
NeuroImage 121 (2015) 69–77

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
Full Length Articles
Significant feed-forward connectivity revealed by high frequency
components of BOLD fMRI signals
Fa-Hsuan Lin a,b,1, Ying-Hua Chu a,1, Yi-Cheng Hsu a, Jo-Fu Lotus Lin a, Kevin W.-K. Tsai b,
Shang-Yueh Tsai c,d, Wen-Jui Kuo e,⁎
a Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
b Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
c Institute of Applied Physics, National Chengchi University, Taipei, Taiwan
d Research Center for Mind Brain and Learning, National Chengchi University, Taipei, Taiwan
e Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
⁎ Corresponding author at: Institute of Neuroscience, N
Taipei, Taiwan, 1 Sec. 4, Roosevelt Road, Taipei 112, Taiwa

E-mail address: wjkuo@ym.edu.tw (W.-J. Kuo).
1 Both contributed equally.

http://dx.doi.org/10.1016/j.neuroimage.2015.07.036
1053-8119/© 2015 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 21 May 2015
Accepted 14 July 2015
Available online 21 July 2015

Keywords:
Causality
Granger
Spectral decomposition
Visuomotor
Granger causality analysis has been suggested as a method of estimating causal modulation without specifying
the direction of information flow a priori. Using BOLD-contrast functional MRI (fMRI) data, such analysis has
been typically implemented in the time domain. In this study, we used magnetic resonance inverse imaging, a
method of fast fMRI enabled by massively parallel detection allowing up to 10 Hz sampling rate, to investigate
the causal modulation at different frequencies up to 5 Hz. Using a visuomotor two-choice reaction-time task,
both the spectral decomposition of Granger causality and isolated effective coherence revealed that the BOLD sig-
nal at frequency up to 3 Hz can still be used to estimate significant dominant directions of information flow con-
sistent with results from the time-domain Granger causality analysis. We showed the specificity of estimated
dominant directions of information flow at high frequencies by contrasting causality estimates using data collect-
ed during the visuomotor task and resting state. Our data suggest that hemodynamic responses carry physiolog-
ical information related to inter-regional modulation at frequency higher than what has been commonly
considered.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Functional magnetic resonance imaging (fMRI) (Belliveau et al.,
1991) using BOLD contrast (Kwong et al., 1992; Ogawa et al., 1992)
has become an indispensable tool in non-invasive elucidation of brain
areas subserving cognitive processes and behaviors. In addition to local-
izing individual functional areas, fMRI can also be used to reveal spatial-
ly distributed neuronal networks by studying either the temporal
correlation (i.e., functional connectivity) or the causal modulation be-
tween brain areas (i.e., effective connectivity) activated by specific stim-
uli and tasks (for review, see (Friston, 2011b)).

The effective connectivity analysis of fMRI data has various
implementations, including Structural Equation Modeling (SEM)
(McArdle and McDonald, 1984), dynamic causal modeling (DCM)
(Friston, 2011a; Friston et al., 2003; Penny et al., 2004), and Granger
causality analysis (Granger, 1969). Different from SEM and DCM,
where models of explicit directional influences among functional
ational Yang-Ming University,
n.
areas must be specified a priori, Granger causality analysis uses fMRI
data to estimate thedirection of informationflowdirectly. The inference
about the direction of information flow in Granger causality analysis is
based on the effectiveness of the ‘prediction’ (Granger, 1969). Specifi-
cally, if one region is considered as the ‘source’, the prediction of the be-
havior at the ‘target’ region should be significantly improved when
information about the ‘source’ is provided. In practice, most Granger
causality analyses use fMRI time series and time-domain models in
these prediction calculations.While the validity of Granger causality es-
timates using fMRI has been either supported (Abler et al., 2006;
Deshpande et al., 2009; Eichler, 2005; Goebel et al., 2003; Kayser et al.,
2009; Londei et al., 2006; Roebroeck et al., 2005; Sato et al., 2006) or
questioned (David et al., 2008; Smith et al., 2012) because of regional
difference in vasculature reactivity (Lee et al., 1995; Miezin et al.,
2000), Granger causality analysis has been applied tomany fMRI studies
(for review, see (Stephan and Roebroeck, 2012)).

Note that Granger causality can be also formulated in the frequency
domain (Brovelli et al., 2004; Geweke, 1982). Therefore the estimated
causal modulations can be decomposed into different frequency ranges.
When applied to fMRI, the sensitivity and specificity of such spectral
Granger analysis is limited by the signal-to-noise ratio of fMRI BOLD sig-
nals at different frequencies. The spectral property of BOLD fMRI has
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been studied since the early days of fMRI (Weisskoff et al., 1993).
Disturbances due to cardiac/respiratory fluctuations at characteristic
frequencies (Beckmann et al., 2005; Birn et al., 2006) and low frequency
drift (0–0.015Hz) (Smith et al., 1999) have been reported. Interestingly,
there is also empirical evidence suggesting that BOLD signal between
0.03 Hz and 0.06 Hz can be closely related to electrophysiological
activity (Zuo et al., 2010) and gives greater small-world topology
(Achard et al., 2006).

In this study, we use magnetic resonance inverse imaging (InI), a
method of fast fMRI capable of sampling the whole-brain BOLD signal
at 10 Hz with approximately 5 mm spatial resolution at cortex using a
32-channel head coil array at 3 T (Lin et al., 2006, 2008), to study the
Granger causality spectrally up to 5 Hz. We specifically hypothesize
that, at frequencies higher than 1 Hz, BOLD signals can still be used to
provide estimates of directional information faithfully. Using a
visuomotor two-choice reaction-time task, we first successfully identi-
fied clear feed-forward effective connectivity from visual to sensorimo-
tor systems in our previous studies (Lin et al., 2013, 2014). Such feed-
forward connectivity remains significant at frequencies up to 3 Hz.
Our results suggest that the BOLD signal at frequencies higher than
2 Hz can still carry useful physiological information to disclose causal
modulation.

Methods

Subjects and the task

Twenty-three subjects were recruited to this study with written in-
formed consents approved by the Institute Review Board of National
Taiwan University Hospital. Subjects were all right-handed. Part of this
data set was used in previous analyses (Lin et al., 2013, 2014).

The experiment used a two-choice reaction-time task, where left or
right visual hemifield reversing (8 Hz) checkerboard stimuli were pre-
sented to the subjects in a rapid event-related fMRI design. The
hemifield checkerboard subtended a 4.3° visual angle and was generat-
ed from 24 evenly distributed radial wedges and eight concentric rings
of equal width. The stimuli were presented using Psychtoolbox
(Brainard, 1997; Pelli, 1997). Stimulus duration was 500 ms; the onset
of each presentation was randomized with a uniform distribution of
inter-stimulus intervals varying from 3 to 16 s (average 10 s). The sub-
jects were instructed to press the button upon detecting a visual stimu-
lus, presented randomly at the left or right side of the screen, with the
hand ipsilateral to the visual stimulus. The reaction times were record-
ed. Reaction times from two subjects were unavailable due to problems
of the response button box.

To ensure that the estimated information flows were indeed related
to the visuomotor task rather than due to spontaneous activity, we also
measured the resting-state fMRI data from nine subjects. In this resting-
state measurement, subjects were instructed to stay awake in the scan-
ner. A visual crosshair was shown to the subject for 4 min.

MRI acquisition and reconstruction; region-of-interest identification and
time series preparation

We used inverse imaging method to acquire BOLD-contrast fMRI
with 10 Hz sampling rate. Specifically, a reference scan of InI (TR =
100 ms, TE = 30 ms, flip angle = 30°, bandwidth = 2604 Hz, FOV
256 mm × 256 mm × 256 mm; 64 × 64 × 64 image matrix) was ac-
quired before four runs of the accelerated scan, which used the same
imaging parameters of a reference except that all partition encoding
steps along the left-right direction were discarded. Structural images
for each subject were acquired using a 3D T1-weighted pulse sequence
(MP-RAGE: TR/TE/TI = 2,530/3.49/1100 ms, flip angle = 7°, partition
thickness = 1.33 mm, image matrix = 256 × 256, 128 partitions,
field-of-view= 21 cm × 21 cm). The location of the gray–white matter
boundary for each participant was estimated with an automatic
segmentation algorithm to yield a triangulated mesh model with ap-
proximately 340,000 vertices (Dale et al., 1999; Fischl et al., 1999b,
2001). This cortical model was then used to facilitate mapping of the
structural image from native anatomical space to a standard cortical
surface space (Dale et al., 1999; Fischl et al., 1999b). Between-subject
averaging was done by morphing individual data through a spherical
coordinate system (Fischl et al., 1999a) implemented in FreeSurfer
(https://surfer.nmr.mgh.harvard.edu).

The reconstruction of InI data was done by theminimum-norm esti-
mate (Lin et al., 2006, 2008), which generated 2400 volumes of brain
images for each 4-minute run.WeusedGeneral LinearModelwithfinite
impulse response bases function to estimate the hemodynamic re-
sponses elicited by the visuomotor task. Five regions-of-interest
(ROIs) were identified from the spatial distribution of the temporally
average (4 s and 7 s after visual stimulus onset) t statistics greater
than 4.0 (Bonferroni corrected p-value b 0.05): visual cortex, posterior
parietal cortex, pre-motor cortex, somatosensory cortex, andmotor cor-
tex. The spatial distribution of these ROIs and the associated hemody-
namic responses from each ROI were reported previously (Lin et al.,
2014). We extracted the raw time series (2400 samples per run) from
these 5 ROIs for the subsequent causality analysis. To suppress physio-
logical noise including cardiac and respiratory cycles, we used a Bayes-
ian estimation tool (Sarkka et al., 2012) to automatically trace and
remove these two oscillatory signals from the time series. Furthermore,
we used a polynomial up to the 2nd order and sinusoidal functions
(sines and cosines) with 1, 2, and 3 half-cycles to remove potential sig-
nal drifts not related to brain activity. After these pre-processing, all
time series in an ROI were averaged as a single time series for each
subject.

Granger causality analysis in the frequency domain

The time series from p regions can be represented as a x(t) = [x1(t),
x2(t),…, xp(t)]T, where the superscript T denotes the transpose of a ma-
trix/vector. Using a multi-variate auto-regressive (MVAR) model of
order m to describe x(t), we have

Xm

k¼0
Akx t−kð Þ ¼ ϵ tð Þ ð1Þ

where ε(t) is the noise process with a covariance matrix Σ and Ak are
p × p coefficient matrices. In practice, we used the ARFIT algorithm
(Neumaier and Schneider, 2001; Schneider and Neumaier, 2001) to
estimate coefficient matrices Ak, noise covariance matrix Σ, and the
optimal model order, which was jointly determined by model fitting
(i.e., favoring the model with smaller power of the residual time series
after fitting) and model parsimoniousness (i.e., favoring a lower order
model).

The spectral matrix at frequency f can be then defined as

S fð Þ ¼ x fð Þx� fð Þh i ¼ H fð ÞΣH� fð Þ ð2Þ

where the asterisk denotes matrix transpose and taking the complex
conjugate. H(f) is the transfer function.

H fð Þ ¼ Λ fð Þð Þ−1 ¼
Xm

k¼0
Ake

−2πjkf
� �−1

ð3Þ

The spectral domain formulation of theGranger causality at frequen-
cy f from region 2 to region 1 can be calculated as (Geweke, 1982):

I2→1 fð Þ ¼ −ln 1−
Σ22−Σ2

12=Σ11

� �

S11 fð Þ H12 fð Þj j
0
@

1
A: ð4Þ

The formulation above did not control the information flow through
indirect connections. To circumvent this problem,we chose “isolated ef-
fective coherence” (iCoh) (Pascual-Marqui et al., 2014) to describe the
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Table 1
Themedian of theoptimalARmodel order for the time series at visual cortex (V), posterior
parietal cortex (PPC), premotor cortex (Premotor), somatosensory cortex (S), and motor
cortex (M) across subjects.

ROI Median

Left hemisphere V 14
PPC 15
Premotor 15
S 13
M 13

Right hemisphere V 15
PPC 10
Premotor 12
S 10
M 11
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direct causal modulation between two regions. Using the same MVAR
model, such causal modulation at frequency f from region 2 to region
1 can be calculated as (Pascual-Marqui et al., 2014):

iCoh2→1 fð Þ ¼ Σ−1
11 Λ12 fð Þj j2

Σ−1
11 Λ12 fð Þj j2 þ Σ−1

22 Λ22 fð Þj j2
: ð5Þ

Similar to previous Granger causality studies using fMRI data, we
calculated the difference between a pair of the causality estimates be-
tween two regions in order to infer the dominant direction of the infor-
mation flow:

dI2→1 fð Þ ¼ I2→1 fð Þ−I1→2 fð Þ; ð6aÞ

diCoh2→1 fð Þ ¼ iCoh2→1 fð Þ−iCoh1→2 fð Þ: ð6bÞ

The statistical inference of the dominant direction of the information
flow (dI2→ 1(f) and diCoh2→ 1(f)) was estimated by a non-parametric
approach because the null distributions of both dI2→ 1(f) and
diCoh2→ 1(f) have no analytic form. Specifically, surrogate time series
were generated by the Adjusted Amplitude Fourier Transform (AAFT)
algorithm, which ensures that the surrogate time series preserves the
linear correlation structure of the original time series and the marginal
distribution (Theiler et al., 1992). We created 100 surrogate time series
and calculated dI2→ 1(f) and diCoh2→ 1(f). Under the null hypotheses
that dI2→ 1(f) = 0 and diCoh2→ 1(f) = 0 with associated alternative hy-
potheses dI2→ 1(f) N 0 and diCoh2→ 1(f) N 0, we defined the p-value as
the number of occurrences of dI2→ 1(f) and diCoh2→ 1(f) estimated
from surrogate time series exceeding dI2→ 1(f) and diCoh2→ 1(f) esti-
mated from the original time series, respectively. All Granger and isolat-
ed effective coherence measures were first calculated for each run and
each subject and then averaged across subjects and runs of measure-
ments. In other words, we used fixed-effect analysis to derive statistical
inferences for the group-level results. We used Family-wise Discovery
Rate (FDR) to control the expected proportion of false positives
(Nichols and Hayasaka, 2003) when we presented results of multiple
dominant directions of information flow.

The spectral analysis of the Granger causality and isolated effective
coherence revealed the relative contributions of frequency components
in the effectiveness of reducingprediction errors of the time series at the
target region using the time series at the source region. We hypothe-
sized that high- and low-frequency components of the time series
may be best represented by different time seriesmodels. To test this hy-
pothesis, we high-pass and low-passfiltered the time series usingfinite-
impulse response filters and then calculated the time-domain Granger
causality. Specifically, the cut-off frequency fcut-off was set to 0.1 Hz for
the low-pass filter, and set to 0.5 Hz, 1.5 Hz, and 3.5 Hz for three differ-
ent high-pass filters. In these analyses, the orders of AR were the same
as those in analyzing the unfiltered time series in order to avoid poten-
tial bias because of AR model order selection.

Lastly, we also estimated the power spectral density using a multi-
taper method (Dhamala et al., 2008). Specifically, the time-bandwidth
product for the discrete prolate spheroidal sequences used as the data
window was set to 3.5. All calculations were done using Matlab
(Mathworks, Natick, MA, USA).

Results

The orders of AR model for all time series were listed in Table 1. On
average, the time seriesweremodeledwith a 10- to 15-order ARmodel.
Note that from the formulation (Eq. (3)), only one specific AR model
was used for one set of the time series. In other words, the AR model
order did not change across frequencies.

Fig. 1 shows the significant (p b 0.05) dominant directions of infor-
mation flow estimated by Granger causality and isolated effective co-
herence at 0.1 Hz, 2.5 Hz, and 5.0 Hz. For comparison, the time
domain analysis of Granger causality (Lin et al., 2014) was also shown.
Note that at 0.1 Hz there was no significant causal modulation at both
hemispheres. At 2.5 Hz, very similar feed-forward connections to time
domain analysis were identified by both Granger causality and iCoh,
particularly the dominant direction of information flow from the visual
cortex to all the other four ROIs. Most of these connections at the left
hemisphere remained significant up to 5.0 Hz, regardless of Granger
causality or iCoh estimates. At right hemisphere, the visual → motor
cortices modulation was insignificant, but visual → premotor cortices
modulation was significant in Granger causality analysis. Isolated effec-
tive coherence analysis found significant PPC → premotor and
somatosensory → motor cortices modulations at 5.0 Hz.

Fig. 2 shows the dI2→ 1(f) (Fig. 2A) and diCoh2→ 1(f) (Fig. 2B) at fre-
quencies between 0.1 Hz and 5.0 Hz. Strong causality modulationswere
estimated at about 1 Hz and 2.5 Hz. Fig. 3 shows statistical significance
of the dominant direction of information flow for all 10 pairs of ROIs
at frequencies between 0.1 Hz and 5.0 Hz estimated by theGranger cau-
sality (Fig. 3A) and by iCoh (Fig. 3B). At the lowest frequency of 0.1 Hz,
there was only one significant dominant direction of information flow
from the visual to somatosensory cortex in the left hemisphere. The
right hemisphere started to show significant feed-forward connection
at 1.0 Hz. Between 1.0 Hz and 3.0 Hz, there were 4–7 pairs of ROIs out
of total 10 pairs showing significant feed-forward connectivity at the
left hemisphere. Significant information flows from the right visual cor-
tex to other ROIs were found between 1.0 Hz and 3.0 Hz. While the
number of significant feed-forward connectivity at the right hemi-
sphere is smaller than that in the left hemisphere at frequency higher
than 3.0 Hz, the dominant information flow from PPC to pre-motor cor-
tex was still significant.

Isolated effective coherence at the left and right hemisphere showed
similar results to Granger causality: there was no significant dominant
direction of information at 0.1 Hz. At the left hemisphere, most signifi-
cant modulations from the visual cortex to other areas in Granger cau-
sality analysis between 1 Hz and 3 Hz were also significant in iCoh
analysis. At the right hemisphere, significant feed-forward connectivity
identified by Granger causality were found mostly significant in iCoh
analysis between 1 Hz and 3 Hz. Six out of ten possible feed-forward
connectivity were significant at right hemisphere at 2.5 Hz. We also ob-
served that significant causal modulation estimated by Granger causal-
ity at frequency higher than 3Hz remained significant in iCoh estimates.
At 5.0 Hz, iCoh indicated that there were still four and two significant
feed-forward connectivity out of 10 possible pairs at the left and right
hemisphere respectively.

Fig. 4 shows statistical significance of the information flow from vi-
sual to motor cortices at left and right hemispheres as a function of fre-
quency between 0.1 Hz and 5 Hz using Granger causality (Fig. 4A) and
iCoh (Fig. 4B) usingmeasurements during the visuomotor task and rest-
ing state. These curves delineated significant visual → motor cortex
modulation at different frequencies: Granger causality suggested that
such modulation became significant at 0.7 Hz. This connection
remained significant up to 5 Hz, the highest frequency limited by our



Fig. 1. Significant (corrected p b 0.05) dominant directions of information flow estimated by Granger causality and isolated effective coherence (iCoh) at 0. 1 Hz, 2.5 Hz, and 5.0 Hz. For
comparison, the time domain analysis of Granger causality was also shown here.
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inverse imaging sampling rate (10 Hz) at the left hemisphere. At the
right hemisphere, this feed-forward connectivity became insignificant
between 1.6 Hz and 2.0 Hz and no longer significant at frequencies
higher than 3.0 Hz. Note that the spectral analysis of the resting state
data did not show significant visual → motor cortex modulation in
most frequencies and in both experimental conditions, except between
1.9 Hz and 2.1 Hz at the left hemisphere. Our findings suggest that this
feed-forward connectivity is specific to the visuomotor task, rather than
because of spontaneous fluctuations in the BOLD signal.

The significance of the visual→motor cortex modulation estimated
by iCoh was found very similar to the Granger causality analysis. While
there were some differences, both methods showed that only at fre-
quency higher than 0.7 Hz, the feed-forward connection became signif-
icant. Such a dominant direction of information flow remained
significant up to 5 Hz between visual and motor cortices in the left
hemisphere. Calculation at the right hemisphere showed that this con-
nectivity was not significant between 1.7 Hz and 1.9 Hz and no longer
significant at frequencies higher than 3.2 Hz.

Fig. 5 shows the statistical significance of dominant directions of in-
formation flow for all 10 pairs of ROIs at frequencies between 0.1Hz and
5.0 Hz estimated by the Granger causality after the time series were
low-pass filtered (Fig. 5A) and high-pass filtered (Fig. 5B). Note that
these are time domain Granger analyses. Granger causality analysis
using low-pass filtered time series (cut-off frequency fcut-off of 0.1 Hz)
showed significant visual → motor cortex connectivity. Additionally,
Granger causality analyses using different high-pass filtered time series
(cut-off frequencies of 0.5 Hz, and 1.5 Hz) also showed significant
visual → motor cortex connectivity. However, high-pass filtered time
series with fcut-off = 3.5 Hz only estimated significant visual → motor
cortex connectivity in the left hemisphere, consistent with our spectral
analysis results (Figs. 2, 3 and 4).

We performed the split-half analysis to estimate the stability of
spectral analysis results. Fig. 6 shows the significant visual→motor cor-
tex connectivity estimated by Granger causality from two random sub-
groups of the subjects. Right-hemisphere visual → motor cortex
connectivity was singificant at about 1 Hz and 2.5 Hz. Left-hemisphere
visual → motor cortex connectivity was mostly singificant above
0.8 Hz, except at two discrete ranges around 2 Hz and between 3 Hz
and 4 Hz in one of the subgroups, which had a lower signal-to-noise
ratio than data from all subjects. In short, the spectral signatures of the
visual → motor cortex connectivity were found consistent between
the split-half analysis and the analysis using all subjects (Fig. 4). The
quantized p values in Fig. 6 were due to the numerical estimation
using bootstrapping: in caseswhere the estimated p-value=0, because
therewas no sample in the null distribution approximated by bootstrap
samples giving a statistic higher than that from the empirical data sam-
ples, we arbitrarily assigned their p values equal to the least non-zero p
value.

Figs. 7A and B show the visual → motor cortex Granger causality
estimates across frequencies from all subjects in the left and right
hemispheres, respectively. These causality estimates were correlated
with reaction times to probe if there is any relationship. Fig. 7C shows
p-values of these correlation analyses across frequencies. However, no
significant correlation was found. The reaction times from individual
subjects were shown in Fig. 8A. Specifically, the average and standard
deviation of the reaction time for left- and right-hemifield visual



Fig. 2. The dominant directions of informationflow for all 10 pairs of ROIs at frequencies between 0.1Hz and5.0Hz estimated by theGranger causality (A) and iCoh (B). Causalitymeasures
were coded by color.

Fig. 3. Statistical significance of the dominant directions of information flow for all 10 pairs of ROIs at frequencies between 0.1 Hz and 5.0 Hz estimated by the Granger causality (A) and
iCoh (B). P-values were coded by color. Gray color represents that the corrected p-values were higher than 0.05.
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Fig. 4. Statistical significance of information flow from visual to motor cortices at left and right hemispheres as a function of frequency between 0.1 Hz and 5 Hz using Granger causality
(A) and iCoh (B) during the visuomotor task and the resting state. P-values in the grey areas were considered insignificant.
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stimulationwere 350ms+/− 49ms and 356+/− 45ms, respectively.
The difference between RTs in these two experimental conditions was
insignificant (t-test: T = 0.452, D.O.F. = 40, p = 0.65). Fig. 8B shows
the estimated power spectral density at ROIs. Overall, the PSD declined
at higher frequencies. Peaks at about 0.2 Hz may be due to respiration.
Peaks at about 1 Hz, potentially related to cardiac cycles, were found
widely spread over frequencies. Visual cortex also showed strong
power at 2.5 Hz. These peaks may be related to our causality findings.

Discussion

This study is the first systematic study in revealing hemodynamic
causal modulations among brain areas in a task-related network at fre-
quencies up to 5 Hz. Importantly, taking the time domain analysis re-
sults as the reference, many feed-forward connections remained
significant in the same direction between 1 Hz and 3 Hz. To minimize
confounds of the physiological noise from cardiac and respiratory cy-
cles, we used a Bayesian estimation approach (Sarkka et al., 2012) to
track and suppress associated spectral components. Causal modulations
were found in the visuomotor functional areas in both the left and right
hemispheres, contralateral to the visual stimuli and the responding
hands. Additionally, these causal modulations were consistent between
estimates derived from Granger causality (Geweke, 1982) and isolated
effective coherence (Pascual-Marqui et al., 2014). Note that the feed-
Fig. 5. The statistical significance of the dominant direction of the information flow for all 10 pair
low-pass filtering (A) and high-pass filtering (B) the time series.
forward connections reported here were consistent with our previous
study showing correlations between the hemodynamic responses and
the neuronal timing measured by magnetoencephalography (MEG)
(Lin et al., 2013) as well as the time domain Granger causality
calculations (Lin et al., 2014). The specificity of the estimated
feed-forward connectivity to tasks was supported by the insignificant
visual → motor cortex modulation during the resting-state (Fig. 4).
These spectral properties were also found stable in the split-half analy-
sis (Fig. 6). Taken together, our results suggest that hemodynamic re-
sponses carry physiological information related to inter-regional
modulation at frequencies higher than what has been commonly con-
sidered. The high-frequency Granger causality shown in our study
may be due to the drop of both signal and noise strength such that the
signal-to-noise ratio remained comparable to that in the low frequen-
cies. This feature was also recently reported in a resting-state fMRI
study (Chen and Glover, 2015).

We need to clarify that the spectral analysis of the Granger causality
and isolated effective coherence reveal the relative contributions of
frequency components in reducing prediction error of the time series
at the target region using the time series at the source region. The insig-
nificant contribution of the low-frequency (≤0.1 Hz) components
shown in our results (Figs. 1, 3, and 4) is indeed intriguing. One possible
explanation is that high- and low-frequency components of the time se-
ries may be best represented by different models, and Granger
s of ROIs at frequencies between 0.1Hz and5.0 Hz estimated by theGranger causality after



Fig. 6. The significance of visual → motor cortex connectivity estimated by Granger causality from two random sub-groups of the subjects.
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causality/isolated effective coherence modeling using unfiltered time
series is biased toward the high frequency components. In fact, this hy-
pothesis is supported by the time-domain Granger causality calcula-
tions using high-pass and low-pass filtered time series (Fig. 5).
Specifically, these results suggest: 1) different time seriesmodels are re-
quired for different spectral components of the time series, 2) low-
frequency components ≤0.1 Hz) of the time series alone suggest the ex-
pected feed-forward connectivity (Fig. 5A), and 3) higher frequency
components (N1 Hz) of the BOLD signal can still faithfully represent
the causal modulations estimated by the raw time series (Fig. 5B).

Fig. 4 shows that visual→motor cortex Granger causality estimates
was only significant at the left hemisphere but not at the right hemi-
sphere at around 2 Hz. We hypothesize that this result may be related
to the handedness because all subjects in this study were right handed.
Further studies are required to test this hypothesis.

A recent study shows that the spatial distribution of BOLD signal
varies across frequencies. Specifically, low frequency (0.01 Hz–
0.05 Hz) signals are mostly clustered in the frontal, parietal, and occip-
ital cortex, while higher frequency (0.15 Hz–0.20 Hz) components are
more prominent at temporal and cingulate cortex as well as subcortical
areas (Baria et al., 2011). Such frequency-specific spatial distributions
were also reported in other studies (Salvador et al., 2008; Zuo et al.,
2010). Baria et al. (2011) further elucidated an interesting functional-
anatomical relationship: the proportion of high frequency BOLD oscilla-
tions increases in areas at higher processing hierarchy. The interest in
the spectral properties of the BOLD signal was also extended to func-
tional connectivity studies. Specifically, there have been reports
Fig. 7. The visual→ motor cortex Granger causality estimates across frequencies from all subje
visual → motor cortex Granger causality estimate and reaction time cross frequencies.
analyzing the spectral components of the BOLD signal in the default-
mode (DMN) and other networks using typical EPI with TR = 2 s
(Baria et al., 2011; Chang and Glover, 2010; Salvador et al., 2008; Zuo
et al., 2010) and fast MRI method (Lee et al., 2013), which can estimate
frequency components up to 0.5 Hz and 5 Hz, respectively. Frequency-
dependent subcomponents were identified in the DMN network
(Barbaresi et al., 1995). The high frequency components of the
resting-state network nodes show clear non-stationary coupling
(Barbaresi et al., 1995). More stable functional connectivity was found
at the higher frequency components in the visual and somatosensory
networks (Lee et al., 2013). A recent resting-state fMRI study also re-
ported frequency-dependent default-mode network and executive con-
trol network topology (Chen and Glover, 2015). These emerging
evidences suggest that BOLD signals can carry distinct neurophysiolog-
ical information in different frequency bands.

Our study can be considered as a natural extension of the efforts ex-
ploring spectral properties of the BOLD signal described above. Different
from investigating the causality modulation in the default-mode net-
work using typical EPI (Di and Biswal, 2014), we used a fast fMRI meth-
od to investigate frequency components of BOLD signals up to 5 Hz and
to study the causal modulations between areas subserving visuomotor
task.

The significant causalmodulations at specific frequencies revealed in
this study belong to the “delta” band (below 4 Hz) in classical electro-
encephalography (EEG) studies. Previously, it was found that the
BOLD signal can be modulated by intermittent rhythmic delta activity
induced by hyper-ventilation (Makiranta et al., 2004). The correlation
cts in the left (A) and right (B) hemispheres. (C): P-values of the correlation between the



Fig. 8. (A) The reaction time of subjects in the visuomotor task using left and right hemifield visual stimulation. (B) The average power spectral density at visual cortex (V), posterior pa-
rietal cortex (PPC), premotor cortex (Premotor), somatosensory cortex (S), and motor cortex (M).
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between the delta band oscillations at the anterior cingulate cortex in
the DMN and the BOLD response at the parahippocampal gyrus was
also reported in a simultaneous EEG-fMRI study (Neuner et al., 2014).
Our finding corroborated a recent animal study showing a tight cou-
pling between the low frequency components of the local field potential
between bilateral whisker barrel cortices in rats (Lu et al., 2014). These
results altogether suggest a plausible neurovascular coupling at the
delta band. However, it should be kept in mind that our results should
not be interpreted as the neuronal information flow, as the BOLD signal
has been considered as a subsequent vascular event after neuronal ac-
tivity (Logothetis et al., 2001).

Our analysis decomposed the time-domain causal modulation be-
tween ROIs into individual frequency bands. However, our decomposi-
tion ignores the potential interaction across frequencies. As it has been
suggested in EEG and MEG analyses, neuronal activity can interact via
complex phase-amplitude and power coupling at different frequencies
(Canolty and Knight, 2010). We speculate that the BOLD signal may
also demonstrate similar cross-frequency modulations at the resting
state or in response to exogenous stimuli. This hypothesis can only be
answered by further studies.

Our study aims at decomposing the directional informationflow into
different spectral components using only cortical BOLD signal time se-
ries. Thus the contributions from sub-cortical and cerebellar structures
were neglected and the effective connectivity can be biased. However,
our study aims at decomposing the directional information flow into
different spectral components using only cortical BOLD signal time se-
ries. In particular, the finding that the high frequency component of
the Granger causality revealed the same significant feed-forward con-
nectivity estimated in the wide-band time-domain Granger causality
analysis is the new information in our study.

The AR-model orders reported in our studywere between 10 and 15
(Table 1). The time seriesmeasured by typical fMRI protocolswith TR of
1 or 2 s can be modeled by the first order AR model (Purdon and
Weisskoff, 1998). This suggested that the hemodynamic signals are
temporally correlated when measurements are taken within seconds.
In InI with TR = 0.1 s, this correlation is expected among consecutive
measurements of about 10 to 20 samples. Our estimated ARmodel sup-
ported this argument.

This study used the inverse imaging method to achieve 10 Hz
sampling rate with whole-brain FOV coverage and the minimal com-
promise of spatial resolution (Lin et al., 2008). A similar fast MRI meth-
od, MR-encephalography (MREG) (Hennig et al., 2007), was also
developed independently. Both methods allow us to explore the spec-
tral decomposition of the BOLD signal up to 5 Hz. If spatial coverage
can be limited, it is also possible to use single-slice EPI to achieve the
same bandwidth. Even faster sampling can be achieved by optimizing
the inverse imaging protocol (Boyacioglu and Barth, 2013) or using
the echo-shifting method (Chang et al., 2013) to investigate the BOLD
signal frequency up to 10 Hz (50 ms TR). However, if the frequency
components up to 2–3 Hz is sufficient, simultaneous multi-slice imag-
ing, a method of sub-second whole-brain fMRI (Feinberg et al., 2010),
may be used without compromising the spatial resolution. In summary,
these methods enable the exploration of the BOLD spectrum beyond
0.5 Hz as limited by a typical 2 s TR in multi-slice EPI.
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