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EXISTENCE AND UNIQUENESS OF LOCAL WEAK
SOLUTIONS FOR THE EMDEN-FOWLER WAVE EQUATION IN

ONE DIMENSION

MENG-RONG LI

Abstract. In this article we consider the existence and uniqueness of local
weak solutions to the Emden-Fowler type wave equation

t2utt − uxx = |u|p−1u in [1, T ]× (a, b)

with initial-boundary value conditions in a finite time interval.

1. Introduction

In this article we focus on the existence and uniqueness of weak solutions in
H2 := C1([1, T ), H1

0 (a, b)) ∩ C2([1, T ), L2(a, b)) for the Emden-Fowler type wave
equation

t2utt − uxx = |u|p−1u in [1, T )× (a, b) (1.1)
subject to zero boundary values and initial values

u(1) = u0 ∈ H2(a, b) ∩H1
0 (a, b), and ut(1) = u1 ∈ H1

0 (a, b).

Here p > 1, and a and b are real numbers.
The study of the Emden-Fowler ordinary differential equation is derived from

earlier theories concerning gas dynamics in astrophysics developed at the turn of
the 20th century. The fundamental problem in the study of stellar structures at
that time was to study the equilibrium configuration of the mass of spherical gas
clouds. The equation

d

dt
(t2

du

dt
) + t2up = 0, (1.2)

is generally referred to as the Lane-Emden equation. Astrophysicists were interested
in the behavior of the solution of (1.2) which satisfies the initial condition u(0) = 1,
u′(0) = 0. The mathematical foundation for the investigation of such an equation
and also of the more general equation

d

dt

(
tρ
du

dt

)
+ tσuγ = 0, t ≥ 0, (1.3)

was made by Fowler [15, 16, 17, 18] in a series of four papers from 1914 to 1931.
The Emden-Fowler equation also arises in the study of gas dynamics and fluid
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mechanics [12], there the solutions of physical interest are bounded non-oscillatory
ones which possess a positive zero. The zero of such a solution corresponds to
an equilibrium state in a fluid with spherical distribution of density and under
mutual attraction of its particles. The Emden-Fowler equations also appear in the
study of relativistic mechanics, nuclear physics and also in the study of chemically
reacting systems [1, 7, 10, 11, 13, 14, 19, 29, 31]. The Emden-Fowler equation
(1.3) can be transformed into a first order nonlinear autonomous system, in fact a
quadratic system, and information concerning its solutions can be obtained from
the associated quadratic systems through phase plane analysis. This approach was
first used by Emden in his analysis of the Lane-Emden equation (1.2).

For a general survey on the Thomas-Fermi equation, we refer the reader to March
[30]. The first comprehensive study on the generalized Emden-Fowler equation

d2x

dt2
+ a(t)|x|γ sgnx = 0, t ≥ 0

was made by Atkinson [2, 3, 4, 5, 6].
Recently, in [27], we considered positive solutions of the Emden-Fowler equation

t2u′′ = up and obtained some results on the non-existence of global solutions, the
estimates for the life-spans and the asymptotic behavior of solutions.

About the semilinear wave equation, Jörgens [21] published the first global ex-
istence theorem for the equation

�u+ f(u) = 0 in [0, T )× Ω, (1.4)

in case Ω = Rn, n = 3 and f(u) = g(u2)u. His result can be applied to the equation
�u+ u3 = 0; and Browder [9] generalized Jörgens’ result for n > 2.

For local Lipschitz f , Li [25, 26] proved the nonexistence of global solutions of the
initial-boundary value problem for the semilinear wave equation (1.4) in a bounded
domain Ω ⊂ Rn under the assumption

Ē(0) = ‖Du‖22(0) + 2
∫

Ω

f(u)(0, x)dx ≤ 0,

ηf(η)− 2(1 + 2α)
∫ η

0

f(r)dr ≤ λ1αη
2 ∀η ∈ R

with α > 0, λ1 := sup{‖u‖2/‖∇u‖2 : u ∈ H1
0 (Ω)

}
and a′(0) > 0. There we have

obtained a rough estimate for the life-span

T ≤ β2 := 2
[
1−

(
1− k2a(0)−α

)1/2]
/(k1k2)

with

k1 := αa(0)−α−1
√
a′(0)2 − 4E(0)a(0), k2 := (−4α2E(0)/k2

1)α/(1+2α).

For n = 3 and f(u) = −u3, there exist global solutions of (1.4) for small initial
data [24]; but if E(0) < 0 and a′(0) > 0 then the solutions are only local, i.e.
T <∞ [26]. John [22] showed the nonexistence of solutions of the initial-boundary
value problem for the wave equation �u = A|u|p, A > 0, 1 < p < 1 +

√
2,

Ω = R3. This problem was considered by Glassey [20] in the two dimensional case
n = 2; for n > 3 Sideris [32] showed the nonexistence of global solutions under
the conditions ‖u0‖1 > 0 and ‖u1‖1 > 0. According to this result Strauss [33, p.
27] guessed that the solutions for the above mentioned wave equation are global
for Ω = Rn, p ≥ p0(n) = λ, which is the positive root of the quadratic equation
(n− 1)λ2 − (n+ 1)λ− 2 = 0.
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We want to extend our results [27] on ordinary differential equations and the wave
equation [25] to the equation (1.4), therefore we will deal with the existence and
uniqueness theme of Emden-Fowler type wave equation (1.1) with zero boundary
values and initial values u(1) = u0 ∈ H2(a, b)∩H1

0 (a, b) and ut(1) = u1 ∈ H1
0 (a, b),

where p > 1, and a, b are real numbers.
We are not aware of any other paper discussing this theme. We make a substitu-

tion t = es, u(t, x) = v(s, x) to avoid degeneration of the equation (1.1) which can
be transferred into a nonlinear wave equation with negative linear damping (2.1)
below. The main difficulties in constructing our existence result for equation (2.1)
are the use of the Banach Fixed Point Theorem in a suitable solution space and
the control of the boundedness of successive approximations solutions of equation
(2.1). We shall set-up the fundamental lemmas in section 2 and prove the main
result in section 3.

2. Fundamental lemmas

To obtain the existence of solutions to (1.1) with zero boundary values, u(t, a) =
u(t, b) = 0, and initial values u(1) = u0 ∈ H2(a, b)∩H1

0 (a, b), ut(1) = u1 ∈ H1
0 (a, b),

we need a fundamental Lemma from [28, p. 95], [23, p. 96].

Lemma 2.1. For f ∈W 1,1([t0, T ), L2(a, b)) the linear wave equation

�u := utt − uxx = f(t, x) in [1, T )× (a, b)

u(t0, ·) := u0 ∈ H2(a, b) ∩H1
0 (a, b),

ut(t0, ·) := u1 ∈ H1
0 (a, b),

possesses exactly one solution u ∈ H2 := C1([t0, T ), H1
0 (a, b))∩C2([t0, T ), L2(a, b))

with u(t) ∈ H2(a, b) for all t ∈ [t0, T ]. Furthermore,

d

dt

∫ b

a

(u2
t + |∇u|2)dx− 2

∫ b

a

utf(t, x)dx = 0 a.e. in [t0, T ).

To prove the existence of a local weak solution of (1.1) in H2, we make the
substitution s = ln t, u(t, x) = v(s, x), then (1.1) can be transformed into

vss − vxx = vs + |v|p−1v := −h(v), (2.1)

v(0, x) = u(1, x) = u0(x) := v0(x), (2.2)

vs(0, x) = u1(x) := v1(x). (2.3)

For T > 0, S = lnT and v ∈ H̄2 = C1([0, S), H1
0 (a, b)) ∩ C2([0, S), L2(a, b)),

we want to prove that h(v) ∈ W 1,1([0, S), L2(a, b)), thus we build the following
Lemma.

Lemma 2.2. For T > 0, S = lnT , v ∈ H̄2, we have h(v) ∈ W 1,1([0, S), L2(a, b));
that is, ∫ S

0

(‖h(v)‖2 + ‖ ∂
∂s
h(v)‖2)ds <∞ if ‖v‖H̄2 <∞.

Proof. By the definition of h(v) we have

‖h(v)‖2W 1,1 =
(∫ S

0

(‖h(v)‖2 + ‖ ∂
∂s
h(v)‖2)ds

)2
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≤
∫ S

0

1 ds
∫ S

0

(
‖h(v)‖2 + ‖ ∂

∂s
h(v)‖2

)2

ds

≤ 2S
∫ S

0

(
‖h(v)‖22 + ‖ ∂

∂s
h(v)‖22

)
ds,

and (∫ S

0

(‖h(v)‖2 + ‖ ∂
∂s
h(v)‖2)ds

)2

≤ 2S
∫ S

0

(∫ b

a

(vs + |v|p−1v)2dx+
∫ b

a

(vss + p|v|p−1vs)2dx
)
ds

≤ 4S
∫ S

0

∫ b

a

(
v2
s + |v|2p + v2

ss + p|v|2p−2v2
s

)
dx ds

= 4S
(∫ S

0

∫ b

a

(v2
s + v2

ss) dx ds+ I + II
)
,

where

I =
∫ S

0

∫ b

a

|v|2p dx ds, II = p

∫ S

0

∫ b

a

|v|2p−2v2
s dx ds.

The boundedness of ‖h(v)‖2W 1,1 is equivalent to show the boundedness of these two
integrals I and II for some small S, near zero, and this can be deduced using the
Sobolev inequality, since that for any fixed s ∈ [0, S] and x ∈ [a, b] we have the
following estimates

|v|2p(s, x) ≤
(∫ x

a

|vx|(s, η)dη
)2p

≤ (x− a)p
(∫ x

a

v2
x(s, η)dη

)p
, (2.4)∫ b

a

|v|2p(s, x)dx ≤
∫ b

a

(∫ x

a

|vx|(s, η)dη
)2p

dx

≤
∫ b

a

(x− a)p
(∫ x

a

v2
x(s, η)dη

)p
dx

≤ 1
p+ 1

(b− a)p+1
(∫ b

a

v2
x(s, η)dη

)p
≤ 1
p+ 1

(b− a)p+1
(

max
s∈[0,S]

∫ b

a

v2
x(s, η)dη

)p
,

(2.5)

I ≤ 1
p+ 1

(b− a)p+1S
(

max
s∈[0,S]

∫ b

a

v2
x(s, η)dη

)p
, (2.6)

|v|2p−2v2
s(s, x) ≤ 2|v|2p−2(s, x)

(
v2

1(x) +
(∫ s

0

vss(ξ, x)dξ
)2)

≤ 2|v|2p−2(s, x)
(
v2

1x+ s

∫ s

0

v2
ss(ξ, x)dξ

)
,

(2.7)

II = p

∫ b

a

∫ S

0

|v|2p−2v2
s(s, x) ds dx

≤ 2p
∫ b

a

∫ S

0

|v|2p−2(s, x)
(
v2

1(x) + s

∫ s

0

v2
ss(ξ, x)dξ

)
ds dx

= III + IV,

(2.8)
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where

III = 2p
∫ b

a

∫ S

0

v2
1(x)|v|2p−2(s, x) ds dx,

IV = 2p
∫ b

a

∫ S

0

s|v|2p−2(s, x)
(∫ s

0

v2
ss(ξ, x)dξ

)
ds dx.

By (2.4) and (2.5) we obtain

III ≤ 2p
∫ S

0

(∫ b

a

|v|2p(s, x)dx
) p−1

p

(
∫ b

a

v2p
1 (x)dx)1/pds

≤ 2p
∫ S

0

((
max
s∈[0,S]

∫ b

a

v2
x(s, η)dη

)p) p−1
p
((∫ b

a

v′1(η)2dη
)p)1/p

ds

=
4p2

p+ 1
(b− a)p+1S

(∫ b

a

v′1(η)2dη
)(

max
s∈[0,S]

∫ b

a

v2
x(s, η)dη

)p−1

and

IV ≤ 2pS
∫ b

a

∫ S

0

(
(x− a)p−1(

∫ x

a

v2
x(s, η)dη)p−1

)(∫ s

0

v2
ss(ξ, x)dξ

)
ds dx

≤ 2pS(b− a)p−1
(

max
s∈[0,S]

∫ b

a

v2
x(s, x)dx

)p−1

×
∫ b

a

∫ S

0

(∫ s

0

v2
ss(ξ, x)dξ

)
ds dx

≤ 2pS2(b− a)p−1
(

max
s∈[0,S]

∫ b

a

v2
x(s, x)dx

)p−1
∫ b

a

∫ S

0

v2
ss(ξ, x)dξdx.

�

The following Lemma is easy to check, we omit its proof.

Lemma 2.3. Suppose that X is a Banach space and fn : [t0, T )→ X are differen-
tiable functions and the sequence fn(t) converges uniformly to f(t). If the sequence
dfn(t)/dt converges to g(t), then f : [t0, T )→ X is differentiable and df(t)/dt = g(t)
in X.

3. Existence of solutions for the Emden-Fowler type wave equation

From the three lemmas above, we can obtain the following local existence result.

Theorem 3.1. Suppose that p > 1, u0 ∈ H2(a, b) ∩ H1
0 (a, b) and u1 ∈ H1

0 (a, b),
then the initial-boundary value problem for the semilinear wave equation (1.1) with
u(1, x) = u0(x), ut(1, x) = u1(x) and u(t, a) = 0 = u(t, b) on [1, T ], possesses
exactly one solution in H2 for some T > 1.

Proof. Proof the existence of a local solution in

H1 := C([1, T ), H1
0 (a, b)) ∩ C1([1, T ), L2(a, b)).

By using the substitution s = ln t, u(t, x) = v(s, x), equation (1.1) can be trans-
formed to

vss − vxx = vs + |v|p−1v := −h(v),

v(0, x) = u(1, x) = u0(x) := v0(x),
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vs(0, x) = u1(x) := v1(x).

(1) For T > 0 and v ∈ H̄2 = C1([0, S), H1
0 (a, b))∩C2([0, S), L2(a, b)), by Lemma

2.2 we have that h(v) ∈W 1,1([0, S), L2(a, b)).
According to Lemma 2.1, let w := Tv be the solution of initial-boundary value

problem for the equation

�w + h(v) = 0,

w(0, ·) := v0(·) ∈ H2(a, b) ∩H1
0 (a, b),

ws(0, ·) := u1(·) = v1(·) ∈ H1
0 (a, b),

we have w ∈ H̄2, w(s) ∈ H2(a, b) for all s ∈ [0, S) and

d

ds
‖Dw‖22(s) + 2

∫ b

a

wsh(v)(s, x)dx = 0.

Suppose that v2 := su0, then by Lemma 2.2 we get −h(v2) = −h(su0) = u0 +
su0|su0|p−1 ∈ W 1,1([0, S), L2(a, b)) and therefore, there exists a function v3 ∈ H̄2

which satisfies the initial-boundary value problem for the equation

�w + h(v2) = 0,

w(0, ·) := u0(·) ∈ H2(a, b) ∩H1
0 (a, b),

ws(0, ·) := v1(·) ∈ H1
0 (a, b).

Let vm+1 := Tvm,m ≥ 2 be the solution of the initial-boundary value problem for
the linear equation

� vm+1 + h(vm) = 0 in [0, S)× (a, b),

vm+1(0, ·) = u0(·) ∈ H2(a, b) ∩H1
0 (a, b),

(vm+1)s(0, ·) = v1(·) ∈ H1
0 (a, b).

Therefore, by Lemma 2.1, we have vm+1(s) ∈ H2(a, b) for all s ∈ [0, S), vm+1 ∈
H̄2,m ∈ N and

d

ds

∫ b

a

|Dvm+1(s, x)|2dx+ 2
∫ b

a

(vm+1)sh(vm(s, x))dx = 0 a.e. in [0, S), (3.1)

where |Dv|2 := v2
s + |vx|2. Set Am+1(s) := ‖Dvm+1(s)‖2. Then by (2.5) we find

that

(Am+1(s)2)′ ≤ 2Am+1(s)‖h(vm(s))‖2 a.e. in [0, S)), (3.2)

Am+1(s) ≤ Am+1(0) +
∫ s

0

‖h(vm)(r)‖2dr (3.3)

and
Am+1(s)

≤ ‖u1‖2 + ‖u′0‖2 +
∫ s

0

‖((vm)s + |vm|p−1vm)‖2dr

≤ ‖u1‖2 + ‖u′0‖2 +
∫ s

0

(‖(vm)s‖2 + ‖vpm‖2)dr

≤ ‖u1‖2 + ‖u′0‖2 +
∫ s

0

(‖(vm)s‖2 +
√

1
p+ 1

(b− a)
p+1
2 ‖(vm)x‖p2)dr

(3.4)
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for every m− 1 ∈ N, almost everywhere in [0, S), besides Am+1(s) = 0.
(2) Since that h(sv0) = h(v2) ∈W 1,1([0, S), L2(a, b)), we get v3 ∈ H̄2 and by the

inequality (3.3), we obtain −h(v2) = u0 + su0|su0|p−1,

A3(s)

≤ A3(0) +
∫ s

0

‖h(ru0)‖2dr

≤ ‖u1‖2 + ‖u′0‖2 +
∫ s

0

‖u0 + ru0|ru0|p−1‖2dr

≤ ‖u1‖2 + ‖u′0‖2 +
∫ s

0

(∫ b

a

(u0 + ru0|ru0|p−1)2dx
)1/2

dr

≤ ‖u1‖2 + ‖u′0‖2 +
√

2
∫ s

0

(∫ b

a

(u2
0 + r2pu2p

0 )dx
)1/2

dr

≤ ‖u1‖2 + ‖u′0‖2 +
√

2
∫ s

0

((∫ b

a

u2
0dx
)1/2

+ rp(
∫ b

a

u2p
0 (x)dx)1/2

)
dr

= ‖u1‖2 + ‖u′0‖2 +
√

2s
(
‖u0‖2 +

1
p+ 1

sp‖u0‖p2p
)

≤ ‖u1‖2 + ‖u′0‖2 +
√

2S
(
‖u0‖2 +

1
p+ 1

Sp‖u0‖p2p
)
.

(3.5)

Set

‖v‖∞,S := sup{‖Dv(s)‖2 : 0 ≤ s ≤ S},
M := 1 + 2(‖u1‖2 + ‖u′0‖2),

S :=
1
2

min
{ 1

1 +
√
p(b− a)

p
2 +1Mp−1

,
(p+ 1)1/p

1 + ‖u0‖2p
,

1 + ‖u1‖2 + ‖u′0‖2
2(1 + ‖u0‖2) +M(1 + (b− a)

p+1
2 Mp−1)

}
.

Then using (3.5), we obtain

A3(s) = ‖Dv3‖2(s) ≤ A3(0) +
∫ s

0

‖h(ru0)‖2(r)dr

≤ ‖u1‖2 + ‖u′0‖2 +
√

2(S − 0)(‖u0‖2 +
1

p+ 1
(S − 0)p‖u0‖p2p) ≤M.

Consequently ‖v3‖∞,S ≤M .
Suppose that ‖vm‖∞,S ≤M , then by the definition of S and (3.4),

Am+1(s)

≤ ‖u1‖2 + ‖u′0‖2 +
∫ s

0

(
‖(vm)s‖2 +

√
1

p+ 1
(b− a)

p+1
2 ‖(vm)x‖p2

)
(r)dr ≤M.

Thus we get ‖vm+1‖∞,S ≤M for all m ∈ N.
(3) We claim thatvm is a Cauchy sequence in

H̄1 := C([0, S), H1
0 (a, b)) ∩ C1([0, S), L2(a, b)).

By Lemma 2.1 and (3.3),

‖D(vm+1 − vm)(s)‖2(s)
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≤
∫ s

0

‖h(vm)− h(vm−1)‖2dr

≤
∫ s

0

(
‖(vm − vm−1)s‖2 +

√
p

2
(b− a)pKv‖vm − vm−1‖2

)
dr,

where Kv = ‖(vm)x‖p−1
2 + ‖(vm−1)x‖p−1

2 , therefore

‖D(vm+1 − vm)(s)‖2(s)

≤ s
(

1 +
√
p

2
(b− a)1+ p

2Mp−1
)
‖D(vm − vm−1)(s)‖2

≤ S
(

1 +
√
p

2
(b− a)1+ p

2Mp−1
)
‖vm − vm−1‖∞,S ∀s ∈ [0, S),

(3.6)

and

‖vm+1 − vm‖∞,S ≤ S
(

1 +
√
p

2
(b− a)1+ p

2Mp−1
)
‖vm − vm−1‖∞,S .

It follows that

‖vm+k − vm‖∞,S ≤
(S(1 +

√
p
2 (b− a)1+ p

2Mp−1))m−2‖v3 − v2‖∞,S
1− S(1 +

√
p
2 (b− a)1+ p

2Mp−1)
→ 0 (3.7)

as m→∞. Since

S
(

1 +
√
p

2
(b− a)

p
2 +1Mp−1

)
≤ 1

2
1 +

√
p
2 (b− a)

p
2 +1Mp−1

1 +
√
p(b− a)

p
2 +1Mp−1

≤ 1
2
.

(ii) We prove the uniqueness of the solutions in H1. Suppose that w is the limit
of vm, and v ∈ H̄1 is an another solution for (2), then

d

ds

∫ b

a

|Dvm+1(s, x)−Dv(s, x)|2dx

≤ 2
∫ b

a

|((vm+1)s − vs)(h(vm)− h(v))|dx

≤ 2‖D(vm+1 − v)‖2(s)‖h(vm)− h(v)‖2(s),

‖D(vm+1 − v)(s)‖2(s) ≤
∫ s

0

‖h(vm)− h(v)‖2(r)dr

≤ s
(

1 +
√
p

2
(b− a)1+ p

2Mp−1
)
‖D(vm − v)(s)‖2

≤ S
(

1 +
√
p

2
(b− a)1+ p

2Mp−1
)
‖vm − v‖∞,S ∀s ∈ [0, S).

Thus

‖vm+1 − v‖∞,S ≤ S
(

1 +
√
p

2
(b− a)1+ p

2Mp−1
)
‖vm − v‖∞,S .

It follows that

‖w − v‖∞,S ≤ ‖w − vm+1‖∞,S + ‖vm+1 − v‖∞,S → 0

as m→∞, so w ≡ v in H̄1.
(iii) Now we show the local existence u in H2. Let S and M be the same as

above.
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(1) For a S > 0 and vm ∈ H̄2, we have h(vm) ∈W 1,1([0, S), L2(a, b)). According
to Lemma 2.1, we have vm+1(s) ∈ H2(a, b) for all s ∈ [0, S), m ∈ N and

d

ds

∫ b

a

|Dvm+1(s, x)|2dx = −2
∫ b

a

(vm+1)sh(vm)dx a.e. in [0, S)

also
d

ds
‖Dvm+1‖22(s) +

d2

ds2

∫ b

a

v2
m+1dx

= −2
∫ b

a

(vm+1)sh(vm(s, x))dx+ 2
∫ b

a

(vm+1(vm+1)ss + (vm+1)2
s)dx

= −2
∫ b

a

(vm+1)s(s, x)h(vm)dx

+ 2
∫ b

a

(
vm+1[(vm+1)xx − h(vm)] + (vm+1)2

s

)
(s, x)dx

= −2
∫ b

a

(vm+1 + (vm+1)s)h(vm)(s, x)dx+ 2
∫ b

a

(
(vm+1)2

s − (vm+1)2
x

)
(s, x)dx,

and ∣∣ d
ds
‖Dvm+1‖22(s) +

d2

ds2

∫ b

a

vm+1(s, x)2dx
∣∣

≤ 2(‖vm+1‖2 + ‖(vm+1)s‖2)‖h(vm)‖2(s) + 2‖Dvm+1‖22(s),
(3.8)

for every m ≥ 2, almost everywhere in [0, S).
(2) We claim that vm is a Cauchy sequence in H̄2. By similar arguments as in

establishing inequalities (3.6)–(3.8), we obtain∣∣ d
ds
‖D(vm+k − vm)‖22(s) +

d2

ds2

∫ b

a

(vm+k − vm)(s, x)2dx
∣∣

≤ 2(‖vm+k − vm‖2 + ‖(vm+k − vm)s‖2)‖h(vm+k−1)− h(vm−1)‖2(s)

+ 2‖D(vm+k − vm)‖22(s)
→ 0 as m→∞.

By (i), (ii) and Lemma 2.3, we obtain the assertions of Theorem 3.1. �
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