted as P1: given a real
number a > 0 and n intervals q1 = [q

1
, q1], q2 = [q

2
, q2], . . . , qn = [q

n
, qn],

where
n
∑

i=1

q
i
≤ a ≤

n
∑

i=1

qi and 0 ≤ q
i

for all i, find the lower endpoint L of

the range

L = [L,L] =

{

−
n
∑

i=1

qi · log2(qi)

∣

∣

∣

∣

∣

qi ∈ qi &
n
∑

i=1

qi = a

}

Comment. Similarly to our problem P , the new problem P1 is also about
minimizing entropy S: the only difference is that instead of the restriction

n
∑

i=1

pi = 1, we have a new restriction
n
∑

i=1

qi = a.

2◦. To reduce P0 to P1 means that for every instance (s1, . . . , sn) of the
problem P0, we can find a corresponding instance of the problem P1 from
whose solution, we can easily check whether the desired signs ηi in P0 exist.
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In order to select an appropriate instance, let us first analyze the function
−q · log2(q). This function is equal to 0 for q = 0 and for q = 1. It attains its
maximum when

∂

∂q
(−q · log2(q)) = − log2(e) · (1 + ln(q)) = 0,

i.e., when q =
1
e
. The corresponding maximum is equal to −1

e
· log2

(

1
e

)

=

log2(e)
e

. One can easily check that the function −q · log2(q) is convex;
therefore, for every real number r between 0 and the maximum – i.e., for

which 0 < r <
log2(e)
e

, there exist exactly two different values q for which

−q · log2(q) = r. Let us denote the smaller of these two values by q−(r), and
the larger one by q+(r). We can check that that 0 < q−(r) < q+(r) < 1 and
0 < q+(r) − q−(r) < 1. As r grows from 0 to its largest value, the difference
q+(r) − q−(r) decreases from 1 to 0.

Now, for each instance (s1, . . . , sn) of the problem P0, we select the cor-
responding instance of the problem P1, i.e., the intervals [q

i
, qi] and the real

number a, as follows:

• First, we select a positive real number z for which z · max(si) < 1.
• Next, for each i from 1 to n, we find ri for which q+(ri) − q−(ri) = z · si,

and take q
i
= q−(ri) and qi = q+(ri).

• Finally, we select a =
n
∑

i=1

q
i
+ qi

2
.

It is easy to check that for thus selected values, q
i
≥ 0 and

n
∑

i=1

q
i
≤ a ≤

n
∑

i=1

qi.

Let L0
def= −

n
∑

i=1

q
i
· log2(qi

). We will show that L = L0 if and only if there

exist signs ηi for which
n
∑

i=1

ηi · si = 0.

3◦. Let us first prove that L ≥ Lo.
Indeed, due to our choice of q

i
and qi, the function −q · log2(q) attains the

same value at the two endpoints of the interval [q
i
, qi] and is larger everywhere

inside this interval. Thus, for every i and for every qi ∈ [q
i
, qi], we have

−qi · log2(qi) ≥ −q
i
· log2(qi

). By adding these inequalities, we conclude that

L = −
n
∑

i=1

qi · log2(qi) ≥ −
n
∑

i=1

−q
i
· log2(qi

) = L0.

Since all the values of L are larger than or equal to L0, the smallest possible
value L of the function L also satisfies the inequality L = L0.

4◦. Let us first prove that if the desired signs ηi exist, then L = L0.
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Indeed, in this case, we can select qi = q
i
when ηi = −1 and qi = qi when

ηi = 1. Both cases can be described by a single formula

qi =
q

i
+ qi

2
+
ηi · (qi − q

i
)

2
=
q

i
+ qi

2
+
ηi · z · si

2
.

Since −q
i
· log2(qi

) = −qi · log2(qi), for this choice of qi, we have

L = −
n
∑

i=1

qi · log2(qi) = −
n
∑

i=1

q
i
· log2(qi

) = L0.

In this case,
n
∑

i=1

qi =
n
∑

i=1

(

q
i
+ qi

2
+
ηi · z · si

2

)

=

n
∑

i=1

q
i
+ qi

2
+
z

2
·

n
∑

i=1

ηi · si =
n
∑

i=1

q
i
+ qi

2
= a.

Since for this choice of qi, we have L = L0, we can thus onclude that the
smallest possible value L of L cannot exceed L0: L ≤ L0.

We have already proven that L ≥ L0, so we can conclude that L = L0.

5◦. Now let us prove that if L = L0, then the desired signs ηi exists.
Let q1, . . . , qn be the values that minimize L, i.e., for which L = L. From

the equality L = L0, we will conclude that for every i, we have either qi = q
i

or qi = qi. This can be proven by reduction to a contradiction: if for some j,
we have qj �= q

j
and qj �= qj , then we will get −qj · log2(qj) > −q

j
· log2(qj

).
For every other i, we have −qi · log2(qi) ≥ −q

i
· log2(qi

) = −qi · log2(qi). By
adding all these inequalities, we can conclude that

L = L = −
n
∑

i=1

qi · log2(qi) > −
n
∑

i=1

q
i
· log2(qi

) = L0,

which contradicts to our assumption that L = L0. This contradiction shows
that indeed, for every i, we have either qi = q

i
or qi = qi.

Let us set ηi = −1 when qi = q
i
and ηi = 1 when qi = qi. Then,

qi =
q

i
+ qi

2
+
ηi · z · si

2
.

From the condition
∑

qi = a, we now conclude that

a =
n
∑

i=1

qi =
n
∑

i=1

q
i
+ qi

2
+
ηi · z · si

2
= a+ z ·

n
∑

i=1

ηi · si,

hence
n
∑

i=1

ηi · si = 0.
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Therefore, we have proven that the subset problem P0 can be reduced to
the auxiliary problem P1. Thus, the auxiliary problem P1 is also NP-hard.

6◦. To complete the proof, we need to show that the auxiliary problem P1

can be reduced to our P . In other words, for every instance of the auxiliary
problem P1, we can find the corresponding instance of the original problem
P , from whose solution we can easily find the solution to the instance of P1.

Indeed, let us consider an instance of the auxiliary P1, i.e., the intervals

[q
i
, qi] and the real number a for which q

i
≥ 0 and

n
∑

i=1

q
i
≤ a ≤

n
∑

i=1

qi. As

the corresponding instance of the original problem, we will take p
i
=
q

i

a
and

pi =
qi

a
.

Possible values pi ∈ [p
i
, pi] and qi ∈ [q

i
, qi] can be obtained from each other

by, correspondingly, multiplying or dividing by a. For each set qi = pi · a, we
have

L = −
n
∑

i=1

qi · log2(qi) = −
n
∑

i=1

a · pi · log2(a · pi) = −a ·
n
∑

i=1

pi · log2(a · pi) =

−a ·
n
∑

i=1

pi · log2(pi) − a · log2(a) ·
n
∑

i=1

pi =

−a ·
n
∑

i=1

pi · log2(pi) − a · log2(a) = a · S − a · log2(a).

Thus, L is an increasing function of S, hence the minimum L is equal to

L = a · S − a · log2(a).

Therefore, if we get the solution S to the above instance of our original
problem P , we will thus be able to easily compute the solution L to the
corresponding instance of the auxiliary problem P1.

Therefore, the auxiliary problem P1 – whose NP-hardness we have already
proven – can be reduced to the original problem P . So, we have prove that
the original problem P of computing S is indeed NP-hard.

Justification of the O(n · log2(n)) algorithm for computing S when intervals
are not contained in each other. It is easy to show that when we sort the
intervals in lexicographic order, then both their lower endpoints p

i
and upper

endpoints pi are also sorted: p
i
≤ p

i+1
and pi ≤ pi+1. (Indeed, otherwise, we

would get a violation of the subset property.) Let us thus assume that the
intervals are thus sorted.

Let us now show that it is sufficient to consider monotonic optimal tuples
p1, . . . , pn, for which pi ≤ pi+1 for all i. Indeed, if pi > pi+1, then, since
pi ≤ pi ≤ pi+1 and pi > pi+1 ≥ p

i+1
, we have pi ∈ [p

i+1
, pi+1] and similarly

pi+1 ∈ [p
i
, pi]. Thus, we can swap the values pi and pi+1 without changing
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the value of S. We can repeat this swap as many times as necessary until we
get a monotonic tuple that has the exact same value S = S.

Let us now show that in the optimal tuple, at most one pi can be inside
the corresponding interval. Indeed, if we have two values pj and pk strictly
inside their intervals, then, similarly to the case of S, we can conclude that
pj = pk. Now, for pj − Δ = p − Δ and pk + Δ = p + Δ, the function S
should have a minimum at Δ = 0 and thus, its second derivative relative to
Δ should be non-negative. However, an explicit computation shows that this
derivative is negative. Thus, our assumption is false, and at most one pj can
be inside the corresponding interval.

Similar to the case of S, we can now conclude that:

• if pj = p
j

and pm > p
m

, then pj ≤ pm; and
• if pm = pm and pj < pj , then pm ≥ pj .

Thus, each value pj = p
j

precede all the values pm = pm, and the only value
pi which is strictly inside the corresponding interval lies in between these
values. Thus, in a monotonic optimal tuple p1, . . . , pn, the first elements are
equal to p

j
, then we may have one element which is strictly inside its interval,

and then we have values pm = pm.
The above algorithm tests all such (possibly optimal) sequences and finds

the one for which the entropy is the largest.

Proof that under the no-subset property, the fast algorithm always computes S
in linear time. In the previous proof, we have already shown that, if we sort
the intervals pi by their midpoints, then the minimum S is always attained
at a monotonic tuple p1, . . . , pn in which the first elements are equal to p

j
,

then we may have one element which is strictly inside its interval, and then
we have values pm = pm.

For the resulting vector p = (p
1
, . . . , p

k−1
, pk, pk+1, . . . , pn), with p

k
≤

pk ≤ pk, the condition
n
∑

i=1

pi = 1 implies that Σk ≤ 1 ≤ Σk−1, where

Σk
def=

k
∑

i=1

p
i
+

n
∑

j=k+1

pj . When we go from Σk to Σk+1, we replace a larger

value pk+1 with a smaller value p
k+1

. Hence Σk > Σk+1. Thus there has to
be exactly one kmax for which Σk ≤ 1 ≤ Σk−1.

So if we have Σm > 1, this means that the value kmax corresponding to
the minimum of S is > m. Hence for all the indices i ≤ m we already know
that in the optimal vector p we have pi = p

i
. Thus these indices can be added

to the set I−.
If Σm−1 (= Σm +2Δm) < 1, this means that the value kmin corresponding

to the minimum of S is < m. Hence for all the indices j ≥ m we already
know that in the optimal vector p we have pj = pj . Thus these indices can
be added to the set I+.
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Finally, if Σm ≤ 1 ≤ Σm−1 then this m is where the minimum of S is
attained.

The algorithm has been justified.
The proof that the new algorithm for computing S takes linear time is

similar to the proof about the linear-time algorithm for computing S.

Proof of the asymptotic formula for S for the case of p-boxes. When we
discretize the distribution, we get pi ≈ ρ0(xi) ·Δxi, hence

−
∑

pi · log2(pi) ≈ −
∫

ρ0(x) · log2(ρ0(x) ·Δx) dx.

To minimize the entropy, we can take the discrete distribution with values
x1, . . . , xn as far away from each other as possible. A distribution which is
located at xi and xi+1 and has 0 probability to be in between is described
by a cdf F (x) which is horizontal on [xi, xi+1]. Thus, we must select a cdf
F (x) ∈ F(x) for which these horizontal segments are as long as possible. The
length of a horizontal segment is bounded by the geometry of the p-box:

��
�

�
�

�
�

�
�
�

	
Δxi

2ΔF (x)
F (x)

�
�

�

F (x)
�� 2ε

Thus, this length cannot exceed
2ΔF (x)
ρ0(x)

. If this length is > 2ε, then

we can take this interval between the sequential values xi. If this length is
< 2ε, then we can still take Δxi = 2ε. Thus, in general, we take Δxi =

max
(

2ΔF (x)
ρ0(x)

, 2ε
)

. Substituting this expression into the above asymptotic

formula, we get the desired asymptotic for S.
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Computing the Range of Convex Symmetric

Functions under Interval Uncertainty

In general, a statistical characteristic f can be more complex so that even
computing f can take much longer than linear time. For such f , the question
is how to compute the range [y, y] in as few calls to f as possible. We show
that for convex symmetric functions f , we can compute y in n calls to f .

The results of this chapter first appeared in [353].

Formulation and Analysis of the Problem and the
Resulting Algorithms

Computing the range of convex symmetric functions under interval uncer-
tainty: formulation of the problem. In general, a statistical characteristic f
can be more complex so that even computing f can take much longer than lin-
ear time. For such f , the question is how to compute the range [y, y] in as few
calls to f as possible. In this context, we can classify range-computing algo-
rithms by this number of calls: it is reasonable to call an algorithm quadratic-
time if it uses O(n2) calls, linear time if it uses O(n) calls, etc.

In this section, we show that for a practically useful class of convex sym-
metric functions f , we can compute y in n calls to f – i.e., in the context of
number of calls, in linear time.

Specifically, we consider continuous convex symmetric functions on convex
symmetric sets S ⊆ Rn containing a non-degenerate box [x1, x1] × . . . ×
[xn, xn], with xi < xi for all i.

A set S ∈ Rn is called symmetric if with every point

x = (x1, . . . , xi−1, xi, xi+1, . . . , xj−1, xj , xj+1, . . . , xn) ∈ S
it also contain its arbitrary permutation; it is sufficient to require that for
every i and j, the set S contain the corresponding transposition πi,j(x)

def=
(x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xn). A set S is called convex if
for two points x, x′ ∈ S and for every real number α ∈ (0, 1), the set S also
contains the convex combination α · x+ (1 − α) · x′.
H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 211–219.
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A function f : S → R is called symmetric if f(x) = f(πi,j(x)) for every
transposition πi,j , and convex if f(α ·x+(a−α) ·x′) ≤ α ·f(x)+(1−α) ·f(x′)
for all x, x′ ∈ S and for all α ∈ (0, 1).

Comment. It is known that each convex function defined on an open convex
set is continuous; see, e.g., [49]. So, if, e.g., the set S coincides with entire
space Rn, then we do not need to require continuity: any convex function
f : Rn → R is automatically continuous.

Examples. Variance
n
∑

i=1

(xi − E)2 and entropy −
n
∑

i=1

pi · log(pi) are examples

of convex symmetric statistical characteristics. More general examples are

higher-order even central moments
n
∑

i=1

(xi−E)2d (d = 1, 2, . . .) and generalized

entropy functions, i.e., functions
n
∑

i=1

g(pi) with convex g(p).

Many important physical quantities outside statistics are also convex (or
concave); see, e.g., [31, 49, 292, 343]. Some of these convex or concave char-
acteristics are also symmetric.

Computational complexity: what is known. It is known that for convex func-
tions, there exists a feasible (polynomial-time) algorithm for computing its
minimum y (see, e.g., [49] and [334]), but computing its maximum y is, in
general, NP-hard [334]; as we have mentioned earlier, it is even NP-hard for
population variance. It is therefore desirable to find feasible algorithms that
solve the maximum in practically reasonable situations. For variance and en-
tropy, such algorithms are known for the case when the inputs satisfy the
following no-subset property: [xi, xi] �⊂ (xj , xj) for all i �= j.

Algorithm for computing y with linear number of calls to f . The following
algorithm computes the maximum y of a given continuous symmetric convex
function f(x1, . . . , xn) over a given box x1× . . .×xn for all the cases in which
the intervals xi satisfy the no-subset property:

• First, we sort n intervals xi in lexicographic order:

x1 ≤lex x2 ≤lex . . . ≤lex xn.

• Second, for each k from 0 to n, we compute f(s(k)), where s(k) def=
(x1, . . . , xk, xk+1, . . . , xn).

• Finally, we return the largest of n+ 1 values f(s(k)) as y.

This algorithm takes O(n · log(n)) steps for sorting (see, e.g., [73]), n+1 calls
to f (to compute n+ 1 values f(s(k))), and O(n) steps to find the largest of
these n+ 1 values. Thus, in addition to n+ 1 calls to f , this algorithm takes
O(n · log(n)) +O(n) = O(n · log(n)) computational steps.

Comment. If the algorithm for computing the function f is feasible, i.e., takes
a polynomial time t ≤ P (n) for some polynomial P (n), then computing y
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can be done in time ≤ P (n) · (n+ 1) +O(n · log(n)) – i.e., also in polynomial
time.

Comment. A function f is convex if and only if −f is concave. The minimum
of −f is equal to minus the maximum of f . Thus, the above algorithm can
also be used to compute the minima of continuous symmetric concave func-
tions over a box [x1, x1]× . . .× [xn, xn] whose intervals satisfy the no-subset
property.

Possibility of a faster algorithm. The above algorithm for computing y is not
always optimal. For example, computing the variance V takes linear time
C ·n, so n+ 1 computations of variance means (n+ 1) ·C · n ≈ C · n2 time –
while the linear-time algorithm for computing V (presented in Section 2) is
much faster (for large n).

It turns out that a speed-up is possible not only for the variance V , but
also for several other symmetric convex functions f .

Main idea behind the speed-up: some functions f are easy to revise. One of
the reasons why we can speed up the computation of V is that this function
is easy to revise in the following sense.

When we go from s(k) to s(k+1), we only change a single component sk+1

of the point s, from xk+1 to xk+1. Thus, if we keep the values M def=
1
n
·

n
∑

i=1

x2
i

and E =
1
n
·

n
∑

i=1

xi, then updating each of these two values means computing

the new values E′ = E− xk+1 − xk+1

n
and M ′ = M− (xk+1)2 − (xk+1)2

n
, and

then computing V ′ = M ′ − (E′)2. All these updates take a constant number
(10) of arithmetic operations (independent on n). Thus, overall, we need C ·n
time to compute V (s(0)) and time 10 · n to compute n values V (s(1)), . . . ,
V (s(n)). So, overall, we need time C ·n+10 ·n+O(n · log(n)) = O(n · log(n))
which is, for large n, smaller than C · n2.

This idea can be applied to other “easy-to-revise” functions. To describe
this result, let us first introduce two auxiliary notions: of a revised tuple and
of a revisable computation scheme.

Revised tuples. For every tuple x = (x1, . . . , xi−1, xi, xi+1, . . . , xn), for every
integer i ≤ n, and for every real number x′i, by a revised tuple, we mean a
tuple ri,x′

i
(x) def= (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn), in which the i-th component

of x is replaced by x′i.

Revisable computation schemes. Let f(x1, . . . , xn) be a computable function.
By a revisable computation scheme for computing f(x1, . . . , xn), we mean a
tuple 〈f1(x1, . . . , xn), . . . , fm(x1, . . . , xn), Af , Δf 〉, where:

• f1(x), . . . , fm(x) are computable functions;
• Af is an algorithm which, given n values x = (x1, . . . , xn), computes f(x),
f1(x), . . . , fm(x);
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• Δf is an algorithm which, given the values f(x), f1(x), . . . , fm(x), an
integer i, and a real number x′i, computes the values f(x′), f1(x′), . . . ,
fm(x′) for x′ = ri,x′

i
(x).

Comment. Of course, for every computable function f , there is a trivial re-
visable computation scheme for computing f : e.g., we can take m = n and
fi(x1, . . . , xn) = xi for all i = 1, . . . ,m. In this case, the algorithm Af sim-
ply means computing f(x) and also returning the original values x1, . . . , xm,
while the algorithm Δf ignores the previous values f(x), f1(x), . . . , fm(x),
and simply computes the new value f(x′) (and also returns the new values
x′1, . . . , x

′
n).

Easy-to-revise functions: a description. We are interested only in the com-
putable functions f which are “easy-to-revise”, i.e., for which there exists a
revisable computation scheme in which

• the algorithm Af has approximately the same computational complexity
as the best known algorithm for simply computing f(x), and

• the algorithm Δf is much faster than Af .

Comment. In contrast to the notions of a revised tuple and a revisable com-
putation scheme, the notion of an easy-to-revise function is somewhat infor-
mal: it depends on which algorithms for computing f we know, and on how
we define “approximately the same” and “much faster”.

Examples. Let us first explain why the variance f = V is indeed easy-to-
revise in the sense of the above (somewhat informal) definition. For the vari-
ance, f1 = M and f2 = E. Computing f1 = M , f2 = E, and f = M − E2

takes linear time C · n – approximately the same time as for all known algo-
rithms for computing variance. However, if we change one of the components
xi to a different value x′i, then, as we have mentioned, updating E and M to
new values E′ and M ′ and computing the new value V ′ = M ′ − (E′)2 takes
10 computational steps. So, here, the revising algorithm Δf takes 10 time
steps, which, for large n, is much faster than C · n.

Similarly, the mean E is easy-to-revise: we need time C · n to compute E,
but only 3 � C · n steps to update E.

Higher central even moments, entropy, and generalized entropy are other
examples of easy-to-revise symmetric convex functions. For example, the 4-

th central moment is a linear combination of the moments Mk
def=

n
∑

i=1

xk
i of

orders k = 1, 2, 3, 4, and each of these four functions mk is easy to revise.

Algorithm for computing y for easy-to-revise symmetric convex functions f .
For easy-to-revise functions, we can compute y as follows:

• first, we apply the algorithm Af to compute the values of f and of the
auxiliary functions f1, . . . , fm at s(0);
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• then, for each k from 1 to n, we apply the algorithm Δf to revise the
values of f, f1, . . . , fm from x = s(k−1) to x = s(k);

• finally, we compute y as the largest of n+ 1 values f(s(k)).

This algorithm calls the algorithm Af once (to compute f(s(0)), calls the
revision algorithm Δf n times, and uses O(n · log(n)) computational steps in
addition to these calls.

Comment. Since Δf is much faster than Af , and Af takes approximately the
same time as computing f , the new algorithm for computing y takes much
less time than computing f for n+ 1 tuples s(0), . . . , s(n).

It is worth mentioning that this new algorithm is not always optimal: e.g.,
for the variance, this algorithm takes time O(n·log(n))+O(n) = O(n·log(n)),
but we know that we can compute V even faster: in linear time.

Computing y and y under the constraint
n
∑

i=1

xi = c: a problem. As we have

mentioned earlier, for entropy, we have an additional constraint
n
∑

i=1

pi = 1

on the possible values of the probabilities pi. The same constraint holds for
computing other characteristics of probabilities such as a generalized entropy.

So, we arrive at the following problem: we know a continuous symmetric
convex function f(x1, . . . , xn) (given as an algorithm or, equivalently, as a
computer program), we know the intervals xi = [xi, xi] that satisfy the above
no-subset property, and we know the number c for which we should have
n
∑

i=1

xi = c. Our objective is to compute the range

[y, y] =

{

f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn,

n
∑

i=1

xi = c

}

.

Computing y under the constraint
n
∑

i=1

xi = c. The constraints xi ∈ xi and
n
∑

i=1

xi = c describe a convex set, so we can compute the minimum y of a

convex function f over this set in polynomial time.

Algorithm for computing y under the constraint
n
∑

i=1

xi = c when the inter-

vals satisfy the no-subset property. Under the above no-subset property, the
following algorithm computes y by calling f once and by using O(n) compu-
tational steps in addition to this call.

This algorithm is iterative. At each iteration of this algorithm, we have
three sets:

• the set I− of all the indices i from 1 to n for we already know that for the
optimal vector x, we have xi = xi;

• the set I+ of all the indices j for which we already know that for the
optimal vector x, we have xj = xj ;



216 26 Computing the Range of Convex Symmetric Functions

• the set I = {1, . . . , n} − I− − I+ of the indices i for which we are still
undecided.

In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration,
we also update the values of two auxiliary quantities E− def=

∑

i∈I−
xi and

E+ def=
∑

j∈I+
xj . In principle, we could compute these values by computing

these sums, but to speed up computations, on each iteration, we update
these two auxiliary values in a way that is faster than re-computing the cor-
responding two sums. Initially, since I− = I+ = ∅, we take E− = E+ = 0.

At each iteration, we do the following:

• first, we compute the median m of the set I (median in terms of sorting

by x̃i =
xi + xi

2
);

• then, by analyzing the elements of the undecided set I one by one, we
divide them into two subsets

X− = {i : x̃i ≤ x̃m} and X+ = {j : x̃j > x̃m};

• we compute e− = E− +
∑

i∈X−
xi and e+ = E+ +

∑

i∈X+
xi;

• if e− + e+ > c, then we replace I− with I− ∪X−, E− with e−, and I with
X+;

• if e− + e+ +2Δm < c, then we replace I+ with I+ ∪X+, E+ with e+, and
I with X−;

• finally, if e− + e+ ≤ c ≤ e− + e+ + 2Δm, then we replace I− with I− ∪
(X− − {m}), I+ with I+ ∪X+, I with {m}, E− with e− − p

m
, and E+

with e+.

At each iteration, the set of undecided indices is divided in half. Iterations
continue until we have only one undecided index I = {k}, after which we
return, as y, the value of the function f(x1, . . . , xn) for the vector x for
which xi = xi for i ∈ I−, xj = xj for j ∈ I+, and xk = c− E− − E+ for the
remaining value k.

Proofs

Proof that the new algorithm for computing the maximum y of a symmet-
ric convex function is correct. To prove that the algorithm is correct we
must show that the maximum y of the function f is attained at one of the
points s(k).

One can easily check that since the intervals xi are already sorted in lexi-
cographic order and satisfy the no-subset property, the lower endpoints and
the upper endpoints are also sorted, i.e., xi ≤ xi+1 and xi ≤ xi+1 for all i.
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The maximum of a continuous function on a bounded closed polyhedron
x1 × . . . × xn is always attained at some point, and since the function f is
convex, it is attained at one of the vertices of this set [49, 292, 343], i.e., when
for each i, we have si = xi or si = xi.

There may be several vertices at which the maximum is attained. Out of all
maximizing vertices, we choose a one s with the largest length of the starting
sequence of lower bounds. We will denote this length by k; this means that
s has the form s = (x1, . . . , xk, xk+1, . . .), i.e., it starts with k lower bounds
and then has an upper bound at the (k + 1)-st place. We will prove that for
this point s, all the components sl for l > k + 1 are upper bounds, i.e., that
s = s(k).

Indeed, let us assume that for some l > k + 1, the component sl of the
chosen point is a lower bound: sl = xl. We will then construct another point
s′ at which f also attains its maximum and which has a longer starting
sequence of lower bounds – which contradicts to our choice of s.

In this construction, we will only change the (k+1)-st and l-th coordinates,
so this construction can be naturally illustrated on the corresponding plane.
First, we consider the bisecting line xk+1 = xl of the first and third quadrant
and find an orthogonal line to it (xk+1 +xl = const) which passes through s.
The line has to intersect the interior of the rectangle and to leave it again at
some point s′′ – which is either the left or the upper face; see the following
pictures, in which s′′l

def= xl + (xk+1 − xk+1) and s′′k+1
def= xk+1 − (xl − xl).

Let z′′ be a point which is symmetric relative to s′′. Since the endpoints are
sorted, one can prove that s is in between s′′ and z′′, i.e., that s is a convex
combination of s′′ and z′′.
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The point s at which the maximum is attained is a convex combination
of the points s′′ and z′′, i.e., s = α · s′′ + (1 − α) · z′′. Since f is a convex
function, we have f(s) ≤ α ·f(s′′)+(a−α) ·f(z′′). Due to symmetry, we have
f(s′′) = f(z′′) hence f(s) ≤ f(s′′). Since the function f attains its maximum
at the point s, it thus attains the maximum at the point s′′ as well.

This point s′′ is on a straight line segment – namely, on one of the faces of
the rectangle. Since the function f is convex, the only way for it to attain the
maximum inside the straight line segment is to attain the same maximum on
both endpoints of this face, in particular, at a points s′ at which s′k+1 = xk+1.
For this new point, we have s′1 = x1, . . . , s

′
k = xk, and s′k+1 = xk+1 – which

contradicts to our assumption that k is the largest length of the starting
lower-endpoint sequence in a maximizing point. Correctness is proven.

Proof that the new algorithm for computing y under the constraint
n
∑

i=1

xi = c

is correct. Similarly to the previous proof, we can conclude that the maximum
y is always attained at one of the vertices of the convex polyhedron

(x1 × . . .× xn) ∩
{

x :
n
∑

i=1

xi = c

}

,

i.e., at a point s at which for at least n − 1 values si, we have si = xi or
si = xi.

Similarly to the previous proof, we can also conclude that the maximum
is attained at one of the points s(k) = (x1, . . . , xk−1, sk, xk+1, . . . , xn). The

value sk can determined by the condition
n
∑

i=1

si = c. For this value sk to

be between xk and xk, we must make sure that Σk ≤ 1 ≤ Σk−1, where

Σk
def=

k
∑

i=1

xi +
n
∑

j=k+1

xj . Similar to the case of entropy, we can conclude that
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since the sums Σk decrease with k, there is only one value k for which the
above inequality holds, so we can use the linear-time algorithm from the
entropy case to find this value k. Once this value is found, we have thus
found the maximizing point s(k) and thus, a single call to f finds the desired
maximum f(s(k)).

Correctness is proven.
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Computing Statistics under Interval

Uncertainty: Possibility of Parallelization

In this chapter, we show how the algorithms for estimating variance under
interval and fuzzy uncertainty can be parallelized. The results of this chapter
first appeared in [336].

Need for parallelization. Traditional algorithms for computing the popula-
tion variance V based on the exact values x1, . . . , xn take linear time O(n).
Algorithms for estimating variance under interval uncertainty take a larger
amount of computation time – e.g., time O(n · log(n)). How can we speed up
these computations?

If we have several processors, then it is desirable to perform these algo-
rithms in parallel on several processors, and thus, speed up computations.
In this chapter, we show how the algorithms for estimating variance under
interval and fuzzy uncertainty can be parallelized.

In order to describe how to parallelize these algorithms, let us describe
the existing sequential (non-parallel) algorithms for estimating the variance
under interval uncertainty.

Algorithm for computing V in the no-(proper)-subset case. The correspond-
ing algorithm is as follows:

• First, we sort the values x̃i into an increasing sequence. Without losing
generality, we can assume that x̃1 ≤ x̃2 ≤ . . . ≤ x̃n.

• Then, for every k from 0 to n, we compute the value V (k) = M (k)−(E(k))2

of the population variance V for the vector x(k) =(x1, . . . , xk, xk+1, . . . , xn).
(For k = 0, x(0) = (x1, . . . , xn).)

• Finally, we compute V as the largest of n+ 1 values V (0), . . . , V (n).

To compute the values V (k), first, we explicitly compute M (0) =
1
n
·

n
∑

i=1

(xi)2,

E(0) =
1
n
·

n
∑

i=1

xi, and V (0) = M (0) − (E(0))2. Once we know the values M (k)

and E(k), we can compute

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 221–224.
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M (k+1) = M (k) +
1
n
· (xk+1)

2 − 1
n
· (xk+1)2

and
E(k+1) = E(k) +

1
n
· xk+1 −

1
n
· xk+1.

Possibility of parallelization. For large n, we may want to further speed up
computations if we have several processors working in parallel.

In the general case, all the stages of the above algorithm can be parallelized
by known techniques. In particular, Stage 3 is a particular case of a general
prefix-sum problem, in which we must compute the values

an, an ∗ an−1, an ∗ an−1 ∗ an−2, . . . ,

for some associative operation ∗ (in our case, ∗ = max).

Case of potentially unlimited number of processors. If we have a potentially
unlimited number of processors, then we can do the following (see, e.g., [140],
for the information on how to parallelize the corresponding stages):

• on Stage 1, we can sort the values x̃i in time O(log(n));
• on Stage 2, we can compute the values V (i) (i.e., solve the prefix-sum

problem) in time O(log(n));
• on Stage 3, we can compute the maximum of V (i) in time O(log(n)).

As a result, we can check monotonicity in time

O(log(n)) +O(log(n)) +O(log(n)) = O(log(n)).

Example. To give the readers a better understanding on how these stages can
be parallelized, let us describe, in detail, parallelization of Stage 3. In other
words, let us describe how to compute the maximum of n + 1 given values
V (0), . . . , V (n) in parallel.

As we have mentioned, the parallelized algorithm consists of O(log(n))
steps. At the first step, we divide n + 1 values into pairs (V (0), V (1)),
(V (2), V (3)), . . . Since we have assumed that we have a potentially unlim-
ited number of processors, we can allocate an individual processor to each
pair – to the total of �(n+ 1)/2� processors. At the first step, each processor
compares the corresponding two numbers and thus computes the maximum
of this pair:

• the first processor computes the value

m(0, 1) def= max(V (0), V (1));

• at the same time, the second processor computes the value

m(2, 3) def= max(V (2), V (3));

• etc.
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At the end of the first step, we thus have �(n + 1)/2� ≈ n/2 values m(0, 1),
m(2, 3), m(4, 5), m(6, 7), etc.

At the second step, we divide these �(n + 1)/2� ≈ n/2 values into pairs,
and compute the maximum of each pair:

• the first processor computes the value

m(0, 3) def= max(m(0, 1),m(2, 3));

by definition of m(0, 1) and m(2, 3), this value is equal to

max(V (0), V (1), V (2), V (3));

• at the same time, the second processor computes the value

m(4, 7) def= max(m(4, 5),m(6, 7));

by definition of m(4, 5) and m(6, 7), this value is equal to

max(V (4), V (5), V (6), V (7));

• etc.

At the end of the second step, we thus have ≈ n/4 values m(0, 3), m(4, 7),
etc., describing the maxima of four elements.

At the third step, we repeat this procedure again, and get the values
m(0, 7), m(8, 15), etc., describing the maxima of 8 = 23 elements.

At the k-th step, we get the values

m(0, 2k − 1),m(2k, 2k + (2k − 1)), . . . ,

describing the maxima of 2k elements.
As soon as we get 2k = n, i.e., as soon as k ≈ log2(n), we get the de-

sired maximum of all n elements. Thus, we can indeed compute the desired
maximum in O(log(n)) steps.

Case of a fixed number of processors. If we have p < n processors, then we
can:

• on Stage 1, sort n values in time O
(

n · log(n)
p

+ log(n)
)

; see, e.g., [140];

• on Stage 2, compute the values V (i) in time O
(

n

p
+ log(p)

)

; see, e.g., [46];

• on Stage 3, compute the maximum of V (i) in time O
(

n

p
+ log(p)

)

.

Overall, we thus need time

O

(

n · log(n)
p

+ log(n)
)

+O

(

n

p
+ log(p)

)

+O

(

n

p
+ log(p)

)

=

O

(

n · log(n)
p

+ log(n) + log(p)
)

.
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Example. To illustrate how this parallelization works, let us again use Stage 3.
Specifically, let us show how we can use p processors to compute the maximum

of given n+ 1 values V (0), . . . , V (n) in parallel in time O
(

n

p
+ log(p)

)

.

Indeed, let us divide n+ 1 values into p subgroups with
n+ 1
p

elements in

each subgroup. To each of these subgroups, we assign one of the p processors.

Each processor computes the maximum of all its
n+ 1
p

values in time
n+ 1
p

=

O

(

n

p

)

, and these processors work in parallel. After that, we have p values

– the maximum of the first subgroup, the maximum of the second subgroup,
etc.

To find the maximum of all n + 1 elements, it is now sufficient to find
the largest of these p subgroup maxima. We already know that if we have p
processors, then we can compute the maximum of p values in parallel in time
O(log(p)).

Thus, we have a two-step process for computing the maximum. The first

step takes time O
(

n

p

)

, the second step takes time O(log(p)). Thus, the total

computation time of this two-step process is indeed equal to O
(

n

p
+ log(p)

)

.



28

Computing Statistics under Interval

Uncertainty: Case of Relative Accuracy

Formulation of the problem. In the previous chapters, we have shown that
for many statistical characteristics C, computing them with a given absolute
accuracy ε – i.e., computing a value ˜C for which | ˜C − C| ≤ ε – is NP-hard.

It turns out that if we are interested in computing these characteristics with
relative accuracy – relative with respect to, e.g., the largest of the inputs –
then it often possible to estimate these characteristics in polynomial time.

These results first appeared in [57, 176].

Towards a new technique: back to straightforward interval computations, cen-
tered form, etc. We would like to compute a good estimate for the range
in reasonable time. As we have mentioned, there are algorithms that always
compute an enclosure for the range in feasible time – straightforward inter-
val computations, centered form, etc. However, as we have mentioned on the
example of the variance (see Chapter 14), we cannot directly apply these
algorithm because their application leads to excess width.

As we have shown (Chapter 7), the main reason for excess width is that
intermediate results are dependent on each other, and straightforward inter-
val computations ignore this dependence. For example, the actual range of
f(x1) = x1 − x2

1 over x1 = [0, 1] is y = [0, 0.25]. Computing this f means
that we first compute x2 := x2

1 and then subtract x2 from x1. According to
straightforward interval computations, we compute r = [0, 1]2 = [0, 1] and
then x1 − x2 = [0, 1] − [0, 1] = [−1, 1]. This excess width comes from the
fact that the formula for interval subtraction implicitly assumes that both a
and b can take arbitrary values within the corresponding intervals a and b,
while in this case, the values of x1 and x2 are clearly not independent: x2 is
uniquely determined by x1, as x2 = x2

1.

New techniques: main idea. A natural idea (see, e.g., [54, 55]) is to remedy
the above reason why interval computations lead to excess width. Specifically,
at every stage of the computations, in addition to keeping the intervals xi of
possible values of all intermediate quantities xi, we also keep several sets:

• sets xij of possible values of pairs (xi, xj);

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 225–234.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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• if needed, sets xijk of possible values of triples (xi, xj , xk); etc.

In the above example, instead of just keeping two intervals x1 = x2 = [0, 1],
we would then also generate and keep the set x12 = {(x1, x

2
1) |x1 ∈ [0, 1]}.

Then, the desired range is computed as the range of x1 − x2 over this set –
which is exactly [0, 0.25].

In other words, from interval computations, we move to set computations.
In the interval computations context, the idea of representing dependence

in terms of sets of possible values of tuples was first described by Shary; see,
e.g., [303, 304] and references therein.

How can we propagate this set uncertainty via arithmetic operations? Let
us describe this on the example of addition, when, in the computation of f ,
we use two previously computed values xi and xj to compute a new value
xk := xi + xj . In this case, we set xik = {(xi, xi + xj) | (xi, xj) ∈ xij},
xjk = {(xj , xi + xj) | (xi, xj) ∈ xij}, and for every l �= i, j, we take

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl}.

Comment. From the mathematical viewpoint, a subset xij of the set of all
possible pairs xi×xj is a relation. It is therefore not surprising that processing
this uncertainty is similar to processing relations in other application areas
such as relational database systems; see, e.g., [333]. For example, a natural
intermediate step in computing xik is when, given the relations xia and
xib, we form a new relation {(xa, xi, xb) | (xa, xi) ∈ xai, (xi, xb) ∈ xib}. In
relational algebra, this intermediate relation is called a join and denoted by
xai ��i xib.

From main idea to actual computer implementation. In interval computa-
tions, we cannot represent an arbitrary interval inside the computer, we need
an enclosure. Similarly, we cannot represent an arbitrary set inside a com-
puter, we need an enclosure.

To describe such enclosures, we fix the number C of granules (e.g., C = 10).
We divide each interval xi into C equal parts X i; thus each box xi × xj is
divided into C2 subboxes Xi ×Xj . We then describe each set xij by listing
all subboxes X i × Xj which have common elements with xij ; the union of
such subboxes is an enclosure for the desired set xij .

Of course, in reality, there is no need to actually list these subboxes: to
describe an arbitrary set, it is sufficient to store 10 × 10 = 100 bits of infor-
mation describing whether each of the 10 × 10 subboxes belongs to the list.
In other words, a set can be represented as 10× 10 array of Boolean values.
Similarly, for triples, we can represent the corresponding set as a 3-D array
of size 10× 10 × 10, etc.

Historical comment. This representation of a set by the union of grid cells
which intersect with this set is well known in data mining as an upper ap-
proximation in the sense of rough set theory; see, e.g., [279, 280].
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Possibility of improvement. The above approach is a good way to describe
generic sets, but in practice, the resulting description may be redundant.

• For example, even if we know that all the values (x1, x2) are possible, we
still need 100 Boolean values to describe this set.

• Similarly, if the set consists of all the values for which x1 = x2, then out
of 100 subboxes, only 10 diagonal boxes are affected, but we still need all
100 Boolean values.

A more efficient idea is to represent sets is by using a paving – in the style
of [142]. In this approach, we start with a 2× 2 subdivision. For each of the
2 × 2 = 4 subboxes, we:

• mark this subbox as “in” if it is completely inside the desired set;
• mark this subbox as “out” if it is completely outside the desired set;
• otherwise, if this subbox contains both points from the desired set and

point outside the desired set, we subdivide this box into 2×2 = 4 subboxes,
and repeat the procedure.

As a result, we get a list consisting of boxes of different sizes – starting with
larger ones and only decreasing the size when necessary.

How to propagate set uncertainty. The above implementation enables us to
implement all arithmetic operations on data given with set uncertainty. For
example, to implement xik = {(xi, xi + xj) | (xi, xj) ∈ xij}, we take all the
subboxes Xi × Xj that form the set xij ; for each of these subboxes, we
enclosure the corresponding set of pairs {(xi, xi + xj) | (xi, xj) ∈ Xi × Xj}
into a set Xi × (X i + Xj). This set may have non-empty intersection with
several subboxes Xi × Xk; all these subboxes are added to the computed
enclosure for xik. Once can easily see if we start with the exact range xij ,
then the resulting enclosure for xik is an (1/C)-approximation to the actual
set – and so when C increases, we get more and more accurate representations
of the desired set.

Similarly, to find an enclosure for

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl},
we consider all the triples of subintervals (X i,Xj ,X l) for which Xi ×Xj ⊆
xij , Xi × X l ⊆ xil, and Xj × X l ⊆ xjl; for each such triple, we compute
the box (X i + Xj) × X l; then, we add subboxes Xk × X l which intersect
with this box to the enclosure for xkl.

First example: computing the range of x− x. For f(x) = x− x on [0, 1], the
actual range is [0, 0], but straightforward interval computations lead to an
enclosure [0, 1]− [0, 1] = [−1, 1]. In straightforward interval computations, we
have r1 = x with the exact interval range r1 = [0, 1], and we have r2 = x with
the exact interval range x2 = [0, 1]. The variables r1 and r2 are dependent,
but we ignore this dependence.

In the new approach: we have r1 = r2 = [0, 1], and we also have r12:
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×
×

×
×

×

r1

r2

For each small box, we have [−0.2, 0.2], so the union is [−0.2, 0.2].
If we divide into more pieces, we get an interval closer to 0.

Second example: computing the range of x − x2. In straightforward interval
computations, we have r1 = x with the exact interval range interval r1 =
[0, 1], and we have r2 = x2 with the exact interval range x2 = [0, 1]. The
variables r1 and r2 are dependent, but we ignore this dependence and estimate
r3 as [0, 1]− [0, 1] = [−1, 1].

In the new approach: we have r1 = r2 = [0, 1], and we also have r12.
First, we divide the range [0, 1] into 5 equal subintervals R1. The union of
the ranges R2

1 corresponding to these 5 subintervals R1 is [0, 1], so r2 = [0, 1].
We divide this interval r2 into 5 equal sub-intervals [0, 0.2], [0.2, 0.4], etc. We
now compute the set r12 as follows:

• for R1 = [0, 0.2], we have R2
1 = [0, 0.04], so only sub-interval [0, 0.2] of the

interval r2 is affected;
• for R1 = [0.2, 0.4], we have R2

1 = [0.04, 0.16], so also only sub-interval
[0, 0.2] is affected;

• for R1 = [0.4, 0.6], we have R2
1 = [0.16, 0.36], so two sub-intervals [0, 0.2]

and [0.2, 0.4] are affected, etc.

× × ×
× ×

×
× ×

×

r1

r2

For each possible pair of small boxes R1 × R2, we have R1 − R2 =
[−0.2, 0.2], [0, 0.4], or [0.2, 0.6], so the union of R1 −R2 is r3 = [−0.2, 0.6].

If we divide into more and more pieces, we get the enclosure which is closer
and closer to the exact range [0, 0.25].
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How to compute rik. The above example is a good case to illustrate how we
compute the range r13 for r3 = r1 − r2. Indeed, since r3 = [−0.2, 0.6], we
divide this range into 5 subintervals [−0.2,−0.04], [−0.04, 0.12], [0.12, 0.28],
[0.28, 0.44], [0.44, 0.6].

• For R1 = [0, 0.2], the only possible R2 is [0, 0.2], so R1−R2 = [−0.2, 0.2].
This covers [−0.2,−0.04], [−0.04, 0.12], and [0.12, 0.28].

• For R1 = [0.2, 0.4], the only possible R2 is [0, 0.2], so R1 − R2 = [0, 0.4].
This interval covers [−0.04, 0.12], [0.12, 0.28], and [0.28, 0.44].

• For R1 = [0.4, 0.6], we have two possible R2:
– for R2 = [0, 0.2], we have R1 − R2 = [0.2, 0.6]; this covers [0.12, 0.28],

[0.28, 0.44], and [0.44, 0.6];
– for R2 = [0.2, 0.4], we have R1 −R2 = [0, 0.4]; this covers [−0.04, 0.12],

[0.12, 0.28], and [0.28, 0.44].
• For R1 = [0.6, 0.8], we have R2

1 = [0.36, 0.64], so three possible R2:
[0.2, 0.4], [0.4, 0.6], and [0.6, 0.8], to the total of [0.2, 0.8]. Here, [0.6, 0.8]−
[0.2, 0.8] = [−0.2, 0.6], so all 5 subintervals are affected.

• Finally, for R1 = [0.8, 1.0], we have R2
1 = [0.64, 1.0], so two possible R2:

[0.6, 0.8] and [0.8, 1.0], to the total of [0.6, 1.0]. Here, [0.8, 1.0]− [0.6, 1.0] =
[−0.2, 0.4], so the first 4 subintervals are affected.

×
× ×

×
×

×
×
×
×

×
×
×
×
×

×
×
×
×

r1

r3

Limitations of this approach. The main limitation of this approach is that
when we need an accuracy ε, we must use ∼ 1/ε granules; so, if we want to
compute the result with k digits of accuracy, i.e., with accuracy ε = 10−k,
we must consider exponentially many boxes (∼ 10k). In plain words, this
method is only applicable when we want to know the desired quantity with
a given accuracy (e.g., 10%).

Cases when this approach is applicable. In practice, there are many problems
when it is sufficient to compute a quantity with a given accuracy: e.g., when
we detect an outlier, we usually do not need to know the variance with a high
accuracy, an accuracy of 10% is more than enough.

Let us describe the case when interval computations do not lead to the
exact range, but set computations do – of course, the range is “exact” modulo
accuracy of the actual computer implementations of these sets.
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Example: estimating variance under interval uncertainty. Suppose that we
know the intervals x1, . . . ,xn of possible values of x1, . . . , xn, and we need to

compute the range of the variance V =
1
n
·M − 1

n2
· E2, where M def=

n
∑

i=1

x2
i

and E def=
n
∑

i=1

xi.

A natural way to to compute V is to compute the intermediate sums

Mk
def=

k
∑

i=1

x2
i and Ek

def=
k
∑

i=1

xi. We start with M0 = E0 = 0; once we know

the pair (Mk, Ek), we compute (Mk+1, Ek+1) = (Mk + x2
k+1, Ek + xk+1).

Since the values of Mk and Ek only depend on x1, . . . , xk and do not depend
on xk+1, we can conclude that if (Mk, Ek) is a possible value of the pair and
xk+1 is a possible value of this variable, then (Mk + x2

k+1, Ek + xk+1) is a
possible value of (Mk+1, Ek+1). So, the set p0 of possible values of (M0, E0) is
the single point (0, 0); once we know the set pk of possible values of (Mk, Ek),
we can compute pk+1 as {(Mk + x2, Ek + x) | (Mk, Ek) ∈ pk, x ∈ xk+1}. For
k = n, we will get the set pn of possible values of (M,E); based on this set,

we can then find the exact range of the variance V =
1
n
·M − 1

n2
·E2.

What C should we choose to get the results with an accuracy ε·V ? On each
step, we add the uncertainty of 1/C; to, after n steps, we add the inaccuracy
of n/C. Thus, to get the accuracy n/C ≈ ε, we must choose C = n/ε.

What is the running time of the resulting algorithm? We have n steps;
on each step, we need to analyze C3 combinations of subintervals for Ek,
Mk, and xk+1. Thus, overall, we need n · C3 steps, i.e., n4/ε3 steps. For
fixed accuracy C ∼ n, so we need O(n4) steps – a polynomial time, and for
ε = 1/10, the coefficient at n4 is still 103 – quite feasible.

For example, for n = 10 values and for the desired accuracy ε = 0.1, we
need 103 · n4 ≈ 107 computational steps – “nothing” for a Gigaherz (109

operations per second) processor on a usual PC. For n = 100 values and the
same desired accuracy, we need 104 ·n4 ≈ 1012 computational steps, i.e., 103

seconds (15 minutes) on a Gigaherz processor. For n = 1000, we need 1015

steps, i.e., 106 computational steps – 12 days on a single processor or a few
hours on a multi-processor machine.

In comparison, the exponential time 2n needed in the worst case for the
exact computation of the variance under interval uncertainty, is doable (210 ≈
103 step) for n = 10, but becomes unrealistically astronomical (2100 ≈ 1030

steps) already for n = 100.

Comment. When the accuracy increases ε = 10−k, we get an exponential
increase in running time – but this is OK since, as we have mentioned, the
problem of computing variance under interval uncertainty is, in general, NP-
hard.

Other statistical characteristics. Similar algorithms can be presented for com-
puting many other statistical characteristics. For example, for every integer
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d > 2, the corresponding higher-order central moment Cd =
1
n
·

n
∑

i=1

(xi − x)d

is a linear combination of d moments M (j) def=
n
∑

i=1

xj
i for j = 1, . . . , d; thus,

to find the exact range for Cd, we can keep, for each k, the set of possible

values of d-dimensional tuples (M (1)
k , . . . ,M

(d)
k ), where M (j)

k
def=

k
∑

i=1

xj
i . For

these computations, we need n ·Cd+1 ∼ nd+2 steps – still a polynomial time.

Another example is covariance Cov =
1
n
·

n
∑

i=1

xi · yi − 1
n2

·
n
∑

i=1

xi ·
n
∑

i=1

yi. To

compute covariance, we need to keep the values of the triples (Covk, Xk, Yk),

where Covk
def=

k
∑

i=1

xi · yi, Xk
def=

k
∑

i=1

xi, and Yk
def=

k
∑

i=1

yi. At each step, to

compute the range of

(Covk+1, Xk+1, Yk+1) = (Covk + xk+1 · yk+1, Xk + xk+1, Yk + yk+1),

we must consider all possible combinations of subintervals for Covk, Xk, Yk,
xk+1, and yk+1 – to the total of C5. Thus, we can compute covariance in time
n · C5 ∼ n6.

Similarly, to compute correlation ρ = Cov/
√

Vx · Vy, we can update, for

each k, the values of (Ck, Xk, Yk, X
(2)
k , Y

(2)
k ), where X(2)

k =
k
∑

i=1

x2
i and Y (2)

k =

k
∑

i=1

y2
i are needed to compute the variances Vx and Vy. These computations

take time n · C7 ∼ n8.

Systems of ordinary differential equations (ODEs) under interval uncertainty.
A general system of ODEs has the form ẋi = fi(x1, . . . , xm, t), 1 ≤ i ≤ m.
Interval uncertainty usually means that the exact functions fi are unknown,
we only know the expressions of fi in terms of parameters, and we have
interval bounds on these parameters.

There are two types of interval uncertainty: we may have global parameters
whose values are the same for all moments t, and we may have noise-like
parameters whose values may different at different moments of time – but
always within given intervals. In general, we have a system of the type

ẋi = fi(x1, . . . , xm, t, a1, . . . , ak, b1(t), . . . , bl(t)),

where fi is a known function, and we know the intervals aj and bj(t) of
possible values of ai and bj(t).

Example. For example, the case of a differential inequality when we only
know the bounds f

i
(x1, . . . , xn, t) and f i(x1, . . . , xn, t) on fi(x1, . . . , xn, t)

can be described as

˜fi(x1, . . . , xn, t) + b1(t) ·Δ(x1, . . . , xn, t),
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where

˜fi(x1, . . . , xn, t)
def=

f
i
(x1, . . . , xn, t) + f i(x1, . . . , xn, t)

2
,

Δ(x1, . . . , xn, t)
def=

f i(x1, . . . , xn, t)− f
i
(x1, . . . , xn, t)

2
,

and b1(t) = [−1, 1].

Solving systems of ordinary differential equations (ODEs) under interval un-
certainty. For the general system of ODEs, Euler’s equations take the form

xi(t+Δt) = xi(t) +Δt · fi(x1(t), . . . , xm(t), t, a1, . . . , ak, b1(t), . . . , bl(t)).

Thus, if for every t, we keep the set of all possible values of a tuple
(x1(t), . . . , xm(t), a1, . . . , ak), then we can use the Euler’s equations to get
the exact set of possible values of this tuple at the next moment of time.

The reason for exactness is that the values xi(t) depend only on the pre-
vious values bj(t−Δt), bj(t− 2Δt), etc., and not on the current values bj(t).

To predict the values xi(T ) at a moment T , we need n = T/Δt iterations.
To update the values, we need to consider all possible combinations of

m + k + l variables x1(t), . . . , xm(t), a1, . . . , ak, b1(t), . . . , bl(t); so, to predict
the values at moment T = n · Δt in the future for a given accuracy ε > 0,
we need the running time n ·Cm+k+l ∼ nk+l+m+1. This is is still polynomial
in n.

Other possible cases when our approach is efficient. Similar computations
can be performed in other cases when we have an iterative process where a
fixed finite number of variables is constantly updated.

In such problems, there is an additional factor which speeds up computa-
tions. Indeed, in the modern computers, fetching a value from the memory,
in general, takes much longer than performing an arithmetic operation. To
decrease this time, computers have a hierarchy of memories – from registers
from which the access is the fastest, to cash memory (second fastest), etc.
Thus, to take full use of the speed of modern processors, we must try our
best to keep all the intermediate results in the registers. In the problems in
which, at each moment of time, we can only keep (and update) a small cur-
rent values of the values, we can store all these values in the registers – and
thus, get very fast computations (only the input values x1, . . . , xn need to be
fetched from slower-to-access memory locations).

Comment. The discrete version of the class of problems when we have an
iterative process where a fixed finite number of variables is constantly updated
is described in [320], where efficient algorithms are proposed for solving these
discrete problems – such as propositional satisfiability. The use of this idea
for interval computations was first described in Chapter 12 of [182].
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Additional advantage of our technique: possibility to take constraints into ac-
count. Traditional formulations of the interval computation problems assume
that we can have arbitrary tuples (x1, . . . , xn) as long as xi ∈ xi for all i.
In practice, we may have additional constraints on xi. For example, we may
know that xi are observations of a smoothly changing signal at consequent
moments of time (or that the values xi and xi+1 of a geophysical density at
nearby two nearby points cannot differ much). In such cases, we know that
|xi − xi+1| ≤ ε for some small known value ε > 0. Such constraints are easy
to take into account in our approach.

For example, if know that xi = [−1, 1] for all i and we want to estimate the
value of a high-frequency Fourier coefficient f = x1−x2 +x3−x4 + . . .−x2n,
then usual interval computations lead to an enclosure [−2n, 2n], while, for
small ε, the actual range for the sum (x1 − x2) + (x3 − x4) + . . . where each
of n differences is bounded by ε, is much narrower: [−n · ε, n · ε] (and for
xi = i · ε, these bounds are actually attained).

Computation of f means computing the values fk = x1−x2+. . .+(−1)k+1 ·
xk for k = 1, . . . At each stage, we keep the set sk of possible values of (fk, xk),
and use this set to find

sk+1 = {(fk + (−1)k · xk+1, xk+1) | (fk, xk) ∈ sk & |xk − xk+1| ≤ ε}.
In this approach, when computing f2k, we take into account that the value
x2k must be ε-close to the value xk and thus, that we only add ≤ ε. Thus, our
approach leads to almost exact bounds – modulo implementation accuracy
1/C.

In this simplified example, the problem is linear, so we could use linear
programming to get the exact range, but set computations work for similar
non-linear problems as well.
Toy example with a constraint. The problem is to find the range of r1 − r2
when r1 = [0, 1], r2 = [0, 1], and |r1 − r2| ≤ 0.1. Here, the actual range is
[−0.1, 0.1], but straightforward interval computations return [0, 1] − [0, 1] =
[−1, 1].

In the new approach, first, we describe the constraint in terms of subboxes:

×
×

×
×
×

×
×
×

×
×
×

×
×

r1

r2

Next, we compute R1 −R2 for all possible pairs and take the union. The
result is [−0.6, 0.6].

If we divide into more pieces, we get the enclosure closer to [−0.1, 0.1].
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Possible extension to p-boxes and classes of probability distributions. A prac-
tically important situation is when, for each z, instead of the exact value
of the cumulative distribution function F (z), we know an interval F (z) =
[F (z), F (z)] of possible values of F (z); such an “interval-valued” cdf is, as we
have mentioned earlier, called a probability box, or a p-box, for short.

In general, once we know the classes Fi of possible distributions for xi,
and a data processing algorithms f(x1, . . . , xn), we would like to know the
class F of possible resulting distributions for y = f(x1, . . . , xn).

For problems like systems of ODEs, it is sufficient to keep, and update, for
all t, the set of possible joint distributions for the tuple (x1(t), . . . , a1, . . .).

We would like to estimate the values with some accuracy ε ∼ 1/C and the
probabilities with the similar accuracy 1/C. To describe a distribution with
this uncertainty, we divide both the x-range and the probability (p-) range
into C granules, and then describe, for each x-granule, which p-granules are
covered. Thus, we enclose this set into a finite union of p-boxes which assign,
to each of x-granules, a finite union of p-granule intervals.

A general class of distributions can be enclosed in the union of such p-
boxes. There are finitely many such assignments, so, for a fixed C, we get a
finite number of possible elements in the enclosure.

We know how to propagate uncertainty via simple operations with a finite
amount of p-boxes (see, e.g., [97]), so for ODEs we get a polynomial-time
algorithm for computing the resulting p-box for y.

For p-boxes, we need further improvements to make this method practical.
Formally, the above method is polynomial-time. However, it is not yet prac-
tical beyond very small values of C. Indeed, in the case of interval uncertainty,
we needed C2 or C3 subboxes. This amount is quite feasible even for C = 10.

To describe a p-subbox, we need to attach one of C probability granules
to each of C x-granules; these are ∼ CC such attachments, so we need ∼
CC subboxes. For C = 10, we already get an unrealistic 1010 increase in
computation time.



Part III

Towards Computing Statistics under Interval

and Fuzzy Uncertainty: Gauging the Quality
of the Input Data



29

How Reliable Is the Input Data?

In traditional interval computations, we assume that the interval data cor-
responds to guaranteed interval bounds, and that fuzzy estimates provided
by experts are correct. In practice, measuring instruments are not 100% re-
liable, and experts are not 100% reliable, we may have estimates which are
“way off”, intervals which do not contain the actual values at all. Usually,
we know the percentage of such outlier un-reliable measurements. However,
it is desirable to check that the reliability of the actual data is indeed within
the given percentage. The problem of checking (gauging) this reliability is,
in general, NP-hard; in reasonable cases, there exist feasible algorithms for
solving this problem.

The results of this chapter first appeared in [208].

Formulation and Analysis of the Problem, and the
Corresponding Results and Algorithms

Reliability of interval data. In interval computations, i.e., in processing in-
terval data, we usually assume that all the measuring instruments functioned
correctly, and that all the resulting intervals

[x̃−Δ, x̃+Δ]

indeed contain the actual value x.
In practice, nothing is 100% reliable. There is a certain probability that

a measurement instrument malfunctions. As a result, when we repeatedly
measure the same quantity several times, we may have a certain number of
measurement results (and hence intervals) which are “way off”, i.e., which
do not contain the actual value at all.

For example, when we measure the temperature, we will usually get values
which are close to the actual temperature, but once in a while the thermome-
ter will not catch the temperature at all, and return a meaningless value like
0. It may be the fault of a sensor, and/or it may be a fault of the processor
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which processes data from the sensor. Such situations are rare, but when we
process a large amount of data, it is typical to encounter some outliers.

Such outliers can ruin the results of data processing. For example, if we
compute the average temperature in a given geographic area, then averaging
the correct measurement results would lead a good estimate, but if we add an
outlier, we can get a nonsense result. For example, based on the measurements
of temperature in El Paso in Summer resulting in 95, 100, and 105, we can
get a meaningful value

95 + 100 + 105
3

= 100.

However, if we add an outlier 0 to this set of data points, we get a misleading
estimate

95 + 100 + 105 + 0
4

= 75

creating the false impression of El Paso climate.
A natural way to characterize the reliability of the data is to set up the

bound on the probability p of such outliers. Once we know the value p, then,
out of n results of measuring the same quantity, we can dismiss k def= p · n
largest values and k smallest values, and thus make sure that the outliers do
not ruin the results of data processing.

Need to gauge the reliability of interval data. Where does the estimate p for
data reliability come from? The main idea of gauging this value comes from the
fact that if we measure the same quantity several times, and all measurements
are correct (no outliers), then all resulting intervals x(1), . . . ,x(n) contain the
same (unknown) value x – and thus, their intersection is non-empty.

If we have an outlier, then it is highly probably that this outlier will be
far away from the actual value x – and thus, the intersection of the resulting
n intervals (including intervals coming from outliers) will be empty.

In general, if the percentage of outliers does not exceed p, then we expect
that out of n given intervals, at least n−k of these intervals (where k def= p ·n)
correspond to correct measurements and thus, have a non-empty intersection.

So, to check whether our estimate p for reliability is correct, we must
be able to check whether out of n given intervals, n − k have a non-empty
intersection.

Need to gauge reliability of interval data: multi-D case. In the previous text,
we considered a simplified situation in which each measuring instrument mea-
sures exactly one quantity. In practice, a measuring instrument often measure
several different quantities x1, . . . , xd. Due to uncertainty, after the measure-
ment, for each quantity xi, we have an interval xi of possible values. Thus,
the set of all possible values of the tuple x = (x1, . . . , xd) is a box

X = x1 × . . .× xd = {(x1, . . . , xd) : x1 ∈ x1, . . . , xd ∈ xd}.
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In this multi-D case, if all the measurements are correct (no outliers), all the
corresponding boxes X(1), . . . , X(n) contain the actual (unknown) tuple and
thus, the intersection of all these boxes is non-empty.

Thus, to check whether our estimate p for reliability is correct, we must
be able to check whether out of n given boxes, n − k have a non-empty
intersection.
How to gauge reliability of fuzzy data. In the fuzzy case, several experts es-
timate the value of the desired (1-D or multi-D) quantity x. Each of such
estimates means that in addition to the (wider) “guaranteed” interval or box
X(0) (about which the expert is 100% confident that it contains the actual
value of x) we also have narrower intervals (boxes) X(α) which contain x
with certainty 1 − α.

If all experts are right, then at least all the guaranteed boxes X(0) should
contain the actual value x. Thus, in this situation, the boxesX(0) correspond-
ing to different experts must have a non-empty intersection. In practice, some
experts may be wrong; as a result, the corresponding boxes may be way off,
and the intersection of all the experts’ boxes may turn out to be empty.

It is reasonable to gauge the reliability of the experts (and, correspondingly,
the reliability of the resulting fuzzy data) by the probability p that an expert
is wrong. For example, if p = 0.1, this means that we expect 90% of the
experts to provide us with correct bounds X(0). In this case, we expect that
out of all the boxes provided by the experts, we can select 90% of them in
such a way that the intersection of these selected boxes will be non-empty.

For boxes X(α) which are known with smaller certainty, the experts them-
selves agree that these boxes may not cover the actual value x – and thus,
the intersection of all such boxes can also turn out to be false. To describe
the related reliability, we must know, for every α, the probability p that the
corresponding box X(α) does not contain the actual value x. For example, if
for α = 0.5, we have p = 0.3, this means that we expect 70% of the experts’
boxes X(0.5) to contain the (unknown) actual value x. In this case, we expect
that out of all the boxes X(0.5) based on expert estimates, we can select 70%
of them in such a way that the intersection of these selected boxes will be
non-empty.

To check whether the data fits these reliability estimates, we must therefore
be able to check whether out of n given boxes, n − k have a non-empty
intersection.
Resulting computational problem: box intersection problem. Thus, both in the
interval and in the fuzzy cases, we need to solve the following computational
problem:

• Given:
• integers d, n, and k; and
• n d-dimensional boxes

X(j) = [x(j)
1 , x

(j)
1 ] × . . .× [x(j)

n , x(j)
n ],

j = 1, . . . , n, with rational bounds x(j)
i and x(j)

i .
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• Check: whether we can select n − k of these n boxes in such a way that
the selected boxes have a non-empty intersection.

First result: the box intersection problem is NP-complete. The first result
related to this problem is that in general, the above computational problem
is NP-hard.

Proposition 29.1. The box intersection problem is NP-complete.

Case of fixed dimension: efficient algorithm for gauging reliability. In general,
when we allow unlimited dimension d, the box intersection problem (compu-
tational problem related to gauging reliability) is computationally difficult
(NP-hard).

In practice, however, the number d of quantities measured by a sensor is
small: e.g.,

• a GPS sensor measures 3 spatial coordinates;
• a weather sensor measures (at most) 5: temperature, atmospheric pressure,

and the 3 dimensions of the wind vector, etc.

It turns out that if we limit ourselves to the case of a fixed dimension
d, then we can solve the above computational problem in polynomial time
O(nd); see, e.g., [120].

Indeed, for each of d dimensions xi (1 ≤ i ≤ d), the corresponding n

intervals have 2n endpoints x(j)
i and x(j)

i . Let us show if there exists a vector
x which belongs to ≥ n− k boxes X(j), then there also exists another point
y with this property in which every coordinate yi coincides with one of the
endpoints. Indeed, if for some i, the value xi is not an endpoint, then we can
take the closest endpoint as yi. One can easily check that this change will
keep the vector is all the boxes X(j).

Thus, to check whether there exists a vector x that belongs to at least
n− k boxes X(j), it is sufficient to check whether there exist a vector formed
by endpoints which satisfies this property. For each vector y = (y1, . . . , yd)
and for each box X(j), it takes d = O(1) steps to check whether y ∈ X(j).
After repeating this check for all n boxes, we thus check whether this vector
y satisfies the desired property in time n ·O(1) = O(n).

For each of d dimensions, there are 2n possible endpoints; thus, there are
(2n)d possible vectors y formed by such endpoints. For each of these vectors,
we need time O(n), so the overall computation time for this procedure takes
time O(n) · (2n)d = O(nd+1) – i.e., indeed time which grows polynomially
with n.

Remaining problem. In the previous section, we have shown that for a
bounded dimension d, we can solve the box intersection problem in polyno-
mial time. However, as we have mentioned, polynomial time does not always
mean that the algorithm is practically feasible.

For example, for a meteorological sensor, the dimension d is equal to 5,
so we need n6 computational steps. For n = 10, we get 106 steps, which
is easy to perform. For n = 100, we need 1006 = 1012 steps which is also
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doable – especially on a fast computer. However, for a very reasonable amount
of n = 103 = 1000 data points, the above algorithm takes 10006 = 1018

computational steps – which already requires a long time, and for n = 104

data points, the algorithm takes a currently practically impossible amount of
1024 computational steps.

It is therefore desirable to speed up the computations.

Proof

As we have mentioned in the main text, in gauging reliability, it is important
to be able to solve the following box intersection problem:

• Given: a set of n d-dimensional boxes, and a number k < n.
• Check: is there a vector x which belongs to at least n−k of these n boxes?

This box intersection problem obviously in NP: it is easy to check that a
given vector x belongs to each of the boxes, and thus, to check whether it
belongs to at least n−k of the boxes. So we only need a proof of NP-hardness.

The proof is by reduction from the following auxiliary “limited clauses”
problem which has been proved to be NP-complete:

• Given: a 2-CNF formula F and a number k,
• check: is there a Boolean vector which satisfies at most k clauses of F .

This problem was proved to be NP-complete in [159] (see also [16], p. 456).
As we have mentioned in Chapter 8, to prove the NP-hardness of our

box intersection problem, it is therefore sufficient to be able to reduce this
“limited clauses” problem to the box intersection problem.

Indeed, suppose that we are given a 2-CNF formula F . Let us denote the
number of Boolean variables in this formula by d, and the overall number of
clauses in this formula F by n. Based on the formula F , let us build a set
of n d-dimensional boxes, one for each clause. If clause Ci contains Boolean
variables zi1 and zi2 variables, then the i-th box X(i) has sides [0, 1] in all
dimensions except in the dimensions associated with variables zi1 and zi2.
For those two dimensions, the side is:

• [0, 0] if the variable occurs positively in the clause (i.e., if the clause con-
tains the positive literal zij), and

• [1, 1] is the variable occurs negatively in the clause (i.e., if the clause con-
tains the negative literal ¬zij).

According to the construction:

• for a clause zi1 ∨ zi2, a vector x belongs to the box

X(i) = . . .× [0, 1]× [0, 0]× [0, 1]× . . .× [0, 1]× [0, 0]× [0, 1]× . . .

if and only of xi1 = 0 and xi2 = 0;
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• for a clause zi1 ∨ ¬zi2, a vector x belongs to the box X(i) if and only if
xi1 = 0 and xi2 = 1;

• for a clause ¬zi1 ∨ zi2, a vector x belongs to the box X(i) if and only if
xi1 = 1 and xi2 = 0;

• for a clause ¬zi1 ∨ ¬zi2, a vector x belongs to the box X(i) if and only if
xi1 = 1 and xi2 = 1.

The claim is that there exists a vector x which belongs to at least n − k
of these n boxes if and only if there is a Boolean vector z which satisfies at
most k clauses of the formula F .

Suppose that there exists a vector x which belongs to at least n − k of
these n boxes. According to our construction, each box X(i) comes from a
clause Ci that contains variables zi1 and zi2. For each box X(i) to which the
vector x belongs, make zi1 =“false” if the box has [0, 0] on the side associated
with variable zi1. Similarly, we make zi2 =“false” if the box has [0, 0] on the
side associated with variable zi2. Because of the way the boxes were build,
the Boolean vector we build will make the clause associated with the box
corresponding box X(i) false.

For example, if the clause is zi1 ∨ zi2, then the box will have [0, 0] for the
sides associated with both variable, so they will be both assigned the “false”
Boolean value, making the clause false. This means that the Boolean formula
built will make at least n− k clauses become false. This formula will satisfy
at most k = n− (n− k) clauses.

In the opposite direction, if there is a Boolean vector z which satisfies at
most k clauses of the formula F , build a vector x = (x1, . . . , xn) which has
value:

• xi = 0 in dimension i if the Boolean variable zi associated with this di-
mension is false, and

• xi = 1 otherwise.

One can check that for this arrangement, x ∈ X(i) if and only if the original
Boolean vector z made the corresponding clause Ci false.

Since the Boolean vector z satisfies at most k clauses of the formula F , it
makes at least n− k clauses false. This means that the vector x that we have
built will belong to all the boxes associated with at least n− k clauses that
are false.

The reduction is proven, and so is NP-hardness.
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How Accurate Is the Input Data?

Different models can be used to describe real-life phenomena: deterministic,
probabilistic, fuzzy, models in which we have interval-valued or fuzzy-valued
probabilities, etc. Models are usually not absolutely accurate. It is therefore
important to know how accurate is a given model. In other words, it is impor-
tant to be able to measure a mismatch between the model and the empirical
data. In this chapter, we describe an approach of measuring this mismatch
which is based on the notion of utility, the central notion of utility theory.

The main results of this chapter first appeared in [206]. In one of the
following application chapters (Chapter 35), we show that a similar approach
can be used to measure the loss of privacy.

Formulation and Analysis of the Problem, and the
Corresponding Results

Models are usually approximate. In most areas of science and engineering,
we only have approximate models for the real-world phenomena, i.e., mod-
els which are not 100% accurate. Since the models are approximate, their
predictions are also only approximate.

It is desirable to gauge the accuracy of a model. In order to understand how
accurate are the models’ predictions, we need to know how accurate are the
models themselves.

An ideal way to gauge the quality of a model is to compare it with the
empirical data, i.e., to validate this model.

Simplest case: deterministic phenomena. Let us start with the simplest situ-
ation, when we have a deterministic phenomenon and we have a deterministic
model which describes this phenomenon. In this situation, we can simply com-
pare the measured value of the desired quantity with the values predicted by
the model.
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In such a situation, the difference between the actual and predicted values
is a reasonable measure of a mismatch between the real-life phenomenon and
the model.

Real-life situation: non-deterministic phenomena. In real life, many phenom-
ena are non-deterministic. For such phenomena, we cannot predict the exact
values of the corresponding quantities; at best, we can predict the probabilities
of different values of these quantities.

To validate such models, we must therefore compare the predicted proba-
bility distribution with the empirical probability distribution. In such situa-
tions, it is not completely clear how we can measure the mismatch between
the corresponding probability distributions, i.e., how we can gauge the valid-
ity of the probabilistic models.

Additional complexity and relation to fuzzy techniques. In practice, the situ-
ation is even more complex. Based on a finite sample of real-life events, we
cannot uniquely determine the corresponding empirical distribution: we can
only provide, with different degrees of confidence, bounds on the correspond-
ing probabilities.

In other words, for each event, instead of a single value of its probability,
we get a nested family of confidence intervals corresponding to different levels
of uncertainty. Nested families are, in effect, equivalent to fuzzy numbers; see,
e.g., [90, 156, 246, 252], so hopefully, techniques for processing fuzzy numbers
will be helpful in this comparison.

What we do in this chapter. In this chapter, we mainly consider the case of
probability distributions. The last section discusses the possibility of extending
these results to a more general case of interval-valued probability distributions
(p-boxes) and nested (= fuzzy) families of such interval-valued objects.

Utility approach: a reminder. In decision making theory, it is proven that
under certain reasonable assumptions, a person’s preferences are defined by
his or her utility function U(x) which assigns to each possible outcome x a
real number U(x) called utility; see, e.g., [150] and [285].

In many real-life situations, a person’s choice s does not determine the out-
come uniquely, we may have different outcomes x1, . . . , xn with probabilities,
correspondingly, p1, . . . , pn. For such a choice, we can describe the utility U(s)
associated with this choice as the expected value of the utility of outcomes:

U(s) = E[U(x)] = p1 · U(x1) + . . .+ pn · U(xn).

Among several possible choices, a user selects the one for which the utility is
the largest: a possible choice s is preferred to a possible choice s′ (denoted
s > s′) if and only if

U(s) > U(s′).

In the general case, when we have a (1-dimensional) probability distri-
bution with the cumulative distribution function (cdf) F (x), the utility is
described by a similar formula
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U(s) = E[U(x)] =
∫

U(x) dF (x).

In particular, in the continuous case, when we have a probability distri-
bution with the probability density (pdf) ρ(x), the utility is described by a
formula

U(s) = E[U(x)] =
∫

U(x) · ρ(x) dx.

Application of utility approach to the problem of measuring a mismatch be-
tween probability distributions. Since our preferences are characterized by the
utility values, it is reasonable to measure mismatch by the possible decrease
in utility. Specifically, let F1(x) denote the cdf of the model, and F2(x) de-
note the (usually unknown) cdf of the actual distribution. Similarly, in the
continuous case, we will denote the pdf corresponding to the model by ρ1(x)
and the actual pdf by ρ2(x).

In these terms, if we make a decision based on the model distribution
F1(x), then the expect value of utility is

U1 =
∫

U(x) dF1(x).

Since the actual distribution is different, the actual value of the expected
utility is equal to

U2 =
∫

U(x) dF2(x).

If the actual expected utility is smaller than the what we planned, i.e., if U2 <
U1, then we have a loss caused by the mismatch. It is therefore reasonable to
characterize the mismatch by this loss U1 − U2.

This loss describes the effect of the mismatch on a specific problem char-
acterized by a specific utility function U(x). Usually, a model is used for
many different applications, with many different utility functions. In some
applications, the difference between the two probability distribution may be
irrelevant for our objectives; in this case, there is no loss. In other situations,
this different may lead to a significant loss.

It is reasonable to gauge the mismatch by the worst possible loss caused
by this mismatch.

Which functions U(x) should we consider. In different situations, we may
have different utility functions U(x) that describe the dependence of a (pre-
dicted) gain on the (unknown) actual value of the corresponding parameter x.

This prediction only makes sense only if we can predict U(x) for each situ-
ation with a reasonable accuracy, e.g., with an accuracy ε > 0. Measurements
are never 100% accurate, and measurement of x are not exception. Let us
denote by δ the accuracy with which we measure x, i.e., the upper bound on
the (absolute value of) the difference Δx def= x̃−x between the measured value
x̃ and the (unknown) actual value x. Due to this difference, the estimated
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value U(x̃) is different from the ideal prediction U(x). Usually, measurement
errors Δx are small, so we can expand the prediction inaccuracy

ΔU
def= U(x̃) − U(x) = U(x+Δx) − U(x)

in Taylor series in Δx and ignore quadratic and higher order terms in this
expansion, leading to ΔU ≈ U ′(x) ·Δx, where U ′(x) denotes the derivative
of the utility function U(x).

Since the largest possible value of Δx is δ, the largest possible value for
ΔU is thus |U ′(x)| · δ. Since this value should not exceed ε, we thus conclude
that |U ′(x)| · δ ≤ ε, i.e., that |U ′(x)| ≤M

def= ε/δ.
Thus, we arrive at the following definition.

Definition 30.1. Let F1(x) and F2(x) be two probability distributions on
a real line, and let M > 0 be a real number. By the degree of mismatch
dM (F1, F2) between the distributions, we mean the largest possible value of
the difference

∫

U(x) dF1(x) −
∫

U(x) dF2(x)

over all possible functions U(x) for which |U ′(x)| ≤M for all x.

Proposition 30.1. For every two distributions,

dM (F1, F2) = M ·
∫

|F1(x) − F2(x)| dx.

Comment. In view of this result, it is reasonable to measure the mismatch
between two probability distributions by the following L1-metric:

d(F1, F2)
def=
∫

|F1(x) − F2(x)| dx.

This metric was indeed proposed and successfully used in model validation
[108, 109]. The above result shows that this metric is not only reasonable, it
follows from the general decision theory-motivated utility-based approach.

Extension to p-boxes. In practice, based on the empirical data, we cannot
uniquely determine the corresponding probabilities F (x). Instead, we can
have confidence intervals [F (x), F (x)] that contain the (unknown) values of
these probabilities; see, e.g., [305, 337]. Such an interval-valued function that
assigns, to every real number x, the corresponding interval [F (x), F (x)] is
called a p-box; see, e.g., [97]. Once we fix the confidence level, we thus have
a p-box that contains all probability distributions which are consistent with
the given empirical data.

In this situation, when the empirical data is describe by a p-box, how can
we describe to what extent a given probability model is consistent with the
empirical data? If the model F (x) fits within the p-box F (F ∈ F ), i.e., if
F (x) ∈ [F (x), F (x)] for all x, this means that we have a perfect match.
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In general, it is reasonable to define the degree of mismatch as the smallest
possible mismatch between a model F1 and distributions from a given p-box:

d(F1,F ) = min
F2∈F

d(F1, F2).

A model itself is not necessarily formulated in precise probabilistic terms.
For example, we can say that according to our model, we have a normal
distribution with the mean between −0.1 and 0.1. In this case, a model is also
naturally described by a p-box. In such situations, it is reasonable to define
the mismatch between the p-box F 1 describing the model and the p-box
F 2 describing the empirical distribution as the smallest possible mismatch
between the probability distributions F1 ∈ F 1 and F2 ∈ F 2:

d(F 1,F 2) = min
F1∈F 1,F2∈F 2

d(F1, F2).

Case of fuzzy uncertainty. Instead of fixing a single confidence level, it is
reasonable to consider confidence intervals F (α)(x) corresponding to different
confidence levels α. The resulting nested family of intervals can be naturally
viewed as a fuzzy number for which these intervals are α-cuts; see, e.g., [90,
156, 246, 252]. Alternatively, the probabilities F (x) may be given by experts
and thus, can be naturally represented as fuzzy numbers. In both case, it is
reasonable to characterize the mismatch between the corresponding “fuzzy-
valued” probability distributions F 1 and F 2 as a function that assigns, to
every level α, the degree of mismatch between the corresponding α-cuts:

d(α)(F 1,F 2) = min
F1∈F (α)

1 ,F2∈F (α)
2

d(F1, F2).

Proofs

Proof of Proposition 30.1. The desired difference ΔU = U1 − U2 can be
reformulated as the integral

ΔU =
∫

U(x) (dF1(x) − dF2(x)).

Integrating this expression by parts, we conclude that

ΔU =
∫

(F1(x) − F2(x)) · U ′(x) dx.

Since |U ′(x)| ≤M , we conclude that

(F1(x) − F2(x)) · U ′(x) ≤ |(F1(x) − F2(x)) · U ′(x)| =

|F1(x) − F2(x)| · |U ′(x)| ≤M · |F1(x) − F2(x)|
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and thus,

ΔU =
∫

(F1(x) − F2(x)) · U ′(x) dx ≤
∫

M · |F1(x) − F2(x)| dx = M ·
∫

|F1(x) − F2(x)| dx.

So, we have ΔU ≤ dM (F1, F2) for all possible utility functions U(x). Thus,
the largest possible value of ΔU cannot exceed dM (F1, F2).

Let us now show that the largest possible value of ΔU is actually equal
to dM (F1, F2), i.e., the value ΔU = dM (F1, F2) is attained for some utility
function U(x). Indeed, as such a utility function, we can take

U(x) def=
∫ x

−∞
M · sign(F1(t) − F2(t)) dt,

where sign(u) is defined as usual:

• when u > 0, we define sign(u) = +1;
• when u < 0, we define sign(u) = −1;
• when u = 0, we define sign(u) = 0.

For this utility function, U ′(x) = M · sign(F1(x)−F2(x)) and thus, |U ′(x)| ≤
M for all x. On the other hand, for this function,

ΔU =
∫

(F1(x) − F2(x)) · U ′(x) dx =

∫

(F1(x) − F2(x)) ·M · sign(F1(x) − F2(x)) dx.

For each value u, we have u · sign(u) = |u|. Thus,

ΔU =
∫

M · |F1(x) − F2(x)| dx,

i.e., indeed, ΔU = dM (F1, F2). The proposition is proven.



Part IV

Applications
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From Computing Statistics under Interval and

Fuzzy Uncertainty to Practical Applications:
Need to Propagate the Statistics through Data

Processing

Need for data processing. In many areas of science and engineering, we are
interested in a quantity y which is difficult (or even impossible) to measure
directly. For example, it is difficult to directly measure the distance to a
faraway star or the amount of oil in an oil well. To estimate this quantity, we
can:

• measure auxiliary easier-to-measure (or to estimate) quantities x1, . . . , xn

which are related to y by a known dependence y = f(x1, . . . , xn), and then
• use the results x̃1, . . . , x̃n of measuring (or estimating) xi to compute the

estimate ỹ = f(x̃1, . . . , x̃n) for y.

�

· · ·
�

�

x̃n

x̃2

x̃1

�ỹ = f(x̃1, . . . , x̃n)f

In some cases, the dependence f is described by an explicit formula. For
example, we can measure the distance y to the Moon by sending a strong
laser signal and measuring the time by which the reflected signal comes back

to Earth. In this example, the distance is equal to y =
1
2
· x1 · x2, where:

• x1 is the travel time, and
• x2 is the speed of light.

Here, n = 2 and f(x1, x2) =
1
2
· x1 · x2. Once we have the measured value

x̃1 of the travel time and the measured value x̃2 of the speed of light, we can

estimate the distance as ỹ =
1
2
· x̃1 · x̃2.

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 251–259.
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In many practical cases, we do not have such an explicit expression. In-
stead, the dependence between y and xi is described by a complex system of
equations (e.g., differential equations). For example, for a geophysical prob-
lem (like the problem of estimating the amount of oil in a well), the depen-
dence means that the values y and xi correspond to the same solution of the
system of differential equations describing seismic wave propagation:

• y is the corresponding amount of oil, and
• xi is the time that it takes for a seismic to travel between its origin and

the sensor that measures the i-th seismic signal.

In such cases, we usually have an algorithm for solving the corresponding
system, i.e., for computing y in terms of xi. This algorithm will be denoted
by the same letter f , so that f(x̃1, . . . , x̃n) means the result of applying the
algorithm f to the measured values x̃1, . . . , x̃n.

Similarly, if we want to predict the future value of a physical quantity y,
we:

• estimate the current values of this and/or other physical quantities x1, . . . ,
xn, and

• use the estimates x̃1, . . . , x̃n and the known relation y = f(x1, . . . , xn)
between the current and the future values to estimate the predicted value
of y as ỹ = f(x̃1, . . . , x̃n).

The computations related to both problems constitute data processing –
the main use of computers in science and engineering.

Need to take uncertainty into account. In the case of data processing, we start
with measurement or estimation results x̃1, . . . , x̃n. Measurements and esti-
mates are never exact. There is a non-zero difference Δxi

def= x̃i − xi between
the (approximate) measurement result (estimates) x̃i and the (unknown) ac-
tual value xi of the i-th quantity xi. This difference is called the measurement
(estimation) error. The result ỹ = f(x̃1, . . . , x̃n) of applying the algorithm f
to the measurement results (estimates) x̃i is, in general, different from the
result y = f(x1, . . . , xn) of applying this algorithm to the actual values xi.
Thus, our estimate ỹ is, in general, different from the actual value y of the
desired quantity: Δy def= ỹ − y �= 0.

In many practical applications, it is important to know not only the desired
estimate for the quantity y, but also how accurate this estimate is. For exam-
ple, in geophysical applications, it is not enough to know that the amount of
oil in a given oil field is about 100 million tons: it is also important to know
how accurate this estimate is.

If the amount is 100 ± 10, this means that the estimates are good enough,
and we should start exploring this oil field.

On the other hand, if it is 100 ± 200, this means that it is quite possible
that the actual value of the desired quantity y is 0, i.e., that there is no oil
at all. In this case, it may be prudent to perform additional measurements
before we invest a lot of money into drilling oil wells.
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The situation becomes even more critical in medical emergencies: it is not
enough to have an estimate of blood pressure or body temperature to make a
decision (e.g., whether to perform a surgery), it is important that even with
the measurement uncertainty, we are sure about the diagnosis – and if we are
not, maybe it is desirable to perform more accurate measurements.

It is therefore desirable to find out the uncertainty Δy caused by the
uncertainties Δxi in the inputs:

�

. . .

�

�

x̃n, Δxn

x̃2, Δx2

x̃1, Δx1

�Δyf

Comment. We assumed that the relation f provides the exact relation be-
tween the variables x1, . . . , xn, and the desired value y. If so, then, in the
ideal case in which we plug in the actual (unknown) values of xi into the
algorithm f , we get the exact value y = f(x1, . . . , xn) of y.

In many real-life situations, the relation f between xi and y is only ap-
proximately known. In this case, even if we know the exact values of xi,
substituting these values into the approximate function f will not provide us
with the exact value of y. In such situations, there is even more uncertainty
in y:

• first, there is an uncertainty in y caused by the the uncertainty in the
inputs;

• second, there is a model uncertainty caused by the fact that the known
algorithm f only provides an approximate description of the dependence
between the inputs and the output.

A model uncertainty has to be estimated separately and added to the uncer-
tainty caused by the measurement errors.

Uncertainty of the results of direct measurements. To estimate the uncer-
tainty Δy caused by the measurement uncertainties Δxi, we need to have
some information about these original uncertainties Δxi. We have already
mentioned, in Part I, that often, this uncertainty is described by probabili-
ties or intervals. These situations corresponds to the two extreme cases:

• probabilistic uncertainty means that we have the full information about
the corresponding probabilities, while
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• interval uncertainty means that we have no information about the proba-
bilities at all – other than the upper bounds on the measurement errors.

In practice, we often have partial information about the probabilities. In the
case of this partial information, we only have a partial knowledge of the
corresponding statistical characteristics. In other words, instead of the exact
values of the moments, cdf F (x), etc., we only have intervals of possible values
of these characteristics. How can we represent this partial information?

Case of cdf. If we use cdf F (x) to represent a distribution, then full informa-
tion corresponds to the case when we know the exact value of F (x) for every
x. Partial information means:

• either that we only know approximate values of F (x) for all x, i.e., that
for every x, we only know the interval that contains F (x); in this case, we
get a p-box [97];

• or that we only know the values of F (x) for some x, i.e, that we only
know the values F (x1), . . . , F (xi), . . . , F (xn) for finitely many values
x = x1, . . . , xi, . . . , xn; in this case, we have a histogram.

It is also possible that we know only approximate values of F (x) for some x;
in this case, we have an interval-valued histogram.

Case of moments. If we use moments to represent a distribution, then partial
information means that we either know the exact values of finitely many
moments, or that we know intervals of possible values of several moments.

How to process partial information about probabilities: formulation of the
problem. In this Part, we consider the general data processing problem:

• we know the estimates x̃1, . . . x̃n for several quantities x1, . . . , xn;
• we know an algorithm y = f(x1, . . . , xn) that relate the values x1, . . . , xn

of the input quantities with the value y of the desired quantity;
• by applying this algorithm to the known estimates, we get the estimate
ỹ = f(x̃1, . . . , x̃n) for the desired quantity y.

Since the estimates x̃i are, in general, different from the (unknown) actual
values xi, the estimate ỹ is also, in general, different from the desired value
y. To find out how accurate is our estimate ỹ, we must use the available
information about the uncertainties Δxi = x̃i−xi into the information about
Δy = ỹ − y.

Let us describe how this can be done for all different types of partial
information about probabilities described above.

First case: complete information about the probabilities. The actual values
xi = x̃i −Δxi are unknown. However, when we know the probability distri-
butions for the uncertainties Δxi, we thus know the probability distribution
for the values xi as well. Thus, we can determine the probability distribution
for the value y = f(x1, . . . , xn) = f(x̃1 −Δx1, . . . , x̃n −Δxn) and hence, for
Δy = ỹ − y.
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A natural way to describe this distribution is by using Monte-Carlo sim-
ulation method. In this method, for an arbitrary number of simulations N ,
we simulate the values Δy(k), 1 ≤ k ≤ N , as follows:

• first, we simulate the random value ξ(k)
1 , . . . , ξ

(k)
n distributed according to

the same distributions as the actual values Δxi;
• then, we simulate the actual values x(k)

i as x(k)
i = x̃i − ξ

(k)
i ;

• finally, we simulate the actual value Δy(k) as Δy(k) = ỹ−f(x(k)
1 , . . . , x

(k)
n ).

The values Δy(k) form a statistical sample from the desired distribution.
Thus, based on this sample, we can estimate all the statistical characteristics
of this distribution; see, e.g., Lodwick et al. [204].

Case of partial information about probabilities: general idea. Partial informa-
tion means that instead of knowing all the probabilities, we only have some
partial information about several statistical characteristics, such as the mo-
ments, the values of the cdf, etc. To be more precise, instead of knowing the
exact value of the corresponding characteristic c, we only know the intervals
[c, c] of its possible values: c ≤ c ≤ c.

Most statistical characteristics linearly depend on the corresponding prob-
abilities. For example, for a discrete distribution, in which we have values

v1, . . . , vm with probabilities p1, . . . , pm, the mean is equal to e[v] =
m
∑

i=1

pi ·vi,

the second moment is equal to e[v] =
m
∑

i=1

pi · v2
i , the cdf is equal to

F (x) =
∑

i:vi≤x

pi, etc. Thus, the partial information about these statistical

characteristics can be described as a system of linear inequalities in terms of
the unknown probabilities pi. For example, the bounds [E,E] on the mean
can be described as

E ≤
m
∑

i=1

pi · vi ≤ E.

Under these inequalities – that represent the available information about the
inputs – we want to find the range of possible values of different statistical
characteristics of y = f(x1, . . . , xn). In other words, we want to find the
smallest and the largest possible values of the desired characteristic under
the linear inequality.

The desired characteristic is also usually linear in pi, so we arrive at the
following problem: optimize the value of a linear function under a system
of linear inequalities. This problem is known as Linear Programming. There
exist efficient methods for solving this problem, and these methods have been
effectively applied to solve the corresponding problems of processing partial
information about probabilities; see, e.g., Berleant et al. [32, 33, 34, 35, 36,
37, 39, 40, 41, 296, 367].
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Comment. Of course, this method cannot be directly applied to statistical
characteristic like variance or correlation which are not linear functions of
the corresponding probabilities.
Simplified example: discrete case. To illustrate the above idea, let us consider
a simplified example in which f(x1, x2) = x1 + x2, and both variables xi are
discrete:

• the variable x1 takes possible values v11, . . . , v1m, and
• the variable x2 takes possible values v21, . . . , v2m.

Let us assume that we known the bounds E1 and E1 on the first moment
of x1 and the bounds E2 and E2 on the first moment of x2. Based on this
information, for several values y0, we want to find the range of possible values
of the cdf F (y0) = Prob(y ≤ y0). Let us show how this problem can be
reformulated as a linear programming problem.

The unknowns here are the values pij , the probabilities that x1 = v1i

and x2 = v2j . These unknown values must be non-negative and satisfy the
condition

m
∑

i=1

m
∑

j=1

pij = 1.

The information about the mean value of x1 can be described as

E1 ≤
m
∑

i=1

m
∑

j=1

pij · v1i ≤ E1.

Similarly, the information about the mean value of x2 can be described as

E2 ≤
m
∑

i=1

m
∑

j=1

pij · v2j ≤ E2.

Under these constraints, we must find the set of possible values of the quantity

F (y0) =
∑

(i,j):v1i+v2j≤y0

pij .

Realistic case: continuous input variables. In the above formulation, we con-
sidered the simplified discrete case, in which each input variable can only take
finitely many values. In reality, inputs variables are continuous, they can take
all possible real values from a certain interval.

In some cases, we know the histogram, i.e., we divide the range of possible
values of each variable xi into finite many sub-intervals (zones), and we know
the lower and upper bounds on the probability of xi to be in each of these
zones. In this case, linear programming-type approach can also be used; see,
e.g., [32, 33, 34, 35, 36, 37, 39, 40, 41, 296, 367].

In other cases, we know the bounds on the cdfs, i.e., the p-boxes. Cor-
responding algorithms are given in Ferson [97] and Ferson et al. [105]. In
situations when we know bounds on the moments, we can use methods from
Granvilliers et al. [122] and Kreinovich [169].
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Case study: first moments. Let us describe, in detail, the case when we know
the first moments of the corresponding distributions.

This situation has a perfect practical sense because, in some practical sit-
uations, in addition to the lower and upper bounds on each random variable
xi, we know the bounds Ei = [Ei, Ei] on its mean Ei. Indeed, in measure-
ment practice (see, e.g., [283]), the overall measurement error Δx is usually
represented as a sum of two components:

• a systematic error component Δsx which is defined as the expected value
e[Δx], and

• a random error component Δrx which is defined as the difference between
the overall measurement error and the systematic error component:Δrx

def=
Δx−Δsx.

In addition to the bound Δ on the overall measurement error, the manufac-
turers of the measuring instrument often provide an upper bound Δs on the
systematic error component: |Δsx| ≤ Δs.

This additional information is provided because, with this additional in-
formation, we not only get a bound on the accuracy of a single measure-
ment, but we also get an idea of what accuracy we can attain if we use
repeated measurements to increase the measurement accuracy. Indeed, the
very idea that repeated measurements can improve the measurement accu-
racy is natural: we measure the same quantity by using the same measure-
ment instrument several (N) times, and then take, e.g., an arithmetic average

x̄ =
x̃(1) + . . .+ x̃(k) + . . .+ x̃(N)

N
of the corresponding measurement results

x̃(1) = x+Δx(1), . . . , x̃(k) = x+Δx(k), . . . , x̃(N) = x+Δx(N).

• If systematic error is the only error component, then all the measurements
lead to exactly the same value x̃(1) = . . . = x̃(k) = . . . = x̃(N), and
averaging does not change the value – hence does not improve the accuracy.

• On the other hand, if we know that the systematic error component is 0,
i.e., e[Δx] = 0 and e[x̃] = x, then, as N → ∞, the arithmetic average
tends to the actual value x. In this case, by repeating the measurements
sufficiently many times, we can determine the actual value of x with an
arbitrary given accuracy.

In general, by repeating measurements sufficiently many times, we can ar-
bitrarily decrease the random error component and thus attain accuracy as
close to Δs as we want.

When this additional information is given, then, after we performed a
measurement and got a measurement result x̃, then not only we get the
information that the actual value x of the measured quantity belongs to the
interval x = [x̃−Δ, x̃+Δ], but we can also conclude that the expected value
of x = x̃−Δx (which is equal to e[x] = x̃− e[Δx] = x̃−Δsx) belongs to the
interval E = [x̃−Δs, x̃+Δs].
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If we have this information for every xi, then, in addition to the interval
y of possible values of y, we would also like to know the interval of possible
values of e[y]. This additional interval will hopefully provide us with the
information on how repeated measurements can improve the accuracy of this
indirect measurement. Thus, we arrive at the following problem:

Precise formulation of the problem. Given an algorithm computing a function
f(x1, . . . , xi, . . . , xn) from Rn to R, and values x1, x1, . . . , xi, xi, . . . , xn,
xn, E1, E1, . . . , Ei, Ei, . . . , En, En, we want to find

E
def= min{e[f(x1, . . . , xi, . . . , xn)] | all distributions of (x1, . . . , xi, . . . , xn)

for which x1 ∈ [x1, x1], . . . , xi ∈ [xi, xi], . . . , xn ∈ [xn, xn], (31.1)

e[x1] ∈ [E1, E1], . . . , e[xi] ∈ [Ei, Ei], . . . , e[xn] ∈ [En, En]};
and E which is the maximum of e[f(x1, . . . , xn)] for all such distributions.

�

· · ·
�

�

xn,En

x2,E2

x1,E1

�y,Ef

In addition to considering all possible distributions, we can also consider
the case when all the variables xi are independent.

Algorithms for solving the problem: case of exactly known moments. The
main idea behind straightforward interval computations can be applied here
as well. Namely, first, we find out how to solve this problem for the case when
n = 2 and f(x1, x2) is one of the standard arithmetic operations. Then, once
we have an arbitrary algorithm f(x1, . . . , xn), we parse it and replace each
elementary operation on real numbers with the corresponding operation on
quadruples (x,E,E, x).

To implement this idea, we must therefore know how to solve the above
problem for elementary operations.

For addition, the answer is simple. Since e[x1 + x2] = e[x1] + e[x2], if
y = x1 +x2, there is only one possible value for E = e[y]: the value E = E1 +
E2. This value does not depend on whether we have correlation or nor, and
whether we have any information about the correlation. Thus, E = E1 +E2.

Similarly, the answer is simple for subtraction: if y = x1 −x2, there is only
one possible value for E = e[y]: the value E = E1 −E2. Thus, E = E1 −E2.

For multiplication, if the variables x1 and x2 are independent, then

e[x1 · x2] = e[x1] · e[x2].
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Hence, if y = x1 ·x2 and x1 and x2 are independent, there is only one possible
value for E = e[y]: the value E = E1 · E2; hence E = E1 · E2.

The first non-trivial case is the case of multiplication in the presence of pos-
sible correlation. When we know the exact values of E1 and E2, the solution
to the above problem is as follows (see, e.g., [122, 169]): For multiplication
y = x1 · x2, when we have no information about the correlation,

E = max(p1 + p2 − 1, 0) · x1 · x2 + min(p1, 1 − p2) · x1 · x2+

min(1 − p1, p2) · x1 · x2 + max(1 − p1 − p2, 0) · x1 · x2; (31.2)

E = min(p1, p2) · x1 · x2 + max(p1 − p2, 0) · x1 · x2+

max(p2 − p1, 0) · x1 · x2 + min(1 − p1, 1 − p2) · x1 · x2, (31.3)

where pi
def= (Ei − xi)/(xi − xi).

For the inverse y = 1/x1, the finite range is possible only when 0 �∈ x1.
Without losing generality, we can consider the case when 0 < x1. In this case,
the range of possible values of E is E = [1/E1, p1/x1 + (1 − p1)/x1].

Similar formulas can be produced for max and min, and also for the cases
when there is a strong correlation between xi: namely, when x1 is (non-
strictly) increasing or decreasing in x2.

Algorithms for solving the problem: general case. For multiplication (under
no assumption about correlation), if we only know the intervals of possible
values of Ei, then to find E, it is sufficient to consider the following combi-
nations of p1 and p2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1

and p2 = p2;
• p1 = max(p

1
, 1 − p2) and p2 = 1 − p1 (if 1 ∈ p1 + p2); and

• p1 = min(p1, 1 − p
2
) and p2 = 1 − p1 (if 1 ∈ p1 + p2).

The smallest value of E for all these cases is the desired lower bound E.
To find E, it is sufficient to consider the following combinations of p1 and

p2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1

and p2 = p2;-
• p1 = p2 = max(p

1
, p

2
) (if p1 ∩ p2 �= ∅); and

• p1 = p2 = min(p1, p2) (if p1 ∩ p2 �= ∅).
The largest value of E for all these cases is the desired upper bound E.

Important open problems. What if, in addition to intervals and first moments,
we also know second moments? This problem is important for design of com-
puter chips.

What if, in addition to moments, we also know p-boxes?
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Applications to Bioinformatics

Formulation of the practical problem. In cancer research, it is important to
find out the genetic difference between the cancer cells and the healthy cells.

In the ideal world, we should be able to have a sample of cancer cells, and
a sample of healthy cells, and thus directly measure the concentrations c and
h of a given gene in cancer and in healthy cells. In reality, it is very difficult to
separate the cells, so we have to deal with samples that contain both cancer
and normal cells.

Let yi denote the result of measuring the concentration of the gene in i-th
sample, and let xi denote the percentage of cancer cells in i-th sample. Then,
we should have xi · c+ (1 − xi) · h ≈ yi (approximately equal because there
are measurement errors in measuring yi).

It is worth mentioning that this system can be somewhat simplified if
instead of c, we consider a new variable a def= c − h. In terms of the new
unknowns a and h, the system takes the following form: a · xi + h ≈ yi.

Ideal case. Let us first consider an idealized case in which we know the exact
percentages xi. In this case, we can find the desired values c and h by solving
a system of linear equations xi · c + (1 − xi) · h ≈ yi with two unknowns c
and h.

The errors of measuring yi are normal independent identically distributed
random variables. So, to estimate a and h, we can use the Least Squares
Method (LSM)

Minimize
n
∑

i=1

(a · xi + h− yi)2,

according to which a =
Cx,y

Vx
and h = Ey − a · Ex, where Ex =

1
n
·

n
∑

i=1

xi is

the population mean, Vx =
1

n− 1
·

n
∑

i=1

(xi − Ex)2 is the population variance,

and
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Cxy =
1

n− 1
·

n
∑

i=1

(xi − Ex) · (yi − Ey)

is the population covariance. Once we know a = c − h and h, we can then
estimate c as a+ h.

Need to take interval uncertainty into account (see, e.g., [172, 188, 173]). The
problem is that the concentrations xi come from experts who manually count
different cells, and experts can only provide interval bounds on the values xi

such as xi ∈ [0.7, 0.8]. Different values of xi in the corresponding intervals
lead to different values of a and h. It is therefore desirable to find the range
of a and h corresponding to all possible values xi ∈ [xi, xi].

This problem is a particular case of the general problem that we analyze in
this book: how to efficiently deduce the statistical information from interval
data.

In general, this problem is NP-hard. We have already proven that, in gen-
eral, the problem of computing the ranges of statistical characteristic under
interval uncertainty is NP-hard – it is NP-hard even for the variance.

It is possible to prove that computing the range of the ratio Cx,y/Vx is
also an NP-hard problem; the proof is presented at the end of this chapter.

Linear approximation. One of the known approximate techniques is lineariza-
tion, when we approximate the statistic S with the linear terms in its Taylor
expansion:

S ≈ Slin = S0 −
n
∑

i=1

Si ·Δxi,

where S0
def= S(x̃1, . . . , x̃n), Si

def=
∂S

∂xi
(x̃1, . . . , x̃n), andΔxi

def= x̃i−xi. For the

linear function, we get the exact formula for the range: S = [S0−ΔS , S0+ΔS ],

where ΔS
def=

n
∑

i=1

|Si| ·Δi.

Let us apply this general formula to our case. Let x̃i = (xi + xi)/2 be the
midpoint of the i-th interval, and let Δi = (xi − xi)/2 be the half-width of
this interval. For a, we have

∂a

∂xi
=

1
(n− 1) · Vx

· (yi − Ey − 2a · xi + 2a · Ex).

We can use the formula Ey = a ·Ex + h to simplify this expression, resulting
in

Δa =
1

(n− 1) · Vx
·

n
∑

i=1

|δyi − a · δxi| ·Δi,

where we denoted δyi
def= yi − a · xi − h and δxi

def= xi − Ex.
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Since h = Ey − a ·Ex, we have
∂h

∂xi
= − ∂a

∂xi
· Ex − 1

n
· a, so

Δh =
n
∑

i=1

∣

∣

∣

∣

∂h

∂xi

∣

∣

∣

∣

·Δi.

Prior estimation of the resulting accuracy. The above formulas provide us
with the accuracy after the data has been processed. It is often desirable to
have an estimate prior to measurements, to make sure that we will get c and
h with desired accuracy.

The difference δyi is a measurement error, so it is normally distributed
with 0 mean and standard deviation σy corresponding to the accuracy of
measuring yi. The difference δxi is distributed with 0 mean and standard
deviation

√
Vx. For estimation purposes, it is reasonable to assume that the

values δxi are also normally distributed. It is also reasonable to assume that
the errors in xi and yi are uncorrelated, so the linear combination δyi−a ·δxi

is also normally distributed, with 0 mean and variance σ2
y + a2 · Vx. It is

also reasonable to assume that all the values Δi are approximately the same:
Δi ≈ Δ.

For normal distribution ξ with 0 mean and standard deviation σ, the mean
value of |ξ| is equal to

√

2/π · σ. Thus, the absolute value |Δyi − a ·Δxi| of

the above combination has a mean value
√

2/π ·
√

σ2
y + a2 · Vx. Hence, the

expected value of Δa is equal to

2
π
·
√

σ2
y + a2 · Vx ·Δ

Vx
.

Since measurements are usually more accurate than expert estimates, we
have σ2

y � Vx, hence

Δa ≈ 2
π
· a ·Δ.

Similar estimates can be given for Δh.

What to do in the general case. Linearization is not always acceptable. Some-
times, the intervals are wide, so that quadratic terms cannot be ignored.

When the linear approximation is not accurate enough, we can use the
fact that, as we saw in the previous part of this book, efficient algorithms are
known for computing the ranges in reasonable situations. So, we can compute
the interval ranges for Cxy and for Vx and divide the resulting ranges for the
desired bioinformatics-related parameters a = c− h and h.

Proof that finding the exact range the ratio Cx,y/Vx is NP-hard. Our proof
is similar to the proof that computing the range for the variance is NP-
hard: namely, we reduce a partition problem (known to be NP-hard) to our
problem. In the partition problem, we are givenm positive integers s1, . . . , sm,

and we must check whether there exist values εi ∈ {−1, 1} for which
m
∑

i=1

εi ·
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si = 0. We will reduce this problem to the following problem: n = m + 2,
y1 = . . . = ym = 0, ym+1 = 1, ym+2 = −1, xi = [−si, si] for i ≤ m, xm+1 = 1,
and xm+2 = −1. In this case, Ey = 0, so

Cx,y =
1

n− 1
·

n
∑

i=1

xi · yi − n

n− 1
· Ex · Ey =

2
m+ 2

.

Therefore, Cx,y/Vx → min if and only if Vx → max.

Here, Vx =
1

m+ 1
·
(

m
∑

i=1

x2
i + 2

)

−m+ 2
m+ 1

·
(

1
m+ 2

·
m
∑

i=1

xi

)2

. Since |xi| ≤

si, we always have Vx ≤ V0
def=

1
m+ 1

·
(

m
∑

i=1

s2i + 2

)

, and the only possibility

to have Vx = V0 is when xi = ±si for all i and
∑

xi = 0. Thus, Vx = V0 if
and only if the original partition problem has a solution. Hence, Cx,y/Vx =

2
∑

s2i + 2
if and only if the original instance of the partition problem has a

solution.
The reduction is proven, so our problem is indeed NP-hard.

Comment. In this proof, we consider the case when the values xi can be
negative and larger than 1, while in bioinformatics, xi is always between 0
and 1. However, we can easily modify this proof: First, we can shift all the
values xi by the same constant to make them positive; shift does not change
neither Cx,y nor Vx. Second, to make the positive values ≤ 1, we can then
re-scale the values xi (xi → λ · xi), thus multiplying Cx,y/Vx by a known
constant.

As a result, we get new values x′i =
1
2
· (1+xi/K), where K def= max si, for

which x′i ∈ [0, 1] and the problem of computing Cx,y/Vx is still NP-hard.
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Applications to Computer Science: Optimal

Scheduling for Global Computing

In many practical situations, in particular in many bioinformatics problems,
the amount of computations is so huge that the only way to perform these
computations in reasonable time is to distribute them between multiple pro-
cessors. The more processors we engage, the faster the resulting computa-
tions; thus, in addition to processor exclusively dedicated to this job, systems
often use idle time on other processors. The use of these otherwise engaged
processors adds additional uncertainty to computations.

How should we schedule the computational tasks so as to achieve the best
utilization of the computational resources? Because of the presence of uncer-
tainty, this scheduling problem is very difficult not only to solve but even to
formalize (i.e., to describe in precise terms). In this chapter, we provide the
first steps towards formalizing and solving this scheduling problem.

The main result of this chapter first appeared in [12].

Formulation and Analysis of the Problem, and the
Corresponding Results and Algorithms

Supercomputing. At present, most useful computations are performed on in-
dividual computers. However, there are practical problems which require
orders of magnitude more computations than a regular computer can
perform. To perform such computations, we need what is often called a
“supercomputer”.

Such problems include processing DNA data and other relevant bioinfor-
matics data, weather prediction and climate analysis, etc. For example, in
bioinformatics, one of the most time-consuming tasks is to look for known
patterns in a long DNA or RNA sequence.

Supercomputing in the past. In this chapter, we will analyze scheduling in
global computing. To explain the idea (and the necessity) of global computing,
it is important to explain how the concept of supercomputing has evolved in
the last decades.
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In the past, the ability to use supercomputers to simulate such things
as nuclear weapons design was an important part of military confrontation.
As a result, special classified technology was used to design supercomputers,
technology that was not allowed on regular individual computers.

Supercomputing at present. Since the end of the Cold War, military restric-
tions no longer serve as a serious limitation to the mass-produced computer
technology. As a result, the current PCs are almost as fast as specially de-
signed computer processors.

Hence, many existing supercomputers are designed by connecting regular
off-the-shelf computer processors together.

Global computing. Since regular computers are almost as powerful as any
processor within a supercomputer, a natural idea is to use idle cycles of
the regular computers to perform high-throughput computations. This idea
enables us, in effect, to build a powerful supercomputer out of the existing
computers – and we do not even need to own them, it is enough to use their
idle cycles. Of course, due to communication time, this idea may not always
work for real-time computations where we need, e.g., to predict the path of
a upcoming dangerous storm. However, in many scientific computations, a
communications-related delay of a day or two may be quite reasonable – as
long as we do eventually perform all the necessary computations.

This idea started in the 1990s with SETI@Home, where global comput-
ing was used to process signals from radio telescopes in search for messages
from extra-terrestrial intelligence. At present, this idea is actively used in
mainstream research. For example, our group has developed easy-to-install
web browser extension tools [43, 44, 327, 328, 365] which, in effect, enable
computers to work together. The resulting networks are already being used
for bioinformatics applications [326] and [329].

One of the main problems of global computing: scheduling under uncertainty.
A serious problem in global computing is scheduling; see, e.g., [6, 129, 160,
317, 318, 323]. A similar problem occurs when we combine several processors
into a single supercomputer, but there, usually, all the processors are simi-
lar, and we are in complete control of them. The corresponding scheduling
problem is computationally difficult, but it is well formulated, without any
serious uncertainty.

In contrast, in global computing, we are connecting computers of different
types, some of which we own, some of which we don’t own (so we can only use
their idle cycles). We do not have an exact understanding of how the result-
ing collaboration affects computation time, how much time is available as idle
cycles, etc. In other words, to make an efficient use of resources in global com-
puting, we must perform scheduling under uncertainty. The existing schedul-
ing tools for such scheduling are still imperfect [6, 129, 160, 317, 318, 323].

We need all types of uncertainty.

• In some cases, we have interval uncertainty: e.g., we may know that a cer-
tain processing step takes between 5 and 10 minutes on a given computer.
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• In other cases, we have probabilistic uncertainty: e.g., based on the past
experience, we may know the mean processing value – or we may even
know the probability distribution for computation time.

• We can also have expert estimates for computation time, such as “the time
is usually much faster than 10 minutes” which are natural to describe in
fuzzy terms.

In scheduling, we need to take into account all these three types of uncertainty.
Let us show how the problem of selecting the optimal schedule under these

types of uncertainty can be described in precise terms.

Formalizing the main objective: first try. The need for parallelization comes
from the fact that computing the original task on a sequential machine takes
too long a time.

From this viewpoint, a reasonable objective of parallelization is to minimize
the overall computation time t.

Formalizing the main objective: complications caused by uncertainty. In global
computing, we use idle time of otherwise engaged computers. This idle time
depends on whether (and to what extent) these computers are engaged in
other computations. Thus, for the same schedule, the actual computation
time t may differ from situation to situation.

So, we may get different computation times with different probabilities.

Formalizing the main objective: second try. Due to uncertainty, we cannot
guarantee the exact value of the computation time. Moreover, with some
(hopefully small) probability, the actual computation time may turn out be
be very large.

If this probability is small enough, then the situation is quite tolerable:
indeed, for every computer (even a dedicated one), there is always a probably
of hardware failure which would make the computations impossible.

It is therefore reasonable to select a tolerable probability of failure ε, and
to gauge each schedule by the time t0 during which this schedule completes
computation with probability 1− ε.

Then, we select the schedule for which this time t0 is the smallest.

Formalizing the main objective: additional complications caused by uncer-
tainty. In the idealized case when we know the probabilities of all possible
engagements of different computers, we can simulate the involved network of
computers and find the probability that the task will be performed in any
time period t. In such idealized situation, we can then find the value t0 for
which the probability of success is 1 − ε, and select the schedule for which
the value is the smallest.

In reality, we do not have a full knowledge of the corresponding probabil-
ities. Because of this incomplete knowledge, for a given schedule, we cannot
uniquely predict the probability that under schedule, the original task will
be performed in time t. The actual probability of success may depend on the
parameters which are unknown to us.
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Formalizing the main objective: final idea. We have mentioned that we cannot
exactly predict the actual probability with which a given plan will succeed in
time t. For different possible probability distributions, we may have different
probabilities.

Our objective is to guarantee that the computations are done. Thus, a
reasonable measure of the schedule’s quality is the time t0 by which we can
guarantee that the computations finish with the probability 1− ε

Formalizing the main objective: resulting formalization. We want to select the
schedule for which the time t0 during which computations are guaranteed to
finish with probability ≥ 1 − ε.

Need to compute the time of guaranteed completion. In view of this objective,
to select the optimal schedule, we must be able, for each schedule, to com-
pute the time t0 during which computations are guaranteed to finish with
probability ≥ 1 − ε.

Let us now describe what information we can use to compute this time,
and how we can use this information.

Need for predicting the guaranteed computation time: reminder. We have ar-
gued that a reasonable way to select a computation schedule is to select a
schedule for which the guaranteed (with probability ≥ 1 − ε) computation
time t0 is the smallest. Thus, to find the optimal schedule, we must be able
to compute this guaranteed computation time.

What is a schedule. The main idea of parallelization is that the original time-
consuming task into jobs (subtasks) which can be performed independently.
A schedule describes how exactly this parallelization is performed, i.e., how
exactly the original task is divided into subtasks, and which processor is
assigned which subtask.

Example from bioinformatics. As we have mentioned, in bioinformatics, one
of the most time-consuming tasks is to look for known patterns in a long
DNA or RNA sequence. This task can be parallelized if:

• we divide the original sequence into pieces,
• assign each piece to a different computer, and
• ask the corresponding computer to search for the desired pattern within

its piece.

Of course, the pieces must overlap – otherwise this procedure may miss the
pattern if it happens that this pattern is split between two neighboring pieces.

As soon as all the jobs are done, the original task is performed.

An expression for the overall time in terms of times of subtasks. The overall
computation time of the parallelized procedure can be defined as t = te − ts,
where:

• ts is the moment when the original task was submitted by the user to the
submit point, and
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• tE is the moment when all the jobs (subtasks) have been performed and
their results have been returned to the submit point.

For every job i, let ti denote the time from ts to the moment when the results
of this job are returned to the submit point. The original task is done when
the last of these jobs is performed, the job which takes the largest amount of
time. Thus t = max

i
ti, where the maximum is taken over all the jobs i.

For each task i, we need some time to send it off to a currently idle pro-
cessor, process it there, and then send the results back. The overall time ti
is therefore equal to the sum

∑

j

tij of the times of these steps. The overall

computation time is thus equal to the longest of these times, i.e., to

t = max
i

∑

j

tij .

Comment. For bioinformatics problems, each subtask is performed on a sin-
gle processor, hence each job time ti is the sum of the times tij corresponding
to three above-described steps. The possibility of using a single processor for
each subtask is due to the fact that each subtask is reasonably short, so the
probability that the auxiliary processor remains idle during these computa-
tions remains high.

In other application areas, it may not be possible to subdivide the original
task into parallelizable short subtasks; the subtasks are much longer. In this
case, there is a high probability that a processor would stop being idle before
the subtask is completed, and the subtask will not be finished. To avoid this
situation, it is reasonable to subdivide this subtask into several sequential
steps, and assign each step to a different processor:

• the first processor performs the first step, then return the results to the
submit point;

• these results will then be sent to the second processor, to perform the
second step of the subtask, etc.

In this case, the overall time ti for computing the i-th job can be described by
a similar formula ti =

∑

j

tij , but now we can have more than three steps j.

In view of this possibility, in the following text, we will consider the general
case of possibly > 3 steps j.

We only have partial information about the times tij. We have described a
formula that relates the desired computation time t with the times tij of
performing different steps.

If we knew the exact values of tij , then we could use the above formula
to compute the exact value of the overall computation time. If we knew
the probability distribution for each of the times tij , then we could find the
probabilities of different values of t; in particular, we would be able to find
the probability that t is below the given value t0.
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In reality, in most cases, we do not know the exact value tij , and we only
partial knowledge about the corresponding probabilities.

What types of partial information about the times tij do we have? We can
safely assume that different values tij are statistically independent.

• For some times tij , we know the probability distribution.
• For other times tij , we know the bounds tij ≤ tij ≤ tij and the mean e[tij ].
• In other cases, we have fuzzy information about the bounds and means.

We would like to use this information to estimate the guaranteed computation
time.

From the computational viewpoint, it is sufficient to consider interval uncer-
tainty. In the fuzzy case, to describe the corresponding uncertainty about
tij , for each value t of the time tij , we describe the degree μij(t) to which
this value is possible.

For each degree of certainty α, we can determine the set of values of tij
that are possible with at least this degree of certainty – the α-cut tij(α) def=
{t |μij(t) ≥ α} of the original fuzzy set. In many practical cases, this α-cut
is an interval.

Vice versa, if we know α-cuts for every α, then, for each value t, we can
determine the degree of possibility that t belongs to the original fuzzy set for
tij ; see, e.g., [90] and [252]. A fuzzy set can be thus viewed as a nested family
of its α-cuts.

A fuzzy number can be defined as a fuzzy set for which all α-cuts are
intervals.

So, if instead of an interval [tij , tij ] of possible values of the time tij , we have
a fuzzy number μij(t) of possible values, then we can view this information
as a family of nested intervals tij(α) (α-cuts of the given fuzzy sets).

Our objective is then to compute the fuzzy number t0 corresponding to
the desired time. In this case, for each level α, the corresponding α-cut of
the desired fuzzy number can be computed based on the α-cuts tij(α) of the
corresponding input fuzzy sets. The resulting nested intervals form the fuzzy
number for the desired time t0.

So, e.g., if we want to describe 10 different levels of uncertainty, then we
must solve 10 interval computation problems. Thus, from the computational
viewpoint, it is sufficient to produce an efficient algorithm for the interval
case.

Towards a mathematical formulation of the problem. Let us observe that
the function t = max

i

∑

j

tij which describes the dependence of the overall

computation time t on the times tij is non-negative and convex.
Let us recall that a function f : Rm → R is called convex if

f(α · x+ (1 − α) · y) ≤ α · f(x) + (1 − α) · f(y)
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for every x, y ∈ Rm and for every α ∈ (0, 1). It is known that the maximum
of several linear functions is convex, so our function is indeed convex.

Our objective. We want to find the smallest possible value t0 such that for all
possible distributions consistent with the known information, we have t ≤ t0
with the probability ≥ 1 − ε (where ε > 0 is a given small probability).

What information we can use. We assume that different values tij are sta-
tistically independent:

• About some of the variables tij , we know their exact statistical character-
istics.

• About some other variables tij , we only know their interval ranges [tij , tij ]
and their means Eij .

Additional property: the dependency is non-degenerate. We only have partial
information about the probability distribution of the variables tij . For each
possible probability distribution p, we can find the largest value tp for which,
for this distribution, t ≤ tp with probability ≥ 1 − ε. The desired value t0 is
the largest of the values tp corresponding to different probability distributions
p: t0 = sup

p∈P
tp, where P denotes the class of probability distributions p which

are consistent with the known information.
If we learn some additional information about the distribution of tij – e.g.,

if we learn that tij actually belongs to a proper subinterval of the original
interval [tij , tij ] – we thus decrease the class P of distributions p which are
consistent with this information, to a new class P ′ ⊂ P . Since the class has
decreased, the new value t′0 = sup

p∈P′
tp is the maximum over a smaller set and

thus, cannot be larger than the original value t0: t′0 ≤ t0.
From the purely mathematical viewpoint, it is, in principle, possible that

the desired value t0 does not actually depend on some of the variables tij . In
this case, if we narrow down the interval of possible values of the correspond-
ing variable tij , this will not change the resulting value t0.

In our problem, however, it is reasonable to assume that the dependence
of t0 on tij is non-degenerate in the sense that every time we narrow down
one of the intervals [tij , tij ], the resulting value t0 actually decreases: t′0 < t0.

As a result, we arrive at the following problem.

Formulation of the problem and the main result.

GIVEN:

• a finite set of M pairs of integers (i, j), and its subset F ;
• a real number ε > 0;
• a convex non-negative function

t = F (t11, t12, . . .);
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• probability distributions for variables tij with (i, j) ∈ F – e.g., given in
the form of cumulative distribution function (cdf) Fij(t);

• intervals tij = [tij , tij ] and values Eij corresponding to (i, j) �∈ F .

TAKE: all possible joint probability distributions on RM for which:

• all N random variables tij are independent;
• for all (i, j) ∈ F , the variable tij has a given distribution Fij(t);
• for each (i, j) �∈ F , tij ∈ tij with probability 1 and the mean value of tij

is equal to Eij .

FIND: the smallest possible value t0 such that for all possible distributions
consistent with the known information, we have t def= F (t11, t12, . . .) ≤ t0 with
probability ≥ 1 − ε.

PROVIDED: that the problem is non-degenerate in the sense that if we nar-
row down one of the intervals tij , the value t0 decreases.

The following result explains how we can compute this value t0.

Proposition 33.1. The desired value t0 is attained when for each (i, j) �∈ F ,
we use a 2-point distribution for tij, in which:

• tij = tij with probability p
ij

def=
tij − Eij

tij − tij
.

• tij = tij with probability pij
def=

Eij − tij
tij − tij

.

Comment. This proposition was first proven in [269] and [270] for a different
computer-related application – to chip design; see Chapter 37.

Resulting algorithm for computing t0. Because of the above Proposition,
we can compute the desired value t0 by using the following Monte-Carlo
simulation:

• We set each value tij , (i, j) �∈ F , to be equal:
• to tij with probability pij and
• to the value tij with the probability tij .

• We simulate the values tij , (i, j) ∈ F , as random variables distributed
according to the distributions Fij(x).

• For each simulation s, 1 ≤ s ≤ Ni, we get the simulated values t(s)ij , and

then, a value t(s) = F (t(s)11 , t
(s)
12 , . . .). We then sort the resulting Ni values

t(s) into an increasing sequence

t(1) ≤ t(2) ≤ . . . ≤ t(Ni),

and take, as t0, the Ni · (1− ε)-th term t(Ni·(1−ε)) in this sorted sequence.
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Proofs

Proof of Proposition 33.1

1◦. By definition, t0 is the largest value of tp over all possible distributions
p ∈ P . This means that for the given t0, for all possible distributions p ∈ P ,
we have Prob(t ≤ t0) ≥ 1−ε. Let p ∈ P be the “worst-case” distribution, i.e.,
the distribution for which the probability Prob(t ≤ t0) is the smallest. Let us
show that this “worst case” occurs when all variables tij with (i, j) �∈ F have
the 2-point distributions described in the Proposition.

2◦. Let us fix a pair (i0, j0) �∈ F and show that in the “worst case”, ti0j0

indeed has the desired 2-point distribution.

Let us fix the distributions for all other tij , (i, j) �∈ F as in the worst case.
Then, the fact that the probability Prob(t ≤ t0) is the smallest means that if
we replace the worst-case distribution for ti0j0 with some other distribution,
we can only increase this probability. In other words, when we correspond-
ingly fix the distributions for tij , (i, j) �= (i0, j0), the probability Prob(t ≤ t0)
attains the smallest possible value at the desired distribution for ti0j0 .

3◦. The distribution for ti0j0 is located on an interval ti0j0 = [ti0j0 , ti0j0 ], i.e.,
on a set with infinitely many points. However, with an arbitrary large valueN
(and thus, for an arbitrarily small discretization error δ = (ti0j0 − ti0j0)/N),
we can assume that all the distributions are located on a finite grid of values

v0
def= ti0j0 , v1

def= ti0j0 + δ, v2
def= ti0j0 + 2δ, . . . , vN = ti0j0 .

The smaller δ, the better this approximation. Thus, without losing general-
ity, we can assume that the distribution of ti0j0 is located on finitely many
points vk.

4◦. In this approximation, the probability distribution for ti0j0 can be de-

scribed by the probabilities qk
def= pi0j0(vk) of different values vk.

5◦. The minimized probability Prob(t ≤ t0) can be described as the sum of
the probabilities of different combinations of tij over all the combinations
for which t = F (t11, t12, . . .) ≤ t0. We assumed that all the variables tij
are independent. Thus, the probability of each combination of tij is equal to
the product of the corresponding probabilities p11(t11) · p12(t12) · . . . Since
the probability distributions for tij , (i, j) �= (i0, j0), are fixed, the minimized
probability is thus a linear combination of probabilities pi0j0(vk), i.e., of the
probabilities qk. In other words, the minimized probability has the form
N
∑

k=0

ck · qk for some coefficients ck.

6◦. By describing the probability distribution on ti0j0 via the probabilities
qk = pi0j0(vk) of different values vk ∈ [tij , tij ], we automatically restrict our-
selves to distributions which are located on this interval. The only restrictions
that we have on the probability distribution of ti0j0 is that:
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• it is a probability distribution, i.e., qk ≥ 0 for all k and
N
∑

k=0

qk = 1, and

• the mean value of this distribution is equal to Ei0j0 , i.e.,
N
∑

k=0

qk ·vk = Ei0j0 .

Thus, the worst-case distribution for ti0j0 is a solution to the following linear
programming problem:

Minimize
N
∑

k=0

ck · qk

under the constraints
N
∑

k=0

qk = 1,

N
∑

k=0

qk · vk = Ei0j0 ,

qk ≥ 0, k = 0, 1, 2, . . . , N.

7◦. It is known that the solution to a linear programming problem is always
attained at a vertex of the corresponding constraint set.

In other words, in the solution to the linear programming problem with
N+1 unknowns q0, q1, . . . , qN , at least N+1 constraints are equalities. Since
we already have 2 equality constraints, this means that out of the remaining
constraints qk ≥ 0, at least N − 1 are equalities. In other words, this means
that in the optimal distribution, all but two values of qk = pi0j0(vk) are equal
to 0.

Thus, the “worst-case” distribution for ti0j0 is located on 2 points v and
v′ within the interval [ti0j0 , ti0j0 ].

8◦. Let us prove, by reduction to a contradiction, that these two points cannot
be different from the endpoints of this interval.

Indeed, let us assume that they are different. Without losing generality,
we can assume that v ≤ v′. Then, this “worst-case” distribution is actually
located on the proper subinterval [v, v′] ⊂ [ti0j0 , ti0j0 ] of the original interval
ti0j0 .

Since the maximum t0 of tp is attained on this distribution, replacing the
original interval ti0j0 with its proper subinterval [v, v′] would not change
the value t0 – while our assumption of non-degeneracy states that such a
replacement would always lead to a smaller value t0. This contradiction shows
that the values v and v′ – on which the worst-case distribution is located –
have to be endpoints of the interval [ti0j0 , ti0j0 ].
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9◦. In other words, we conclude that the worst-case distribution is located at
2 points: ti0j0 and ti0j0 .

Such a distribution is uniquely determined by the probabilities p
i0j0

and
pi0j0 of these two points. Since the sum of these probabilities is equal to 1,
it is sufficient to describe one of these probabilities, e.g., pi0j0 ; then, p

i0j0
=

1 − pi0j0 . The condition that the mean of ti0j0 is Ei0j0 , i.e., that

p
i0j0

· ti0j0 + pi0j0 · ti0j0 = (1 − pi0j0) · ti0j0 + pi0j0 · ti0j0 = Ei0j0 ,

uniquely determines pi0j0 (and hence p
i0j0

) – exactly by the expression from
the Proposition.

The Proposition is proven.
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Applications to Information Management:

How to Estimate Degree of Trust

In this chapter, we use the probabilistic and interval uncertainty to estimate
the degree of trust in an agent. Some of these results first appeared in [56, 141].

Results and Algorithms

In the traditional approach to trust, we either trust an agent or not. If we
trust an agent, we allow this agent full access to a particular task. For exam-
ple, I trust my bank to handle my account; the bank (my agent) outsources
money operations to another company (sub-agent), etc. The problem with
this approach is that I may have only 99.9% trust in bank, bank in its con-
tractor, etc. As a result, for long chains, the probability of a security leak
may increase beyond any given threshold. To resolve this problem, we must
keep track of trust probabilities.

Let us describe this idea in precise terms. We have a finite set A; its
elements are called agents. For some pairs (a, b) of agents, we know that an
agent a has some degree of direct trust in an agent b. We will denote the
set of all such pairs by E. For each pair (a, b) ∈ E, we know the probability
p0(a, b) with which a directly trusts b. We can estimate this probability, e.g.,
as a frequency in which a similar trust was justified.

Our objective is to describe, for given two agents f and s, the resulting
probability pt(f, s) with which the agent f should trust the agent s.

Let us show how this problem can be described in precise terms. The
pair (A,E), where E ⊆ A × A, forms a graph in which agents are nodes
and possible trust pairs are edges. To each edge (a, b), we associate a value
p0(a, b) ∈ [0, 1].

Some of the trusts may be misplaced: an agent a may trust an agent b with
a certain probability, but b may be misusing a’s trust. Let E′ ⊆ E denote
the (unknown) set of pairs in which the trust is justified; we will call this set
the actual trust set.

We do not know for sure who is trustworthy and who is not, so at best,
we can find some information about the probabilities p(E′) of different trust
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sets E′. First, these probabilities must add up to 1:
∑

E′
p(E′) = 1. Second,

for every pair (a, b) ∈ E, the probability that a directly trusts b, i.e., the
probability that the edge (a, b) belongs to the actual trust set E′, should be
equal to p0(a, b):

∑

E′:(a,b)∈E′ p(E′) = p0(a, b).
Once the probability distribution p(E′) is fixed, we can determine the

probability pt(f, s) with which f should trust s as the probability that in
the actual trust set E′, there is a path leading from f to s. If we denote the

existence of such a path by f E′→ s, then the desired probability pt(f, s) can
be described as

∑

E′:fE′→s
p(E′).

We may have different probability distributions p(E′) which are consistent
with the data p0(a, b); for different distributions, we may have different values
of the trust pt(f, s). In security situations, it is desirable to find the guaranteed
level of trust, i.e., the smallest possible value of pt(f, s) over all possible
probability distributions which are consistent with the data p0(a, b). We will
denote this smallest possible value by p

t
(f, s); in these terms, our objective

is to compute p
t
(f, s).

This problem can be viewed as a particular case of the general problem
of dealing with probabilities in expert systems. Indeed, here, for every agent
a, we have a statement “a” meaning that f trusts a. We have a fact f →
meaning that f trust himself. For each edge (a, b) ∈ E (meaning that a trusts
b), we have a rule b ← a (meaning that if f trusts a, he should also trust
b), which holds with probability p0(a, b). The query is “s?” – i.e., with what
probability should we trust s.

Let us show that in this particular problem, we can efficiently compute the
desired probability. Namely, let us define the length (“distrust”) of an edge as
d0(a, b)

def= 1− p0(a, b). We can naturally extend this definition to paths, i.e.,
sequences (a0, . . . , an) in which (ai, ai+1) ∈ E for all i. Namely, the length

(γ) of a path γ = (a0, . . . , an) is defined as usual: (γ) def=
n−1
∑

i=0

d0(ai, ai+1).

The length of the shortest path from f to s is defined as follows:

dt(f, s)
def= min{(γ) | γ is a path from f to s}.

Proposition. p
t
(f, s) = max(1 − dt(f, s), 0).

So, we can use Dijkstra’s algorithm (see, e.g., [73]) to find the shortest path
in a graph, and then compute p

t
(f, s).

Proof

1◦. Let us first show that for every distribution p(E′) that is consistent
with the given information, we have dt(f, s) ≤ dt(f, s), where dt(f, s)

def=
1 − pt(f, s).
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Let γ0 = (a0, a1, . . . , an) be the shortest path from a0 = f to an = s.
Then, by definition of the function dt(f, s), we have

dt(f, s) = d0(a0, a1) + . . .+ d0(an−1, an), (9)

where (ai, ai+1) ∈ E for all i. If all the connections (ai, ai+1) are in the
random graph E′, then in E′, there exists a path from f = a0 to an = s –
namely, the path γ0. So, if there is no path from s to f , then at least one of
the connections (ai, ai+1) is not present in the random graph.

Let us denote:

• the event that there is no path from f to s by Nt(f, s), and
• the event that there is no direct connection from ai to ai+1 by N0(ai, ai+1).

Then:

• the probability of Nt(f, s) is equal to dt(f, s), while
• the probability of each event N0(ai, ai+1) is equal to d0(ai, ai+1).

In these terms, the above logical conclusion takes the following form: if the
event Nt(f, s) occurs, then at least one of the events N0(ai, ai+1) must have
occurred:

Nt(f, s) ⊃ (N0(a0, a1) ∨ . . . ∨N0(an−1, an)).

Therefore, the probability dt(f, s) of the event Nt(f, s) cannot exceed the
probability of the disjunction:

dt(f, s) ≤ P (N0(a0, a1) ∨ . . . ∨N0(an−1, an)).

It is well known that the probability of a disjunction

S1 ∨ . . . ∨ Sn

of arbitrary n events S1, . . . , Sn cannot exceed the sum of the corresponding
probabilities p(S1) + . . .+ p(Sn). In our case, this means that dt(f, s) cannot
exceed the sum of the probabilities p(N0(a0, a1))+ . . .+p(N0(an−1, an)), i.e.,
that dt(f, s) ≤ d0(a0, a1) + . . .+ d0(an−1, an).

Due to (9), this means that dt(f, s) ≤ dt(f, s).

2◦. From dt(f, s) = 1−pt(f, s) ≤ dt(f, s), it follow that pt(f, s) ≥ 1−dt(f, s).
Since pt(f, s) is a probability, it is a non-negative number, so

pt(f, s) ≥ max(1 − dt(f, s), 0).

In other words, for every distribution p(E′) that is consistent with the
given information, the corresponding probability pt(f, s) is larger than or
equal to max(1 − dt(f, s), 0). Thus, the infimum p

t
(f, s) of all such values

pt(f, s) is also smaller than or equal to this number, i.e.,

p
t
(f, s) ≥ max(1 − dt(f, s), 0).
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3◦. To complete the proof, we will produce an example of a probabil-
ity distribution p(E′) for which pt(f, s) ≤ max(1 − dt(f, s), 0). Then, for
p

t
(f, s) ≤ pt(f, s), we will get p

t
(f, s) ≤ max(1 − dt(f, s), 0), hence

p
t
(f, s) = max(1 − dt(f, s), 0).

To describe the corresponding distribution, we will use the standard pro-
jection π of the real line IR onto the interval [0, 1) that assigns to each real
number x its fractional part π(x) def= x − �x�. This projection has a simple
geometric interpretation: we interpret the interval [0, 1) as a circle of circum-
ference 1, and we “wrap up” the real line around this circle.

It is easy to see that in this wrapping, the length of an interval is preserved
as long as it does not exceed 1. Thus, for any interval I = [x, y] ⊆ IR of length
y − x ≤ 1, its projection π(I) is either an interval, or a pair of intervals, and
the total length of the set π(I) is equal to the length y − x of the original
interval.

The corresponding distribution is located on the graphs E(ω) correspond-
ing to different real numbers ω ∈ [0, 1); these graphs will be describe below.
The probability of different graphs E(ω) is described by the uniform distri-
bution on the interval [0, 1).

The graphs E(ω) are described as follows. For every two nodes a and b

for which (a, b) ∈ E, we consider the interval I(a, b) def= [dt(f, a), dt(f, a) +
d0(a, b)] of length d0(a, b). For every ω ∈ [0, 1), the edge (a, b) belongs to the
graph E(ω) if and only if ω �∈ π(I(a, b)).

3.1◦. Let us prove that thus defined distribution is indeed consistent with the
original information, i.e., with all the given values p0(a, b).

Indeed, since the distribution on ω is uniform, the probability that ω ∈
π(I(a, b)) is equal to the total length of the set π(I(a, b)). Due to the
above property of the projection, this total length is equal to the length
of the original interval I(a, b), i.e., to d0(a, b). Thus, the probability that
ω ∈ π(I(a, b)) is equal to d0(a, b). Therefore, the probability of the opposite
event ω �∈ π(I(a, b)) is equal to 1−d0(a, b). By definition of d0(a, b), the value
1 − d0(a, b) is exactly p0(a, b).

So, the probability that the edge (a, b) belongs to the graph E(ω) is ex-
actly p0(a, b).

3.2◦. Let us prove that for every path γ = (a0, . . . , an) that starts at a0 = f ,
if all the edges (a0, a1), . . . , (an−1, an) from this path belong to the graph
E(ω), then ω ≥ dt(a0, an).

We will prove this statement by induction over the length n of the path.

3.2.1◦. Induction base. For n = 0, we have dt(a0, a0) = 0, so the desired
inequality is clearly true.
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3.2.2◦. Induction step. Let us assume that the desired property is true for n,
and we have added one more edge (an, an+1) to the path γ. Let us prove that
the desired property holds for the extended path.

If all n + 1 edges (a0, a1), . . . , (an−1, an), (an, an+1) belong to the graph
E(ω), then the first n edges also belong to the graph. By the induction
assumption, this means that ω ≥ dt(f, an).

If dt(f, an) ≥ 1, then – since ω is from the interval [0, 1) – this inequality
means that no such ω exists; so, the graph E(ω) simply cannot contain all
the edges from the path γ. In this case, the statement that we are trying to
prove is trivially true for an enlarged path – because false implies everything.

It is therefore sufficient to only consider the case when dt(a0, an) < 1. In
this case, by definition of E(ω), the fact that (an, an+1) ∈ E means that

ω �∈ π([dt(f, an), dt(f, an) + d0(an, an+1)]).

Since dt(f, an) < 1, the projection π(. . .) starts with the value dt(f, an).
Whether this projection is a single interval or two intervals depends on
whether dt(f, an)+d0(an, an+1) < 1 or not. Let us consider both possibilities:

• If dt(f, an) + d0(an, an+1) ≥ 1, then the projection contains all the values
from dt(f, an) to 1. Since ω ≥ dt(f, an) and ω cannot belong to this pro-
jection, we conclude that no such ω is possible, so the desired property is
trivially true.

• If dt(f, an) + d0(an, an+1) < 1, then the projection coincides with the
original interval

[dt(f, an), dt(f, an) + d0(an, an+1)].

Since ω ≥ dt(f, an) and ω cannot belong to this projection, we conclude
that

ω ≥ dt(f, an) + d0(an, an+1).

Let us continue the analysis of the second case. By definition, dt(f, an+1) is
the length of the shortest path from f to an+1. In particular, when we add
the edge (an, an+1) to the shortest path from f to an, we conclude that

dt(f, an+1) ≤ dt(f, an) + d0(an, an+1).

Hence, the inequality ω ≥ dt(f, an) + d0(an, an+1) implies that

ω ≥ dt(f, an+1).

In both cases, the induction step is proven, and so is the result.

3.3◦. Due to Part 3.2 of this proof, if there is a path from f to s in a graph
E(ω), then ω ≥ p

t
(f, s). Thus, the probability pt(f, s) that there exists such

a path does not exceed the probability that a uniformly distributed number
ω ∈ [0, 1) is ≥ p

t
(f, s). In other words,

pt(f, s) ≤ max(1 − p
t
(f, s), 0).

The statement is proven, so the above algorithm has been justified.
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Applications to Information Management:

How to Measure Loss of Privacy

In this chapter, we use the experience of measuring a degree of mismatch be-
tween probability models, p-boxes, etc., described in Chapter 30, to measure
loss of privacy. Some of our privacy-related results first appeared in [58].

Formulation and Analysis of the Problem, and the
Corresponding Results

Measuring loss of privacy is important. Privacy means, in particular, that we
do not disclose all information about ourselves. If some of the originally un-
disclosed information is disclosed, some privacy is lost. To compare different
privacy protection schemes, we must be able to gauge the resulting loss of
privacy.

Seemingly natural idea: measuring loss of privacy by the acquired amount of
information. Since privacy means that we do not have complete information
about a person, a seemingly natural idea is to gauge the loss of privacy by
the amount of new information that we gained about this person.

Why information is not always a perfect measure of loss of privacy. In our
opinion, the amount of new information is not always a good measure of the
loss of privacy because it does not distinguish between:

• crucial information that may seriously affect a person, and
• irrelevant information – that may not affect a person at all.

To make a distinction between these two types of information, let us estimate
potential financial losses caused by the loss of privacy.

Example when loss of privacy can lead to a financial loss. As an example,
let us consider how a person’s blood pressure x affects the premium that this
person pays for his or her health insurance.

From the previous experience, insurance companies can deduce, for each
value of blood pressure x, the expected (average) value of the medical ex-
penses f(x) of all individuals with this particular value of blood pressure.
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So, when the insurance company knows the exact value x of a person’s blood
pressure, it can offer this person an insurance rate F (x) def= f(x) · (1 + α),
where α is the general investment profit. Indeed:

• If an insurance company offers higher rates, then its competitor will be
able to offer lower rates and still make a profit.

• On the other hand, if the insurance company is selling insurance at a lower
rate, then it will not earn enough profit, and investors will pull their money
out and invest somewhere else.

To preserve privacy, we only keep the information that the blood pressure
of all individuals from a certain group is between two bounds L and U , and
we do not know have any additional information about the blood pressure
of different individuals. Under this information, how much will the insurance
company charge to insure people from this group?

Based on the past experience, the insurance company is able to deduce
the relative frequency of different values x ∈ [L,U ], e.g., in the form of the
corresponding probability density ρ(x). In this case, the expected medical
expenses of an average person from this group are equal to

E[f(x)] def=
∫

ρ(x) · f(x) dx.

Thus, the insurance company will insure the person for a cost of

E[F (x)] =
∫

ρ(x) · F (x) dx.

Let us now assume that for some individual, the privacy is lost, and for
this individual, we know the exact value x0 of his or her blood pressure. For
this individual, the company can now better predict its medical expenses as
f(x0) and thus, offer a new rate F (x0) = f(x0) · (1 + α). When

F (x0) > E[F (x)],

the person whose privacy is lost also experiences a financial loss

F (x0) − E[F (x)].

We will use this financial loss to gauge the loss of privacy.

Need for a worst-case comparison. In the above example, there is a financial
loss only if the person’s blood pressure x0 is worse than average. A person
whose blood pressure is lower than average will only benefit from reduced
insurance rates.

However, in a somewhat different situation, if the person’s blood pressure
is smaller (better) than average, this person’s loss or privacy can also lead
to a financial loss. For example, an insurance company may, in general, pay
for a preventive medication that lowers the risk of heart attacks – and of the
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resulting huge medical expenses. The higher the blood pressure, the larger
the risk of a heart attack. So, if the insurance company learns that a certain
individual has a lower-than-average blood pressure and thus, a lower-than-
average risk of a heart attack, this risk may not justify the expenses on the
preventive medication. Thus, due to a privacy loss, the individual will have
to pay for this potentially beneficial medication from his/her own pocket –
and thus, also experience a financial loss.

So, to gauge a privacy loss, we must consider not just a single situation, but
several different situations, and gauge the loss of privacy by the worst-case
financial loss caused by this loss of privacy.

Which functions F (x) should we consider. Similarly to Chapter 30, we should
consider functions F (x) for which |F ′(x)| ≤M for some given numberM > 0.

Resulting definitions. Thus, we arrive at the following definition:

Definition 35.1. Let P be a class of probability distributions on a real line,
and let M > 0 be a real number. By the amount of privacy A(P ) related to P ,
we mean the largest possible value of the difference F (x0) −

∫

ρ(x) · F (x) dx
over:

• all possible values x0,
• all possible probability distributions ρ ∈ P , and
• all possible functions F (x) for which |F ′(x)| ≤M for all x.

The above definition involves taking a maximum over all distributions
ρ ∈ P which are consistent with the known information about the group to
which a given individual belongs. In some cases, we know the exact proba-
bility distribution, so the family P consists of only one distribution. In other
situations, we may not know this distribution. For example, we may only
know that the value of x is within the interval [L,U ], and we do not know
the probabilities of different values within this interval. In this case, the class
P consists of all distributions which are located on this interval (with prob-
ability 1).

When we learn new information about this individual, we thus reduce the
group and hence, change from the original class P to a new class Q. This
change, in general, decreases the amount of privacy.

In particular, when we learn the exact value x0 of the parameter, then the
resulting class of distribution reduces to a single distribution concentrated
on this x0 with probability 1 – for which F (x0) −

∫

ρ(x) · F (x) dx = 0 and
thus, the privacy is 0. In this case, we have a 100% loss of privacy – from
the original value A(P ) to 0. In other cases, we may have a partial loss of
privacy.

In general, it is reasonable to define the relative loss of privacy as a ratio

A(P ) −A(Q)
A(P )

. (35.1)
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In other words, it is reasonable to use the following definition:

Definition 35.2

• By a privacy loss, we mean a pair 〈P,Q〉 of classes of probability distribu-
tions.

• For each privacy loss 〈P,Q〉, by the measure of a privacy loss, we mean
the ratio (35.1).

Comment. At first glance, it may sound as if these definitions depend on an
(unknown) value of the parameter M . However, it is easy to see that the
actual measure of the privacy loss does not depend on M :

Proposition 35.1. For each pair 〈P,Q〉, the measure of the privacy loss is
the same for all M > 0.

The new definition of privacy loss is in good agreement with intuition. Let
us show that the new definition adequately describes the difference between
learning that the parameter is in the lower half of the original interval and
that the parameter is even.

Proposition 35.2. Let [l, u] ⊆ [L,U ] be intervals, let P be the class of all
probability distributions located on the interval [L,U ], and let Q be the class of
all probability distributions located on the interval [l, u]. For this pair 〈P,Q〉,
the measure of the privacy loss is equal to 1 − u− l

U − L
.

Comment. In particular, if we start with an interval [L,U ], and then we learn
that the actual value x is in the lower half [L, (L+U)/2] of this interval, then
we get a 50% privacy loss.

What about the case when we assume that x is even? Similarly to the
proof of Proposition 35.2, one can prove that if both L and U are even, and
Q is the class of all distributions ρ(x) which are located, with probability 1,
on even values x, we get A(Q) = A(P ). Thus, the even-values restriction lead
to a 0% privacy loss.

Thus, the new definition of the privacy loss is indeed in good agreement
with our intuition.

Proofs

Proof of Proposition 35.1. To prove this proposition, it is sufficient to show
that for each M > 0, the measure of privacy loss is the same for this M and
for M0 = 1. Indeed, for each function F (x) for which |F ′(x)| ≤ M for all x,
for the re-scaled function F0(x)

def= F (x)/M , we have |F ′
0(x)| ≤ 1 for all x,

and
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F (x0)−
∫

ρ(x) · F (x) dx =

M ·
(

F0(x0) −
∫

ρ(x) · F0(x) dx
)

. (35.2)

Vice versa, if |F ′
0(x)| ≤ 1 for all x, for the re-scaled function F (x) def= M ·F0(x),

we have |F ′(x)| ≤ M for all x, and (35.2). Thus, the maximized values
corresponding to M and M0 = 1 different by a factor M . Hence, the resulting
amounts of privacy A(P ) and A0(P ) corresponding to M and M0 also differ
by a factor M : A(P ) = M ·A0(P ). Substituting this expression for A(P ) (and
a similar expression for A(Q)) into the definition (35.1), we can therefore

conclude that
A(P ) −A(Q)

A(P )
=

A0(P ) −A0(Q)
A0(P )

, i.e., that the measure of

privacy is indeed the same for M and M0 = 1. The proposition is proven.

Proof of Proposition 35.2. Due to Proposition 35.1, for computing the mea-
sure of the privacy loss, it is sufficient consider the case M = 1. Let us show
that for this M , we have A(P ) = U − L.

Let us first show that for every x0 ∈ [L,U ], for every probability distri-
bution ρ(x) on the interval [L,U ], and for every function F (x) for which
|F ′(x)| ≤ 1, the privacy loss F (x0)−

∫

ρ(x) ·F (x) dx does not exceed U −L.
Indeed, since

∫

ρ(x) dx = 1, we have

F (x0) =
∫

ρ(x) · F (x0) dx

and hence,

F (x0) −
∫

ρ(x) · F (x) dx =
∫

ρ(x) (F (x0) − F (x)) dx.

Since |F ′(x)| ≤ 1, we conclude that

|F (x0) − F (x)| ≤ |x0 − x|.

Both x0 and x are within the interval [L,U ], hence |x0 − x| ≤ U − L, and
|F (x0) − F (x)| ≤ U − L. Thus, the average value

∫

ρ(x) · (F (x0) − F (x)) dx
of this difference also cannot exceed U − L.

Let us now show that there exists a value x0 ∈ [L,U ], a probability distri-
bution ρ(x) on the interval [L,U ], and a function F (x) for which |F ′(x)| ≤ 1,
for which the privacy loss F (x0)−

∫

ρ(x)·F (x) dx is exactly U−L. As such an
example, we take F (x) = x, x0 = U , and ρ(x) located at a point x = L with
probability 1. In this case, the privacy loss is equal to F (U)−F (L) = U −L.

Similarly, we can prove that A(Q) = u− l, so we get the desired measure
of the privacy loss. The proposition is proven.
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Application to Signal Processing: Using 1-D

Radar Observations to Detect a Space
Explosion Core among the Explosion

Fragments

A radar observes the result of a space explosion. Due to radar’s low horizontal
resolution, we get a 1-D signal x(t) representing different 2-D slices. Based
on these slices, we must distinguish between the body at the core of the
explosion and the slowly out-moving fragments. We propose new algorithms
for processing this 1-D data. Since these algorithms are time-consuming, we
also exploit the possibility of parallelizing these algorithms.

Some results from this chapter first appeared in [82].

Formulation of the problem. Most astronomical processes are slow; however,
sometimes, space explosions happen: starts become supernovae, planetoids
are torn apart by tidal and gravitational forces, etc. Even the Universe itself
is currently viewed as a result of such an explosion – the Big Bang.

From the astrophysical viewpoint, these explosions are very important,
because, e.g., supernovae explosions is how heavy metals spread around in
the Universe.

The explosion processes are very rare and very fast, so unless they are
very powerful and spectacular – like an explosion of a nearby supernovae
that happened in 1054 – they are very difficult to observe. As a result, space
explosion processes often go unnoticed.

What we do observe in most cases is the result of the space explosion, i.e.,
the explosion core – the remainder of the original celestial body – surrounded
by the explosion fragments. The most well known example of such a result is
the Crab Nebula formed after the 1054 supernovae explosion.

In order to better understand the corresponding physical process, it is
extremely important to identify the explosion core.

In space, there is not much friction, so, due to inertia, most of the fragments
travel with approximately the same speed as in the beginning of the explosion.
Dividing the distance between the two fragments by their relative speed, we
can determine – reasonably accurately – when the explosion occurred (this is
how we know that the supernovae in the Crab Nebulae exploded in the year
1054). At that explosion time, all the fragments and the core were located
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at the same point, so it is difficult to distinguish between the core and the
fragments.

In general, we have a 2-D (and sometimes even 3-D) image of the result
of the explosion. In such situations, detecting the explosion core is an image
processing problem.

However, there is one important case when we only have 1-D data. In this
case, we cannot use image processing techniques, we have to use techniques
for processing 1-D data – i.e., DSP techniques.

This is the case of nearby space explosions, when the radar is the main
source of information. A radar sends a pulse signal toward an object; this
signal reflects from the object back to the station. We can measure, very ac-
curately, the overall time that the signal traveled, which gives us the distance
to the object. We can also measure the velocity, or, to be more precise, the
rate with which the distance changes. It is, however, very difficult to separate
the signals from different fragments located at the same distance.

As a result, what we observe is a 1-D signal s(t), where each value s(t)
represents the intensity of the reflection from all the fragments located at
distance c · t from the radar – i.e., from the 2-D slice corresponding to this
distance. Based on these slices, we must distinguish between the body at the
core of the explosion and the (slowly expanding) fragments.

In this paper, we describe a new method of identifying a core based on the
slice observations.

Repeated signal measurements at several different moments of time Tk. At
first glance, there may seem to be no difference between the signals reflected
by the fragments and the signal reflected by the core. However, in the process
of an explosion, fragments usually start rotating fast, at random rotation
frequencies, with random phases. As a result, the signals reflected from the
fragments oscillate, while the signal from the original core practically does
not change.

As a result, the reflected signals change with time. Therefore, it makes
sense to measure the signal s(t) not just once, but at several consequent
moments of time, i.e., to consider the signals s1(t), . . . , sN (t) measured at
moments T1 < . . . < TN , and use the difference between the dynamic char-
acter of the fragments and the static character of the core to identify the
core.

Relating measurements performed at different moments of time Tk �= Tl:
the corresponding t-scales are linearly related. In order to compare signals
measured at different moments of time Tk �= Tl, we must identify the layers
measured at different moments of time.

Let T0 be the moment of explosion, and let x0 be the initial distance
between the radar and the core (and the fragments) at that initial moment
of time T0. We assume that our coordinate system has the radar as its origin,
and that the x axis is the axis in the direction of the analyzed “cloud”. For
each fragment i, let v(i)

x be the x-component of the velocity of i-th fragment
(velocity relative to the radar). Hence, at moment Tk, the x-coordinate of
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i-th fragment in our coordinate system – i.e., its distance from the radar – is
equal to x(i)(Tk) = x0 + v

(i)
x · (Tk − T0). Therefore, the radar signal reflected

from this fragment corresponds to the time

t
(i)
k =

x
(i)
k

c
=
x0

c
+ v(i)

x · Tk − T0

c
. (36.1)

Similarly, when we repeat the radar measurement at time Tl �= Tk, the radar
signal reflected from the i-th fragment corresponds to the time

t
(i)
l =

x0

c
+ v(i)

x · Tl − T0

c
. (36.2)

What is the relation between the corresponding times t(i)k and t(i)l ? From the
equation (36.1), we conclude that

v(i)
x =

c · t(i)k − x0

Tk − T0
.

Substituting this expression into the formula (36.2), we conclude that

t
(i)
l =

x0

c
+
c · t(i)k − x0

Tk − T0
· Tl − T0

c
= akl · t(i)k + bkl, (36.3)

where
akl =

Tl − T0

Tk − T0
> 0

and
bkl =

x0

c
− x0

Tk − T0
· Tl − T0

c

do not depend on i.
In other words, the t-scales of the signals sk(t) and sl(t) are related by a

linear dependence tk → tl = akl · tk + bkl.

How can we experimentally find the coefficients of this linear relation? At
each moment of time Tk, we get the observed signal sk(t). Let tk be the
smallest time at which we get some reflection from the fragments cloud,
and let tk be the largest time at which we observe the radar reflection from
this cloud. This means that there is a fragment i for which t

(i)
k = tk, there

is a fragment j for which t
(j)
k = tk, and for every other fragment f , the

corresponding moment of time is in between tk and tk: t(f)
k ∈ [tk, tk].

As we have mentioned, for every other observation Tl, the relation between
the corresponding times t(i)k and t(i)l is linear, with a positive coefficient akl.
Since akl > 0, the corresponding linear functions t → akl · t + bkl is mono-
tonically increasing. Thus, the value tl is the smallest for the same fragment
i for which tk was the smallest. Hence, tl = t

(i)
l = akl · t(i)k + bkl, i.e.,

tl = akl · tk + bkl. (36.4)
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Similarly,
tl = akl · tk + bkl. (36.5)

The values tk, tk, tl, and tl are directly observable. Thus, by solving the
system of two linear equations (36.4) and (36.5) with 2 unknowns, we get
explicit expressions for akl and bkl in terms of these observable values:

akl =
tl − tl
tk − tk

; bkl =
tk · tl − tk · tl

tk − tk
.

How can we transform signals sk(t) and sl(t) to the same scale? Our main
idea is that after we measure the fragments cloud at two different moments of
time Tk and Tl, we should compare the values sk(t) and sl(t) corresponding
to the same fragments.

We know that for each moment of time t, the value sk(t) describes the
same fragment(s) as the value sl(t′), where t′ = akl · t + bkl. We also know
how to experimentally determine the coefficients akl and bkl. So, to make
the desired comparison easier, it is reasonable to “re-scale” the signals to the
same t-scale, so that the compared values correspond to exactly the same
value t. In other words, we would like to generate a re-scaled signal

s̃l(t)
def= sl(akl · t+ bkl). (36.6)

If the measurements were absolutely accurate, i.e., if we had the values sk(t)
corresponding to each individual time t, then such a re-scaling would be easy:
we could simply explicitly use the formula (36.6).

In real life, however, each value sl(t) corresponds not just to a single time
t, but to the entire “bin” of values, from some value t to the value t + Δt,
where Δt is the accuracy with which the radar can measure the time t (in
other words, Δt = Δx/c, where Δx is the accuracy with which the radar can
measure the distance). In other words, what we actually observe is a sequence
of values . . . , s((i−1) ·Δt), s(i ·Δt), s((i+1) ·Δ), . . . Crudely speaking, each
observed value s(i ·Δt) represent the overall intensity of all the fragments for
which the actual reflection time t = x/c is in the interval

Ii
def= [(i− 0.5) ·Δt, (i+ 0.5) ·Δt]. (36.7)

Because of this discreteness, we cannot directly use the formula (36.6) to
match the signals: Indeed, from the moment Tk to the moment Tl, the cloud
slightly expands. At the moment Tk, the value sk(i·Δt) is the overall intensity
of all the fragments for which tk belongs to the interval (36.6) of width Δt. At
moment Tl, the times tl = akl ·tk +bkl corresponding to these same fragments
occupy a wider interval – of width akl ·Δt > Δt. Thus, these fragments are
no longer in the same bin, they may be in different bins.
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How can we match the values? A natural idea is to use linear extrapo-
lation. In other words, to estimate s̃(t) for t = i · Δt, we apply the linear
transformation akl · t+ bkl to the interval Ii. The resulting interval ˜Ii consists
of several parts from different intervals Ij . As s̃l(t), we take a linear combina-
tion of the corresponding values sl(j ·Δt), with weights proportional to the
relative length |˜Ii ∩ Ij |/Δt of the intersection ˜Ii ∩ Ij :

s̃l(i ·Δt) def=
∑

j

|˜Ii ∩ Ij |
Δt

· sl(j ·Δt).

For example, if ˜Ii consists of the entire interval Ij , 0.1 of Ij−1, and 0.05 of
Ii−1, then s̃l(i ·Δt) is equal to:

0.1 · sl((i− 1) ·Δt) + sl(i ·Δt) + 0.05 · sl((i+ 1) ·Δt).
In the following text, we will assume that the signals si(t) have already

been thus rescaled.

Algorithm: main idea. Each layer (“bin”) contains several fragments. These
fragments oscillate with random (uncorrelated) frequencies and phases; the
overall signal x(t) is the sum of the reflections from all these fragments. Due
to the central limit theorem, the resulting overall signal x(t) is approximately
normally distributed with some mean E(t) and variance V (t).

If a layer only contains fragments, then, due to the independence assump-
tion, E(t) ≈ n(t) ·E and V (t) ≈ n(t) ·V , where n(t) is the (unknown) number
of fragment in layer t, and E and V are the mean and variance corresponding
to each fragment. Therefore, for each such layer, E(t) ≈ (E/V ) · V (t).

For a layer that also contains the core, we have E(t) ≈ Ec + N(t) · E
and V (t) ≈ N(t) · V , where Ec is the intensity of the core (since the core is
supposed to be not rotating fast, its signal does not change with time, so the
corresponding variance is negligible). Thus, for this layer,

E(t) ≈ Ec + (E/V ) · V (t).

So, for the core, E(t)/V (t) � E/V .
Therefore, crudely speaking, our best guess for the core location is the

point t for which the ratio E(t)/V (t) is the largest.
This is, of course, a very naive description of the idea. Let us see how this

idea can be described in more adequate DSP terms.

Motivations for the main distribution formula. The intensity Ii(t) of each

fragment i depends on time. Let ai = lim
T→∞

T−1 ·
T
∫

0

Ii(t) dt denote the average

intensity over time, and let bi = lim
T→∞

T−1 ·
T
∫

0

(Ii(t) − ai)2 dt.

In the ensemble of fragments, let a0 be the mean of ai, let A0 be the
variance of ai, let b0 be the mean of bi, and let B0 be the mean of ai. Then,
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according to the main idea, we can assume that E(t) is normally distributed
with the mean n(t) · a0 and the variance n(t) · A0, and V (t) is normally
distributed with the mean n(t) · b0 and the variance n(t) · B0.

We assumed the layers to be independent. As a result, we arrive at the
following formula for the resulting probability distribution:

ρ =
N
∏

t=1

1
√

2π · n(t) · A0

· exp
(

− (E(t) − n(t) · a0)2

2n(t) ·A0

)

×

N
∏

t=1

1
√

2π · n(t) · B0

· exp
(

− (V (t) − n(t) · b0)2
2n(t) ·B0

)

,

with the proviso that for the layer t = t0 containing the core, we have

E(t) − Ec − n(t) · a0

instead of E(t) − n(t) · a0.
Based on the experimental data E(t) and V (t), we must find estimates

for the parameters a0, b0, A0, B0, n(t), t0, and Ec – and what we are re-
ally interested in is t0. In accordance with the Maximum Likelihood Method
(MLM), we must find the values of these parameters for which ρ→ max. As
usual in statistics, it is convenient to replace the problem of maximizing ρ
with a mathematically equivalent problem of minimizing a simpler function
ψ

def= − ln(ρ), i.e., in our case,

ψ =
N
∑

t=1

(E(t) − n(t) · a0)2

2n(t) ·A0
+

N
∑

t=1

(V (t) − n(t) · b0)2
2n(t) · B0

+

N
∑

t=1

ln(n(t)) +
N

2
· log(A0) +

N

2
· log(B0). (36.8)

First case: when we know the parameters that characterize fragment distri-
bution. Let us start with the simplest case when we know the values of the
parameters a0, b0, A0, and B0 that describe the distribution of fragments. In
this case, differentiating by n(t) and equating the derivative to 0, we conclude
that

− 1
2n(t)2

(

E(t)2

A0
+
V (t)2

B0

)

+
1
2

(

a2
0

A0
+
b20
B0

)

+
1
n(t)

= 0.

The first two terms are approximately independent on the number of frag-
ments n(t), the third term 1/n(t) is much smaller (since we have many
fragments). So, we can safely ignore the their term and conclude that
n(t) = ‖vt‖/‖v0‖, where we denoted

vt
def=
(

E(t)√
A0

,
V (t)√
B0

)

; v0
def=
(

a0√
A0

,
b0√
B0

)

,
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and ‖(va, vb)‖ =
√

v2
a + v2

b denotes the length of the vector v = (va, vb).
Substituting this expression for n(t) into the corresponding part of (36.8),
i.e., into

ψ(t) def=
(E(t) − n(t) · a0)2

2n(t) · A0
+

(V (t) − n(t) · b0)2
2n(t) · B0

+

ln(n(t)) =
1

2n(t)
·
(

E(t)2

A0
+
V (t)2

B0

)

−
(

E(t) · a0

A0
+
V (t) · a0

A0

)

+
n(t)
2

·
(

a2
0

A0
+
b20
B0

)

+ ln(n(t)),

we conclude that ψ(t) ≈ ψ0(t), where

ψ0(t)
def= ‖vt‖ · ‖v0‖ − vt · v0, (36.9)

and vt · v0 denotes the dot (scalar) product. (≈ because we use the approxi-
mate value for n(t).)

For t = t0, due to the presence of an additional variable Ec, we get ψ(t0) ≈
0. Thus,

ψ = (N/2) · (log(A0) + log(B0)) +
N
∑

t=1

ψ0(t) − ψ0(t0).

Thus, ψ is the smallest if and only if ψ(t0) is the largest. Therefore, we arrive
at the following algorithm for locating the core:

• First, we re-scale the signals sk(t) into s̃k(t) so that the same value t
corresponds to the same fragments.

• For each t, we compute the sample average E(t) and the sample variance
V (t) of the values s̃k(t).

• For each t, we compute vt and ψ0(t), and find t0 for which ψ0(t0) = m
def=

max
t
ψ0(t).

How reliable is this estimate? We are interested in the value of a single
variable t0, and we know that for one variable, 95% of the values are within
2σ from the mean, and 99.9% are within 3σ. In terms of ψ = ln(ρ), the mean
corresponds to its minimum, the 2σ deviation means difference (2σ)2/(2σ2) =
2 from the minimum, and 3σ deviation means the difference of (3σ)2/(2σ2) =
4.5 from the minimum. Thus, with reliability 95%, we conclude that the core
is among those t for which ψ0(t) ≥ m − 2, and that with reliability 99.9%,
the core is among those t for which ψ0(t) ≥ m− 4.5.

General case. The value (36.8) does not change if we re-scale all the parame-
ters: n(t) → K ·n(t), a0 → a0/K, b0 → b0/K, A0 → A0/K, and B0 → B0/K,
for any K > 0. W.l.o.g., we can therefore assume that a0 = 1.
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Differentiating (36.8) by a0, we conclude that

a0 =
∑

E(t)
∑

n(t)
.

Similarly,

b0 =
∑

V (t)
∑

n(t)
.

Since a0 = 1, we thus get

b0 =
∑

V (t)
∑

E(t)
.

Differentiating by A0, we conclude that

A0 =
1
N

∑

t

(E(t) − n(t) · a0)2

n(t)
=

1
N

(

∑

t

E(t)2

n(t)
−
∑

t

E(t)

)

(36.10)

and similarly,

B0 =
1
N

(

∑

t

V (t)2

n(t)
− b0 ·

∑

t

V (t)

)

. (36.11)

If we denote λ def= A0/B0, then the above formula for n(t) takes the form
n(t)2 = (E(t)2 + λ · V 2(t))/(1 + λ · b20). Substituting this expression into
(36.10) and (36.11) and using the fact that A0 = λ ·B0, we conclude that

∑

t

E(t)2
√

E(t)2 + λ · V (t)2
·
√

1 + λ · b20 −
∑

t

E(t) =

∑

t

λ · V (t)2
√

E(t)2 + λ · V (t)2
·
√

1 + λ · b20 − b0 ·
(

∑

t

V (t)

)

with the only unknown λ. After we find λ from this equation, we can thus
find A0, B0, and hence, the desired t0.

To test our technique, we simulated an explosion with randomly dis-
tributed fragments. On this simulation, the above algorithm does detect the
core.

Possibility of parallelization. In the above algorithms, processing values cor-
responding to bin i uses only measurement only from this bin and from the
neighboring bins. Therefore, if we have several processors working in parallel
(see, e.g., [140]), we can speed up the computations by having each processor
process a section of bins. For example, for 2 processors, the first can handle
bins 1 to N/2 + n, and the second all the bins from N/2− n to N , where n
is the number of neighboring bins that we need to take into consideration.
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Multiple explosions: case of a very accurate radar. Sometimes, the observed
fragments cloud comes not from a single explosion, but from several conse-
quent explosions. How can we then determine the core?

Let us show that when the radar is accurate enough, so that we can dis-
tinguish between individual fragments, the problem of determining the core
becomes even easier than in the case of a single explosion.

First, we observe that if the radar is that accurate, then, by making ob-
servations at very close moments of time T1, T2, etc., we can trace individual
fragments. Indeed, at the initial moment T1, we identify fragments by the
times t(1)1 < t

(2)
1 < . . . at which the corresponding signal s1(t) is non-zero.

At the next moment T2, we can find the times t2, t′2, . . . corresponding to
the fragments as the times t for which s2(t) �= 0. When the time difference
T2 − T1 is so small that the relative motion of a fragment is smaller than
the distance between different fragments, we can identify, for each fragment
i, the corresponding time t(i)2 as the closest to t(i)1 among all observed values
t2, t′2, . . .

For a single explosion, a linear formula (36.3) relates t(i)2 and t
(i)
1 ; the

corresponding slope akl depends on the moment T0 of the explosion. If two
explosions occurred at moments T0 and T ′

0, we get similar linear formulas for
the fragments of each explosion, with two slopes akl �= a′kl. Thus, by plotting
the dependence of t(i)2 on t

(i)
1 , we will get two straight lines with different

slopes. The core belongs to both families of fragments. Thus, the core can
be determined as the fragment i0 that lies at the intersection of the two
corresponding straight lines.

For two explosions, we can determine both lines and easily find the in-
tersection. For numerous explosions, we will have many straight lines, and
finding all of them may be computationally difficult; so, we need a different
idea.

The dependence of ak on T0 is monotonic, so in such situations, the 2-D
points t(i) def= (t(i)1 , t

(i)
2 ) occupy a zone between two straight lines with different

slope a < a corresponding to the first and the last explosions; geometrically, it
is a 2-D cone with the core’s value t(i0) as the vertex. Since we have numerous
explosions, we can conclude that the corresponding pairs fill the entire cone.

Let us show that the core can be determined as the only value i for which

max
j: t

(j)
1 <t

(i)
1

t
(2)
j < min

j: t
(j)
1 >t

(i)
1

t
(2)
j . (36.12)

Let us first consider the case i = i0. For each of the corresponding straight
lines, the dependence of t(i)2 on t(i)1 is monotonically increasing; since the core
i0 belongs to all the lines, we can therefore conclude that if t(j)1 < t

(i0)
1 , then

we have t(j)2 < t
(i0)
2 , and if t(j)1 > t

(i0)
1 , then we have t(j)2 > t

(i0)
2 – which

implies (36.12).
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If t(i)1 > t
(i0)
1 , then the maximum in the left side of the formula (36.12)

corresponds to the largest possible slope akl and is therefore equal to t(i0)
2 +

akl · (t(i)1 − t
(i0)
1 ). On the other hand, the minimum in the right side of the

formula (36.12) corresponds to the smallest possible slope slope akl and is
therefore equal to t(i0)

2 + akl · (t(i)1 − t
(i0)
1 ) – which is clearly smaller than the

maximum in the left side of (36.12).
Similarly, (36.12) cannot occur for t(i)i < t

(i0)
1 .



37

Applications to Computer Engineering:

Timing Analysis of Computer Chips

In chip design, one of the main objectives is to decrease its clock cycle. On
the design stage, this time is usually estimated by using worst-case (interval)
techniques, in which we only use the bounds on the parameters that lead to
delays. This analysis does not take into account that the probability of the
worst-case values is usually very small; thus, the resulting estimates are over-
conservative, leading to unnecessary over-design and under-performance of
circuits. If we knew the exact probability distributions of the corresponding
parameters, then we could use Monte-Carlo simulations (or the correspond-
ing analytical techniques) to get the desired estimates. In practice, however,
we only have partial information about the corresponding distributions, and
we want to produce estimates that are valid for all distributions which are
consistent with this information.

In this chapter, we describe general techniques that allows us, in particular,
to provide such estimates for the clock time. The results of this chapter first
appeared in [269, 270, 341].

Decreasing clock cycle: a practical problem. In chip design, one of the main
objectives is to decrease the chip’s clock cycle. It is therefore important to
estimate the clock cycle on the design stage.

The clock cycle of a chip is constrained by the maximum path delay over all
the circuit paths D def= max(D1, . . . , DN ), where Di denotes the delay along
the i-th path. Each path delay Di is the sum of the delays corresponding to
the gates and wires along this path. Each of these delays, in turn, depends on
several factors such as the variation caused by the current design practices,
environmental design characteristics (e.g., variations in temperature and in
supply voltage), etc.

Traditional (interval) approach to estimating the clock cycle. Traditionally,
the delayD is estimated by using the worst-case analysis, in which we assume
that each of the corresponding factors takes the worst possible value (i.e., the
value leading to the largest possible delays). As a result, we get the time delay
that corresponds to the case when all the factors are at their worst.

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 299–304.
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It is necessary to take probabilities into account. The worst-case analysis does
not take into account that different factors come from independent random
processes. As a result, the probability that all these factors are at their worst
is extremely small. For example, there may be slight variations of delay time
from gate to gate, and this can indeed lead to gate delays. The worst-case
analysis considers the case when all these random variations lead to the worst
case; since these variations are independent, this combination of worst cases
is highly unprobable.

As a result, the current estimates of the chip clock time are over-
conservative, over up to 30% above the observed clock time. Because of this
over-estimation, the clock time is set too high – i.e., the chips are usually over-
designed and under-performing; see, e.g., [48, 67, 68, 264, 265, 266, 267, 268].
To improve the performance, it is therefore desirable to take into account the
probabilistic character of the factor variations.

Robust statistical methods are needed. If we knew the exact probability dis-
tributions of the corresponding parameters, then we could use Monte-Carlo
simulations (or the corresponding analytical techniques) to get the desired
estimates. In practice, however, we only have partial information about the
corresponding distributions. For a few parameters, we know the exact distri-
bution, but for most parameters, we only know the mean and some charac-
teristic of the deviation from the mean – e.g., the interval that is guaranteed
to contain possible values of this parameter.

In principle, we could pick up some distributions which are consistent with
this partial information – e.g., truncated normal distributions, compute the
maximum delays D corresponding to all these distributions, and then take
the largest Dmax of these computed maximum delays D as the clock time.
This procedure will guarantee that the path delay D does not exceed the
clock time if the actual distribution is one of the picked ones. However, it is
quite possible that some other possible distributions (different from the ones
we picked), the corresponding path delay D is larger than Dmax. As a result,
we may be underestimating the clock time. If we set the clock time too low,
we may have operations that did not have time to finish before the next cycle
starts – and this is even worse than overestimating.

It is therefore desirable to provide bounds that work for all the distribu-
tions which are consistent with the given information. In statistics, estimates
which are guaranteed for all distributions from some non-parametric class
are called robust (see, e.g., [138]). In these terms, our objective is to provide
robust statistical estimates for the clock time.

How the desired delay D depends on the parameters. The variations in the
each gate delay d are caused by the difference between the actual and the
nominal values of the corresponding parameters. It is therefore desirable to
describe the resulting delay d as a function of these differences x1, . . . , xn.
Since these differences are usually small, we can safely ignore quadratic (and
higher order) terms in the Taylor expansion of the dependence of d on xj
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and assume that the dependence of each delay d on these differences can be
described by a linear function.

As a result, each path delay Di – which, as we have mentioned, is the
sum of delays at different gates and wires – can also be described as a linear

function of these differences, i.e., as Di = ai +
n
∑

j=1

aij ·xj for some coefficients

ai and aij .
Thus, the desired maximum delay D = max

i
Di has the form

D = max
i

⎛

⎝ai +
n
∑

j=1

aij · xj

⎞

⎠ . (37.1)

Comment. As in Chapter 33, this dependence is convex.

Our objective. We want to find the smallest possible value y0 such that for all
possible distributions consistent with the known information, we have y ≤ y0
with the probability ≥ 1 − ε (where ε > 0 is a given small probability).

What information we can use. What information can we use for these es-
timations? We can safely assume that different factors xj are statistically
independent. About some of the variables xj , we know their exact statistical
characteristics; about some other variables xj , we only know their interval
ranges [xj , xj ] and their means Ej .

Observation. We get the exact same mathematical problem as in Chapter 33
in which we discussed optimal scheduling for global computing. Similarly to
that case, it is reasonable to assume that the dependency is non-degenerate.
Thus, to solve our problem, we can use the algorithm described (and justified)
in Chapter 33.

Formulation of the problem and the main result.

GIVEN:

• natural numbers n, and k ≤ n;
• a real number ε > 0;
• a function y = F (x1, . . . , xn) (algorithmically defined) such that for every

combination of values xk+1, . . . , xn, the dependence of y on x1, . . . , xk is
convex;

• n − k probability distributions xk+1, . . . , xn – e.g., given in the form of
cumulative distribution function (cdf) Fj(x), k + 1 ≤ j ≤ n;

• k intervals x1, . . . ,xk, and
• k values E1, . . . , Ek,

such that for every x1 ∈ [x1, x1], . . . , xk ∈ [xk, xk], we have F (x1, . . . , xn) ≥ 0
with probability 1.
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TAKE: all possible joint probability distributions on Rn for which:

• all n random variables are independent;
• for each j from 1 to k, xj ∈ xj with probability 1 and the mean value of
xj is equal to Ej ;

• for j > k, the variable xj has a given distribution Fj(x).

FIND: the smallest possible value y0 such that for all possible distributions
consistent with the known information, we have y def= F (x1, . . . , xn) ≤ y0
with probability ≥ 1 − ε.

PROVIDED: that the problem is non-degenerate in the sense that if we nar-
row down one of the intervals xj , the value y0 decreases.

Proposition 37.1. The desired value y0 is attained when for each j from 1
to k, we use a 2-point distribution for xj, in which:

• xj = xj with probability p
j

def=
xj − Ej

xj − xj

.

• xj = xj with probability pj
def=

Ej − xj

xj − xj

.

Resulting algorithm for computing y0. Because of Proposition 37.1, we can
compute the desired value y0 by using the following Monte-Carlo simulation:

• We set each value xj , 1 ≤ j ≤ k, to be equal to xj with probability pj and
to the value xj with the probability p

j
.

• We simulate the values xj , k < j ≤ n, as random variables distributed
according to the distributions Fj(x).

• For each simulation s, 1 ≤ s ≤ Ni, we get the simulated values x(s)
j , and

then, a value y(s) = F (x(s)
1 , . . . , x

(s)
n ). We then sort the resulting Ni values

y(s) into an increasing sequence

y(1) ≤ y(2) ≤ . . . ≤ y(Ni),

and take, as y0, the Ni · (1− ε)-th term y(Ni·(1−ε)) in this sorted sequence.

Comment about Monte-Carlo techniques. Before presenting the algorithm for
computing the upper bound on y0, let us remark that some readers may
feel uncomfortable with the use of Monte-Carlo techniques. This discomfort
comes from the fact that in the traditional statistical approach, when we
know the exact probability distributions of all the variables, Monte-Carlo
methods – that simply simulate the corresponding distributions – are inferior
to analytical methods. This inferiority is due to two reasons:

• First, by design, Monte-Carlo methods are approximate, while analytical
methods are usually exact.
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• Second, the accuracy provided by a Monte-Carlo method is, in general,
proportional to ∼ 1/

√
Ni, where Ni is the total number of simulations.

Thus, to achieve reasonable quality, we often need to make a lot of sim-
ulations – as a result, the computation time of a Monte-Carlo method
becomes much longer than for an analytical method.

In robust statistics, there is often an additional reason to be uncomfortable
about using Monte-Carlo methods:

• Practitioners use these methods by selecting a finite set of distributions
from the infinite class of all possible distributions, and running simulations
for the selected distributions.

• Since we do not test all the distributions, this practical heuristic approach
sometimes misses the distributions on which the minimum or maximum of
the corresponding distribution is actually attained.

In our case, we also select a finite collection of distributions from the infinite
set. However, in contrast to the heuristic (un-justified) selection – which
is prone to the above criticism, our selection is justified. Proposition 37.1
guarantees that the values corresponding to the selected distributions indeed
provide the desired value y0 – the largest over all possible distributions p ∈ P .

In such situations, where a justified selection of Monte-Carlo methods is
used to solve a problem of robust statistics, such Monte-Carlo methods often
lead to faster computations than known analytical techniques. The speed-up
caused by using such Monte-Carlo techniques is one of the main reasons why
they were invented in the first place – to provide fast estimates of the values of
multi-dimensional integrals. Many examples of efficiency of these techniques
are given, e.g., in [288]; in particular, examples related to estimating how the
uncertainty of inputs leads to uncertainty of the results of data processing
are given in [331].

Comment about non-linear terms. In the formula (37.1), we ignored quadratic
and higher order terms in the dependence of each path time Di on the pa-
rameters xj . It is known that the maximum D = max

i
Di of convex functions

Di is always convex. So, according to Proposition 37.1, the above algorithm
will work if we take quadratic terms into consideration – provided that each
dependence Di(x1, . . . , xk, . . .) is still convex.

Conclusions. In chip design, one of the main objectives is to decrease its
clock cycle.

On the design stage, this time is usually estimated by using worst-case
(interval) techniques, in which we only use the bounds on the parameters that
lead to delays. This analysis does not take into account that the probability
of the worst-case values is usually very small; thus, the resulting estimates are
over-conservative, leading to unnecessary over-design and under-performance
of circuits. Instead of the largest possible value of the delay, it is reasonable
to determine the clock time as the time y0 for which the probability that the
actual delay y exceeds y0 does not exceed a given small value ε.
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If we knew the exact probability distributions of the corresponding pa-
rameters, then we could use Monte-Carlo simulations (or the corresponding
analytical techniques) to get the desired value y0. In practice, however, we
only have partial information about the corresponding distributions, and we
want to produce the value y0 which is valid for all distributions which are
consistent with this information.

In this chapter, we describe a general technique that allows us, in partic-
ular, to compute this value y0. This technique uses Monte-Carlo simulations
with specially selected “worst-case” distributions, distributions for which the
delay is provably largest among all distributions from the given class. Thus,
to guarantee that Prob(y ≤ y0) ≥ 1 − ε for all distributions from the given
class, it is sufficient to check this inequality for the selected “worst-case”
distributions.
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Applications to Mechanical Engineering:

Failure Analysis under Interval and Fuzzy
Uncertainty

One of the main objective of mechanics of materials is to predict when the
material experiences fracture (fails), and to prevent this failure. With this
objective in mind, it is desirable to use it ductile materials, i.e., materials
which can sustain large deformations without failure. Von Mises criterion
enables us to predict the failure of such ductile materials. To apply this
criterion, we need to know the exact stresses applied at different directions. In
practice, we only know these stresses with interval or fuzzy uncertainty. In this
chapter, we describe how we can apply this criterion under such uncertainty,
and how to make this application computationally efficient.

Its main results first appeared in [358].

Formulation and Analysis of the Problem, and the
Corresponding Results and Algorithms

Basics of mechanics of materials: the notion of stress. When a force is applied
to a material, this material deforms and at some point breaks down. We can
gauge the effect of the force by the stress, the force per unit area. The larger
the stress, the larger the deformation; at some point, larger stress leads to a
breakdown.

Case of small stress: elastic (reversible) deformations. When the stress is
small, no irreversible damage occurs, all deformations are reversible.

The original shape of the material (i.e., the shape in the absence of stress) is
the one to which the undamaged material reverts. Thus, under small stress,
the material returns to its original shape once the force is no longer ap-
plied. Such reversible deformation which return to the original shape is called
elastic.

Case of larger stress: irreversible (plastic) deformation. An increased level of
stress causes irreversible damage in the material. In this case, after the force
is no longer applied, the material does not return to its original shape. Such
irreversible deformation is called plastic or yielding.

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 305–316.
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From plastic deformation to failure. Under plastic deformation, there is an
irreversible damage to the material, but this damage occurs on the microlevel.
On the macrolevel, the material may be slightly misshapen and somewhat
twisted, but it is still intact and it can still serve its purpose.

However, as the stress increases, it causes macrodamage too: the material
experiences fractures. In many mechanical designs, the fractured material can
no longer fulfil its duties, so it is usually said that this material fails.

Predicting failure is extremely important. Material failure can have catas-
trophic consequences. As a result, it is extremely important to predict when
a material can fail.

In many practical situations, it is also important to know when the yield-
ing starts, because while the yielding itself is usually not catastrophic, the
resulting irreversible damage start weakening the mechanical construction
can lead to a failure in the long run.

Case of 1-D stress. Let us first consider the simplest situation of a 1-D stress,
when the force is only applied in one direction. In this case, as we have
mentioned, both the yielding and the failure start when the stress becomes
large enough. In other words, for 1-D stress, for each material, there are two
thresholds:

• the threshold σy after which yielding starts, and
• the threshold σf > σy after which the material fails.

Ductile materials and their practical importance. In practical applications,
it is desirable to use materials which can sustain large deformations without
failure.

This is not always possible: e.g., some materials such as ceramics fail almost
immediately after the yielding starts.

However, many other materials can sustain large plastic deformations with-
out failure. Such materials are called ductile. Examples of ductile materials
include ductile metals such as copper, silver, gold, and steel; it is possible to
deform these ductile metals into wire without breaking them.

In view of many important applications of ductile materials, it is necessary
to predict when they fail.

Case of general (3-D) stress: importance. We have mentioned that for 1-D
stress, it is easy to predict when a material fails: when the stress exceeds its
failure threshold.

In real life, situations in which the force comes from only one direction are
rare. Usually, have a combination of stresses coming from different directions.
It is therefore important to be able to predict when a material fails under
such 3-D stress.

Case of general (3-D) stress: formulation of the problem. A general 3-D stress
can be described as a combination of three stresses σ1, σ2, and σ3 applied
at three orthogonal directions. It is therefore desirable to be able, given the
three stresses σi, to be able to predict when a ductile material fails under
these stresses.



38 Von Mises Failure Criterion in Mechanics 307

First solution to this problem was provided by Maxwell. The first solution
to this important problem was provided by Maxwell (of the electromagnetic
equations fame) in the 1860s. As we will see, Maxwell’s formulas are still used
to predict the material’s failure.

Because of the continuing practical importance of Maxwell’s solution, in
this section, we will briefly reproduce Maxwell’s derivations – to make the re-
sulting formulas more understandable. (Of course, our rendering of Maxwell’s
derivation will be somewhat modernized.)

Those readers who are already familiar with failure mechanics and with the
von Mises criterion (and with its motivations) are welcome skip this section.

Need for an appropriate combination of stresses: physical motivations. In the
1-D case, the corresponding stress σ provides a numerical measure of how
stressed the material is: when this stress exceeds a given threshold σf , the
material fails.

In the 3-D case, we have three different stresses σ1, σ2, and σ3. Infor-
mally, all these three stresses contribute to the “overall stress”. When this
“combined stress” exceeds a certain threshold, the material fails. Thus, to be
able to predict when a material fails, we must be able to find out how this
“combined stress” depends on the individual stresses σi.

Maxwell’s main idea is thus to combine the there stresses σ1, σ2, and
σ3 into a single numerical criterion f(σ1, σ2, σ3) that would decide when
a material fails. To be more precise, Maxwell assumed that there exists a
threshold value f0 such that:

• when f(σ1, σ2, σ3) < f0, the material remains intact (i.e., undamaged on
the macro level);

• when f(σ1, σ2, σ3) ≥ f0, the material fails.

Need for an appropriate combination of stresses: mathematical motivations.
The existence of a combination function f(σ1, σ2, σ3) is motivated not only
by physics, it can also be justified on purely mathematical grounds.

Specifically, for every material and for every triple (σ1, σ2, σ3) of the cor-
responding stresses, we can check whether the corresponding combination of
stresses indeed leads to a failure. Thus, in the 3-D space R3, we have a set S
of all possible combinations which lead a failure, and its complement, a set
of all combinations which do not lead to a failure.

From the mathematical viewpoint, for every set S ⊆ R3, there exist a
function f : R3 → R and a real number f0 such that:

• f(x) ≥ f0 for all the points x ∈ S and
• f(x) < f0 for all x �∈ S.

For example, as the desired function f , we can take a characteristic function
of the set S, i.e., a function for which f(x) = 1 for x ∈ S and f(x) = 0 for
x �∈ S. For this function, the above separation property occurs for f0 = 1.

In the general case, for an arbitrary set S, this function has to be dis-
continuous. However, for well-behaved sets, we can select this function to be
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continuous (see, e.g., [153]), and if the boundary is smooth, we can have a
smooth function f(x).

Main ideas behind Maxwell’s solution. Maxwell’s solution is based on two
ideas widely used in physics applications:

• on the mathematical idea of ignoring higher order terms in the Taylor
expansion, and

• on the physical idea of symmetry.

Ignoring higher order terms in the Taylor expansion: details. In physics,
most dependencies are smooth (differentiable). In general, a smooth func-
tion f(σ1, σ2, σ3) can be expanded into Taylor series in σi:

f(σ1, σ2, σ3) = a0 +
3
∑

i=1

ai · σi +
3
∑

i=1

3
∑

j=1

aij · σi · σj + . . .

for appropriate coefficients a0, ai, aij , . . .
We are interested in ductile materials, i.e., materials that can sustain rea-

sonably large stresses without failing. However, even for the best of such
materials, these large stresses are much smaller than the stresses that we can
potentially apply. So, we can consider the values σi to be reasonable small
and do what physicists usually do – ignore higher order terms in the above
expansion.

First try: linear approximation. A natural first approximation is when we
ignore quadratic and higher order terms. In this case, we get the following
reasonable linear approximation to the desired function f(σ1, σ2, σ3):

f(σ1, σ2, σ3) = a0 +
3
∑

i=1

ai · σi.

Due to symmetry, linear approximation leads to average stress. Our main
physical idea is to use symmetry. There is nothing special about each direc-
tion, hence the coefficients ai corresponding to different directions must be
equal: a1 = a2 = a3. Thus, the resulting formula reduced to

f(σ1, σ2, σ3) = a0 + a1 ·
3
∑

i=1

σi,

or, equivalently, to

f(σ1, σ2, σ3) = a0 + 3a1 ·
(

1
3
·

3
∑

i=1

σi

)

.

Thus, the “combined stress” f is proportional to the average stress, and
the condition f ≥ f0 means that the average stress should exceed a certain
threshold.
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Maxwell’s observation: the above linearized solution contradicts to physical sym-
metry. We have deduced the above solution by using the mathematical idea of
symmetry. However, in this situation, there is also a physical symmetry.

Namely, suppose that we have a perfectly spherical body and we apply
the exact pressure from all three directions, i.e., we have σ1 = σ2 = σ3.
In this case, we have a perfectly symmetric body (invariant with respect to
arbitrary rotations around its center) and a perfectly symmetric stress. In
a deterministic system, it is thus reasonable to expect that the system will
preserve its symmetry.

One can easily see that a fracture is a violation of symmetry. Thus, we
can conclude that in this perfectly symmetric case, we should not expect
any fractures at all. However, according to our linearized criterion, when
σ1 = σ2 = σ3, we have f = a0 + 3a1 · σ1, so for sufficiently large stresses, we
should have fracture.

Thus, the above linearized solution contradicts to physical symmetry.
Similarly, any kind of irreversible damage on the microlevel is also bound to

violate symmetry, so we should not expect the absolutely symmetric stress to
cause any damage at all. Thus, we should have a1 = 0, i.e., a1 = a2 = a3 = 0.

Comment. In practice, fractures do occur even in the symmetric case when
all the stresses are equal; however, they occur at a much higher level of stress
than when we have different stresses at different directions. So, in the first
approximation, we can safely assume that when all three stresses σi are equal,
there will be no failure.

From linear to quadratic approximation. We have concluded that due to phys-
ical symmetry, there are no linear terms in the Taylor expansion of the func-
tion f : ai = 0. This means that we cannot ignore quadratic terms in the
Taylor expansion of the function f . A natural next idea is therefore to take
quadratic terms into account and to ignore cubic and higher order terms
in the expansion of f . In this case, we arrive at the following approximate
expression for f :

f(σ1, σ2, σ3) = a0 +
3
∑

i=1

3
∑

j=1

aij · σi · σj .

Using mathematical symmetry. Due to mathematical symmetry, this expres-
sion should not change if we swap two directions (i.e., 1 ↔ 2 or 1 ↔ 3).
Because of this invariance requirement:

• all the values aii should be equal to each other – hence equal to a11, and
• all the values aij , i �= j, should be equal to each other – hence equal to
a12.

Thus, we conclude that

f(σ1, σ2, σ2) = a0 + a11 ·
3
∑

i=1

σ2
i + a12 ·

∑

i�=j

σi · σj .
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Using physical symmetry. In the physically symmetric case, when all the
stresses coincide σ1 = σ2 = σ3 = σ, we should not have any combined stress.
In this case, the above formula leads to f = a0 + (3a11 + 6a12) · σ2, so we
conclude that a11 = −2a12. Thus, f = a0 − a12 · V , where we denoted

V (σ1, σ2, σ3)
def= 2σ2

1 + 2σ2
2 + 2σ2

3 − 2σ1 · σ2 − 2σ2 · σ2 − 2σ3 · σ1 =

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2.

Towards the final formula. Since f linearly depends on V , the failure condi-
tion f ≥ f0 is equivalent to V ≥ V0 for an appropriate the threshold V0.

The threshold V0 can be found out by considering the case of 1-D stress.
In this case, e.g., when σ1 �= 0 and σ2 = σ3 = 0, we know that the failure
occurs when σ1 ≥ σf . In this case, V = 2σ2

1 , so the failure occurs when V
reaches the level V = σ2

f . Thus, V0 = 2σ2
f .

Maxwell’s approach: final criterion. According to the Maxwell’s formula, the
material fails when V ≥ 2σ2

f , where

V
def= (σ1 − σ2)2 + (σ1 − σ3)3 + (σ2 − σ3)2.

Maxwell’s mathematical solution becomes von Mises empirical failure crite-
rion. In 1913, von Mises experimentally confirmed that for many ductile
materials, Maxwell’s formula predicts failure well. Because of this confirma-
tion, Maxwell’s 1860s mathematical hypothesis is now known as a physically
justified empirical fact called von Mises criterion.

According to this criterion, a ductile material fails under the general com-
bination of three stresses σ1, σ2, and σ3 applied at three orthogonal directions
when V ≥ 2σ2

f , where V def= (σ1 − σ2)2 + (σ1 − σ3)3 + (σ2 − σ3)2.
A similar criterion V ≥ 2σ2

y can also predict when the yielding starts. For
details, see, e.g., [335].

Need to take interval uncertainty into account. In real life, we only know the
values σi with uncertainty.

Case of interval uncertainty. In some cases, we only know the bounds σi and
σi on the actual (unknown) value of stress. In other words, we only know the
interval [σi, σi] that contains the actual (unknown) value σi.

Main problem: checking whether a material can fail. Different values σi from
the intervals [σi, σi] lead, in general, to different values of the composite
criterion V . Since the dependence of V on σi is continuous, in general, possible
values of V form an interval [V , V ].

There are three possible situations:

• if V < 2σ2
f , this means that all possible value of V are below the failure

threshold, so the material will not fail;
• if V ≤ 2σ2

f < V , this means that the material may fail; on the other hand,
it may survive without failure;
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• if 2σ2
f ≤ V , this means that all possible value of V are above the failure

threshold, so the material will fail.

In most practical situations, we are interesting in checking whether a ma-
terial will not fail. To guarantee that the material will not fail, we must check
that V < 2σ2

f . In other words, it is necessary to find the upper bound V of
the set of all possible values of V and check whether V < 2σ2

f .
In view of this need, in this chapter, we will design and analyze algorithms

for computing V .

Comment. In some situations, when we are analyzing the reason for the ac-
tual failure, we may want to check whether mechanical failure could have
been a reason. In these situations, it is also desirable to compute the lower
bound V .

Case of expert knowledge. In some practical situations, we only have expert
estimates describing possible stress values. These expert estimates are often
described in terms of natural language. In such situations, it is reasonable to
use fuzzy sets to formalize the expert knowledge.

From the computational viewpoint, as we have mentioned in Chapter 4,
the case of fuzzy uncertainty can be indeed reduced to the case of interval
uncertainty.

Computing V is equivalent to computing variance. From the mathematical
viewpoint, V is proportional to the sample variance of the observations σi.

Computing variance under interval uncertainty: what is known. The problem
of computing sample variance under interval uncertainty has been thoroughly
analyzed; see Part II of this book. In particular, it is shown that in general, the
problem of computing the corresponding upper bound V is computationally
difficult (NP-hard). Crudely speaking, NP-hard means that in some cases, we
(most probably) have to spend exponential time ∼ cn to solve this problem;
for exact definitions, see, e.g., [117], [274], and Chapter 8.

It is also known that the upper bound V is always attained when each of
the values σi takes one of the extreme values σi or σi; see, e.g., [101] and
[102].

In other words, to compute V , it is sufficient to consider 2n possible com-
binations of values σi and σi.

Conclusion for von Mises criterion. For von Mises criterion, the above re-
sult means that to compute V , it is sufficient to consider 23 = 8 possible
combinations of values σi and σi.

Can we speed up computations? In the above algorithm, we compute the
expression V eight times. Each computation of V takes:

• 3 subtractions (to compute σi − σj),
• 3 multiplications (to compute the squares), and
• 2 additions (to compute V ),
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to the total of 3 · 8 = 24 multiplications and (2 + 3) · 8 = 40 addi-
tions/subtractions.

Because of the practical importance of this problem, a natural question is:
can we compute V faster? In this chapter, we will show that a speed up is
indeed possible.

Can we speed up: general result. Let us first consider the general problem of
estimating variance under interval uncertainty. We will prove that in general,
we only need to consider 2n−2 cases to find the upper bound for the variance,
because the maximum is never attained when all the bounds are upper or all
the bounds are lower. We also prove that, in general, we cannot pick fewer
than 2n − 2 combinations.

In this section, we consider the general case: we have n intervals [xi, xi],
and we want to compute the range [V , V ] of the population variance

V =
1
n

n
∑

i=1

(xi − E)2,

where xi ∈ [xi, xi], where E def=
1
n

n
∑

i=1

xi. It was previously known that to

compute V , it is sufficient to compute the value of V for 2n possible combi-
nations (xε1

1 , . . . , x
εn
n ), where εi ∈ {−,+}, x+

i
def= xi, and x−i

def= xi. The value
V is equal to the largest of the resulting 2n values V (xε1

1 , . . . , x
εn
n ).

Proposition 38.1. For every set of intervals [x1, x1], . . . , [xn, xn], the value
V is equal to the maximum of 2n−2 values V (xε1

1 , . . . , x
εn
n ) for all (ε1, . . . , εn)

for which (ε1, . . . , εn) �= (+, . . . ,+) and (ε1, . . . , εn) �= (−, . . . ,−).

Proposition 38.2. For every tuple (ε1, . . . , εn) for which (ε1, . . . , εn) �=
(+, . . . ,+) and (ε1, . . . , εn) �= (−, . . . ,−), there exist n intervals [x1, x1],
. . . , [xn, xn] for which the maximum V is only attained at the given tuple
(ε1, . . . , εn) and not attained at any other such ± tuple.

Comment. This result is similar to the ones presented in [170].

Conclusion for the von Mises case. In the von Mises case, the above idea
reduces the number of values V to compute from 8 to 6. Thus, we only need
3 · 6 = 18 multiplications and (2 + 3) · 6 = 30 additions/subtractions to
compute the upper endpoint V corresponding to von Mises criterion.

von Mises case: possibility of further speed up. The possibility speed up comes
from the fact that each value V is the sum of 3 terms (σi − σj)2.

For each of these 3 terms, there are only 4 options, corresponding to two
choices of σi = σi and σi = σi, and to the two similar choices for σj . For each
choice, we need one subtraction to compute σi − σj and one multiplication
to compute the square. Thus, to compute the values of 4 options for each of
these 3 terms, we need 3 · 4 = 12 subtractions and 3 · 4 = 12 multiplications.
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To compute the values of all 6 expressions, we need to add 3 terms. Each
computations takes 2 additions, so we need 6 · 12 = 12 additions. Thus,
overall, we perform 12 multiplications and 24 additions/subtractions.

This is almost half of what we had originally.

Detailed description.

• First, we compute four squares

(σ1 − σ2)
2, (σ1 − σ2)2, (σ1 − σ2)

2, and (σ1 − σ2)2.

• Then, we compute four squares

(σ2 − σ3)
2, (σ2 − σ3)2, (σ2 − σ3)

2, and (σ2 − σ3)2.

• We compute four squares

(σ3 − σ1)
2, (σ3 − σ1)2, (σ3 − σ1)

2, and (σ3 − σ1)2.

• Finally, we compute the six sums

(σ1 − σ2)
2 + (σ2 − σ3)2 + (σ3 − σ1)

2;

(σ1 − σ2)2 + (σ2 − σ3)
2 + (σ3 − σ1)

2;

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)
2;

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)2;

(σ1 − σ2)
2 + (σ2 − σ3)2 + (σ3 − σ1)2;

(σ1 − σ2)2 + (σ2 − σ3)
2 + (σ3 − σ1)2.

• The largest of these six sums is the desired value V .

Important practical cases. For a material in general shape, stresses can be of
the same size. In practice, we often have a linear or a planar shape. In such
cases, stresses in the direction of the shape are usually much larger than in
the other directions:

• for a planar shape, we have σ3 � σ1 and σ3 � σ2; in precise terms, we
have σ3 < σ1 and σ3 < σ2;

• for a linear shape when σ2 � σ1 and σ3 � σ1; in precise terms, σ2 <
1
2
·σ1

and σ3 <
1
2
· σ1.

Planar case: analysis. Here, σ1 ≥ σ1 > σ3 ≥ σ3 hence σ1 > σ3; similarly,
σ2 > σ3, hence σ1 + σ2 + σ3 > 3σ3 and E > σ3. As in the above proofs, we
conclude that the maximum is attained when σ3 = σ1. Due to Proposition
1, for V , at least one of σ1 and σ2 is the lower bound, so we only need to
compute V for 3 tuples.
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Planar case: algorithm. Here, we compute 3 values (σ1 − σ2)2 (excluding
both xi), 2 values (σ3 − σ1)2, and 2 values (σ3 − σ1)2 – to the total of 7
multiplications and 7 subtractions. After that, we need 3 · 3 = 6 additions to
compute the needed 3 values of V . Overall, we need 7 multiplications and 13
additions/substractions.

Linear case: analysis. In this case, σ2 < σ1, σ3 < σ1, hence E < σ1. Similarly,
we have σ1 > 2σ2 hence σ1+σ2+σ3 > 3σ2 and E > σ2 – and similarlyE > σ2.
So, maximum is attained for σ1, σ2, and σ3.

Linear case: algorithm. So, in the linear shape, we only need to compute a
single value

V = (σ1 − σ2)
2 + (σ2 − σ3)

3 + (σ3 − σ1)2,

with 3 multiplications and 5 additions/substractions.

Proofs

Proof of Proposition 38.1. Let us prove that to compute V , there is no need
to consider the tuple (x1, . . . , xn). If one of the intervals [xi, xi] is degenerate,
i.e., xi = xi, then this fact is trivially true because this same tuple can also
be expressed in a different way, as

(x1, . . . , xi−1, xi, xi+1, . . . , xn).

So, to complete the proof, it is sufficient to consider the case when all the
intervals are non-degenerate, i.e., when xi < xi for all i.

Let i0 be an index for which xi0 is the smallest of the n values xi. Let us
show that in this case, replacing xi0 in the tuple (x1, . . . , xn) with a slightly
smaller value xi0 will increase V – and thus, the maximum of the variance V
cannot be attained at the original all-maxima tuple (x1, . . . , xn).

Let us consider two cases: when all the upper endpoints xi are the same
and when some are different. If they are all the same, then for the all-maxima
tuple, V = 0. If we replace one of them by a smaller value xi0 < xi0 , some
values xi will become different and we will get V > 0.

If some of the values xi are different, then some of them are larger than
the smallest bound xi0 and thus, the average E of the upper endpoints is also
larger than xi0 = xi0 : xi0 < E.

It is known that

V =
1
n
·

n
∑

i=1

x2
i − E2.

Thus,

∂V

∂xi0

=
1
n
· (2xi0 − 2E) =

2
n
· (xi0 − E).
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Since xi0 < E, this derivative is negative, and thus, for slightly smaller values
of xi0 < xi0 , we will get larger values of V . So, in the non-degenerate case,
the maximum V cannot be attained at an all-maxima tuples.

Similarly, we can prove that to compute V , there is no need to consider the
tuple (x1, . . . , xn). If one of the intervals [xi, xi] is degenerate, i.e., xi = xi,
then this fact is trivially true because this same tuple can also be expressed
in a different way, as

(x1, . . . , xi−1, xi, xi+1, . . . , xn).

So, to complete the proof, it is sufficient to consider the case when all the
intervals are non-degenerate, i.e., when xi < xi for all i.

Let i0 be an index for which xi0 is the largest of the n values xi. When all
the lower endpoints xi are the same, then for the all-minima tuple, V = 0.
If we replace one of them by a larger value xi0 > xi0 , some values xi will
become different and we will get V > 0.

If some of the values xi are different, then some of them are smaller than
the largest bound xi0 and thus, the average E of the lower endpoints is also

smaller than xi0 = xi0 : E < xi0 . In this case,
∂V

∂xi0

=
2
n
· (xi0 − E) > 0.

Since xi0 > E, this derivative is positive, and thus, for slightly larger values
of xi0 > xi0 , we will get larger values of V . The proposition is proven.

Proof of Proposition 38.2. Let (ε1, . . . , εn) be a tuple which is different from
(+, . . . ,+) and (−, . . . ,−).

Let us fix some δ > 0 (its exact value will be determined later), and let
us take [xi, xi] = [−1,−1 + δ] when εi = − and [xi, xi] = [1 − δ, 1] when
εi = +. Since the tuple is different from all pluses, at least of these intervals
is negative. For all intervals, xi ≤ 1, and for at least one negative interval,

we have xi ≤ −1 + δ. Thus, for the average E =
x1 + . . .+ xn

n
, we conclude

that

E ≤ (n− 1) · 1 + (−1 + δ)
n

=
n− 2 + δ

n
= 1 − 2 − δ

n
.

If
2 − δ

n
> δ, i.e., equivalently, if 2− δ > n · δ, 2 > (n+ 1) · δ and δ <

2
n+ 1

,

then we have E < 1− δ. Hence, for all xi from the positive intervals, we have
E < xi.

To guarantee this inequality, let us take δ = 1/(n+ 1).
Similarly, since the tuple is different from all pluses, at least of these in-

tervals is positive. For all intervals, xi ≥ −1, and for at least one positive

interval, we have xi ≤ 1 − δ. Since δ <
2

n+ 1
, then we have E > −1 + δ.

Hence, for all xi from the negative intervals, we have E > xi.

From the previous proof, we already know that
∂V

∂xi
=

2
n
· (xi − E). For

xi from positive intervals, this derivative is positive, so V is strictly increas-
ing and its maximum is attained only when xi = xi. Similarly, for xi from
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positive intervals, this derivative is negative, so V is strictly decreasing and
its maximum is attained only when xi = xi. So, the maximum V is only
attained for the values corresponding to the given tuple. The proposition is
proven.



39

Applications to Geophysics: Inverse Problem

In many real-life situations, we have several types of uncertainty: measure-
ment uncertainty can lead to probabilistic and/or interval uncertainty, ex-
pert estimates come with interval and/or fuzzy uncertainty, etc. In many
situations, in addition to measurement uncertainty, we have prior knowledge
coming from prior data processing and/or prior knowledge coming from prior
interval constraints.

In this chapter, on the example of the seismic inverse problem, we show
how to combine these different types of uncertainty.

In evaluations of natural resources and in the search for natural resources,
it is very important to determine Earth structure. Our civilization greatly
depends on the things we extract from the Earth, such as fossil fuels (oil,
coal, natural gas), minerals, and water. Our need for these commodities is
constantly growing, and because of this growth, they are being exhausted.
Even under the best conservation policies, there is (and there will be) a
constant need to find new sources of minerals, fuels, and water.

The only sure-proof way to guarantee that there are resources such as
minerals at a certain location is to actually drill a borehole and analyze the
materials extracted. However, exploration for natural resources using indirect
means began in earnest during the first half of the 20th century. The result
was the discovery of many large relatively easy to locate resources such as
the oil in the Middle East.

However, nowadays, most easy-to-access mineral resources have already
been discovered. For example, new oil fields are mainly discovered either
at large depths, or under water, or in very remote areas – in short, in the
areas where drilling is very expensive. It is therefore desirable to predict the
presence of resources as accurately as possible before we invest in drilling.

From previous exploration experiences, we usually have a good idea of
what type of structures are symptomatic for a particular region. For example,
oil and gas tend to concentrate near the top of natural underground domal
structures. So, to be able to distinguish between more promising and less
promising locations, it is desirable to determine the structure of the Earth

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 317–329.
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at these locations. To be more precise, we want to know the structure at
different depths z at different locations (x, y).

Data that we can use to determine the Earth structure. In general, to deter-
mine the Earth structure, we can use different measurement results that can
be obtained without actually drilling the boreholes: e.g., gravity and mag-
netic measurements, analyzing the travel-times and paths of seismic ways as
they propagate through the earth, etc.

To get a better understanding of the Earth structure, we must rely on
active seismic data – in other words, we must make artificial explosions,
place sensors around them, and measure how the resulting seismic waves
propagate. The most important information about the seismic wave is the
travel-time ti, i.e., the time that it takes for the wave to travel from its
source to the sensor. To determine the geophysical structure of a region, we
measure seismic travel times and reconstruct velocities at different depths
from these data. The problem of reconstructing this structure is called the
seismic inverse problem.

Known algorithms for solving the seismic inverse problem: description, suc-
cesses, limitations. We want to find the values of the velocity v(x) at different
3-D points x. Based on the finite number of measurements, we can only recon-
struct a finite number of parameters. So, we use a rectangular grid structure
to divide the 3-D volume into box-shaped cells. We assume that the value of
the velocity vj is the same within each cell, and we reconstruct the velocities
vj within different cells.

Algorithm for the forward problem: brief description. Once we know the ve-
locities vj in each cell j, we can then determine the paths which seismic waves
take. Seismic waves travel along the shortest path – shortest in terms of time.
It can be easily determined that for such paths, within each cell, the path
is a straight line, and on the border between the two cells with velocities
v and v′, the direction of the path changes in accordance with Snell’s law
sin(ϕ)
v

=
sin(ϕ′)
v′

, where ϕ and ϕ′ are the angles between the paths and the

line orthogonal to the border between the cells. (If this formula results in
sin(ϕ′) > 1, this means that this wave cannot penetrate into the neighboring
cell at all; instead, it bounces back into the original cell with the same angle
ϕ.)

In particular, we can thus determine the paths from the source to each
sensor. The travel-time ti along i-th path can then be determined as the sum

of travel-times in different cells j through which this path passes: ti =
∑

j

ij
vj

,

where ij denotes the length of the part of i-th path within cell j.
This formula becomes closer to linear if we replace the original unknowns

– velocities vj – by their inverses sj
def=

1
vj

, called slownesses. In terms of

slownesses, the formula for the travel-time takes the simpler form
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ti =
∑

j

ij · sj .

It is worth mentioning, however, that the resulting system of equations is
not linear in the unknowns sj . Indeed, the actual geometry of the shortest
path between the two given points depends on the actual values of the veloc-
ities vj – i.e., equivalently, on the slownesses sj . Thus, the lengths ij of the
segments of these shortest paths also depend on the slownesses s1, . . . , sm.
To be more precise, we should therefore explicitly take this dependence into
account and re-write the above system as ti =

∑

j

ij(s1, . . . , sm) · sj for an

appropriate non-linear dependence ij(s1, . . . , sm).
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Algorithm for the inverse problem: general description. There are several al-
gorithms for solving this inverse problem; see, e.g., [136, 277, 366]. The most
widely used is the following iterative algorithm proposed by John Hole [136].

At each stage of this algorithm, we have some approximation to the desired
slownesses. We start with some reasonable initial slownesses, and we hope
that after several iterations, we will be able to get slownesses which are much
closer to the actual values.

At each iteration, we first use the currently known slownesses sj to find the
corresponding paths from the source to each sensor. Based on these paths,
we compute the predicted values ti =

∑

j

ij · sj of travel-times.

Since the currently known slownesses sj are only approximately correct,
the travel-times ti (which are predicted based on these slownesses) are ap-
proximately equal to the measured travel-times ˜ti; there is, in general, a
discrepancy Δti

def= ˜ti − ti �= 0. It is therefore necessary to use these discrep-
ancies to update the current values of slownesses, i.e., replace the current
values sj with corrected values sj +Δsj . The objective of this correction is
to eliminate (or at least decrease) the discrepancies Δti �= 0. In other words,
the objective is to make sure that for the corrected values of the slowness,
the predicted travel-times are closer to ˜ti.

Of course, once we have changed the slownesses, the shortest paths will also
change; however, if the current values of slownesses are reasonable, the differ-
ences in slowness are not large, and thus, paths will not change much. Thus,
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in the first approximation, we can assume that the paths are the same, i.e.,
that for each i and j, the length ij remains the same. In this approximation,
the new travel-times are equal to

∑

ij · (sj +Δsj). The desired condition is
then

∑

ij · (sj +Δsj) = ˜ti. Subtracting the formula ti =
∑

j

ij · sj from this

expression, we conclude that the corrections Δsj must satisfy the following
system of (approximate) linear equations:

∑

ij ·Δsj ≈ Δti.
Solving this system of linear equations is not an easy task, because we have

many observations and many cell values and thus, many unknowns, and for a
system of linear equations, computation time to solve it grows as a cube c3 of
the number of variables c. So, instead of the standard methods for solving a
system of linear equations, researchers use special faster geophysics-motivated
techniques (described below) for solving the corresponding systems. These
methods are described, in detail, in the next subsection.

Once we solve the corresponding system of linear equations, we compute
the updated values Δsj , compute the new (corrected) slownesses sj + Δsj ,
and repeat the procedure again. We stop when the discrepancies become

small; usually, we stop when the mean square error
1
n

n
∑

i=1

(Δti)2 no longer

exceeds a given threshold. This threshold is normally set up to be equal to
the measurement noise level, so that we stop iterations when the discrepancy
between the model and the observations falls below the noise level – i.e.,
when, for all practical purposes, the model is adequate.

Algorithm for the inverse problem: details. Let us describe, in more detail,
how the above auxiliary linear system of equations with unknown Δsj is
usually solved. In other words, for a given cell j, how do we find the correction
Δsj to the current value of slowness sj in this cell?

Let us first consider the simplified case when there is only path, and this
path is going through the j-th cell. In this case, cells through which this
path does not go do not need any correction. To find the corrections Δsj

for all the cells j through which this path goes, we only have one equation
∑

j

ij ·Δsj = Δti. The resulting system of linear equations is clearly under-

determined: we have a single equation to find the values of several variables
Δsj . Since the system is under-determined, we have a infinite number of
possible solutions. Our objective is to select the most geophysical reasonable
of these solutions.

For that, we can use the following idea. Our single observation involves
several cells; we cannot distinguish between the effects of slownesses in dif-
ferent cells, we only observe the overall effect. Therefore, there is no reason
to assume that the value Δsj in one of these cells is different from the values
in other cells. It is thus reasonable to assume that all these values are close
to each other: Δsj ≈ Δsj′ . The least squares method enables us to describe
this assumption as minimization of the objective function

∑

j,j′
(Δsj −Δsj′)2

under the condition that
∑

ij ·Δsj = Δti. The minimum is attained when
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all the values Δsj are equal. Substituting these equal values into the equation
∑

j

ij ·Δsj = Δti, we conclude that Li ·Δs = Δti, where Li =
∑

j

ij is the

overall length of i-th path. Thus, in the simplified case in which there is only
one path, to the slowness of each cell j along this path, we add the same

value Δsj =
Δti
Li

.

Let us now consider the realistic case in which there are many paths, and
moreover, for many cells j, there are many paths i which go through the
corresponding cell. For a given cell j, based on each path i passing through
this cell, we can estimate the correction Δsj by the corresponding value

Δsij
def=

Δti
Li

. Since there are usually several paths going through the j-th

cell, we have, in general, several different estimates Δsj ≈ Δsij . Again, the
least squares approach leads to

∑

i

(Δsj −Δsij)2 → min, hence to Δsj as the

arithmetic average of the values Δsij .

Comment. To take into account that paths with larger ij provide more in-
formation, researchers also used weighted average, with weight increasing
with ij .

Successes of the known algorithms. The known algorithms have been actively
used to reconstruct the slownesses, and, in many practical situations, they
have led to reasonable geophysical models.

Limitations of the known algorithms. Often, the velocity model that is re-
turned by the existing algorithm is not geophysically meaningful: e.g., it
predicts velocities outside of the range of reasonable velocities at this depth.
To avoid such situations, it is desirable to incorporate the expert knowledge
into the algorithm for solving the inverse problem.

In our previous papers [18, 19, 151], we described how to do it. Specifically,
we proposed a O(c log(c)) time algorithm for taking interval prior knowledge
into account.

In this chapter, we provide a detailed motivation for that algorithm, and
we use this motivation to design a new, faster, linear-time (O(c)) for solving
this problem.

Interval prior knowledge. For each cell j, a geophysicist often provides us with
his or her estimate of possible values of the corresponding slowness sj . Often,
this estimates comes in the form of an interval [sj , sj ] that is guaranteed to
contain the (unknown) actual value of slowness.

It is desirable to modify Hole’s algorithm in such a way that on all itera-
tions, slownesses sj stay within the corresponding intervals. Such a modifi-
cation is described in [18, 19, 151].

Analysis of the problem and our main idea. Once we know the current ap-
proximations s(k)

j to slownesses, then, along each path i, we want to find the
corrections Δsij which provide the desired compensation, i.e., for which
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c
∑

j=1

ij ·Δsij = Δti. (39.1)

In Hole’s algorithm, we selectΔsij =
Δti
Li

. With the additional knowledge, we

may not be able to do this, because we want to make sure that the corrected
values of slowness stay within the corresponding intervals

sj ≤ s
(k)
j +Δsij ≤ sj , (39.2)

i.e., equivalently, that
Δj ≤ Δsij ≤ Δj , (39.3)

where Δj
def= sj − s

(k)
j and Δj

def= sj − s
(k)
j . Since s(k)

j ∈ [sj , sj ], we conclude
that Δj ≤ 0 and Δj ≥ 0 – i.e., all lower endpoints are non-positive and all
upper endpoints are non-negative.

How can we achieve this goal?
For each cell j, after an iteration of, say, Hole’s algorithm, we have a

corrected value of the slowness s(k+1)
j = s

(k)
j +Δsij which approximates the

actual (unknown) slowness sj : sj ≈ s
(k+1)
j . We also know that sj should be

located in the interval [sj , sj ]. Similar to our previous analysis, it is therefore
reasonable to use the Least Squares Method to combine these two piece of
information: i.e., we look for the value sj ∈ [sj , sj ] for which the square

(sj − s(k)
j )2 is the smallest possible. In geometric terms, we look for the value

within the given interval [sj , sj ] which is the closest to s(k+1)
j . Thus:

• If the value s(k+1)
j is already within the interval, we keep it intact.

• If the value s(k+1)
j is to the left of the interval, i.e., if s(k+1)

j < sj , then the
closest point from the interval is its left endpoint sj .

• Similarly, if the value s(k+1)
j is to the right of the interval, i.e., if s(k+1)

j > sj ,
then the closest point from the interval is its right endpoint sj .

In other words, e.g., for Δti > 0, we first find the universal value Δs and
then, for those j for which Δs > Δj , we replace this value with Δj .

As a result, we arrive at the values Δsij which are all equal to Δs – except
for those values for which Δj < Δs; for these values, Δsij = Δj .

Complications coming from a straightforward application of this idea. Orig-
inally, before we took interval prior knowledge into account, we had a full
compensation for Δti. Now that we decreased some slownesses Δsij , the re-

sulting value of
c
∑

j=1

ij ·Δsij is, in general, smaller than Δti. Thus, there is a

remaining discrepancy Δt′i
def= Δti −

c
∑

j=1

ij ·Δsij > 0.
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To eliminate this discrepancy, we need to repeat the same procedure: divide
Δt′i by Li and again cut down those slownesses that start going outside the
corresponding intervals. Because of this cutting down, we may still get some
discrepancy remaining, etc.

So, if we apply this idea in a straightforward way, we may need a large
number of iterations to fully compensate for the original travel time discrep-
ancy. The need for a large number of iterations leads to a drastic increase in
computation time – which, for the seismic inverse problems, is already large.

It is therefore desirable to avoid these iterations and directly come up with
a solution which provides the needed compensation of the travel time and at
the same time, keeps all the corrected slownesses within the corresponding
intervals.

Formulation of the problem in precise terms. For Δti > 0, we would like
to find a value Δs > 0 such that if we take Δsij = Δs for all j for which
Δs ≤ Δj and Δsij = Δj for all other j, then we will satisfy the equation
(39.1).

For Δti < 0, we would like to find a value Δs < 0 such that if we take
Δsij = Δs for all j for which Δs ≥ Δj and Δsij = Δj for all other j, then
we will satisfy the equation (39.1).

Analysis of the problem. In the desired solution, we have Δsij = Δj for the
values j for which Δj is smaller than a certain threshold.

This desired solution is easier to describe if we first soft all the values Δj

into a non-decreasing sequence

Δ(1) ≤ Δ(2) ≤ . . . ≤ Δ(c).

Then, in the desired solution, there is some index p for which Δsi(j) = Δ(j)

for all j ≤ p. The common value Δs for the indices j > p can be found from
the condition (39.1), i.e., from the condition that Ap +Lp ·Δs = Δti, where

we denoted Ap
def=

p
∑

i=1

(i)j ·Δ(j) and Lp
def=

c
∑

j=p+1

i(j). Therefore, we will get

Δs =
Δti −Ap

Lp
.

For the correctly selected index p, all values Δ(j) for which we “cut off”
must be smaller than this Δs, and all the other values Δ(j) must be larger
than (or equal to) this Δs. Since the values Δ(j) are sorted in increasing
order, it is sufficient to check that Δ(p) < Δs ≤ Δ(p+1).

If for some p, we get Δs > Δ(p+1), this means that need to cut some more
– otherwise, for j = p + 1, we will still have the value outside the desired
interval. On the other hand, if we get Δs ≤ Δ(p), then there was no reason
to cut off at p-th level – so we need to cut less.

Designing an algorithm. This analysis can be naturally be translated into an
algorithm. First, we sort the values Δj ; sorting takes time O(c · log(c)); see,

e.g., [73]. Then, for every p from 0 to n, we compute the valueΔs =
Δti −Ap

Lp
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and check whether Δ(p) < Δs ≤ Δ(p+1). Once we know Ap, computing
Ap+1 takes just one step – since we need to add one term to the sum. Thus,
we to compute all c such values, we perorm O(c) steps – to the total of
O(c · log(c)) +O(c) = O(c · log(c)). So, we arrive at the following algorithm.

Resulting algorithm. It is sufficient to describe the case when Δti > 0 (the
case when Δti < 0 is treated similarly). In this case, we first sort all c values
Δj along the i-th path into a non-decreasing sequence

Δ(1) ≤ Δ(2) ≤ . . . ≤ Δ(c).

Then, for every p from 0 to c, we compute the values Ap and Lp as follows:
A0 = 0, L0 = Li,

Ap = Ap−1 + i(p) ·Δ(p), Lp = Lp−1 − i(p).

After that, for each p, we compute Δs =
Δti −Ap

Lp
and check whether Δ(p) <

Δs ≤ Δ(p+1). Once this condition is satisfied, we takeΔsi(j) = Δ(j) for j ≤ p,
and Δsi(j) = Δs for j > p.

When Δti < 0, we similarly sort the values Δj into a decreasing sequence,
and find p so that the first p corrections are “maxed out” to Δj , and the rest

c− p corrections are determined from the condition Δs =
Δti −Ap

Lp
.

Comment. Once we have computed these corrections for all the paths, then
for each cell j, we take the average (or weighted average) of all the corrections
coming from all the paths which pass through this cell.

Example showing efficiency (and feasibility) of the new approach. Let us con-
sider a simple example of two vertical layers of height d (see above picture),
with s > s′. We assume that the structure below the second layer is so heavy
that all the signals simply bounce back from the bottom of the second layer
(in real geological situations, this is what happens, e.g., at the Moho surface).
For simplicity, we consider only one signal.

Usually, the closer to the surface, the more information we have about
the layer. In this example, we assume that we know s exactly, but we only
know an approximate value s̃ ′ for s′ (Δs′ def= s̃ ′ − s′ �= 0). We start with
the known values s and s̃ ′ and perform iterations following both the original
Hole’s algorithm and the new interval method.

When the angles ϕ and ϕ′ are small (ϕ � 1, ϕ′ � 1), then sin(ϕ) ≈ ϕ,
sin(ϕ′) ≈ ϕ′, and we can analytically trace the computations; for details, see
[18]. For example, the horizontal distance between the source and the sensor
is 2d · (tan(ϕ) + tan(ϕ′)) ≈ 2d · (ϕ+ ϕ′).

In the original Hole’s algorithm, the discrepancy in the travel times is uni-
formly divided between the whole path. As a result, we replace the original
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approximate slowness s̃ ′ = s′ +Δs′ with a more accurate estimate s′ +
Δs′

2
.

Hence, the approximation error decreases by a factor of 2. So, e.g., in 7
iterations, we can reduce this error to < 1% level.

In the new method, we take into account that the value s is already known,
i.e., that it is within the given interval [s, s]. In this case, the entire discrep-
ancy is corrected by changing only the value s′. Hence, we get the correct
value s′ in a single iteration.

Case of interval prior knowledge: a new linear time algorithm. As we have
mentioned, the original Hole’s code formulas are related to minimize the
variance under a linear constraint (39.1).

In general, the problem of minimizing variance under interval uncertainty
has many other practical applications beyond geophysics. (The only difference
is that in most applications, there is no linear constraint similar to (39.1)). In
particular, this general problem has application in geophysics; see, e.g., [255]
and [256].

For this general problem, we have also proposed a linear time algorithm
(see above). In this chapter, we show that a similar linear-time algorithm can
be proposed for the case when we want to minimize the variance under an
additional linear constraint.

An auxiliary algorithm behind the existing linear-time algorithm. The linear-
time algorithm for estimating variance is based on the known fact that we
can compute the median of a set of n elements in linear time; see, e.g., [73].

A new linear-time algorithm. The proposed algorithm is iterative. At each
iteration of this algorithm, we have three sets:

• the set J− of all the indices j from 1 to c for which we already know that
in the desired solution, the corresponding value Δsij will be cut off (i.e.,
Δsij = Δj);

• the set J+ of all the indices j for which we already know that in the desired
solution, the corresponding value Δsij will not be cut off (i.e., Δsij < Δj);

• the set J = {1, . . . , c} − J− − J+ of the indices j for which we are still
undecided.

In the beginning, J− = J+ = ∅ and J = {1, . . . , c}. At each iteration, we
also update the values of two auxiliary quantities A− def=

∑

j∈J−
ij · Δj and

L+ def=
∑

j∈J+
ij . In principle, we could compute these values by computing

these sums, but to speed up computations, on each iteration, we update
these two auxiliary values in a way that is faster than re-computing the
corresponding two sums. Initially, since J− = J+ = ∅, we take A− = L+ = 0.

At each iteration, we do the following:

• first, we compute the median m of the set J (median in terms of sorting
by Δj);
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• then, by analyzing the elements of the undecided set J one by one, we
divide them into two subsets

P− def= {j : Δj ≤ Δm}, P+ def= {j : Δj > Δm};

• we compute a− def= A− +
∑

j∈P−
ij ·Δj and

+
def= L+ +

∑

j∈P+

ij ;

• then, we compute Δs =
Δi − a−

+
; also, among all the values from P+, we

select the smallest value, which we will denote by Δ(p+1);
• if Δs > Δ(p+1), then we replace J− with J− ∪ P−, A− with a−, and J

with P+;
• if Δs ≤ Δm, then we replace J+ with J+ ∪ P+, L+ with +, and J with
P−;

• finally, if Δm < Δs ≤ Δ(p+1), then we replace J− with J− ∪P−, J+ with
J+ ∪ P+, and J with ∅.

At each iteration, the set of undecided indices is divided in half. Iterations
continue until all indices are decided, after which we returnΔsij = Δsj when
Δj ≤ Δm and Δsij = Δs otherwise.

Proof that the new algorithm for computing V takes linear time. At each
iteration, computing median takes linear time, and all other operations with
J take time t linear in the number of elements |J | of J : t ≤ C · |J | for
some constant C. We start with the set J of size c; on the next iteration, we
have a set of size c/2, then c/4, etc. Thus, the overall computation time is
≤ C · (c+ c/2 + c/4 + . . .) ≤ C · 2c, i.e., linear in c.

Case of probabilistic prior knowledge. Often, prior information comes from
processing previous observations of the region of interest. In this case, before
our experiments, for each cell j, we know a prior (approximate) slowness value
s̃j , and we know the accuracy (standard deviation) σj of this approximate
value s̃j . It is known that this prior information can lead to much more
accurate velocity models; see, e.g., [211]. How can we modify Hole’s algorithm
so that it takes this prior information into account?

Due to the prior knowledge, for each cell j, the ratio
(s(k)

j +Δsij) − s̃j

σj
is

normally distributed with 0 mean and variance 1. Since each path i consists of
a reasonable number of cells, we can thus conclude that the sample variance
of this ratio should be close to σj , i.e., that

1
n
·

c
∑

j=1

((s(k)
j +Δsij)− s̃j)2

σ2
j

= 1. (39.4)
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So, to find the corrections Δsij , we must minimize the objective function
(variance)

V
def=

1
n
·

c
∑

j=1

Δs2ij −
⎛

⎝

1
n
·

c
∑

j=1

Δsij

⎞

⎠

2

. (39.5)

under the constraints (39.1) and (39.4).
By applying the Lagrange multiplier method to this problem, we can re-

duce this problem to the unconstrained minimization problem

1
n
·

c
∑

j=1

Δs2ij −
⎛

⎝

1
n
·

c
∑

j=1

Δsij

⎞

⎠

2

+

λ ·
⎛

⎝

c
∑

j=1

ij ·Δsij −Δti

⎞

⎠+

μ · 1
n
·

c
∑

j=1

(s(k)
j +Δsij − s̃j)2

σ2
j

→ min . (39.6)

Differentiating this equation by Δsij and equating the derivative to 0, we
conclude that

2
n
·Δsij − 2

n
·Δs+ λ · ij +

2μ
n · σ2

j

· (s(k)
j +Δsij − s̃j) = 0,

where

Δs
def=

1
n
·

c
∑

j=1

Δsij . (39.7)

Once we fix λ, μ, and Δs, we get an explicit expression for the values Δsij .
Substituting these expressions into the equations (39.1), (39.4), and (39.7),
we get an easy-to-solve system of 3 non-linear equations with 3 unknowns,
which we can solve, e.g., by using Newton’s method.

Now, instead of explicit formulas for a transition from s
(k)
j to s(k+1)

j , we
need a separate iteration process – so the computation time is somewhat
larger, but we get a more geophysically meaningful velocity map – that takes
prior knowledge into account.

Case of multiple-type prior knowledge. In many real-life problems, it is dif-
ficult or even impossible to directly measure the desired physical quantities.
In such situations, we measure other quantities, which are related to the de-
sired ones by known formulas, and then reconstruct the values of the desired
quantities from these measurement results.

The reconstructed values of the desired quantities are sometimes outside
the range of what an expert would consider reasonable. In such situations, it
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is desirable to describe the expert’s knowledge (about what is reasonable) as
a precisely formulated constraint on the desired values, and to incorporate
these constraints into the reconstruction process.

In the previous sections, we have shown that different types of expert
knowledge can be naturally formalized in interval, fuzzy, and probabilistic
terms. We also showed, on the example of the seismic inverse problem, how
each of these types of expert knowledge can be used in the solution process.

Practical need for multiple-type prior knowledge. Previously, we (implicitly)
assumed that we have only one type of expert knowledge – e.g., only interval
knowledge, or only fuzzy knowledge, etc. In some practical situations, how-
ever, we may have multiple-type expert knowledge: e.g., one expert provides
interval bounds, another expert provides probabilistic knowledge, etc.

This multiple-type prior knowledge is especially important for cyberinfras-
tructure. The main objective of cyberinfrastructure is to be able to seamlessly
move data between different databases (where this data is stored in different
formats), to feed the combined data into a remotely located program (which
may require yet another data format), and to return the result to the user;
see, e.g., [9, 152, 307]. It is also important to gauge the quality and accu-
racy of this result. We often have different models for describing uncertainty
of different databases and programs; it is therefore important to be able to
consider multiple-type prior knowledge; see, e.g., [119] and [207].

How to use multiple-type prior knowledge in the seismic inverse problem.
We have mentioned that in the traditional approach, we minimize (39.5)
under the constraint (39.1). Different types of prior knowledge mean adding
constraints on Δsij . Probabilistic prior knowledge is naturally formalized as
a constraint (39.4), and interval prior knowledge is naturally formalized as a
constraint (39.2). Thus, when both probabilistic and interval prior knowledge
are present, we must minimize (39.5) under the constraints (39.1), (39.2), and
(39.4).

If we replace the equality in (39.4) by an inequality (≤ 1 instead of =
1), then we get a problem of minimizing a convex function under convex
constraints, a problem for which there are known efficient algorithms; see,
e.g., [334].

For example, we can use a method of alternating projections, in which
we first add a correction that satisfy the first constraint, then the additional
correction that satisfies the second constraint, etc. In our case, we first add
equal values ofΔsij to satisfy the constraint (39.5), then we restrict the values
to the nearest points from the interval [sj , sj ] – to satisfy the constraint
(39.2), and after that, find the extra corrections that satisfy the condition
(39.4), after which we repeat the cycle again until the process converges.

Conclusion. The chapter deals with the difficult seismic inverse problem, in
which a 3-D field (velocities of the seismic waves) has to be reconstructed.
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The classical approach is to transform this problem into a huge non-linear
system of equation and to use iterative techniques to solve the problem. Often,
the classical approach leads to solutions that are not realistic. However, the
expert has an idea of what he should not get and he can express this idea
as a set of constraints. The main contribution of the chapter is to add these
additional knowledge, given by the expert, to the classical approach, inside
the iterative method.



Part V

Beyond Interval and Fuzzy Uncertainty
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Need to Go Beyond Interval and Fuzzy

Uncertainty

Types of uncertainty that we analyzed so far. In the previous chapters, we
described the uncertainty of inputs – and the resulting uncertainty in the
values of the statistical characteristics and, more generally, the result of data
processing. To characterize this uncertainty, we used the following three types
of information.

First, we used the information about which values are possible and which
values are not possible. In general, such an information can be described by
a set. Since most real-world processes are continuous, the set of all possible
values is usually connected. In the 1-D case, this means that we have an inter-
val. In the multi-D case, if we have interval bounds on each of the variables,
we have a box.

Second, in addition to the information about which values are possible, we
used the information about the relative frequency (probability) of different
possible values. To describe this information, we used the corresponding sta-
tistical characteristics such as moments or values of cdf F (x) = Prob(X ≤ x)
– or, alternatives, the interval bounds on the values of these characteristics:
bounds on the moments and bounds on the cdf values (i.e., p-boxes).

Third, we used information provided by the experts. This information
was described in terms of fuzzy degrees μ(x) – usually, numbers from the
interval [0, 1] – that describe the expert’s confidence that different values x
are possible.

Need to go beyond these types of uncertainty. For all these three types of
information, there is a need to go beyond the above descriptions.

For set information, in addition to the interval bounds on each variables
x1, . . . , xn, we may have additional information: e.g., we may know that the
actual values should satisfy a constraint g(x1, . . . , xn) ≤ g0. As we have
mentioned earlier, usually, we know the approximate values of xi, so we can
safely replace the function g(x1, . . . , xn) by, e.g., the first two terms in its
Taylor expansion. In this case, the constraint becomes quadratic, and – in a
realistic case when this constraint describes a bounded set – the set of all the
tuples x = (x1, . . . , xn) that satisfy this constraint forms an ellipsoid. In this
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case, in addition to knowing that the actual tuple x belongs to the box, we
also know that it belongs to the ellipsoid – i.e., that the set of possible values
of this tuple is an intersection of the box and the ellipsoid. This situation is
analyzed in Chapter 41.

Another need to go beyond interval boxes comes from the fact that inter-
vals are motivated by continuity, but some processes in nature – such as phase
transitions – are, from the practical viewpoint, discontinuous. This situation
is analyzed in Chapter 42.

For probabilistic information, we may also have an additional information
about the corresponding probability distribution F (x). This additional infor-
mation can range from vague to very precise:

• We may simply know that this dependence is smooth, without having any
more detailed knowledge; this situation is analyzed in Chapter 43.

• In addition to knowing that F (x) is smooth – i.e., that its derivative F ′(x)
(= a probability density function) is bounded – we sometimes also know
the bounds on F ′(x); this situation is analyzed in Chapter 44.

• Sometimes, we even know the analytical expression for F (x) – with the pa-
rameters which are only known with uncertainty. For example, in practice,
when the observed signal is caused by a joint effect of many small compo-
nents, it is reasonable to assume that the distribution is normal – but the
parameters of this normal distribution are only known with uncertainty;
this situation is analyzed in Chapter 45.

Finally, for fuzzy information, we assumed that we have exact numeri-
cal degrees describing expert uncertainty. This is, of course, a simplifying
assumption. In practice, an expert can, at best, provide bounds (i.e., an in-
terval) or his or her degree of certainty – or even produce a fuzzy degree of
certainty (such as “about 0.6”). Situations with interval-valued fuzzy degrees
are analyzed in Chapter 46, and the situations with more general fuzzy-valued
degrees (called type 2) are analyzed in Chapter 47.



41

Beyond Interval Uncertainty: Taking

Constraints into Account

For set information, in addition to the interval bounds on each variables
x1, . . . , xn, we may have additional information: e.g., we may know that the
actual values should satisfy a constraint g(x1, . . . , xn) ≤ g0. As we have
mentioned earlier, usually, we know the approximate values of xi, so we can
safely replace the function g(x1, . . . , xn) by, e.g., the first two terms in its
Taylor expansion. In this case, the constraint becomes quadratic, and – in a
realistic case when this constraint describes a bounded set – the set of all the
tuples x = (x1, . . . , xn) that satisfy this constraint forms an ellipsoid. In this
case, in addition to knowing that the actual tuple x belongs to the box, we
also know that it belongs to the ellipsoid – i.e., that the set of possible values
of this tuple is an intersection of the box and the ellipsoid. Such a situation
is analyzed in this chapter.

Formulation and Analysis of the Problem, and
Corresponding Results and Algorithms

In many real-life situations, we do not know the probability distribution of
measurement errors (Δx1, . . . , Δxn), we only know the upper bounds Δi

on these errors. In such situations, once we know the measurement results
x̃1, . . . , x̃n, we can only conclude that the actual (unknown) values of the
quantity xi belongs to the interval xi = [x̃i − Δi, x̃i + Δi]. Based on this
interval uncertainty, we want to find the range of possible values of the desired
quantity y = f(x1, . . . , xn). In general, computing this range is an NP-hard

problem, but in the linear approximation when f = ỹ+
n
∑

i=1

ciΔxi, we have a

linear time algorithm for computing the range.
In other situations, we know the ellipsoid that contains the actual values

(Δx1, . . . , Δxn); in the reasonable case of “independent” variables, we have
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an ellipsoid E of the type
n
∑

i=1

Δx2
i

σ2
i

≤ r2. In this case, we also have a linear

time algorithm for computing the range of a linear function f .
In some cases, however, we have a combination of interval and ellipsoid

uncertainty. In this case, the actual values (Δx1, . . . , Δxn) belong to the
intersection of the box x1 × . . . × xn and the ellipsoid. In general, estimat-
ing the range over the intersection enables us to get a narrower range for
f . In this chapter, we provide two algorithms for estimating the range of
a linear function over an intersection in linear time: a simpler O(n log(n))
algorithm and a (somewhat more complex) linear time algorithm. Both algo-
rithms can be extended to the lp-case, when instead of an ellipsoid we have

a set
n
∑

i=1

|Δxi|p
σp

i

≤ rp.

Interval uncertainty: brief reminder. Measurements are never 100% accurate;
hence, the measurement result x̃i is, in general, different from the actual
(unknown) value xi of the corresponding quantity. Traditional engineering
approach to processing measurement uncertainty assumes that we know the
probability distribution of measurement errors Δxi := x̃i − xi.

In many practical situations, however, we do not know these probability
distributions. In particular, in many real-life situations, we only know the
upper bound Δi on the (absolute value of the) measurement error: |Δxi| ≤
Δi. In such situations, the only information that we get about the actual
(unknown) value xi after the measurement is that xi belongs to the interval
xi = [x̃i −Δi, x̃i +Δi].

Data processing under interval uncertainty: brief reminder. In addition to
the values of the measured quantities x1, . . . , xn, we often need to know the
values of other quantities which are related to xi by a known dependence
y = f(x1, . . . , xn). When we know xi with interval uncertainty, i.e., when we
know that xi ∈ xi, then the only conclusion about y is that y belongs to the
range {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn} of the function f(x1, . . . , xn)
over the box x1 × . . .× xn.

Data processing: linear approximation. In general, computing this range is
NP-hard – even for quadratic functions f ; see, e.g., [182]. However, in many
practical situations, the measurement errors are small, thus, the intervals
xi are narrow, and so, on the box x1 × . . . × xn, we can safely replace the
original function f(x1, . . .) by the first two terms in its Taylor expansion:

f(x1, . . . , xn) = ỹ +
n
∑

i=1

ci Δxi, where y0 := f(x̃1, . . . , x̃n) and ci :=
∂f

∂xi
.

For such linear functions, the range is equal to [ỹ − Δ, ỹ + Δ], where

Δ =
n
∑

i=1

|ci|Δi. The maximum value Δ of the difference f − ỹ =
n
∑

i=1

ci Δxi is

attained when Δxi = Δi for ci ≥ 0 and Δxi = −Δi for ci < 0; correspond-
ingly, the smallest value −Δ is attained when Δxi = −Δi for ci ≥ 0 and
Δxi = Δi for ci < 0.
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Once we know the derivatives ci and the bounds Δi, the value Δ describing
the desired range can be computed in linear time O(n).

Comment. To get a guaranteed enclosure for y, we must add to this linear
range an interval [−δ, δ] which bounds the second and higher order terms in
the Taylor expansion; this is, in effect, what is known in interval computations
as mean value form; see, e.g., [142, 229, 240, 241]. Asymptotically, δ = O(Δ2

i ),
so we get an asymptotically exact enclosure for the range in linear time.

Ellipsoid uncertainty: a brief reminder. In some cases, the information about
the values Δx1, . . . , Δxn comes not as a bound on the values Δxi themselves,
but rather as a bound z ≤ z0 on some quantity z = g(Δx1, . . . , Δxn) which
depends on Δxi.

When the measurement errors are small, we can expand the function g into
a Taylor series and keep only the lowest terms in this expansion. In particular,
if we keep quadratic terms, we get a quadratic zone g(Δx1, . . . , Δxn) ≤ z0.
If this zone is a bounded set, then it describes an ellipsoid. In this case, the
only information about the tuple Δx = (Δx1, . . . , Δxn) is that it belongs to
this ellipsoid.

Another situation when we get such an ellipsoid uncertainty is when mea-
surement errors are independent normally distributed random variables, with
0 mean and standard deviation σi. In this case, the probability density is de-

scribed by the known formula ρ(Δx) = const exp
(

−
n
∑

i=1

Δx2
i

2σ2
i

)

. This prob-

ability density ρ(Δx) is everywhere positive; thus, in principle, an arbitrary
tuple Δx is possible. In practical statistics, however, tuples with very low
probability density ρ(Δx) are considered impossible.

For example, in 1-dimensional case, we have a “three sigma” rule: values
for which |Δxi| > 3σi are considered to be impossible. In multi-dimensional
case, it is natural to choose some threshold t > 0, and consider only tuples for
which ρ(Δx) ≥ t as possible ones. This formula is equivalent to ln(ρ(Δx)) ≥
ln(t). For Gaussian distribution, this equality takes the form

n
∑

i=1

Δx2
i

σ2
i

≤ r2

for some appropriate value r – i.e., the form of an ellipsoid. The sum is
χ2(n) distributed, with expectation n and standard deviation

√
n, so here,

r2 = n+O(
√
n) is a natural choice. In this chapter, we will consider ellipsoids

of this type.

Comment. If the measurement errors are small but not independent, then
we also have an ellipsoid, but with a general definite quadratic form in the
left-hand side of the inequality.

Ellipsoids are also known to be the optimal approximation sets for different
problems with respect to several reasonable optimality criteria; see, e.g., [111,
201]. Ellipsoid error estimates are actively used in different applications; see,
e.g., [27, 61, 62, 110, 113, 258, 298, 299].
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Data processing under ellipsoid uncertainty: linear approximation. The range

of a linear function
n
∑

i=1

ci Δxi over an ellipsoid can be easily computed by us-

ing, e.g., the Lagrange multiplier method. First, one can easily check that
the maximum of a linear function is attained at the border of the ellipsoid,

i.e., when
n
∑

i=1

Δx2
i

σ2
i

= r2. Maximizing the linear function
n
∑

i=1

ci Δxi under the

above constraint is equivalent to solving the unconstrained optimization prob-

lem
n
∑

i=1

ciΔxi+λ
n
∑

i=1

Δx2
i

σ2
i

, where λ is the Lagrange multiplier. Differentiating

with respect to Δxi and equating derivatives to 0, we conclude that the max-
imum value Δ of the linear function is attained when Δxi = α ciσ

2
i for some

α. Here, the parameter α is determined by the condition that
n
∑

i=1

Δx2
i

σ2
i

= r2 –

i.e., that α2
n
∑

i=1

c2i σ
2
i = r2 and α = r/

√
∑

c2iσ
2
i . The smallest possible value

−Δ of this function is attained when Δxi = −α ciσ2
i .

The corresponding value Δ is equal to Δ = r
√
∑

c2iσ
2
i . This value can

also be computed in linear time.

Need for combining interval and ellipsoid uncertainty. In some practical
cases, we have a combination of interval and ellipsoid uncertainty. For ex-
ample, in the statistical case, we may have an ellipsoid bound and also the 3
sigma bound |Δxi| ≤ 3σi for each measurement error.

In this case, the actual values (Δx1, . . . , Δxn) belong to the intersection
of the box x1 × . . .× xn and the ellipsoid.

In general, the smaller the set over which we estimate the range of a given
function, the narrower the resulting range. It is therefore desirable to be able

to estimate the range of a linear function
n
∑

i=1

ci Δxi over such an intersection.

What we do in this chapter: main result. In this chapter, we provide two
algorithms for estimating the range of a linear function over an intersection in
linear time: a simpler O(n log(n)) algorithm and a (somewhat more complex)
linear time algorithm.

From ellipsoids to generalized ellipsoids. We have mentioned that ellipsoids
correspond to normal distributions. In many practical cases, the distribution
of the measurement errors is different from normal; see, e.g., [259, 261, 283].
In many such cases, we have a distribution of the type

ρ(Δxi) = const exp

(

−
n
∑

i=1

|Δxi|p
kσp

i

)
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for some value p �= 2 [259]. For this distribution, the condition

ρ(Δx) = ρ1(Δx1) . . . ρn(Δxn) ≥ t

takes the form
n
∑

i=1

|Δxi|p
σp

i

≤ rp for some value r.

The corresponding lp-methods have been successfully used in data pro-
cessing; see, e.g., [89] and [324].

It is therefore reasonable to consider such generalized ellipsoids as well.
For a generalized ellipsoid, the Lagrange approach to maximizing a linear

function
n
∑

i=1

ciΔxi leads to

n
∑

i=1

ciΔxi + λ

n
∑

i=1

|Δxi|p
σp

i

→ max,

ci + λp · sign(Δxi)
|Δxi|p−1

σp
i

= 0,

and hence, for p > 1, to

Δxi = α · sign(ci)|ci|1/(p−1)σ
p/(p−1)
i

for some constant α. Here, the parameter α is determined by the condition

that
n
∑

i=1

|Δxi|p
σp

i

= rp – i.e., that αp
n
∑

i=1

|ci|p/(p−1)σ
p/(p−1)
i = rp and

α = r/ p

√

∑

|ci|p/(p−1)σ
p/(p−1)
i .

The smallest possible value −Δ of this function is attained when

Δxi = −α · sign(ci)|ci|1/(p−1)σ
p/(p−1)
i .

The corresponding value Δ is equal to

Δ = r

(

n
∑

i=1

|ci|p/(p−1)σ
p/(p−1)
i

)(p−1)/p

.

This value can also be computed in linear time.

Need for combining interval and generalized ellipsoid uncertainty. Similarly
to the case p = 2, it is desirable to estimate the range of a linear function
n
∑

i=1

ciΔxi over an intersection of a box and a generalized ellipsoid. In this

chapter, we will consider this problem for p > 1.

Analysis of the problem: general form of the optimal tuple. In the general
case, we want to find the maximum and the minimum of a linear function
n
∑

i=1

ciΔxi over an intersection of generalized ellipsoid and a box. In order to
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describe an algorithm for computing the maximum and minimum, let us first
describe the general properties of the tuples Δx for which these maximum
and minimum are attained.

Definition 41.1. By a generalized ellipsoid E, we mean a set of all the tuples

Δx = (Δx1, . . . , Δxn) which satisfy the inequality
n
∑

i=1

|Δxi|p
σp

i

≤ rp, where p,

r, and σi are positive real numbers.

We want to find the maximum and the minimum of a linear function on
the intersection I = E ∩B of a generalized ellipsoid and a box

B = [−Δ1, Δ1] × . . .× [−Δn, Δn].

Without losing generality, we can assume that all the coefficients ci of a
linear function are non-negative. Indeed, if ci < 0 for some i, then we can
simply replace the original variable Δxi with a new variable Δx′i = −Δxi.
After this replacement, the expressions for the ellipsoid E and for the box B
remain the same, but the corresponding coefficient ci becomes positive.

Under this assumption, one can easily see that the maximum of a linear
function

∑

ciΔxi with ci ≥ 0 is attained when Δxi ≥ 0 for all i. We then
get the following result.

Proposition 41.1. The maximum of a linear function
n
∑

i=1

ci Δxi with ci ≥
0 over an intersection of a box B = [−Δ1, Δ1] × . . . × [−Δn, Δn] and a

generalized ellipsoid
n
∑

i=1

|Δxi|p
σp

i

≤ rp is attained, for some value α, at a tuple

Δxi = min(Δi, α c
1/(p−1)
i σ

p/(p−1)
i ).

Observation. This expression has an interesting relation to the corresponding
expressions for the box and for the generalized ellipsoid. Indeed, let us recall
that for the box, the maximum is attained for Δxi = Δi; for the generalized
ellipsoid, the maximum is attained when Δxi = α c

1/(p−1)
i σ

p/(p−1)
i . Accord-

ing to Proposition 41.1, for the intersection of the box and the generalized
ellipsoid, the optimal tuple can be, crudely speaking, obtained by taking a
component-wise minimum of the tuple maximizing the box and the tuple
maximizing the generalized ellipsoid.

Of course, this is not exactly the component-wise minimum because the
value α corresponding to maximizing the linear form over the intersection
E ∩ B may be different from the value α corresponding to maximizing over
the generalized ellipsoid E.

Comment. For general (not necessarily non-negative) coefficients ci, we get

Δxi = sign(ci) · min(Δi, α |ci|1/(p−1)σ
p/(p−1)
i ).
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Analysis of the problem: how to find α. According to our result, once we
know the value of the parameter α, we will be able to find all the values Δxi

from the optimal tuple, and thus, find the largest possible value Δ of the

desired linear function
n
∑

i=1

ciΔxi.

Writing zi :=
Δi

|ci|1/(p−1)σ
p/(p−1)
i

, the dependence of |Δxi| on α can be

described as follows:

• If α |ci|1/(p−1)σ
p/(p−1)
i < Δi, i.e., if α < zi, then we take |Δxi| =

α |ci|1/(p−1)σ
p/(p−1)
i .

• On the other hand, if α |ci|1/(p−1)σ
p/(p−1)
i ≥ Δi, i.e., if α ≥ zi, then we

take |Δxi| = Δi.

So, if we sort the indices by the value zi, into a sequence z1 ≤ z2 . . . ≤ zn,
then the maximizing tuple have the form

Δx = (sign(c1) ·Δ1, . . . , sign(ct) ·Δt,

α sign(ct+1) · |ct+1|1/(p−1)σ
p/(p−1)
t+1 , . . . , α sign(cn) · |cn|1/(p−1)σp/(p−1)

n )

for some threshold value t for which zt ≤ α < zt+1.
How do we find this threshold value t? In principle, it is possible that

the optimal solution is attained when Δxi = ±Δi for all i. In this case, the
generalized ellipsoid contains the whole box. In all other cases, the value α
must be determined by the condition that the optimal tuple is on the surface
of the generalized ellipsoid, i.e., that

t
∑

i=1

Δp
i

σp
i

+ αp
n
∑

j=t+1

|ci|p/(p−1)σ
p/(p−1)
j = rp,

or, equivalently,

n
∑

i=1

(min(Δi, α |ci|1/(p−1)σ
p/(p−1)
i ))p

σp
i

= rp.

The left-hand side of this equality is an increasing function of α. Thus, to find
the proper value of k, it is sufficient to check all the values α = z1, . . . , zn.

If for some k, we get

k
∑

i=1

Δp
i

σp
i

+ zp
k

n
∑

j=k+1

|cj |p/(p−1)σ
p/(p−1)
j > rp,

this means that we need to decrease α, i.e., that we should have fewer values
Δxi = ±Δi – in other words, this means that t < k.
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On the other hand, if for some k, we get

k
∑

i=1

Δp
i

σp
i

+ zp
k

n
∑

j=k+1

|cj |p/(p−1)σ
p/(p−1)
i ≤ rp,

this means that t ≥ k.
So, we can find the desired threshold t as the largest index k for which

for α = zk, the left-hand side of the above equality is still less than or equal
to rp; due to monotonicity with respect to α, this value t can be found by
bisection.

Once we find this threshold value t, we can then find α from the equation

t
∑

i=1

Δp
i

σp
i

+ αp
n
∑

j=t+1

|cj |p/(p−1)σ
p/(p−1)
j = rp,

i.e., αp =
rp − E−

E+
, where E− :=

t
∑

i=1

Δp
i

σp
i

and E+ :=
n
∑

j=t+1

|cj |p/(p−1)σ
p/(p−1)
j .

After that, we can uniquely determine the optimal tuple Δxi and thus the

desired maximal value Δ =
k
∑

i=1

|ci| ·Δi + α
n
∑

j=t+1

|cj |p/(p−1)σ
p/(p−1)
j .

So, we arrive at the following algorithms for computing Δ.

A simpler O(n log(n)) algorithm. First, we check whether the generalized

ellipsoid contains the box, i.e., whether
n
∑

i=1

Δp
i

σp
i

≤ rp. If this is the case, then

the desired maximum is equal to
n
∑

i=1

|ci|Δi. If this is not the case, then we

apply our algorithm.
In this algorithm, we first sort the indices in the increasing order by zi.
After this sorting, we apply the following iterative algorithm. At each

iteration of this algorithm, we have two numbers:

• the number i− such that for all indices i ≤ i−, we already know that for
the optimal tuple Δx, we have |Δxi| = Δi;

• the number i+ of all the indices j ≥ i+ for which we already know that
for the optimal tuple Δx, we have |Δxj | < Δj .

In the beginning, i− = 0 and i+ = n + 1. At each iteration, we also

update the value of two auxiliary quantities E− :=
i−
∑

i=1

Δp
i

σp
i

and E+ :=
n
∑

j=i+
|cj |p/(p−1)σ

p/(p−1)
j .

In principle, on each iteration, we could compute these sums “from
scratch”; however, to speed up computations, on each iteration, we update
these auxiliary values in a way that is faster than re-computing the corre-
sponding sums.

Initially, since i−0 and i+ = n+ 1, we take E− = E+ = 0.
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At each iteration, we do the following:

• first, we compute the midpoint m = (i− + i+)/2;

• we compute e− :=
m
∑

i=i−+1

Δp
i

σp
i

and e+ :=
i+−1
∑

j=m+1

|cj |p/(p−1)σ
p/(p−1)
j ;

• if E− + e− + zp
m (E+ + e+) > rp, then we replace i+ with m+ 1 and E+

with E+ + e+;
• if E− + e− + zp

m (E+ + e+) ≤ rp, then we replace i− with m and E− with
E− + e−.

At each iteration, the set of undecided indices is divided in half. Iterations
continue until all indices are decided, after which we compute α from the

condition that E− + αpE+ = rp, i.e., as αp :=
rp − E−

E+
. Once we know α,

we compute the maximizing tuple |Δxi| = min(Δi, α |ci|1/(p−1)σ
p/(p−1)
i ) and

then, the desired maximum
n
∑

i=1

|ci| |Δxi|.

Computational complexity of the above algorithm. Sorting takes time

O(n log(n));

see, e.g., [73].
After this, at each iteration, all the operations with indices from i− to i+

take time t linear in the number of such indices: t ≤ C · (i+− i−) for some C.
We start with the set of indices of full size n; on the next iteration, we have
a set of size n/2, then n/4, etc. Thus, after sorting, the overall computation
time is ≤ C · (n+ n/2 + n/4 + . . .) ≤ C · 2n, i.e., linear in n. So, the overall
computation time is indeed O(n log(n)) +O(n) = O(n log(n)).

Comment. This algorithm works for an even more general case.

In some cases, we have distributions ρi(Δxi) = ρ0

( |Δxi|
σi

)

for a different

function ρ0(x). In this case, similar arguments lead to a generalized ellip-

soid of the type
n
∑

i=1

ψ

( |Δxi|
σi

)

≤ r0, where ψ(x) := − ln(ρ0(x)). The above

algorithm can be extended to the case of strictly convex smooth functions
ψ(x) for which both this function, its derivative, and the corresponding in-
verse functions can be computed in polynomial time. This class includes the
lp-functions ψ(x) = |x|p with p > 1 as particular cases.

Main idea behind the linear time algorithm. Our second algorithm is similar
to the above O(n log(n)) algorithm. In that algorithm, the only non-linear-
time part was sorting. To avoid sorting, in the second algorithm, we use the
known fact that we can compute the median of a set of n elements in linear
time (see, e.g., [73]). (Our use of median is similar to the one from [52] and
[132]).
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Our linear time algorithm is only efficient to large n. It is worth mentioning
that while asymptotically, the linear time algorithm for computing the me-
dian is faster than sorting, this median computing algorithm is still rather
complex – so, for small n, sorting is faster than computing the median.

This is the reason why in this chapter, we present two different algorithms
– both algorithms are practically useful:

• for large n, the linear time algorithm is faster;
• however, for small n, the O(n log(n)) algorithm is faster.

Let us now describe the linear time algorithm.

Algorithm. First, we check whether the generalized ellipsoid contains the

box, i.e., whether
n
∑

i=1

Δp
i

σp
i

≤ rp. If this is the case, then the desired maximum

is equal to
n
∑

i=1

ciΔi. If this is not the case, then we perform the following

iterations.
At each iteration, we have three sets:

• the set I− of all the indices i from 1 to n for which we already know that
for the optimal tuple Δx, we have |Δxi| = Δi;

• the set I+ of all the indices j for which we already know that for the
optimal tuple Δx, we have |Δxj | < Δj ;

• the set I = {1, . . . , n} − I− − I+ of the indices i for which we are still
undecided.

In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration, we

also update the value of two auxiliary quantities E− :=
∑

i∈I−

Δp
i

σp
i

and E+ :=
∑

j∈I+
|cj |p/(p−1)σ

p/(p−1)
j .

In principle, we could compute this value by computing this sum of squares,
but to speed up computations, on each iteration, we update this auxiliary
value in a way that is faster than re-computing the corresponding sum.

Initially, since I− = I+ = ∅, we take E− = E+0.
At each iteration, we do the following:

• first, we compute the median m of the set I (median in terms of sorting
by zi);

• then, by analyzing the elements of the undecided set I one by one, we
divide them into two subsets P− = {i : zi ≤ zm} and P+ = {j : zj > zm};

• we compute e− =
∑

i∈P−

Δp
i

σp
i

and e+ :=
∑

j∈P+
|cj |p/(p−1)σ

p/(p−1)
j ;

• if E− + e− + zp
m (E+ + e+) > rp, then we replace I+ with I+ ∪P+, I with

P−, and E+ with E+ + e+;
• if E− + e− + zp

m (E+ + e+) ≤ rp, then we replace I− with I− ∪P−, I with
P+, and E− with E− + e−.
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At each iteration, the set of undecided indices is divided in half. Iterations
continue until all indices are decided, after which we compute α from the

condition that E− + αpE+ = rp, i.e., as αp :=
rp − E−

E+
. Once we know α,

we compute the maximizing tuple |Δxi| = min(Δi, α |ci|1/(p−1)σ
p/(p−1)
i ) and

then, the desired maximum
n
∑

i=1

|ci| |Δxi|.

Computational complexity of the above algorithm. Let us show that this algo-
rithm indeed takes linear time. Indeed, at each iteration, computing median
takes linear time, and all other operations with I take time t linear in the
number of elements |I| of I: t ≤ C · |I| for some C. We start with the set I of
size n; on the next iteration, we have a set of size n/2, then n/4, etc. Thus,
the overall computation time is ≤ C · (n + n/2 + n/4 + . . .) ≤ C · 2n, i.e.,
linear in n.

Proofs

Proof of Proposition 41.1. Let Δxi be an optimal (maximizing) tuple.
If there are indices i and j for which Δxi < Δi and Δxj < Δj , then, for

sufficiently small real numbers εi and εj , we can replace Δxi with Δxi + εi,
Δxj with Δxj + εj, and still stay within the intervals [0, Δi] and [0, Δj ] –
i.e., within the box B. Let us select the changes εi and εj in such a way that

the sum s :=
|Δxi|p
σp

i

+
|Δxj |p
σp

j

remain unchanged – then we will stay within

the generalized ellipsoid as well.
For small εi and εj , we have

(Δxi + εi)p

σp
i

+
(Δxj + εj)p

σp
i

=

(Δxi)p

σp
i

+
(Δxj)p

σp
i

+
p εiΔx

p−1
i

σp
i

+
p εj Δx

p−1
j

σp
j

+ o(εi).

Thus, to make sure that s does not change, we must select εj for which

εiΔx
p−1
i

σp
i

+
εj Δx

p−1
j

σp
j

= o(εi),

i.e.,

εj = −εi
Δxp−1

i

Δxp−1
j

σp
j

σp
i

+ o(εi).

The resulting change in the maximized linear function is equal to ciεi + cjεj .
Substituting the expression for εj in terms of εi, we conclude that this change
is equal to
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εi

(

ci − cj
Δxp−1

i

Δxp−1
j

σp
j

σp
i

)

+ o(εi).

If the coefficient at εi was positive, then we could take a small positive εi

and further increase the value of the linear function – which contradicts our
selection of the tuple Δxi for which the maximum is attained. Similar, if the
coefficient at εi was negative, then we could take a small negative εi and
further increase the value of the linear function. Thus, this coefficient cannot
be positive and cannot be negative – hence it must be equal to 0. So,

ci − cj
Δxp−1

i

Δxp−1
j

σp
j

σp
i

= 0,

or, equivalently,
Δxp−1

i

ciσ
p
i

=
Δxp−1

j

cjσ
p
j

.

This equality holds for every two indices for which Δxi < Δi and Δxj < Δj ;
thus, for all such indices, the above ratio has the same value. Let us denote

this common ratio by r0; then, we conclude that
Δxp−1

i

ciσ
p
i

= r0 and hence, that

Δxi = α c
1/(p−1)
i σ

p/(p−1)
i ,

where we denoted α := r
1/(p−1)
0 .

If Δxi < Δi and Δxj = Δj , then we can similarly change Δxi and Δxj ,
but only the changes for which εj < 0 will keep us inside the box. Since the
sign of εj is opposite to the sign of εi, we thus conclude that we can only
take εi > 0. Thus, the coefficient at εi in the expression for the change in the
(linear) objective function cannot be positive – because then, we would be
able to further increase this objective function. So, this coefficient must be
non-positive, i.e.,

ci − cj
Δxp−1

i

Δxp−1
j

σp
j

σp
i

≤ 0,

or, equivalently,
Δxp−1

i

ciσ
p
i

≤ Δxp−1
j

cjσ
p
j

.

Since Δxi < Δi, for i, we have
Δxp−1

i

ciσ
p
i

= r0. Thus, we conclude that

Δxp−1
j

cjσ
p
j

≤ r0,

i.e., Δxj = Δj ≤ α c
1/(p−1)
j σ

p/(p−1)
j .
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Hence,

• when Δxi < Δi, we get Δxi = α c
1/(p−1)
i σ

p/(p−1)
i ;

• when Δxj = Δi, we get Δxj = Δj ≤ α c
1/(p−1)
j σ

p/(p−1)
j .

To complete the proof of our proposition, let us consider two cases.
If Δi ≤ α c

1/(p−1)
i σ

p/(p−1)
i , then we cannot have Δxi < Δi – because

then we would have Δxi = α c
1/(p−1)
i σ

p/(p−1)
i and thus, Δi > Δxi =

α c
1/(p−1)
i σ

p/(p−1)
i and Δi > αc

1/(p−1)
i σ

p/(p−1)
i – which contradicts our as-

sumption. Thus, the only remaining case here is Δxi = Δi.
On the other hand, if Δj > αc

1/(p−1)
j σ

p/(p−1)
j , then we cannot have Δxj =

Δj – because otherwise, we would have Δj ≤ α c
1/(p−1)
j σ

p/(p−1)
j , which also

contradicts our assumption. Thus, in this case, we must have Δxj < Δj , and
we already know that in this case, Δxj = α c

1/(p−1)
j σ

p/(p−1)
i . So:

• if Δi ≤ α c
1/(p−1)
i σ

p/(p−1)
i then Δxi = Δi;

• if Δj > αc
1/(p−1)
j σ

p/(p−1)
j then Δxj = α c

1/(p−1)
j σ

p/(p−1)
i .

In both cases, we have

Δxi = min(Δi, α c
1/(p−1)
i σ

p/(p−1)
i ).

The proposition is proven.
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Beyond Interval Uncertainty: Case of

Discontinuous Processes (Phase Transitions)

One of the main tasks of science and engineering is to use the current values
of the physical quantities for predicting the future values of the desired quan-
tities. Due to the (inevitable) measurement inaccuracy, we usually know the
current values of the physical quantities with interval uncertainty. Tradition-
ally, it is assumed that all the processes are continuous; as a result, the range
of possible values of the future quantities is also known with interval un-
certainty. However, in many practical situations (such as phase transitions),
the dependence of the future values on the current ones becomes discontin-
uous. We show that in such cases, initial interval uncertainties can lead to
arbitrary bounded closed ranges of possible values of the future quantities.
We also show that the possibility of such a discontinuity may drastically in-
crease the computational complexity of the corresponding range prediction
problem.

Formulation and Analysis of the Problem

Objectives of science and engineering. One of the main tasks of science and
engineering is to use the current values of the physical quantities x1, . . . , xn

to predict the future values y of the desired quantities.
To be able to perform this prediction, we must know how y depends on

xi, i.e., we must know the algorithm y = f(x1, . . . , xn) which transforms the
current values x1, . . . , xn into the desired prediction y. Once we know this
algorithm, and we know the values of the physical quantities x1, . . . , xn, we
can then predict y as y = f(x1, . . . , xn).

Comment. In reality, often, the algorithm f represents the actual physical
dependence only approximately. For example, in quantum physics, only prob-
abilistic predictions are possible, so any deterministic prediction algorithm is
approximate.

In many practical situations, however, the real-life dynamics is known
reasonably accurately. In such situations, we can safely assume that the

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 349–355.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2012



350 42 Case of Discontinuous Processes (Phase Transitions)

algorithm f describes the exact dependence. This is the assumption that
we make in this paper.

Measurement inaccuracy. In the above description, we assumed that we know
the exact current values of the quantities x1, . . . , xn. In practice, however,
these values usually come from measurements, and measurements are never
100% accurate. As a result, the measured value x̃i of the i-th quantity is, in
general, different from its (unknown) actual value xi.

Usually, the manufacturer of the corresponding measuring instrument pro-
vides us with a guaranteed upper bound Δi on the (absolute value) of the
measurement error Δxi

def= x̃i − xi of the i-th quantity.
In this case, after we measure xi and get the measurement result x̃i, we

can conclude that the actual value of xi belongs to the interval

xi = [x̃i −Δi, x̃i +Δi].

In other words, due to the (inevitable) measurement inaccuracy, we usually
know the current values of the physical quantities with interval uncertainty.

Comment. Often, in addition to the range xi of possible values of xi, we
also know the probabilities of different values xi ∈ xi; see, e.g., [283]. In this
chapter, however, we only consider the range information.

The effect of measurement inaccuracy on prediction. In this chapter, we as-
sume that we know the exact algorithm f(x1, . . . , xn) which transforms the
current values x1, . . . , xn into the desired future value y. Under this assump-
tion, in the idealized situation in which we know the exact values xi of the
current quantities, we could compute the exact value y = f(x1, . . . , xn) of
the desired future quantity.

In practice, for each i, we only know the interval xi of possible values of
xi. In this case, the only thing that we can conclude about the quantity y is
that y belongs to the set

y = f(x1, . . . ,xn) def= {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

Traditional assumption: all physical dependencies are continuous. Tradition-
ally, it is assumed that all the processes are continuous; in particular, that
the function y = f(x1, . . . , xn) computed by the algorithm f is continuous.
It is well known that the range of a continuous function on a bounded con-
nected set, e.g., on the box x1× . . .×xn, is an interval. Thus, for continuous
functions f , the range y of possible values of the future quantity y is an
interval.

Thus, due to inevitable measurement inaccuracy, we can only make predic-
tions with interval uncertainty. Computing such intervals is one of the main
tasks of interval computations; see, e.g., [142].
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Discontinuous dependencies: a physical possibility. Some physical processes
are discontinuous: e.g., phase transitions. When a water is heated and boils,
its density abruptly changes from the density of water to the (orders of mag-
nitude) smaller density of steam.

Of course, all the molecules in water move continuously. So, strictly speak-
ing, the density cannot change abruptly: theoretically, it does continuously
change from the density of water to the density of steam. However, for all
practical purposes, this transition is so fast that from the prediction view-
point, we can safely assume that:

• the future density can be equal to the density of water,
• the future density can be equal to the density of steam, but
• the future density cannot be equal to any intermediate value.

Formulation of the problem. How does the possibility of discontinuous de-
pendencies change the class of possible ranges? How does it affect the com-
putational complexity of computing these ranges?

These are the questions that we will handle in this chapter.

How discontinuities affect the class of possible ranges? Let us first describe
how the possibility of discontinuous dependencies changes the class S of pos-
sible ranges S. Before we describe this problem in precise terms, let us make
some preliminary comments.

Comment. From the mathematical viewpoint, the following result is similar
to the results from [262] and [263].

It is sufficient to consider closed ranges. Let S ∈ S be a possible range, i.e.,
a possible set of values of some physically relevant quantity y. Let us also
assume that for this range S, the values s1, s2, . . . , sk, . . . are all possible (i.e.,
sk ∈ S), and that the sequence sk converges to a certain number s. In this
case, no matter how accurately we compute s, we will always find a number
sk that is indistinguishable from s (and possible). Therefore, it is natural to
assume that this limit value s is also possible.

In other words, it is natural to assume that every set S ∈ S contains all
its limit points, i.e., that it is a closed set.

It is sufficient to consider closed classes of sets. A similar requirement can
be formulated for different sets S ∈ S.

Indeed, on the class of all bounded closed sets, there is a natural metric –
Hausdorff distance dH(S, S′). This distance is defined as the smallest ε > 0
for which S is contained in the ε-neighborhood of S′ and S′ is contained in
the ε-neighborhood of S. In more precise terms, the Hausdorff distance is the
smallest number ε for which

∀s ∈ S ∃s′ ∈ S′ (d(s, s′) ≤ ε)

and
∀s′ ∈ S′ ∃s ∈ S (d(s, s′) ≤ ε),
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where d(s, s′) = |s − s′| is the standard distance between the points on the
real line.

Informally, it means that if dH(S, S′) ≤ ε, and we only know the values
s ∈ S and s′ ∈ S′ with accuracy ε, then we cannot distinguish between the
sets S and S′.

So, if the sets S1, S2, . . . , Sk, . . . are all possible (i.e., Si ∈ S), and the
sequence of sets Sk converges to a certain set S (i.e., dH(Sk, S) → 0), then
no matter how accurately we compute the values, we will always find a set
Sk that is indistinguishable from the set S (and possible). Therefore, it is
natural to assume that this limit set S is also possible.

In other words, it is natural to assume that the class S contains all its
limit points, i.e., that it is a closed class under the Hausdorff metric.

Towards formalization of the problem. We know that continuous dynamics
functions are physically possible.

We assume that at least one function describing physical dynamics is dis-
continuous. In the simplest case, we have a monotonic function of one variable
that has a “jump”: it continuously grows until some threshold value, then
makes a jump, and then again continuously grows. In this case, the range of
this variable is not a single interval, it is a union of two intervals.

Thus, we arrive at the following definition.

Definition 42.1. A class S of closed bounded non-empty subsets of the real
line is called a class of ranges if it satisfies the following conditions:

(i) the class S contains an interval;
(ii) the class S is closed under arbitrary continuous transformations, i.e., if
S ∈ S and f(x) is a continuous function, then f(S) ∈ S;

(iii) there exist a value x0 and a function f0(x) such that:
– the function f0(x) is continuously increasing for x < x0,
– the function f0(x) is continuously decreasing for x > x0,
– the function f0(x) has a “jump” at x0, i.e., f0(x0−) < f0(x0+), and
– the class S is closed under f0, i.e.,

if S ∈ S then f0(S) ∈ S;
(iv) the class S is closed under Hausdorff metric.

Theorem 42.1. The class of ranges coincides with the class of all bounded
closed sets.

Computational complexity of the prediction problem: interval uncertainty, lin-
ear functions. Before we discuss how discontinuities affect the computational
complexity of the prediction problem, let us recall the computational com-
plexity of the prediction problem in the continuous cases, i.e., under interval
uncertainty. In Chapter 8, we have mentioned that in the simplest case of a
linear function

y = f(x1, . . . , xn) = a0 +
n
∑

i=1

ai · xi
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under interval uncertainty xi ∈ [x̃i −Δi, x̃i +Δi], we have explicit formulas
for computing the range [y, y]: y = ỹ −Δ and y = ỹ +Δ, where

ỹ
def= f(x̃1, . . . , x̃n) = a0 +

n
∑

i=1

ai · x̃i

and

Δ =
n
∑

i=1

|ai| ·Δi.

The corresponding range can be computed in linear time, i.e., efficiently.
In contrast, for quadratic functions f(x1, . . . , xn), the problem of range

computation is, in general, NP-hard.

Computational complexity of the prediction problem: general uncertainty, lin-
ear functions. We have already mentioned that due to possible discontinu-
ities, the range of possible values of each input xi is, in general, different from
the interval; there may be gaps – specifically, it can be equal to an arbitrary
bounded closed set. In particular, when each gap is the largest possible, this
range can be equal to the 2-point set {xi, xi}.
Theorem 42.2. For 2-point inputs, the problem of computing the range be-
comes NP-hard already for linear functions f(x1, . . . , xn).

Conclusions. One of the main tasks of science and engineering is to use the
current values of the physical quantities for predicting the future values of
the desired quantities. Due to the measurement inaccuracy, we usually know
the current values of the physical quantities with interval uncertainty. Tradi-
tionally, it is assumed that all the processes are continuous; as a result, the
range of possible values of the future quantities is also known with interval
uncertainty.

However, in many practical situations (such as phase transitions), the de-
pendence of the future values on the current ones becomes discontinuous. In
this paper, we have shown that in such cases, initial interval uncertainties
can lead to arbitrary bounded closed range of possible values of the future
quantities. We have also shown that the possibility of such a discontinuity
may drastically increase the computational complexity of the corresponding
range prediction problem: e.g., for linear functions, the complexity increases
from linear time to NP-hard.

Proofs

Proof of Theorem 42.1. First, every two intervals can be obtained from each
other by a continuous transformation – e.g., by a linear function. Since the
class S contains an interval and it is closed under arbitrary continuous trans-
formations, we can thus conclude that this class contains all possible intervals.
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Let us take an arbitrary interval I = [a1, a2] that contains a point
x0 inside. We have already shown that this interval belongs to the class
S. By the construction of a discontinuous function f0(x) as monotonic,
for this interval, the image f0(I) is the union of two disjoint intervals:
[f0(a1), f(x0−)] ∪ [f(x0+), f0(a2)].

Now, let us consider unions of two disjoint intervals, i.e., sets of the
type [a1, a2] ∪ [a3, a4] with a2 < a3. Every two sets [a1, a2] ∪ [a3, a4] and
[a′1, a′2]∪ [a′3, a′4] of this type can be obtained from each other by a continuous
transformation – e.g., we can take a piece-wise linear transformation f(x)
which maps:

• [a1, a2] into [a′1, a
′
2],

• [a2, a3] into [a′2, a
′
3], and

• [a3, a4] into [a′3, a′4].

Since the class S contains one such set and it is closed under arbitrary con-
tinuous transformations, we can thus conclude that this class contains all
possible two-interval sets.

Let us take an arbitrary two-interval set

S = [a1, a2] ∪ [a3, a4]

for which the second interval [a3, a4] contains a point x0 inside. We have
already shown that this two-interval set belongs to the class S. By the con-
struction of a discontinuous function f0(x) as monotonic, for this two-interval
set, the image f0(S) is the union of three disjoint intervals:

[f0(a1), f0(a2)] ∪ [f0(a3), f0(x0−)] ∪ [f0(x0+), f0(a4)].

Now, let us consider unions of three disjoint intervals, i.e., sets of the type

[a1, a2] ∪ [a3, a4] ∪ [a5, a6]

with a2 < a3 and a4 < a5. Every two sets

[a1, a2] ∪ [a3, a4] ∪ [a5, a6]

and
[a′1, a

′
2] ∪ [a′3, a

′
4] ∪ [a′5, a

′
6]

of this type can be obtained from each other by a continuous transformation
– e.g., we can take a piece-wise linear transformation f(x) which maps:

• [a1, a2] into [a′1, a
′
2],

• [a2, a3] into [a′2, a
′
3],

• [a3, a4] into [a′3, a
′
4],

• [a4, a5] into [a′4, a
′
5], and

• [a5, a6] into [a′5, a′6].
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Since the class S contains one such set and it is closed under arbitrary con-
tinuous transformations, we can thus conclude that this class contains all
possible three-interval sets.

By applying f0, we can now conclude that the class S contains all 4-interval
sets, etc., and any finite unions of intervals.

Let us now prove that the class S contains an arbitrary bounded closed
set S.

Indeed, for every ε, we can consider an interval-based approximation Sε

to the set S, by taking the union Sε of all the grid intervals [k · ε, (k + 1) · ε]
(with integer k) for which [k · ε, (k+1) · ε]∩S �= ∅. One can easily check that
in the limit ε → 0, we have Sε → S. Thus, from the fact that the class S
contains all finite unions of intervals Sε, we conclude that the class S must
also contain their limit S.

The theorem is proven.

Proof of Theorem 42.2. The proof is typical proof of NP-hardness: we reduce
a known NP-hard problem to our problem. Specifically, we take the partition
problem [274]. In this problem, we are given n positive integers s1, . . . , sn, and

we must check whether there exist values εi ∈ {−1, 1} for which
n
∑

i=1

εi ·si = 0.

We will reduce each particular case of this problem to the following particular
case of our problem: a0 = 0, ai = si, xi = −1, and xi = 1 for all i. For the
resulting linear function

y = f(x1, . . . , xn) =
n
∑

i=1

si · xi,

0 belongs to the range

f({x1, x1}, . . . , {xn, xn}) =

{f(x1, . . . , xn) : x1 ∈ {x1, x1}, . . . , xn ∈ {xn, xn}}
if and only if the original problem has a solution. The reduction is proven,
hence our problem is indeed NP-hard.

Comment. This result was, in effect, proven in [182, 257]. The difference is
that in [182, 257], this NP-hardness was proven to justify the use of intervals,
while we already know that we have to go beyond intervals, so our NP-
hardness is the (inevitable) complexity of an important practical problem.
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Beyond Interval Uncertainty in Describing

Statistical Characteristics: Case of Smooth
Distributions and Info-Gap Decision Theory

In the traditional statistical approach, we assume that we know the exact cu-
mulative distribution function (CDF) F (x). In practice, we often only know
the envelopes [F (x), F (x)] bounding this CDF, i.e., we know the interval-
valued “p-box” which contains F (x). P-boxes have been successfully applied
to many practical applications. In the p-box approach, we assume that the ac-
tual CDF can be any CDF F (x) ∈ [F (x), F (x)]. In many practical situations,
however, we know that the actual distribution is smooth. In such situations,
we may wish our model to further restrict the set of CDFs by requiring them
to share smoothness (and similar) properties with the bounding envelopes
F (x) and F (x). In previous work, ideas from Info-Gap Decision Theory were
used to propose heuristic methods for selecting such distributions. In this
chapter, we provide justifications for this heuristic approach.

The main results of this chapter first appeared in [38].

Formulation and Analysis of the Problem

Traditional approach: a brief reminder. In the traditional statistical tech-
niques typically used in science and engineering applications, we assume that
we know the exact probability distributions of measurement errors, of differ-
ent population quantities, etc. (e.g. [305] and [337]).

For each quantity ξ, this distribution can be described, e.g., by its cumu-
lative distribution function (CDF)

F (x) def= Prob(ξ ≤ x).

Computationally, the CDF is often represented by its quantiles, i.e., by
the values x(α) for which F (x(α)) = α for some pre-selected values α: e.g.,
α = 0, 0.1, 0.2, . . . , 1.0.

In mathematical terms, the representation means, crudely speaking, that
instead of discussing the original CDF function F (x) directly, we discuss

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 357–366.
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the inverse function x(α). (This is exactly true when the CDF is strictly
monotonic.)

P-box approach: main idea. In practice, we rarely know the exact values of
the probabilities of different events. In particular, for real-life quantities, we
rarely know the exact values F (x) of the probability Prob(ξ ≤ x). Instead,
we have approximate knowledge of F (x).

In some situations, we know the bounding envelopes [F (x), F (x)] for the
unknown CDF F (x). In other situations, we have expert estimates for values
F (x) – which can be naturally described as fuzzy numbers.

Comment. It is well known that a fuzzy number can be represented as a nested
family of its α-cuts (intervals), and that processing these fuzzy numbers can
be reduced to processing the corresponding α-cuts. Moreover, this is usually
how fuzzy numbers are processed (see e.g. [90, 156, 230, 246, 252]).

In view of this fact, in the following text we will concentrate on interval
uncertainty.

P-boxes: mathematical representation. For each dimension ξ, uncertainty
about probability

F (x) = Prob(ξ ≤ x)

can be described by an interval

F (x) = [F (x), F (x)]

that is guaranteed to contain the unknown actual value of F (x).
The function F that maps each real number x into the interval F (x) is

called a probability box, or, for short, p-box [97].

P-boxes: computer representation. As we have mentioned, in the traditional
statistical approach a probability distribution is usually represented in the
computer by its quantiles. In the p-box case, the fact that we do not know
the exact values of F (x) means that we do not know the exact values of the
quantiles either.

Instead of the actual value of a quantile x(α), we only know the bounds
on the quantile. Namely, from the fact that

F (x) ≤ F (x) ≤ F (x),

we can conclude that
x(α) ≤ x(α) ≤ x(α),

where x(α) are the quantiles corresponding to F (x), and x(α) are the quan-
tiles corresponding to F (x).

As a result, in the computer, a p-box is represented by its interval-valued
quantiles, i.e., by the intervals [x(α), x(α)] which are guaranteed to contain
the actual (unknown) values x(α). These interval-valued quantiles are given
for some pre-selected values α: e.g., α = 0, 0.1, 0.2, . . . , 1.0 (see e.g. [97]).
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The meaning of p-boxes: reminder. In short, a p-box expresses the infor-
mation that for every x, the actual (unknown) value F (x) of the CDF is
contained in the interval [F (x), F (x)].

Limitations of a p-box interpretation. In many practical situations, the
extreme-case bounds F (x) and F (x) correspond to smooth distributions such
as Gaussian, uniform, etc. In such situations, it is often reasonable to expect
that the actual distribution F (x) is also smooth. However, in the p-box ap-
proach, the only limitation on F (x) is that F (x) ∈ [F (x), F (x)]. This limita-
tion permits, in addition to smooth functions, very non-smooth – and thus
(for many problems) unrealistic – CDF functions F (x).

To take such situations into account, it is desirable to be able to limit
ourselves to smooth bounds F (x) and F (x) and to distributions F (x) which
share the same smoothness characteristics as the bounds.

An approach motivated by Info-Gap Decision Theory: main idea. To solve
this problem, in [35] a new approach is described which is motivated by Info-
Gap Decision Theory (see e.g. [29]). Specifically, once we have two possible
distributions F1(x) and F2(x) which can be described using a set of quantiles
x1(α) and x2(α) for various values of α, we then assume that for every value
β ∈ [0, 1], the distribution corresponding to the quantiles

x(α) = β · x1(α) + (1 − β) · x2(α)

is also possible. Once we fix F1(x) and F2(x), we get a 1-parameter class
which is much sparser than the p-box of all distributions between F1(x) and
F2(x).

Let us show that this idea indeed allows us to avoid non-smooth combina-
tions of smooth distributions.

An approach motivated by Info-Gap Decision Theory avoids non-smooth dis-
tributions. In many practical situations, the uncertainty is in the values of
the parameters: we know the shape of the distribution, but we do not know
the exact values of the corresponding parameters. For example, we may know
that the distribution is Gaussian (or uniform), but not the exact values of
the corresponding parameters.

How can we describe this situation in precise terms? For example, let F0(x)
be the CDF of the “standard” normal distribution, with 0 mean and standard
deviation 1. Then, the CDF of a general normal distribution, with mean a
and standard deviation σ, can be described as

F (x) = F0

(

x− a

σ

)

.

A similar expression describes a general uniform distribution, etc.
For such distributions F (x), as one can easily check, the corresponding

quantiles x(α) are linearly related to the quantiles x0(α) of the just-mentioned
standard normal distribution F0(x):
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x(α) = a+ σ · x0(α).

If we have two distributions with the same property, i.e., if we have

x1(α) = a1 + σ1 · x0(α)

and
x2(α) = a2 + σ2 · x0(α),

then their convex combination

x(α) = β · x1(α) + (1 − β) · x2(α)

also has the same form:

x(α) = a+ σ · x0(α),

with a = β · a1 + (1 − β) · a2 and σ = β · σ1 + (1 − β) · σ2.
Thus, when applied to two distribution of the same shape, the above proce-

dure leads to the distribution of this same shape: a combination of Gaussian
distributions is Gaussian, a combination of uniform distributions is uniform,
etc.

Remaining open problem. The above procedure seems to work well, but is
too ad hoc, requiring more justification.

In this chapter, we provide a justification for this procedure.
Specifically, we want to describe an operation I(x1, x2) that for every α,

given two values x1(α) and x2(α), returns a suitable intermediate value

x(α) = I(x1(α), x2(α)).

We will call such an operation an intermediate value operation.

Comment. The main ideas behind our justification are based on the natural
notions of symmetry. Similar ideas have been used, e.g., in [189] and in [251].

Relevant types of invariance. The three types of invariance described below
provide background for the following definitions.

Scale invariance. The values x often come from measurements. In this case,
if we change the unit of measurement (e.g. from centimeters to meters), nu-
merical values will be multiplied by a constant λ > 0. It is natural to require
that the result of the intermediate value operation not depend on the choice
of unit.

How does replacing a unit change the intermediate value operation function
I(x1, x2)? If we replace a unit by a one that is λ times smaller, then the
quantity that was initially described by the value x1 will be described by a
new value x′1 = λ · x1, and the quantity that was initially described by the
value x2 will be described by a new value x′2 = λ ·x2. When we combine these
values by using the intermediate value operation I, we get the resulting value
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x′ = I(x′1, x
′
2) = I(λ · x1, λ · x2).

This is the expression of the combined quantile in the new units. In the old
units, its expression is

x = λ−1 · x′ = λ−1 · I(λ · x1, λ · x2).

We will denote the resulting “re-scaled” intermediate value operation

x1, x2 → λ−1 · I(λ · x1, λ · x2)

by Sλ(I).
In these terms, the intermediate value operation I is scale invariant if and

only if Sλ(I) = I for all λ.

Reverse invariance. In addition to changing the units, there can also be
changes in sign. For example, when measuring a spatial coordinate, we can
change the direction and that will change the sign, or when measuring an
electric charge, we usually follow the convention that an electron’s charge is
negative, but we can also consider electron charges as positive numbers. This
possibility is equivalent to a re-scaling with λ = −1. Therefore we wish to
consider not only positive values λ, but in fact arbitrary non-zero values λ.

Shift invariance. When measuring quantities like time or location, we can
also change the starting point. In this case, a constant will be added to all
numerical values: x→ x+ a.

Then the quantity that was initially described by the value x1 will be
described by a new value x′1 = x1 + a, and the quantity that was initially
described by the value x2 will be described by a new value x′2 = x2 +a. When
we combine these values by using the intermediate value operation I, we get
the resulting value

x′ = I(x′1, x
′
2) = I(x1 + a, x2 + a).

This is the expression of the combined quantile in the new units. In the old
units, its expression is

x = x′ − a = I(x1 + a, x2 + a) − a.

We will denote the resulting “shifted” intermediate value operation

x1, x2 → I(x1 + a, x2 + a) − a

by Ta(I).
It is natural to require that the intermediate value operation is invariant

w.r.t. these symmetries as well, i.e., that Ta(I) = I for all possible real
values a.
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Invariance: definitions and the main result.

Definition 43.1

• By an intermediate value operation, we mean a function I : R2 → R
from the set of pairs of real numbers into real numbers for which the value
I(x1, x2) is always located in between x1 and x2:

min(x1, x2) ≤ I(x1, x2) ≤ max(x1, x2).

The set of all possible intermediate value operations will be denoted by A.
• For every intermediate value operation I, and for every λ �= 0, by a re-

scaled intermediate value operation Sλ(I), we mean an intermediate value
operation

x1, x2 → λ−1 · I(λ · x1, λ · x2).

• For every intermediate value operation I, and for every a, by a shifted
intermediate value operation Ta(I), we mean an operation

x1, x2 → I(x1 + a, x2 + a) − a.

• We say that the intermediate value operation I is scale-invariant if for all
λ, we have Sλ(I) = I.

• We say that the intermediate value operation I is shift-invariant if for all
a, we have Ta(I) = I.

Proposition 43.1. For an intermediate value operation I, the following two
conditions are equivalent to each other:

• I is scale-invariant and shift-invariant;
• I is described by the expression

I(x1, x2) = β · x1 + (1 − β) · x2

for some β ∈ [0, 1].

Comment. As a consequence of Proposition 1, the naturalness of scale- and
shift-invariance implies the naturalness of the equivalent intermediate value
operation.

Towards an alternative justification based on optimality: main idea. Instead
of requiring that the intermediate value operation be invariant, it is reason-
able to look for optimal operations, i.e., operations which are the best in the
sense of some optimality criterion.

What is an “optimality criterion”? When we say that some optimality cri-
terion is given, we mean that, given two different intermediate value opera-
tions, we can decide whether the first or the second one is better, or if these
operations are equivalent w.r.t. the given criterion. In mathematical terms,
this means that we have a pre-ordering relation " on the set of all possible
intermediate value operations.
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The need to enumerate optimal intermediate value operations. One way to
approach the problem of choosing the “best” intermediate value operation
function is to select one optimality criterion, and to find an intermediate
value operation which is the best with respect to this criterion. The main
drawback of this approach is that there can be different optimality criteria,
and they can lead to different optimal solutions. It is, therefore, desirable
not only to describe an intermediate value operation that is optimal relative
to some criterion, but to describe all intermediate value operations that are
optimal relative to any member of a set of natural criteria.

Comment. The word “natural” is used informally. We merely want to say
that from the purely mathematical viewpoint, there can be weird (“unnat-
ural”) optimality criteria. We will only consider criteria that satisfy some
requirements that we would, from a common sense viewpoint, consider rea-
sonable and natural.

Examples of optimality criteria. Pre-ordering is the general formulation of
optimization problems in general, not just of the problem of choosing an
intermediate value operation. In general optimization theory, in which we
are comparing arbitrary alternatives a, b, . . . , from a given set A, the most
frequent case of a pre-ordering is when a numerical criterion is used, i.e., when
a function J : A→ R is given for which a " b if and only if J(a) ≤ J(b).

Various natural numerical criteria can be proposed for choosing the in-
termediate value operations. For example, we could consider cases in which
we are given the class of all distributions classified as possible for the given
problem, and we have “weights” assigned to different distributions from this
class, so that these weights add up to 1. In this case, for some pairs of distri-
butions from this class – characterized by their quantiles x1(α) and x2(α) –
the distribution corresponding to the quantiles x(α) = I(x1(α), x2(α)) also
belongs to the given class. For some other pairs of distributions x1(α) and
x2(α), the distribution corresponding to the x(α) does not belong to the given
class. We can then take, as J(I), the “ratio” (total weight) of such pairs of
distributions for which x(α) also belongs to the given class.

Many other criteria can be proposed. What should be done if there are
several different alternatives that perform equally well? In this case, it makes
sense to choose the alternative for which the computations are the fastest.
This natural idea leads to an optimality criterion that is not describable by a
single numerical optimality criterion J(a): in this case, we need two functions:
J1(a) describes the “ratio”, J2(a) describes the computation time, and a " b
if and only if either J1(a) < J1(b), or J1(a) = J1(b) and J2(a) ≥ J2(b).

We could further specify the described optimality criterion so that it dis-
ambiguates cases where both J1(a) = J1(b) and J2(a) = J2(b) with another
function J3, etc. However, as we have already mentioned, the goal of this pa-
per is not to find a single intermediate value operation that is optimal relative
to some criterion, but to describe all intermediate value operations that are
optimal relative to any of a set of natural optimality criteria. In view of this
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goal, in the following, we will not specify the criterion, but rather describe a
general class of natural optimality criteria.

So, let us formulate what “natural” means.

Which optimality criteria are natural? We have already mentioned that the
values x often come from measurements, and that for such values, changing
the unit of measurement (e.g. from meters to centimeters) multiplies the
measured values by a constant λ. It is natural to require the relative quality
of two intermediate value operations not depend on the choice of units. In
other words, we require that if I is better than I ′, then the “re-scaled” I (i.e.,
Sλ(I)) should be better than the “re-scaled” I ′ (i.e., Sλ(I ′)).

It is also natural to require the optimality criterion to be invariant w.r.t.
shift transformations. In other words, if I is better than I ′, then Ta(I) should
be better than Ta(I ′).

There is one more reasonable requirement for a criterion, based on the
following idea. If the criterion does not select a single optimal intermediate
value operation, i.e., if it considers more than one intermediate value oper-
ations equally good, then we can always use some other criterion to help
select among them, thus designing a two-step criterion. If this new criterion
still does not select a unique intermediate value operation, we can continue
this process as many steps as necessary to get only one optimal intermediate
value operation. Such a multi-step criterion can always be final in this sense.

An optimization approach: definitions and the main result.

Definition 43.2. By an optimality criterion, we mean a pre-ordering (i.e.,
a transitive, reflexive relation) " on the set A.

• An optimality criterion " is called scale-invariant if for all I, I ′, and λ �= 0,
I " I ′ implies Sλ(I) " Sλ(I ′).

• An optimality criterion " is called shift-invariant if for all I, I ′, and a,
I " I ′ implies Ta(I) " Ta(I ′).

• An optimality criterion " is called final if there exists one and only one
intermediate value operation I that is preferable to all the others, i.e., for
which I ′ " I for all I ′ �= I.

Proposition 43.2

• If an intermediate value operation I is optimal w.r.t. some scale-invariant,
shift-invariant, and final optimality criterion, then for some β ∈ [0, 1], the
operation I is described by a formula

I(x1, x2) = β · x1 + (1 − β) · x2.

• For every β ∈ [0, 1], there exists a scale-invariant, shift-invariant, and
final optimality criterion for which the only optimal intermediate value
operation is the operation

I(x1, x2) = β · x1 + (1 − β) · x2.
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Comment. In other words, if the optimality criterion satisfies the above-
described natural properties, then the optimal intermediate value operation
coincides with one of β-operations.

Proofs

Proof of Proposition 43.1. It is easy to check that for every β ∈ [0, 1], the
formula I(x1, x2) = β · x1 + (1 − β) · x2 indeed describes a scale- and shift-
invariant intermediate value operation.

Let us therefore move on to showing that every scale- and shift-invariant
intermediate value operation I(x1, x2) has the above form. Indeed, let I be
such an operation, and let us define β def= I(1, 0).

For arbitrary x1 �= x2, we can apply shift-invariance with a = −x2, and
conclude that

I(x1, x2) = I(x1 − x2, 0) + x2.

Now, scale-invariance with λ = 1/(x1 − x2) implies that

I(x1 − x2, 0) = (x1 − x2) · I(1, 0).

By definition of β, we conclude that

I(x1 − x2, 0) = (x1 − x2) · β

and, because I was given as shift-invariant, that

I(x1, x2) = (x1 − x2) · β + x2.

One can easily see that this expression is exactly equal to β ·x1 +(1−β) ·x2.
So, we have proven that

I(x1, x2) = β · x1 + (1 − β) · x2

for all x1 �= x2.
For x1 = x2, this equality follows from the fact that I is an intermediate

value operation and thus, T (x1, x1) = x1, just like the convex combination
β · x1 + (1 − β) · x2 is equal to x1. The proposition is proven.

Proof of Proposition 43.2. 1. To prove the first part of Proposition 43.2, we
will show that the optimal intermediate value operation Iopt is scale-invariant
and shift-invariant, i.e., that Sλ(Iopt) = Ta(Iopt) = Iopt for all λ �= 0 and a.
Then, the result will follow from Proposition 43.1.

Indeed, let X be either a scale or a shift transformation. Let us first de-
termine the invertibility of these transformations. Indeed:

• if X = Sλ, then X−1 = S1/λ;
• if X = Ta, then X−1 = T−a.
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Now, from the optimality of Iopt, we conclude that for every I ′ ∈ A,
X−1(I ′) " Iopt. From the invariance of the optimality criterion provided
as a given in the proposition statement, we next conclude that I ′ " X(Iopt).
This is true for all I ′ ∈ A and, therefore, the intermediate value operation
X(Iopt) is optimal. But since the criterion is final (as given in the propo-
sition statement), there is only one optimal intermediate value operation;
hence, X(Iopt) = Iopt. So, the optimal intermediate value operation is in-
deed invariant and hence, due to Proposition 1, it coincides with one of the
β-expressions. The first part is proven.

2. Let us now prove the second part of Proposition 2. Let β ∈ [0, 1] be fixed,
and let Iβ be the corresponding intermediate value operation. We will then
define the optimality criterion as follows: I " I ′ if and only if I ′ = Iβ .

Since the intermediate value operation Iβ is scale-invariant and shift-
invariant, the just-defined optimality criterion is also scale-invariant and shift-
invariant. It is also by definition final. The intermediate value operation Iβ is
clearly optimal w.r.t. this scale-invariant, shift-invariant, and final optimality
criterion. The proposition is proven.



44

Beyond Traditional Interval Uncertainty in

Describing Statistical Characteristics: Case of
Interval Bounds on the Probability Density

Function

In the previous chapter, we considered the case when, in addition to knowing
the interval bounds on the cumulative distribution function F (x) (= p-box),
we also know that the function F (x) is smooth. In addition to knowing that
F (x) is smooth – i.e., that its derivative F ′(x) (= a probability density func-
tion) is bounded – we sometimes also know the bounds on F ′(x). Such a
situation is analyzed in this chapter.

We show that in this situations, the exact range of some statistical
characteristics can be efficiently computed. Surprisingly, for some other
characteristics, similar statistical problems which are efficiently solvable for
interval-valued cdf become computationally difficult (NP-hard) for interval-
valued pdf.

The results of this chapter have previously appeared in [354].

Formulation and Analysis of the Problem

Uncertainty in probability. In the traditional statistics, we usually assume
that we know the exact probability distributions.

In general, a probability distribution can be described by a cumulative
probability distribution (cdf) F (x) = Prob(t ≤ x).

A continuous probability distribution can also be described by a proba-
bility density function (pdf) ρ(x). A discrete distribution can be similarly
described by the probabilities p(x) of individual values; however, there are
distributions which cannot be described in this way.

In practice, we usually know the probabilities only with some uncertainty.
It is therefore desirable to take this uncertainty into account when we com-
pute the values of the statistical characteristics.
p-boxes: the most computationally developed approach to handling uncertainty
with which we know the probabilities. Since the cdf corresponds to the most
general case of a probability distribution, most algorithmic efforts in tak-
ing uncertainty into account have been directed towards the case when our
knowledge about the probability distribution is represented by a cdf.

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 367–378.
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In the case of a cdf, uncertainty means that for every x, instead of the exact
value of F (x), we only know the interval of possible values [F (x), F (x)].

Situation when we only know the cdf with interval uncertainty [F (x), F (x)]
is known as a p-box; see, e.g., [97]. For p-boxes, there are efficient algorithms
that compute statistical characteristics such as ranges of moments, ranges
of the cdf for the sum x′ + x′′ of two independent random variables in the
situation when we know the p-boxes for x′ and x′′, etc.

Practical situation: bounds on probabilities. In many practical situations, e.g.,
in climate modeling, we have bounds on the probability density or, in the
discrete case, bounds on the probabilities of individual values; see, e.g., [127]
and [128]. How can we process this uncertainty?

In principle, we can use p-boxes. One possible approach to dealing with
bounds [ρ(x), ρ(x)] on the (unknown) probability density ρ(x) is to find cor-
responding range of the cdf F (x), i.e., to find the (smallest possible) p-box
which contains all probability distributions for which ρ(x) ∈ [ρ(x), ρ(x)].
Once we have this p-box, we can use known methods to estimate the ranges
of different statistical characteristics.

Limitations of using p-boxes: general description. The problem with this ap-
proach is that the p-box estimates are based on the assumption that all
F (x) ∈ [F (x), F (x)] are possible, while we are only interested in cumulative
distribution functions F (x) for which ρ(x) = F ′(x) is bounded by the given
bounds [ρ(x), ρ(x)]. As a result, we often only get an enclosure for the desired
range, an enclosure which has excess width.

Limitations of using p-boxes: example. Let us describe a simple example
where the use of p-boxes leads to excess width. Let us have a discrete random
variable x which can take 3 possible values 1, 2, and 3. We do not know the
exact probabilities p1, p2, and p3 of accessing these values; instead, we only
know the intervals of possible values of these probabilities

p1 = p2 =
[

1
3
− β,

1
3

+ β

]

for some small positive value β ≤ 1
6
. For p3, we do not have separate interval

bounds, only bounds which can be inferred from the bounds on p1 and p2

and the fact that p1 + p2 + p3 = 1.
In this simple example, we are interested in the probability that x = 2.

Of course, based on the known information, we can easily find the interval of
possible value of this probability: it is

p2 =
[

1
3
− β,

1
3

+ β

]

.

Let us show that if we convert to p-boxes, we will instead get an enclosure
with excess width.
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In this discrete situation, a cdf-style description means that we need to
describe two numbers:

F (1) = p1 = Prob(x ≤ 1)

and
F (2) = Prob(x ≤ 2) = p1 + p2.

These two values uniquely determine the resulting cdf:

• for x < 1, we have F (x) = 0;
• for 1 < x < 2, we have F (x) = F (1);
• for 2 < x < 3, we have F (x) = F (2);
• finally, for x ≥ 3, we have F (x) = 1.

Based on the known intervals x1 and p2 of possible values of p1 and p2, we

conclude that the resulting bound on F (1) is F (1) = p1 =
[

1
3
− β,

1
3

+ β

]

and that the resulting bound on F (2) = p1 + p2 is

F (2) = p1 + p2 =
[

1
3
− β,

1
3

+ β

]

+
[

1
3
− β,

1
3

+ β

]

=

[

2
3
− 2β,

2
3

+ 2β
]

(see, e.g., [142]). Thus, the resulting p-box F (x) = [F (x), F (x)] has the fol-
lowing form:

• for x < 1, we have F (x) = [0, 0];
• for 1 ≤ x < 2, we have

F (x) =
[

1
3
− β,

1
3

+ β

]

;

• for 2 ≤ x < 3, we have

F (x) =
[

2
3
− 2β,

2
3

+ 2β
]

;

• finally, for x ≥ 3, we have F (x) = [1, 1].

Based on this p-box information, the probability that x = 2 can be found as
F (2) − F (2 − 0), where F (2 − 0) def= limF (2 − δ), where δ > 0 and δ → 0.
From the p-box information, we conclude that F (2) can take any values from

the interval
[

2
3
− 2β,

2
3

+ 2β
]

and that F (2− 0) can take any value from the

interval
[

1
3
− β,

1
3

+ β

]

. According to interval computations [142, 147, 148]:
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• the largest possible value of the difference

F (2)− F (2 − 0)

is when we subtract the smallest possible value of
F (2 − 0) from the largest possible value of F (2), and

• the smallest possible value of the difference

F (2)− F (2 − 0)

is when we subtract the largest possible value of F (2−0) from the smallest
possible value of F (2).

Thus, we conclude that the resulting interval of possible values of Prob(x = 2)
is

[

2
3
− 2β,

2
3

+ 2β
]

−
[

1
3
− β,

1
3

+ β

]

=
[

1
3
− 3β,

1
3

+ 3β
]

.

This interval has the width of 6β – three times wider than the actual interval
of possible values of p2.

This example shows that if we only use p-boxes, we can get estimates with
excess width.

How can we compute exact ranges: formulation of the problem. It is desir-
able to compute the exact ranges for such characteristics as mean, central
moments, convolution of several distributions (corresponding to the distribu-
tion of the sum of two independent variables), etc.

Efficient algorithms for computing moments: formulation of the problem. In
the discrete case, we know the values x1 < x2 < . . . < xn, we know the
bounds [p

i
, pi] on the (unknown) actual probabilities pi, and we are given an

integer m > 0. Our objective is to find the range for
n
∑

i=1

pi · xm
i under the

constraints pi ∈ [p
i
, pi] and

n
∑

i=1

pi = 1.

This problem is a particular case of a more general problem for which efficient
algorithms are known. To compute these ranges, we can use the fact that a
linear-time algorithm (i.e., an algorithm with an O(n) running time) is known
for a more general problem. Namely, such an algorithm is known for a general

case of computing the range [a, a] of the expected value a =
n
∑

i=1

pi · ai of a

known variable (a1, . . . , an) under the constraints pi ∈ [p
i
, pi] and

n
∑

i=1

pi = 1;

see, e.g., [52] and [132]. The case of moments correspond to ai = xm
i .



44 Interval Bounds on the Probability Density Function 371

Computing the upper endpoint a: analysis. Let us first consider the problem
of computing the maximum a. One can easily show that if for the maximizing
vector (p1, . . . , pn), we have two values pi > p

i
and pj < pj for which ai < aj ,

then, by adding a small value Δ to pj and subtracting this value from pi, we

can get a new vector p′i for which still
∑

p′i = 1 but the value of a =
n
∑

i=1

pi ·a′i
is larger. Thus, for ai < aj , we cannot have pi > p

i
and pj < pj in the

maximizing vector. So, we conclude that we can only have one value k for
which pk ∈ (p

k
, pk).

• For all values ai for which ai < ak, we have pi = p
i
.

• For all values aj for which aj > ak, we have pj = pj .

So, if we sort the values ai in increasing order, then we conclude that for some
k, the maximum is attained for the vector (p

1
, . . . , p

k−1
, pi, pk+1, . . . , pn),

where pk can be determined, from the condition that
n
∑

i=1

pi = 1, as

pk = 1 − p
1
− . . .− p

k−1
− pk+1 − . . .− pn.

The condition that p
k
≤ pk ≤ pk leads to

k−1
∑

i=1

p
i
+

n
∑

j=k

pj ≤ 1 ≤
k
∑

i=1

p
i
+

n
∑

j=k+1

pj .

This condition uniquely determines the desired value k.
The above analysis leads to the following algorithm for computing a.

Computing the upper endpoint a: first algorithm.

• First, we sort the values ai in increasing order; sorting can be done in time
O(n · log(n)); see, e.g., [73].

• Next, we compute the sums corresponding to k = 0; this computation
takes linear time.

• Then, for each k, we need to change two terms to compute the new sums,
so we need linear time for check all possible values of k and find the right
one.

• After this, we can compute the maximizing vector pi and the resulting

upper endpoint a =
n
∑

i=1

pi · ai in linear time.

In general, this algorithm takes O(n · log(n)) +O(n) = O(n · log(n)) time.

Comment. If the values ai are already sorted, then we only need linear time
to compute a. It turns out that we can have a linear-time algorithm in the
general case, when the values ai are not pre-sorted.
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Computing the upper endpoint a: linear-time algorithm. This algorithm is
based on the known fact that we can compute the median of a set of n
elements in linear time (see, e.g., [73]).

The algorithm is iterative. At each iteration of this algorithm we have
three sets:

• the set I− of all the indices i from 1 to n for which we already know that
for the maximizing vector p, we have pi = p

i
;

• the set I+ of all the indices j for which we already know that for the
maximizing vector p, we have pj = pj ;

• the set I = {1, . . . , n} \ (I− ∪ I+) of the indices i for which we are still
undecided.

In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration we
also update the values of two auxiliary quantities E− def=

∑

i∈I−
p

i
and E+ def=

∑

j∈I+
pj . In principle, we could compute these values by computing these sums.

However, to speed up computations on each iteration, we update these two
auxiliary values in a way that is faster than re-computing the corresponding
two sums. Initially, since I− = I+ = ∅, we take E− = E+ = 0.

At each iteration we do the following:

• first, we compute the median m of the set I (median in terms of sorting
by ai);

• then, by analyzing the elements of the undecided set I one by one, we divide
them into two subsets P− = {i : ai ≤ am} and P+ = {j : aj > am};

• we compute e− = E− +
∑

i∈P−
p

i
and e+ = E+ +

∑

j∈P+
pj ;

• If e− + e+ > 1, then we replace I− with I− ∪P−, E− with e−, and I with
P+.

• If e− + e+ +2Δm < 1, then we replace I+ with I+ ∪P+, E+ with e+, and
I with P−.

• Finally, if e− + e+ ≤ 1 ≤ e− + e+ + 2Δm, then we replace I− with
I− ∪ (P− − {m}), I+ with I+ ∪ P+, I with {m}, E− with e− − p

m
,

and E+ with e+.

At each iteration the set of undecided indices is divided in half. Iterations
continue until we have only one undecided index I = {k}. After this we

return, as a, the value of the linear combination
n
∑

i=1

pi ·ai for the vector p for

which pi = p
i

for i ∈ I−, xj = pj for j ∈ I+, and pk = 1 − e− − e+ for the
remaining value k.

Proof that the second algorithm for computing a takes linear time. At each
iteration, computing median takes linear time, and all other operations with
I take time t linear in the number of elements |I| of I: t ≤ C · |I| for some C.
We start with the set I of size n. On the next iteration, we have a set of size
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n/2, then n/4, etc. Thus, the overall computation time is ≤ C · (n + n/2 +
n/4 + . . .) ≤ C · 2n, i.e. linear in n.

How to compute a. It is known that the smallest possible value a of the linear

form
n
∑

i=1

pi · ai under given constraints is equal to −b, where b is the largest

possible value of the form
n
∑

i=1

pi · bi, with bi = −ai. Thus, by using the above

algorithm, we can compute the lower endpoint as well.

Computing convolution: a practically important problem. If we know the dis-
tributions ρ′(x) and ρ′′(x) of two independent random variables x′ and x′′,
then the probability density function ρ(x) for their sum x = x′ + x′′ is de-
scribed by the convolution ρ(x) =

∫

ρ′(z) · ρ′′(x− z) dz.

There exist efficient algorithms for computing convolution of p-boxes. Re-
searchers have analyzed the problem of computing the convolution in situ-
ations when instead of knowing the exact cumulative distribution functions
F ′(x) and F ′′(x), we only know p-boxes [F ′(x), F

′
(x)] and [F ′′(x), F

′′
(x)].

In these situations, we can efficiently compute a p-box for x = x′ + x′′;
see, e.g., [97]. This possibility comes from the fact that for every x, the value
F (x) corresponding to the convolution is a (non-strictly) increasing function
of the values F ′(x′) and F ′′(x′′). Thus:

• to compute the lower endpoint F (x) for the resulting cdf F (x), it is suf-
ficient to compute the convolution of the distributions corresponding to
F ′(x) and F ′′(x);

• similarly, to compute the upper endpoint F (x) for the resulting cdf F (x), it
is sufficient to compute the convolution of the distributions corresponding
to F

′
(x) and F

′′
(x).

Convolution of interval-valued probabilities: general case. In line with our
previous discussions, let us now consider the situation in which, instead of
the p-boxes (i.e., bounds on the cumulative distribution functions), we know
the interval bounds [ρ′(x), ρ′(x)] and [ρ′′(x), ρ′′(x)] of the corresponding prob-
ability distribution functions.

In this case, for every x, we would like to compute the exact range
[ρ(x), ρ(x)] of the convolution

ρ(x) =
∫

ρ′(z) · ρ′′(x− z) dz

when ρ′(x) ∈ [ρ′(x), ρ′(x)] and ρ′′(x) ∈ [ρ′′(x), ρ′′(x)].
Let us prove that this problem is computationally difficult even in the

discrete case, when each of the two variables x′ and x′′ can only takes finitely
many values.
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Convolution of interval-valued probabilities: discrete case. Let us assume that
we have two independent discrete random variables x′ and x′′.

• For the variable x′, we know its possible values x′1, . . . , x
′
n′ and the bounds

[

p′
i
, p′i
]

on the corresponding (unknown) probabilities p′i.
• Similarly, for the variable x′′, we know its possible values x′′1 , . . . , x′′n′′ and

the bounds
[

p′′
j
, p′′j
]

on the corresponding (unknown) probabilities p′′j .

For the sum x = x′ + x′′, we have possible values xij = x′i + x′′j .
The question is to find the ranges p

ij
and pij of possible values of the

corresponding probabilities

pij =
∑

i′,j′:x′
i′+x′′

j′=x′
i+x′′

j

p′i′ · p′′j′ ,

where the values p′i and p′′i satisfy the conditions

p′i ∈
[

p′
i
, p′i
]

, p′′i ∈
[

p′′
i
, p′′i
]

,

n′
∑

i=1

p′i = 1,
n′′
∑

i=1

p′′i = 1.

For interval-valued probabilities, computing convolution is NP-hard. In this
chapter, we prove, that, in contrast to the case of p-boxes, computing the
(endpoints of) the exact range

[

p
ij
, pij

]

of the convolution probabilities pij

is computationally difficult (namely, NP-hard).
To be more precise, we prove two results:

• that the problem of computing the upper endpoint pij of the convolution
if NP-hard, and

• that the problem of computing the lower endpoint p
ij

is also NP-hard.

Proofs

Comment. Our proofs are somewhat similar to the proof of NP-hardness
from [13].

1◦. Our proof is based on reducing, to this problem, a known NP-hard subset
problem, where we are given n positive integers s1, . . . , sn, and we must find

the values εi ∈ {−1, 1} for which
n
∑

i=1

εi · si = 0.

2◦. To each instance s1, . . . , sn of the subset problem, we assign the following
two interval-valued probability distributions x′ and x′′.
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2.1◦. The variable x′ can only take n′ = n values x′1 = 1, . . . , x′i = i, . . . ,
x′n = n. For each i from 1 to n, the corresponding probability p′i can take
any value from the interval

[

p′
i
, p′i
]

=
[

1
n
− β · si,

1
n

+ β · si

]

.

2.2◦. Similarly, the variable x′′ can only take n′′ = n values x′′1 = −1, . . . ,
x′′i = −i, . . . , x′′n = −n. For each i from 1 to n, the corresponding probability
p′′i can take any value from the interval

[

p′′
i
, p′′i
]

=
[

1
n
− β · si,

1
n

+ β · si

]

.

3◦. The value β should be selected in such a way as to guarantee that the

resulting probabilities are always non-negative, i.e., that
1
n
−β · si ≥ 0 for all

i. This requirement is equivalent to β · si ≤ 1
n

, i.e., to β ≤ 1
n · si

. This must

hold for all i, so we must make sure that β does not exceed the smallest of
these values – i.e., the value corresponding to the largest si. Thus, we can
take

β =
1

n · max
i
si
.

4.1◦. In this case, for every i, the (unknown) actual probability p′i can be
described as

p′i =
1
n

+ β ·Δ′
i,

where Δ′
i

def= p′i −
1
n

can take any value from the interval [−si, si].

4.2◦. Similarly, for every i, the (unknown) actual probability p′′i can be de-
scribed as

p′′i =
1
n

+ β ·Δ′′
i ,

where Δ′′
i

def= p′′i −
1
n

can take any value from the interval [−si, si].

5.1◦. In terms of the auxiliary variables Δ′
i, the requirement that

n
∑

i=1

p′i = 1

means that
n
∑

i=1

(

1
n

+ β ·Δ′
i

)

= 1,

i.e., that 1 +
n
∑

i=1

Δ′
i = 1 and

n
∑

i=1

Δ′
i = 0.
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5.1◦. Similarly, the requirement that
n
∑

i=1

p′′i = 1 means that

n
∑

i=1

(

1
n

+ β ·Δ′′
i

)

= 1,

i.e., that 1 +
n
∑

i=1

Δ′′
i = 1 and

n
∑

i=1

Δ′′
i = 0.

6◦. Let us now find the range of possible values for the probability that the
sum x = x′ + x′′ is equal to 0.

The value 0 can be obtained if x′ = i and x′′ = −i for the same value i.
Thus, the desired probability is equal to

p11 =
n
∑

i=1

p′i · p′′i .

Substituting the expressions p′i =
1
n

+ β ·Δ′
i and p′′i =

1
n

+ β ·Δ′′
i into this

formula, we get

p11 =
n
∑

i=1

(

1
n

+ β ·Δ′
i

)

·
(

1
n

+ β ·Δ′′
i

)

.

Here,
(

1
n

+ β ·Δ′
i

)

·
(

1
n

+ β ·Δ′′
i

)

=

(

1
n

)2

+
1
n
· β ·Δ′

i +
1
n
· β ·Δ′′

i + β2 ·Δ′
i ·Δ′′

i .

Therefore, we conclude that

p11 =
n
∑

i=1

(

1
n

)2

+
n
∑

i=1

1
n
· β ·Δ′

i +
n
∑

i=1

1
n
· β ·Δ′′

i +

n
∑

i=1

β2 ·Δ′
i ·Δ′′

i .

By moving constant factors outside the sum, we get:

p11 =
(

1
n

)2

·
n
∑

i=1

1 +
1
n
· β ·

n
∑

i=1

Δ′
i +

1
n
· β ·

n
∑

i=1

Δ′′
i +

β2 ·
n
∑

i=1

Δ′
i ·Δ′′

i .
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The first sum is equal to
(

1
n2

)

· n =
1
n

. The second and the third sums are

equal to 0 since
n
∑

i=1

Δ′
i = 0 and

n
∑

i=1

Δ′′
i = 0. Thus, we conclude that

p11 =
1
n

+ β2 ·
n
∑

i=1

Δ′
i ·Δ′′

i .

7◦. Let us prove that the number
1
n

+ β2 ·
n
∑

i=1

s2i is a possible value of p11 if

and only if the original instance of a subset problem has a solution.
This will prove that the problem of computing the upper endpoint p11 of

the range of p11 is NP-hard.

7.1◦. Indeed, if the original instance has a solution ε for which
n
∑

i=1

εi · si = 0,

then we can take Δ′
i = Δ′′

i = εi · si and get

p11 =
1
n

+ β2 ·
n
∑

i=1

s2i .

7.2◦. Vice versa, let us assume that the number
1
n

+ β2 ·
n
∑

i=1

s2i is a possible

value of p11. Let us prove that in this case, the original instance of the subset
problem has a solution.

Indeed, since |Δ′
i| ≤ si and |Δ′′

i | ≤ si, we always have |Δ′
i ·Δ′′

i | ≤ s2i and
hence Δ′

i ·Δ′′
i ≤ s2i .

So, the only possibility to have

p11 =
1
n

+ β2 ·
n
∑

i=1

Δ′
i ·Δ′′

i =
1
n

+ β2 ·
n
∑

i=1

s2i

is to have Δ′
i ·Δ′′

i = s2i for all i – otherwise, we would have

p11 =
1
n

+ β2 ·
n
∑

i=1

Δ′
i ·Δ′′

i <
1
n

+ β2 ·
n
∑

i=1

s2i .

If |Δ′
i| < si or |Δ′′

i | < si, then we have |Δ′
i·Δ′′

i | < s2i and henceΔ′
i·Δ′′

i < s2i .
So, the only way to have Δ′

i ·Δ′′
i = s2i is to have |Δ′

i| = si and |Δ′′
i | = si. So,

we have Δ′
i = ±si, i.e., Δ′

i = εi · si for some value εi ∈ {−1, 1}.
The fact that

n
∑

i=1

Δ′
i = 0 implies that

n
∑

i=1

εi · si = 0. So, the values εi form

a solution to the original instance of the subset problem.
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7.3◦. The reduction is proven, and so the problem of computing the up-
per endpoint pij of the convolution is indeed NP-hard in case of interval
uncertainty.

8◦. Let us prove that the number
1
n
− β2 ·

n
∑

i=1

s2i is a possible value of p11 if

and only if the original instance of a subset problem has a solution.
This will prove that the problem of computing the lower endpoint p

11
of

the range of p11 is also NP-hard.

8.1◦. Indeed, if the original instance has a solution ε for which

n
∑

i=1

εi · si = 0,

then we can take Δ′
i = εi · si and Δ′′

i = −εi · si, and get

p11 =
1
n
− β2 ·

n
∑

i=1

s2i .

8.2◦. Vice versa, let us assume that the number
1
n
− β2 ·

n
∑

i=1

s2i is a possible

value of p11. Let us prove that in this case, the original instance of the subset
problem has a solution.

Indeed, since |Δ′
i| ≤ si and |Δ′′

i | ≤ si, we always have |Δ′
i ·Δ′′

i | ≤ s2i and
hence Δ′

i ·Δ′′
i ≥ −s2i .

So, the only possibility to have

p11 =
1
n

+ β2 ·
n
∑

i=1

Δ′
i ·Δ′′

i =
1
n
− β2 ·

n
∑

i=1

s2i

is to have Δ′
i ·Δ′′

i = −s2i for all i – otherwise, we would have

p11 =
1
n

+ β2 ·
n
∑

i=1

Δ′
i ·Δ′′

i >
1
n

+ β2 ·
n
∑

i=1

s2i .

If |Δ′
i| < si or |Δ′′

i | < si, then we have |Δ′
i ·Δ′′

i | < s2i and hence Δ′
i ·Δ′′

i >
−s2i . So, the only way to have Δ′

i · Δ′′
i = −s2i is to have |Δ′

i| = si and
|Δ′′

i | = si. So, we have Δ′
i = ±si, i.e., Δ′

i = εi ·si for some value εi ∈ {−1, 1}.
The fact that

n
∑

i=1

Δ′
i = 0 implies that

n
∑

i=1

εi · si = 0. So, the values εi form

a solution to the original instance of the subset problem.
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Beyond Interval Uncertainty in Describing

Statistical Characteristics: Case of Normal
Distributions

In the previous two chapters, we considered the case when, in addition to the
bounds on the cumulative distribution function F (x), we also have additional
information about F (x) – e.g., we know that F (x) is smooth (differentiable),
and we know the bounds on the derivative of F (x). Sometimes, we have even
more information about F (x); we may even know the analytical expression
for F (x) – with the parameters which are only known with uncertainty. For
example, in practice, when the observed signal is caused by a joint effect of
many small components, it is reasonable to assume that the distribution is
normal – but the parameters of this normal distribution are only known with
uncertainty. Such a situation is analyzed in this chapter.

In traditional statistical analysis, if we know that the distribution is nor-
mal, then the most popular way to estimate its mean a and standard devia-
tion σ from the data sample x1, . . . , xn is to equate a and σ to the arithmetic
mean and sample standard deviation of this sample. After this equation, we

get the cumulative distribution function F (x) = Φ

(

x− a

σ

)

of the desired

distribution.
In many practical situations, we only know intervals [xi, xi] that contain

the actual (unknown) values of xi or, more generally, a fuzzy number that
describes xi. Different values of xi lead, in general, to different values of F (x).
In this chapter, we show how to compute, for every x, the resulting interval
[F (x), F (x)] of possible values of F (x).

The results of this chapter first appeared in [357].

Formulation and Analysis of the Problem

Formulation of the problem. In many real-life situations, the actual distribu-
tion is normal (Gaussian). It is known that a normal distribution is uniquely
determined by its mean a and its standard deviation σ. Usually, a cumulative
distribution function corresponding to the distribution (cdf) with 0 mean and

H.T. Nguyen et al.: Computing Stat. under Interval & Fuzzy Uncertain., SCI 393, pp. 379–389.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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standard deviation 1 is denoted by Φ(x). In terms of this function Φ(x), the
cdf F (x) of a general normal distribution has the form

F (x) = Φ

(

x− a

σ

)

. (45.1)

To find the cdf, we must therefore estimate the (unknown) parameters a and
σ from the (known) sample values x1, . . . , xn. In traditional statistical data
processing, one of the most widely used methods for estimating a and σ is
the method of moments, when we find the mean and variance of the data,
i.e., the values

a =
1
n
·

n
∑

i=1

xi, σ2 =
1
n
·

n
∑

i=1

(xi − a)2 =
1
n
·

n
∑

i=1

x2
i − a2,

and consider the normal distribution with these values a and σ as “fitted” to
the data x1, . . . , xn; see, e.g., [305, 337].

Case of interval uncertainty. In practice, instead of the exact values xi of the
sample, we often only know the intervals xi = [xi, xi] of possible values of
xi. Different values of xi ∈ xi lead, in general, to different values of a and σ

and thus, for every x, to different values of the cdf F (x) = Φ

(

x− a

σ

)

. It is

therefore desirable to find the interval [F (x), F (x)] of possible values of the
cdf, i.e., in terms of [97], to find a p-box that contains all possible cumulative
distribution functions.

What is known. Since the value of F (x) is determined by the values of the
mean a and of the standard deviation σ, it is reasonable to first analyze the
intervals of possible values for a and for σ. For a, the interval of possible
values is easy to describe: since the average is an increasing function of all its
variables, its minimum is attained when all xi takes their smallest values xi,
and the maximum is attained when all its variables take their largest values
xi; as a result, we get the interval [a, a], where

a =
1
n
·

n
∑

i=1

xi, a =
1
n
·

n
∑

i=1

xi.

For standard deviation, the problem of computing the corresponding interval
[σ, σ] is, as we have mentioned, NP-hard. Crudely speaking, this means that
unless it turns out that P=NP (which few computer scientists believe), every
algorithm that computes this interval exactly in all cases takes time which
grows at least exponentially with n. Actually, exponential time is sufficient:
we can compute the upper endpoint σ if we consider all 2n possible combi-
nations of the values xi and xi, i.e., all the corners of the n-dimensional box
[x1, x1] × . . .× [xn, xn].
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In some practically important cases, there exist efficient algorithms whose
running time grows only polynomially with n. For example, such algorithms
are possible in the “no-nesting” case when no two intervals [xi, xi] and [xj , xj ]
(i �= j) are proper subset of one another in the sense that [xi, xi] �⊆ (xj , xj).

In principle, we can use the resulting bounds [a, a] on a and [σ, σ] on σ

to produce bounds on the ratio
x− a

σ
and thus, on the desired cumulative

distribution function (cdf) F (x). However, the values a and σ are dependent
in the sense that not all combinations of a ∈ [a, a] and σ ∈ [σ, σ] are possible;
as a result, these bounds contain excess width – a typical situation when
computations with intervals ignore dependence (see, e.g., [142]).

How can we compute the exact bounds on F (x)? The closest to this are the

algorithms from [187] which produce bounds for the absolute value
|x− a|
σ

of the desired ratio.
What we plan to do. In this chapter, we show how to compute the desired
p-box, i.e., the exact bounds for the normal F (x) under interval data.
Reducing the problem to computing the ratio. The above cdf Φ(x) of a
“standard” normal distribution is a strictly increasing function. Thus, for
every x, the interval [F (x), F (x)] of possible values of the the quantity

F (x) = Φ

(

x− a

σ

)

can be computed as [Φ(r(x)), Φ(r(x))], where [r(x), r(x)]

is the interval of possible values of the ratio r def=
x− a

σ
. Thus, to compute

the desired p-box, it is sufficient to compute this interval [r(x), r(x)].
Comment. To make the following text easier to read, we will write r instead
of r(x) and r instead of r(x). A reader should keep in mind, however, that
for different x, generally, we get different bounds r and r.
The need to consider the signs: informal explanation. We have already men-
tioned that we know how to compute the bounds on the absolute value |r|
of the ratio r; see, e.g., [187]. The absolute value can be equal either to the
ratio itself or to −r. Here:

• If r ≥ 0 and |r| = r, then, e.g., the maximum of |r| is the same as the
maximum of r.

• On the other hand, if r < 0 and |r| = −r, then the maximum of the
absolute value may correspond to the minimum of r.

So, to apply the results and techniques from [187] to our problem, we must
first analyze the signs of the corresponding extreme values r and r.
Signs of the bounds r and r. In view of the above, it is reasonable to first
find out the signs of the bounds r and r of the desired interval.
Proposition 45.1

• For x ≤ a, we have r ≤ r ≤ 0.
• For a < x < a, we have r < 0 < r.
• For x ≥ a, we have 0 ≤ r ≤ r.
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General idea: using basic facts about derivatives. Let us fix the value x. For
this x, each tuple (x1, . . . , xn) from the box B

def= x1 × . . . . . .xn leads, in
general, to a different value of the ratio r. The ratio is a continuous function
of (x1, . . . , xn); thus, both its smallest and its largest values are attained at
some tuple. (To be more precise, we first have to add −∞ and +∞ to the
set of possible values of r to take care of the possibility that σ = 0.)

Let (xM
1 , . . . , xM

n ) be a tuple at which the ratio r attains its largest pos-
sible value. If we fix all the values except one xi, then we conclude that
the corresponding function r(xM

1 , . . . , xM
i−1, xi, x

M
i+1, . . . , x

M
n ) also attains its

maximum for xi = xM
i . There are three possible cases:

• If the ratio r attains its maximum at xi ∈ (xi, xi), then, according to

calculus, we should have
∂r

∂xi
= 0 at this point.

• If r attains its maximum at xi = xi, then the derivative
∂r

∂xi
at this point

cannot be positive – else we would have even larger values for xi > xi;

thus, we should have
∂r

∂xi
≤ 0.

• Similarly, if r attains its maximum at xi = xi, then at this point,
∂r

∂xi
≥ 0.

For the point (xm
1 , . . . , x

m
n ) at which the ratio r attains its minimum, we

similarly have three cases for each i:

• If the ratio r attains its minimum for xi ∈ (xi, xi), then
∂r

∂xi
= 0.

• If r attains its minimum at xi = xi, then
∂r

∂xi
≥ 0.

• Finally, if r attains its minimum at xi = xi, then at this point,
∂r

∂xi
≤ 0.

The corresponding analysis leads to the following algorithm. In this algo-
rithm, we assumed that the value x is given. If we need to find the range
[F (x), F (x)] for several different values x, we need to repeat this algorithm
for each of these values x.

Algorithm A1. In this algorithm, we consider all possible partitions of the
set of indices {1, . . . , n} into three disjoint subsets I−, I+, and I0. For each
subdivision we set xi = xi for i ∈ I− and xi = xi for i ∈ I+. When I0 �= ∅,
we set the values xi for i ∈ I0 as follows:

• We compute the values

ã =
∑

i∈I−
xi +

∑

j∈I+

xj , m̃ =
∑

i∈I−
(xi)

2 +
∑

j∈I+

(xj)2.

• We find the value a from the quadratic equation

m̃+
1
N0

· (n · a− ã)2 = n ·
(

a− n · a− ã

N0

)

· (x− a) + n · a2,
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where N0 is the number of elements in the set I0, and then compute a0 =
n · a− ã

N0
.

• If this quadratic equation does not have any real solutions, or if it does but
the corresponding value a0 does not belong to all intervals xi with i ∈ I0,
then we skip this partition and go to the next one.

• For each solution a0 that belongs to all the intervals xi, i ∈ I0, we set

xi = a0 for i ∈ I0 and compute σ =
√

(a− a0) · (x− a) and r =
x− a

σ
.

The smallest of these values r is returned as r, and the largest is returned as
r. Then, we compute the desired p-box as [Φ(r), Φ(r)].

Proposition 45.2. The above algorithm always computes the exact range

[F (x), F (x)] (45.1)

of the normal cdf under interval uncertainty.

Comments.

• For each of n indices i, we have 3 choices: we can assign this index to
I−, to I+, and to I0. For a single index, we have 3 possible assignments;
for two indices, we have 3 · 3 = 22 possible assignments; in general, for n
indices, we have 3n possible assignments. Thus, this algorithm takes an
exponential number of computational steps which grows with n as 3n.

• In this algorithm, the values xi at which the minimum and the maximum
of r are assigned depend, in general, on the value x at which we estimate
F (x). So, in general, to find the range [F (x), F (x)] at Np points x, we have
to repeat this algorithm Np times.

Some bounds can be computed faster. It turns out that some of the bounds
can be computed in polynomial time, namely, the upper bound r for x ≥ a
and the lower bound r for x ≤ a.

Algorithm A2. To find r for x ≥ a, we do the following:

• First, we sort all 2n values xi and xi into a non-decreasing sequence
x(1) ≤ x(2) ≤ . . . ≤ x(2n). Thus, we subdivide the real line into 2n + 1
zones [x(0), x(1)], [x(1), x(2)], . . . , [x(2n−1), x(2n)], [x(2n), x(2n+1)], where we

denoted x0
def= −∞ and x(2n+1)

def= +∞.
• For each zone [x(k), x(k+1)], we partition indices i = 1, . . . , n into three sets

I− = {i : x(k+1) ≤ xi}, I+ = {i �∈ I− : x(k) ≥ xi},

I0 = {1, . . . , n} − I− − I+.

Based on this partition, we compute ã, m̃, a, and a0 as in AlgorithmA1. For
each value a0 which is within the zone, we compute σ =

√

(a− a0) · (x− a)

and r =
x− a

σ
.

• The largest of the resulting values r is the desired r.
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Comment. To find r for x ≤ a, we perform the same computations, with the
only difference that at the end, instead of finding the largest of the resulting
values r, we find the smallest of these values.

Proposition 45.3. The above algorithms always computes the exact bound
r for x ≥ a and r for x ≤ a, and they take quadratic time O(n2).

Efficient algorithm for the no-nesting case. Let us show that in a no-nesting
case, when no two intervals are nested, i.e., when [xi, xi] �⊆ (xj , xj) for all
i �= j. In this case, we can compute the remaining bounds r for x > a and r
for x < a also in polynomial time.

It is known that intervals which satisfy the no-nesting property can be
ordered in “lexicographic” order, i.e., the order in which [xi, xi] < [xj , xj ] if
and only if either xi < xj or (xi = xj and xi ≤ xj); see, e.g., [188, 197].
With respect to this order, both sequences xi and xi become monotonic:
x1 ≤ x2 ≤ . . . ≤ xn and x1 ≤ x2 ≤ . . . ≤ xn. We have used this order in our
previous algorithms [188, 197], and we will use it here as well.

Algorithm A3. To find r for x > a, we do the following:

• First, we sort all n intervals [xi, xi] in the lexicographic order. As a result,
we get two monotonic sequences

x1 ≤ x2 ≤ . . . ≤ xn, x1 ≤ x2 ≤ . . . ≤ xn.

• For every n− from 1 to n, we consequently compute
n−
∑

i=1

xi and m̃ =

n−
∑

i=1

(xi)
2: we start with 0 and we consequently add, correspondingly, xi

or (xi)
2.

• For every n+ from 1 to n + 1, we consequently compute
n
∑

i=n++1

xi and

m̃ =
n
∑

i=n++1

(xi)2: we start with 0 for n+ = n + 1 and then we take

n+ = n, n− 1, . . . , 1 by consequently adding, correspondingly, xi or (xi)2.
• For every two natural numbers n− and n+ for which 0 ≤ n− < n+ ≤ n+1,

we do the following:
• We compute the values N0 = n− n− − (n+ 1 − n+) and

ã =
n−
∑

i=1

xi +
n
∑

j=n+

xj , m̃ =
n−
∑

i=1

(xi)
2 +

n
∑

j=n+

(xj)2.
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• We find the value a from the same quadratic equation

m̃+
1
N0

· (n · a− ã)2 =

n ·
(

a− n · a− ã

N0

)

· (x− a) + n · a2,

as in Algorithm A1 (with N0 = n+ − n− − 1), and then compute a0 =
n · a− ã

N0
.

• If this quadratic equation does not have any real solutions, or if it
does but the corresponding value a0 does not belong to the interval
[xn+−1, xn−+1], then we skip this partition and go to the next one.

• For each solution a0 which belongs to the interval [xn+−1, xn−+1], we

compute σ =
√

(a− a0) · (x− a) and r =
x− a

σ
.

• The smallest of the resulting values r is the desired r.

Comments. To find r for x < a, we perform the same computations, with the
only difference that at the end, instead of finding the smallest of the resulting
values r, we find the largest of these values.

Proposition 45.4. The above algorithms always computes the exact bound
r for x > a and r for x < a, and they take quadratic time O(n2).

Proofs

Proof of Proposition 45.1. We know that the mean a can take any values
from the interval [a, a]. When x ≤ a, this means that the value x − a is
always non-positive. Since the standard deviation σ is always non-negative,

the ratio
x− a

σ
is also non-positive. Therefore, both the smallest and the

largest values of this ratio are non-positive: r ≤ 0 and r ≥ 0.
Similarly, when x ≥ a, we have x−a ≥ 0, hence the ratio r is non-negative

and its bounds are also non-negative.
When a < x < a, the difference x − a can take both positive values (e.g.,

when x = a) and negative values (e.g., when x = a). Thus, the ratio r can
also be both positive and negative. Hence, the largest possible value of this
ratio is positive, and the smallest possible value of this ratio is negative.

Proof of Proposition 45.2.

1◦. Within each interval [xi, xi], the value xi corresponding to the optimal
tuple can be either at the left endpoint xi or at the right endpoint xi, or inside
the interval (xi, xi). Let us denote the set of all indices for which xi = xi by
I−, the set of all indices for which xi = xi by I+, and the set of all remaining
indices by I0.
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2◦. According to the arguments described before the formulation of this

proposition, for every i, either xi = xi or xi = xi, or
∂r

∂xi
= 0. Let us

therefore describe an explicit formula for this derivative.

2.1◦. Since r is defined in terms of a and σ, let us first find the formulas for
the derivatives of a and σ.

Since a =
1
n
·

n
∑

i=1

xi, we have
∂a

∂xi
=

1
n

. Since σ =
√
V , where

V
def=

1
n
·

n
∑

i=1

(xi − a)2 =
1
n
·

n
∑

i=1

x2
i − a2,

we have
∂σ

∂xi
=

1
2σ

· ∂V
∂xi.

.

Here,
∂V

∂xi
=

2
n
· xi − 2a · ∂a

∂xi
=

2
n
· (xi − a).

Therefore, we have
∂σ

∂xi
=

1
n · σ · (xi − a).

2.2◦. Now, we are ready to compute the desired derivative. Here,

∂r

∂xi
=

∂

∂xi

(

x− a

σ

)

=
− ∂a

∂xi
· σ − (x− a) · ∂σ

∂xi

σ2
.

In view of the analysis that preceded the formulation of this proposition, we

are only interested in the sign of the derivative
∂r

∂xi
. Since the denominator

σ2 of the expression describing this derivative is always non-negative, this
sign coincides with the sign of the numerator

Ni
def= − ∂a

∂xi
· σ − (x− a) · ∂σ

∂xi
.

Substituting the above expressions for
∂a

∂xi
and

∂σ

∂xi
into this formula, we

conclude that
Ni = − 1

n
· σ − (x− a) · 1

n · σ · (xi − a).

We can simplify this expression even further if we multiply it by n ·σ – which

also does not change the signs. Thus, the sign of the desired derivative
∂r

∂xi

coincides with the sign of the product pi
def= n · σ ·Ni, which is equal to
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pi = −(xi − a) · (x− a) − σ2.

3◦. The only possibility for xi to be inside the interval (xi, xi) is to have
pi = 0. Dividing both sides by x − a, we conclude that xi = a0, where we
denoted

a0
def= a− σ2

x− a
.

Thus, all the values xi with i ∈ I0 have exactly the same value a0.
Once we know the partition into the sets I−, I+, and I0, we also know the

values xi for i ∈ I− and i ∈ I+. To find the values xi for i ∈ I0, we need to
find the value a0.

4◦. By definition of the sample mean a, the sum of all n values xi is equal to
n · a, i.e.,

∑

i∈I−
xi +

∑

i∈I+

xi +N0 · a0 = n · a.

The sum of the first two sums is what we denoted by ã; so, we conclude that
ã+N0 · a0 = n · a and hence, that

a0 =
n · a− ã

N0
. (45.2)

Since a0 = a− σ2

x− a
, we conclude that

σ2 = (a− a0) · (x− a) =
(

a− n · a− ã

N0

)

· (x− a). (45.3)

By definition of the sample variance, we have
n
∑

i=1

x2
i = n · a2 + n · σ2, i.e.,

∑

i∈I−
(xi)

2 +
∑

i∈I+

(xi)2 +N0 · a2
0 = n · a2 + n · σ2.

The sum of the first two sums is what we denoted by m̃; so, we conclude that
m̃ +N0 · a2

0 = n · a2 + n · σ2. Substituting the expressions (45.2) and (45.3)
for a0 and σ2 into this formula, we get the quadratic equation given in the
algorithm.

So, the optimal solution is indeed among those processed by the algorithm.
The proposition is proven.

Proof of Proposition 45.3.

1◦. We have already proven that the sign of the desired derivative
∂r

∂xi
coin-

cides with the sign of the product pi = −(xi − a) · (x − a) − σ2. According
to Proposition 45.1, when we are looking for r and x ≥ a, then x− a ≥ 0. In
this case, the sign of pi coincides with the sign of the ratio
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ri
def=

pi

x− a
= a0 − xi.

So we make the following conclusions:

(i) If the maximum r is attained for xi ∈ (xi, xi), then (the derivative is 0
hence) xi = a0.

(ii) If the maximum is attained for xi = xi, then (the derivative is non-
positive hence) xi ≥ a0.

(iii) Finally, if the maximum is attained for xi = xi, then (the derivative is
non-negative hence) xi ≤ a0.

Therefore, if a0 < xi, then we cannot have the case (i) when xi ≤ xi = a0

and we cannot have the case (iii) when xi ≤ xi ≤ a0, so we must have case
(ii), i.e., we must have xi = xi.

Similarly, if a0 > xi, then our only option is xi = xi, and if xi ≤ a0 ≤ xi,
then our only option is xi = a0. Thus, as soon as we know the location of the
value a0 in comparison to the bounds xi and xi – i.e., as soon as we know the
zone which contains ai – we can (almost) uniquely determine the values xi

for all xi – with the only additional problem that we still need to determine
the value a0. We already described, in Algorithm A1, how we can find a0.

The case of r for x ≤ a is handled similarly.

2◦. To complete the proof, it is sufficient to show that these algorithms take
quadratic time. Indeed, in addition to sorting (time O(n · log(n))), this al-
gorithm takes linear time for each of 2n + 1 zones. So, overall, we perform
O(n2) computational steps. The proposition is proven.

Proof of Proposition 45.4.

1◦. We have already proven that in the optimal tuple, each value of xi is
either equal to xi or to xi, or to a common value a0. Let us now prove that
in the no-nesting case, we can also assume that the optimal sequence xi is
monotonic, i.e., x1 ≤ x2 ≤ . . . ≤ xn.

Indeed, let us assume that in the optimal sequence, we have xi > xj for
some i < j. Here, we have xi ≤ xi ≤ xi, xj ≤ xj ≤ xj , and, since i < j, we
also have xi ≤ xj and xi ≤ xj . Let us show that in this case, xi ∈ xj and
xj ∈ xi.

Indeed, from xi ≤ xi and xi ≤ xj , we conclude that xi ≤ xj . Similarly, from
xj ≤ xj and xj < xi, we conclude that xi < xj . Thus, indeed xi ∈ [xi, xi].
Similarly, we have xi ∈ [xi, xi].

Because of these two inclusions, we can “swap” the values xi and xj , i.e.,
produce a new tuple in which xnew

i = xj and xnew
j = xi. The values of sample

mean a and sample standard deviation σ do not change if we simply swap
two values. So, for this new tuple, we can the exact same values of a, σ and
therefore, the same value of the ratio r. Since the original tuple maximized
r, the new tuple is also maximizing r.

By repeating this swapping sufficiently many times, we will get a mono-
tonic optimizing tuple.
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2◦. Let us now prove that if in the optimal solution, we have xi > xi and
xj < xj , then we should have xi ≥ xj .

Indeed, in this case, for sufficiently small h > 0, we can simultaneously do
the following:

• decrease xi by h, i.e., replace it with xnew
i = xi − h, and

• increase xj by h, i.e., replace it with xnew
j = xj + h,

and still keep both values xi and xj within the corresponding intervals [xi, xi]
and [xj , xj ].

Since the value of r was originally the smallest, it cannot decrease under
this replacement. After the replacement, the sum

∑

xi does not change hence
the average a does not change, and the value of the numerator x−a > 0 does
not change either.

The value of σ2 =
1
n
·
∑

x2
i − a2 changes since two terms change: x2

i to

(xi − h)2 = x2
i − 2h · xi + o(h) and x2

j to (xj + h)2 = x2
j + 2h · xj + o(h).

Thus, overall, σ2 is replaced with σ2 +
2h
n

· (xj − xi) + o(h). We cannot have
an increase in σ – that would lead to an impossible decrease of r below it
smallest value. Thus, the new value of σ2 cannot be larger than its original
value. In other words, we must have

σ2 +
2h
n

· (xj − xi) + o(h) ≥ σ2.

Subtracting σ2 from both sides and dividing both sides by h ≥ 0, we conclude
that xj − xi + o(1) ≤ 0. In the limit h → 0, we get the desired inequality
xj ≤ xi.

3◦. So, in the optimal tuple, every value xi = xi must precede every value
xj = xj , and all the values xi = a0 ∈ (xi, xi) must be in between. Due to
monotonicity, we therefore conclude that first we have a sequence of several
values xi, then several values equal to a0, and after that, several values equal
to xj . This is exactly the type of solution we analyze in the algorithm.

For each selection of n− and n+, we need to check whether the value a0

is indeed contained in all the corresponding intermediate intervals [xi, xi] for
i = n− + 1, . . . , n+ − 1. Since the sequence xi is increasing, it is sufficient to
check the inequality a0 ≥ xi only for the largest of these bounds, i.e., for the
bound xn+−1. Similarly, since the sequence xi is increasing, it is sufficient to
check the inequality a0 ≤ xi only for the smallest of these bounds, i.e., for
the bound xn−+1. Thus, the algorithm is justified.

4◦. To complete the proof, it is sufficient to show that the algorithm A3 takes
quadratic time. Indeed, in addition to sorting (time O(n · log(n))) and linear
time for computing the sums

∑

xi,
∑

(xi)
2,
∑

xi,
∑

(xi)2, we need a constant
time for each of n2 pairs of indices – i.e., O(n2) computational steps overall.
The proposition is proven.
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Beyond Traditional Fuzzy Uncertainty:

Interval-Valued Fuzzy Techniques

For fuzzy information, we assumed that we have exact numerical degrees
describing expert uncertainty. This is, of course, a simplifying assumption.
In practice, an expert can, at best, provide bounds (i.e., an interval) or his
or her degree of certainty – or even produce a fuzzy degree of certainty (such
as “about 0.6”). Situations with interval-valued fuzzy degrees are analyzed
in this chapter, and the situations with more general fuzzy-valued degrees
(called type 2) are analyzed in the next chapter.

Intervals are necessary to describe degrees of belief. In the previous text, we
described an idealized situation, in which we can describe degrees of belief by
exact real numbers. In practice, the situation is more complicated, because
experts cannot describe their degrees of belief precisely; see, e.g., [251] and
references therein.

Indeed, let us start by reviewing the above-described methods of eliciting
degrees of belief. If an expert describes his or her degree of belief by selecting,
e.g., 8 on a scale from 0 to 10, this does not mean that his or her degree of
belief is exactly 0.8: if instead, we ask him or her to select on a scale from
0 to 9, then whatever he or she chooses, after dividing it by 9, we will never
get 0.8. If an expert chooses a value 8 on a 0 to 10 scale, then the only thing
that we know about the expert’s degree of belief is that it is closer to 8 than
to 7 or to 9, i.e., that this degree of belief belongs to the interval [0.75, 0.85].

Another possible source of interval uncertainty is when we have several
experts, and their estimates differ. If, e.g., two equally good experts point
to 7 and 8, then, if we are cautious, we would rather describe the resulting
degree of belief as the interval [0.7, 0.8] (or, in view of the above remark, as
the interval [0, 65, 0.85]).

If we determine the degree of belief by polling, then the same argument
shows that the resulting numbers are not precise: e.g., if 8 out of 10 experts
voted for A, then we cannot say that the actual degree of belief is exactly
0.8, because, if we repeated this procedure with 9 experts, we will never get
exactly 0.8. In this case, there are two other sources of uncertainty: First,
picking experts is sort of a random procedure, so, the result of voting is a
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statistical estimate that is not precise (just like a statistical frequency es-
timate of probability). A better description will be to give an interval of
possible values of d(A).

The polling method of estimating the degree of belief is based on the
assumption that an expert can always tell whether he believes in a given
statement S or not. Then, we take the ratio d(S) = N(S)/N of the number
N(S) of experts who believe in S to the total number N of experts as the
desired estimate. For ¬S, we thus have N(¬S) = N − N(S), so d(¬S) =
N(¬S)/N = 1 − d(S). In reality, an expert is often unsure about S. In this
case, instead of dividing the experts into two categories: those who believe
in S and those who do not, we must divide them into three categories: those
who believe that S is true (we will denote their number by N(S)), those who
believe that S is false (we will denote their number by N(¬S)), and those
who do not have the definite opinion about S; there are N−N(S)−N(¬S) of
them. In this situation, one number is not sufficient to describe the experts’
degree of belief in S, we need at least two. There are two ways to describe it:
We can describe the degree of belief in S as d(S) = N(S)/N and the degree
of belief in ¬S as d(¬S) = N(¬S)/N . These two numbers must satisfy the
condition d(S) + d(¬S) ≤ 1. This description is known as intuitionistic fuzzy
logic. (The reason for the word “intuitionistic” is that this logic is close to
the original intuitionistic idea that the law of excluded middle is not always
true.)

Alternatively, we can describe the degree of belief d(S) in S and the degree
of plausibility of S estimating as the fraction of experts who do not consider
S impossible, i.e., as pl(S) = 1− d(¬S), i.e., as an interval [d(S), pl(S)]. This
representation corresponds to the Dempster-Shafer formalism.

So, to describe degrees of belief adequately, we must use intervals instead
of real numbers.

Interval computations for processing interval-valued degrees of belief: general
idea. For an expert system with interval-valued degrees of belief, the following
problem arises: suppose that we have an expert system whose knowledge base
consists of statements S1, . . . , SN , and we have an algorithm f(Q, d1, . . . , dN )
(called inference engine) that for any given query Q, transforms the degrees
of belief d(S1), . . . , d(SN ) in the statements from the knowledge base into
a degree of belief d(Q) = f(Q, d(S1), . . . , d(SN )) in Q (for example, if Q =
S1&S2, then f(d1, . . . , dN ) = f&(d1, d2)). Suppose now that we know only the
intervals d(S1), . . . , d(SN ) that contain the desired degree of belief. Then,
the degree of belief in Q can take any value from the set

f(Q,d(S1), . . . ,d(SN )) = {f(Q, d1, . . . , dN ) | di ∈ d(Si)}.

Computing such an interval is a typical problem of interval computations.
In particular, since the functions f& and f∨ are increasing in both argu-

ments, we have
f&([x, x], [y, y]) = [f&(x, y), f&(x, y)]
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and
f∨([x, x], [y, y]) = [f∨(x, y), f∨(x, y)].

For example,
min([x, x], [y, y]) = [min(x, y),min(x, y)]

and
max([x, x], [y, y]) = [max(x, y),max(x, y)].
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Beyond Traditional Fuzzy Uncertainty:

Type-2 Fuzzy Techniques

For fuzzy information, we assumed that we have exact numerical degrees
describing expert uncertainty. As we have mentioned in the previous chapter,
in practice, an expert can, at best, provide bounds (i.e., an interval) or his or
her degree of certainty – or even produce a “type-2” fuzzy degree of certainty
(such as “about 0.6”).

As we have shown in Part I, processing of data under general type-1 fuzzy
uncertainty can be reduced to the simplest case – of interval uncertainty:
namely, Zadeh’s extension principle is equivalent to level-by-level interval
computations applied to α-cuts of the corresponding fuzzy numbers.

The more general inter-valued and type-2 fuzzy numbers more adequately
represent the expert’s opinions, but their practical use is limited by the seem-
ing computational complexity of their use. In his recent research, J. Mendel
has shown that for the practically important case of interval-valued fuzzy
sets, processing such sets can also be reduced to interval computations. In
this chapter, we show that Mendel’s idea can be naturally extended to arbi-
trary type-2 fuzzy numbers.

The results of this chapter first appeared in [194].

Need for type-2 fuzzy sets. The main objective of fuzzy logic is to describe
uncertain (“fuzzy”) knowledge, when an expert cannot describe his or her
knowledge by an exact value or by a precise set of possible values. Instead,
the expert describe this knowledge by using words from natural language.
Fuzzy logic provides a procedure for formalizing these words into a computer-
understandable form – as fuzzy sets.

In the traditional approach to fuzzy logic, the expert’s degree of certainty
in a statement – such as the value mA(x) describing that the value x satisfies
the property A (e.g., “small”) – is described by a number from the interval
[0, 1]. However, we are considering situations in which an expert is unable to
describe his or her knowledge in precise terms. It is not very reasonable to
expect that in this situation, the same expert will be able to meaningfully
express his or her degree of certainty by a precise number. It is much more
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reasonable to assume that the expert will describe these degrees also by words
from natural language.

Thus, for every x, a natural representation of the degree m(x) is not a
number, but rather a new fuzzy set. Such situations, in which to every value
x we assign a fuzzy number m(x), are called type-2 fuzzy sets.

Successes of type-2 fuzzy sets. Type-2 fuzzy sets are actively used in practice;
see, e.g., [217] and [218]. Since type-2 fuzzy sets provide a more adequate
representation of expert knowledge, it is not surprising that such sets lead to
a higher quality control, higher quality clustering, etc., in comparison with
the more traditional type-1 sets.

The main obstacle to using type-2 fuzzy sets. If type-2 fuzzy sets are more
adequate, why are not they used more? The main reason why their use is lim-
ited is that the transition from type-1 to type-1 fuzzy sets leads to an increase
in computation time. Indeed, to describe a traditional (type-1) membership
function function, it is sufficient to describe, for each value x, a single number
m(x). In contrast, to describe a type-2 set, for each value x, we must describe
the entire membership function – which needs several parameters to describe.
Since we need more numbers just to store such information, we need more
computational time to process all the numbers representing these sets.

Interval-valued fuzzy sets. In line with this reasoning, the most widely used
type-2 fuzzy sets are the ones which take the smallest number of parameters
to store. We are talking about interval-valued fuzzy numbers, in which for
each x, the degree of certainty m(x) is an interval m(x) = [m(x),m(x)].
To store each interval, we need exactly two numbers – the smallest possible
increase over the single number needed to store the type-1 value m(x).

Mendel’s 2007 algorithm for processing interval-valued fuzzy data. In his ple-
nary talk [219], J. M. Mendel provided a new algorithm which drastically re-
duced the computational complexity of processing interval-valued fuzzy data.
Specifically, he showed that processing interval-valued fuzzy data can be ef-
ficiently reduced to interval computations. Since there exist many efficient
algorithms and software packages for solving interval computation problems,
Mendel’s reduction means that we can use these packages to also process
interval-valued fuzzy data – and thus, that processing interval-valued fuzzy
data is (almost) as efficient as processing the traditional (type-1) fuzzy data.

Mendel’s algorithm can be explained as follows. In the case of interval-
valued fuzzy data, we do not know the exact numerical values mi(xi) of the
membership functions, we only know the interval mi(xi) = [mi(x),mi(x)] of
possible values of mi(xi), By applying Zadeh’s extension principle to differ-
ent combinations of values mi(xi) ∈ [mi(x),mi(x)], we can get, in general,
different values of

m(y) = sup{min(m1(x1),m2(x2), . . .) : y = f(x1, . . . , xn)}.
The result of processing interval-valued fuzzy numbers can be thus described
if for each y, we describe the set of possible values of m(y).
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When the values mi(xi) continuously change, the value m(y) also contin-
uously change. So, for every y, the set m(y) of all possible values of m(y) is
an interval: m(y) = [m(y),m(y)]. Thus, to describe this set, it is sufficient,
for each y, to provide the lower endpoint m(y) and the upper endpoint m(y)
of this interval.

This computation is a particular case of the general problem of interval
computations. Indeed, in general, we start with the intervals of possible values
of the input, and we want to compute the interval of possible values of the
output. In our case, we start with the intervals of possible values of mi(xi),
and we want to find the set of possible values of m(y).

It is worth mentioning that the corresponding interval computation prob-
lem is easier than the general problem because the expression described by
Zadeh’s extension principle is monotonic – to be more precise, (non-strictly)
increasing. Namely, if we increase one of the values mi(xi), then the resulting
value m(y) can only increase (or stay the same). For monotonic functions,
the range of possible values is easy to compute:

• the function attains its smallest value when all the inputs are the smallest,
and

• the function attains its largest value when all the inputs are the largest.

In our case, for each input mi(xi), the smallest possible value of mi(xi), and
the largest possible value is mi(xi). Thus, we conclude that:

m(y) = sup{min(m1(x1),m2(x2), . . .) : y = f(x1, . . . , xn)};

m(y) = sup{min(m1(x1),m2(x2), . . .) : y = f(x1, . . . , xn)}.
In other words,

• to compute the lower membership function m(y), it is sufficient to apply
the standard Zadeh’s extension principle to the lower membership func-
tions mi(xi), and

• to compute the upper membership function m(y), it is sufficient to apply
the standard Zadeh’s extension principle to the upper membership func-
tions mi(xi).

We already know that for type-1 fuzzy sets, Zadeh’s extension principle can
be reduced to interval computations. Thus, we conclude that for every level
α ∈ (0, 1], we have

x(α) = f(x1(α), . . . ,xn(α))

and
x(α) = f(x1(α), . . . ,xn(α)),

where
xi

def= {xi : mi(xi) ≥ α} and xi
def= {xi : mi(xi) ≥ α}.

These are, in effect, the formulas proposed by Mendel in [219].
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New result: extension of Mendel’s formulas to general type-2 fuzzy numbers.
Let us show that Mendel’s idea can be extended beyond interval-valued fuzzy
numbers, to arbitrary type-2 fuzzy numbers. Indeed, for arbitrary type-2
fuzzy numbers, for each xi, the value mi(xi) is also a fuzzy number. The re-
lation between the input fuzzy numbers mi(xi) and the desired fuzzy number
m(y) can be expressed by the same Zadeh’s principle:

m(y) = sup{min(m1(x1),m2(x2), . . .) : y = f(x1, . . . , xn)},

but this time, all the values mi(xi) and m(y) are fuzzy numbers. How can
we describe this relation between fuzzy numbers?

Let us first describe the fuzzy numbers themselves. By definition, a fuzzy
number is a function that maps every possible value to a degree from the
interval [0, 1] describing to what extend this value is possible. Thus, e.g., for
each y, the corresponding fuzzy number m(y) is a mapping which maps all
possible values t ∈ [0, 1] into a degree (from the interval [0, 1]) with which t
is a possible value of m(y). Let us denote this degree by m(y, t).

Similarly, for each i and for each real number xi, the fuzzy number mi(xi)
is a mapping which maps all possible values t ∈ [0, 1] into a degree (from the
interval [0, 1]) with which t is a possible value of mi(xi). Let us denote this
degree by mi(xi, t).

As we have already mentioned, processing fuzzy numbers can be reduced
to processing the corresponding α-cuts. In this case, all the values mi(xi)
and m(y) are fuzzy numbers, we conclude that, for every α ∈ (0, 1], the
α-cut (m(y))(α) for the fuzzy number m(y) can be obtained by processing
the corresponding α-cuts (m(y))(α) for mi(xi). To avoid confusion between
standard α-cuts, let us denote the corresponding threshold not as α but as
β. As a result, we conclude that

m(y)(β) = sup{min(m1(x1)(β),m2(x2)(β), . . .) : y = f(x1, . . . , xn)}.

For fuzzy numbers, the corresponding β-cuts are intervals:

m(y)(β) = [m(y)(β),m(y)(β)] and mi(xi)(β) = [mi(xi)(β),mi(xi)(β)].

From our description of Mendel’s result, we already know that in the in-
terval case, since the expression corresponding to Zadeh’s extension principle
is monotonic,

• the lower endpoints of the output can be obtained form the lower endpoints
of the inputs, and

• the upper endpoint of the output can be obtained from the upper endpoints
of the inputs,

hence, that

m(y)(β) = sup{min(m1(x1)(β),m2(x2)(β), . . .) : y = f(x1, . . . , xn)};
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m(y)(β) = sup{min(m1(x1)(β),m2(x2)(β), . . .) : y = f(x1, . . . , xn)}.
For the corresponding functionsm(y)(β),mi(xi)(β),m(y)(β), andmi(xi)(β),
we get the standard Zadeh’s extension principle relation between membership
functions. We already know that this relation can be described in terms of
interval computations. Thus, we conclude that

y(α, β) = f(x1(α, β), . . . ,xn(α, β))

and
y(α, β) = f(x1(α, β), . . . ,xn(α, β)),

where
y(α, β) = {x : y(β) ≥ α} and y(α, β) = {x : y(β) ≥ α}

are the α-cuts of the corresponding membership functions m(y)(β), and
m(y)(β), and similarly,

xi(α, β) = {x : xi(β) ≥ α} and xi(α, β) = {x : xi(β) ≥ α}

are the α-cuts of the corresponding membership functions mi(xi)(β), and
mi(xi)(β).

Thus, from the computational viewpoint, the problem of processing data
under type-2 fuzzy uncertainty can be reduced to several problems of data
processing under interval uncertainty – as many problems as there are (α, β)-
levels.

Conclusion. Type-2 fuzzy sets more adequately describe expert’s opinion
than the more traditional type-1 fuzzy sets. Because of this, in many practi-
cal applications, the use of type-2 fuzzy sets has led to better quality control,
better quality clustering, etc. The main reason why they are not universally
used is that when we go from type-1 sets to type-2 sets, the computational
time of data processing increases. In his 2007 paper, J. Mendel has shown
that for the practically important case of interval-valued fuzzy numbers, pro-
cessing of such such data can be reduced to processing interval data – and
is, thus, (almost) as fast as processing type-1 fuzzy data. In this chapter, we
show that Mendel’s idea can be extended to arbitrary type-2 fuzzy numbers
– and thus, that processing general type-2 fuzzy numbers is also (almost) as
fast as processing type-1 fuzzy data. This result will hopefully lead to more
practical applications of type-2 fuzzy sets – which more adequately describe
expert knowledge.
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Las Cruces, and Cd. Juárez, March 27-30 (2006)

120. Goldsztejn, A.: Private communication (2007)
121. Goodchild, M., Gopal, S.: Accuracy of Spatial Databases. Taylor & Francis,

London (1989)
122. Granvilliers, L., Kreinovich, V., Müller, N.: Novel Approaches to Numerical

Software with Result Verification. In: Alt, R., Frommer, A., Kearfott, R.B.,
Luther, W. (eds.) Dagstuhl Seminar 2003. LNCS, vol. 2991, pp. 274–305.
Springer, Heidelberg (2004)

123. Gros, X.E.: NDT Data Fusion. J. Wiley, London (1997)
124. Guy, E.D., Daniels, J.J., Radzevicius, S.J., Vendl, M.A.: Demonstration of us-

ing crossed dipole Gpr antenna for site characterization. Geophysical Research
Letters 26(22), 3421–3424 (1999)

125. Haeni, F.P.: Use of ground-penetrating radar and continuous seismic-reflection
on surface-water bodies in environmental and engineering studies. Journal of
Environmental & Engineering Geophysics 1(1), 27–36 (1996)

126. Haldar, A., Mahadevan, S.: Reliability Assessment Using Stochastic Finite
Element Analysis. John Wiley & Sons, New York (2000)

127. Hall, J.M.: Soft methods in Earth science engineering. In: Lawry, J., et al.
(eds.) Soft Methods for Integrated Uncertainty Modeling, pp. 7–10. Springer,
Heidelberg (2006)

128. Hall, K.H., Fu, G., Lawry, J.: Imprecise probabilities of climate change: aggre-
gation of fuzzy scenarios and model uncertainties. Climatic Change 81(3-4),
265–281 (2007)

129. Han, J., Park, D.: Scheduling proxy: enabling adaptive-grained scheduling for
global computing system. In: Proceedings of the Fifth IEEE/ACM Interna-
tional Workshop on Grid Computing, pp. 415–420 (November 8, 2004)

130. Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, Inc.,
New York (1992)

131. Hansen, E.: Sharpness in interval computations. Reliable Computing 3, 7–29
(1997)

132. Hansen, P., de Aragao, M.V.P., Ribeiro, C.C.: Hyperbolic 0-1 programming
and optimization in information retrieval. Math. Programming 52, 255–263
(1991)



References 409
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183. Kreinovich, V., Longpré, L.: Computational complexity and feasibility Of
data processing and interval computations, with extension to cases When
we have partial information about probabilities. In: Brattka, V., Schroeder,
M., Weihrauch, K., Zhong, N. (eds.) Proceedings of the Conference on Com-
putability and Complexity in Analysis CCA 2003, Cincinnati, Ohio, USA,
August 28-30, pp. 19–54 (2003)
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abilities, intervals, what next? Extension of interval computations to situa-
tions with partial information about probabilities. In: Proceedings of the 10th
IMEKO TC7 International Symposium on Advances of Measurement Science,
St. Petersburg, Russia, June 30-July 2, vol. 1, pp. 137–142 (2004)

193. Kreinovich, V., Xiang, G.: Fast algorithms for computing statistics under in-
terval uncertainty: an overview. In: Huynh, V.N., Nakamori, Y., Ono, H.,
Lawry, J., Kreinovich, V., Nguyen, H.T. (eds.) Interval/Probabilistic Uncer-
tainty and Non-Classical Logics, pp. 19–31. Springer, Heidelberg (2008)

http://www.cs.utep.edu/vladik/2003/tr03-14b.pdf


References 413

194. Kreinovich, V., Xiang, G.: Towards fast algorithms for processing type-2 fuzzy
data: extending Mendel’s algorithms from interval-valued to a more general
case. In: Proceedings of the 27th International Conference of the North Amer-
ican Fuzzy Information Processing Society NAFIPS 2008, New York, May
19-22 (2008)

195. Kreinovich, V., Xiang, G., Ferson, S.: How the concept of information as av-
erage number of ”yes”-”no” questions (bits) can be extended to intervals,
P-boxes, and more general uncertainty. In: Proceedings of the 24th Interna-
tional Conference of the North American Fuzzy Information Processing Soci-
ety NAFIPS 2005, Ann Arbor, Michigan, June 22-25, pp. 80–85 (2005)

196. Kreinovich, V., Xiang, G., Ferson, S.: Efficient algorithms for computing mean
and variance under Dempster-Shafer uncertainty. International Journal of
Approximate Reasoning 42, 212–227 (2006)

197. Kreinovich, V., Xiang, G., Starks, S.A., Longpré, L., Ceberio, M., Araiza, R.,
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208. Longpré, L., Servin, S.: Quantum computations techniques for gauging relia-
bility of interval and fuzzy data. In: Proceedings of the 27th International Con-
ference of the North American Fuzzy Information Processing Society NAFIP
2008, New York, May 19-22 (2008)
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311. Šoĺın, P., Vejchodský, T.: On the Discrete Maximum Principle for the hp-FEM.
Technical Report, University of Texas at El Paso, Department of Mathemat-
ical Science (2005),
http://www.math.utep.edu/Faculty/solin/new_papers/dmp.pdf; see also
http://www.math.utep.edu/Faculty/solin/new_papers/dmp-coll.pdf
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(eds.) PARA 2004. LNCS, vol. 3732, pp. 189–196. Springer, Heidelberg (2006)

361. Yager, R.R., Kreinovich, V.: Decision making under interval probabilities.
International Journal of Approximate Reasoning 22(3), 195–215 (1999)

362. Young, W.H.: Sull due funzioni a piu valori constituite dai limiti d’una fun-
zione di variable reale a destra ed a sinistra di ciascun punto. Rendiconti
Academia di Lincei, Classes di Scienza Fiziche 17(5), 582–587 (1908)

363. Young, R.C.: The algebra of multi-valued quantities. Mathematische
Annalen 104, 260–290 (1931)



References 423

364. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and
Systems 1, 3–28 (1978)

365. Zamudio, R., Catarino, D., Taufer, M., Bhatia, K., Stearn, B.: Topaz: Extend-
ing Firefox to accommodate the GridFTP protocol. In: Proceedings of the
Fourth High-Performance Grid Computing Workshop HPGC 2007, in Con-
junction with IPDPS 2007, Long Beach, California (March 2007)

366. Zelt, C.A., Barton, P.J.: Three-dimensional seismic refraction tomography: A
comparison of two methods applied to data from the Faeroe Basin. J. Geo-
physical Research 103, 7187–7210 (1998)

367. Zhang, J., Berleant, D.: Envelopes around cumulative distribution functions
from interval parameters of standard continuous distributions. In: Proceed-
ings, North American Fuzzy Information Processing Society (NAFIPS 2003),
Chicago, pp. 407–412 (2003)

368. Zhang, W., Shmulevich, I., Astola, J.: Microarray Quality Control. Wiley,
Hoboken (2004)



Index

α-cut 20, 262

accuracy 68
absolute 68
relative 68, 217

affine arithmetic 43
alpha-cut 20, 262
amount of information 177

case of partial information about
probabilities 183

continuous case 179, 182
discrete case 179, 180
main idea 179
p-box 183
under interval uncertainty 177

and-operation 13
associative 14
commutative 13
idempotent 15, 17
min 15

in terms of alpha-cuts 21
monotonic 14
properties 13
simplest 15

applications 127, 243
bioinformatics 253, 257
computer engineering 289
geophysics 127, 307
global computing 257
information management 267, 273
mechanical engineering 295
medicine 127, 253
radars 279
signal processing 279

structural integrity 127
associativity 14

beyond interval uncertainty 321
bioinformatics applications 253, 257
bisection 32, 50, 64

Cauchy distribution 31
how to simulate 32

cdf (cumulative distribution function)
55

definition 55
justification 55

Central Limit theorem 26
clock cycle 289
CNF (Conjunctive Normal Form) 47
commutativity 13
computer engineering applications 289
computing statistics 8

under fuzzy uncertainty 8, 11
Zadeh’s extension principle 15

under interval uncertainty 9
formulation of the problem 9

under probabilistic uncertainty 9
formulation of the problem 9

Conjunctive Normal Form (CNF) 47
constraints 209, 321, 323

set computations 224
convex 205, 262, 291
convolution 358

of p-boxes 358
correlation 3

under interval uncertainty 169
computing with relative accuracy is

feasible 223



426 Index

NP-hard 169
covariance

justification 54
under interval uncertainty 165

computing with relative accuracy is
feasible 223

NP-hard 165
cumulative distribution function

justification 55
cumulative distribution function (cdf)

55
definition 55

cutting-edge measurements 5

data processing 243
decision theory 49

expected utility: justification 51
lottery 49
utility 50

definition 50
how to estimate 50
non-uniqueness 50

deformations 295
elastic 295
plastic 295

degree of belief 11
interval-valued 377

degree of confidence 11
elicitation 12

degree of trust 267
Dempster-Shafer formalism 378
detection limit 6, 79, 81

how to check 87
discontinuous processes 322, 335
discretization error 6
discretized data 6, 80, 81

how to check 87

ellipsoid uncertainty 322, 323
enclosure 35
engineering applications 127
entropy 25, 177

maximum entropy approach 25
p-box 191
under fuzzy uncertainty 193
under interval uncertainty 177, 187

computing upper endpoint is
feasible 187

no-subset case 189
NP-hard 187

estimation error 4, 244
excess width 38, 65
expected value 173

under interval uncertainty 173
expert estimate 4, 8, 11

feasible algorithm 46
fuzzy computations 21

formulation of the problem 21
reduced to interval case 21

fuzzy logic 8, 11
intuitionistic 378

fuzzy number 20, 262
as a nested family of intervals 20
interval-valued 377
type-2 322, 381

fuzzy uncertainty 8

geophysics applications 127, 307
global computing 257
granular computing 218
granule 218

Hausdorff distance 337
hierarchical statistical analysis 117

under interval uncertainty 117
histogram 246

interval-valued 246

independence 26
justified by maximum entropy 26

info-gap decision theory 343
information management applications

267, 273
interval arithmetic 36
interval computations 9, 35

“naive” approach 38
a frequent misunderstanding 38
affine arithmetic 43
beyond linear case 35
beyond straightforward approach 38
bisection 40
brief history 35
case of small measurement errors 29
computational complexity 45
computing enclosure as one of the

main tasks 35
interval arithmetic 36
linear case is easy 45
mean value form 39, 67, 325



Index 427

monotonicity checking 41, 61
naive approach works well for the

SUE case 38
need for guaranteed estimates 35
quadratic case is NP-hard 46
single-use expression (SUE) 38
straightforward approach 38, 66
systems of ordinary differential

equations 223
Taylor techniques 42

interval(s) and interval data sets 5
accuracy of interval data 235
as an alpha-cut of a fuzzy number

20
basic types of interval data sets 85
case of detection limit 79

how to check 87
case of few intersections 83

computing moments 151
computing variance 99
detecting outliers 132, 135
how to check 88

classification based on both procedure
and results 84

classification by procedure 77, 78
classification by results 77, 83
computer scheduling example 258
discretized data 80

how to check 87
from measurement 5, 78
how to detect different types 86
intersection of intervals 128
medical example 254
narrow intervals 83

how to check 88
subcase of the non-subset case 85

narrowed intervals 84, 93
computing variance 99
detecting outliers 132, 135
how to check 88

no-intersection case 83
how to check 88

no-subset case 79
computing entropy 189
computing moments 153
detecting outliers 133
how to check 86
parallel computation 213

no-subset property 93
privacy case 7, 82

reliability of intervals 229
traditional statistical approach 25

limitations 26
uniform distribution 25
union of intervals 128

interval-valued probabilities 359
intuitionistic fuzzy logic 378
invariance 346, 347

reverse invariance 347
scale invariance 346
shift invariance 347

join (of relations) 218

kurtosis 149

L-estimates 64
Laplace Principle of Indifference 25

maximum entropy approach 25
relation to uniform distribution 25

least squares method 253
liearization 324
linear programming 247
linearization 29, 254

case of analytical formulas 30
sensitivity analysis 30

M-estimates 64
definition 64
under interval uncertainty 64

maximum entropy approach 25
independence 26
relation to Laplace Principle of

Indifference 25
uniform distribution 25

Maximum Likelihood Method 31
mean 3

beyond arithmetic average 63
estimated as arithmetic average 3
justification 54
L-estimates 64
M-estimates 64
under interval uncertainty 61
weighted mean 64

measurement 5
cutting-edge 5
indirect 243
industrial applications 5
interval uncertainty 5, 78

measurement error 4, 78, 244
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detection error 6
discretization error component 6
how to determine 4
small 29

linearization 29
measurement result 78
measuring instrument 79

multiple 79, 80, 93, 98
case of the same accuracy 80
detection limit 81
discretized data 81, 87
how to check 87
provenance 81

single 79, 93
case of the same accuracy 79, 86
detection limit 79, 87
discretized data 80
how to check 86
no-subset property 79

standard 4
mechanical engineering applications

295
median 56

efficient computation 94
under interval uncertainty 63

medical applications 127, 253
privacy 6

membership degree 11
membership function 12

can be uniquely reconstructed from
alpha-cuts 23

model uncertainty 244, 245
moment of a distribution 149, 246

under interval uncertainty 149
case of few intersections 151
computing with relative accuracy is

feasible 222
no-subset case 153

Monte-Carlo techniques 31, 246
Cauchy distribution approach 31
efficiency 292
in computer engineering 289
interval case 31

nested sets 20
no-intersection property 83

how to check 88
no-nesting property 79
no-subset property 79, 93

computing moments 153
detecting outliers 133
how to check 86

normal distribution 4, 365
Central Limit theorem origin 26
confidence set 325
k-sigma interval 27
three sigma interval 27
two sigma interval 27
under interval uncertainty 365
uniquely determined by its first two

moments 26
uniquely determined by mean and

variance 26
NP 47
NP-complete 47
NP-hard 46, 47

checking reliability of interval data
231

computing convolution of interval-
valued probabilities 360

computing correlation under interval
uncertainty 169

computing covariance under interval
uncertainty 165

computing entropy under interval
uncertainty 187

computing outliers under interval
uncertainty 131

computing range of a
discontinuous function under
interval uncertainty 339

computing variance under interval
uncertainty, 65

proof by reduction 48, 69, 166, 169,
197

propositional satisfiability 47
solving the Least Squares problem

under interval uncertainty 254
subset problem 47, 166, 169
what to do if a problem turns out to

be NP-hard 77
numerical differentiation 30

optimization 67
traditional techniques are now always

adequate 67
under uncertainty 259, 348

or-operation 13
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associative 14
commutative 14
idempotent 15, 17
max 15

in terms of alpha-cuts 21
monotonic 14
properties 14
simplest 15

ordinary differential equations under
interval uncertainty 223

set computations 223
outlier under interval uncertainty 127

case of few intersections 132, 135
degree of outlier-ness 129, 133
guaranteed outlier 128, 131

NP-hard 131
narrow intervals 132
no-subset case 133
possible outlier 128, 130

P�=NP 46
p-box 178, 246, 343

amount of information 183
convolution 359
entropy 191
estimating accuracy 238
limitations 354
set computations 225

parallel computation 213
computing variance under interval

uncertainty 213
signal processing 286

parsing 36
pdf (probability density function) 353
phase transition 322, 335
population 3
privacy 6, 273

equivalent to discretized data 85
interval approach 7

several databases 82
single database 82

measuring 273
probability box (p-box) 178
probability density function (pdf) 353
propositional satisfiability problem 47

Conjunctive Normal Form 47
provenance 80, 81, 87

quantile 56
under interval uncertainty 64

radars applications 279
relational algebra 218

join 218
reverse invariance 347
robust statistics 290
rough set 218
roundoff error 7

negligible 7

sample 3
scale invariance 346
seismic inverse problem 308
sensitivity analysis 30

limitations 31
set computations 217

computing correlation under interval
uncertainty 223

computing covariance under interval
uncertainty 223

computing moment under interval
uncertainty 222

constraints 224
limitations 221
p-boxes 225
systems of ordinary differential

equations 223
shift invariance 347
signal processing applications 279
single-use expression 38
skewness 149
slowness 308
statistical characteristics 3

convex characteristics 262, 291
convex symmetric characteristics

205
under interval uncertainty 205

easy-to-revise characteristics 205
under interval uncertainty 205

estimates based on the “sample”
distribution 55

which ones to select 49, 53
statistics 3

computing under uncertainty 4
stress 295
subset problem 47
SUE 38
supercomputing 257

t-conorm 13
t-norm 13
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Taylor series 29, 42, 53
Taylor techniques 42
traditional numerical methods 35

limitations 35
travel-time 308
trust 267

degree of 267

uncertainty 244
uniform distribution 25

justified by Laplace Principle of
Indifference 25

justified by maximum entropy
approach 25

utility 50, 236
how to estimate 50
justification of the use of expected

utility 51
non-smooth case 54
non-uniqueness 50
smooth case 53

variance 3
justification 54
standard estimates 7
under interval uncertainty 65, 93

case of few intersections 99

case of multiple measuring
instruments 97

computing lower endpoint is
feasible 96

computing with relative accuracy is
feasible 217

hierarchical case 117
mean value form 67
no-subset case 93
NP-hard 65
NP-hard even if we want to

compute with a given absolute
accuracy 68

parallel computation 213
privacy case 117
set computations 222
straightforward interval

computations 66
von Mises criterion 295

weighted mean 64
definition 64
under interval uncertainty 64

Zadeh’s extension principle 17
derivation 17
formula 17
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