Space Connection: A New 3D Tele-Immersion
Platform for Web-Based Gesture-Collaborative
Games and Services

Chun-Han Lin
National Chengchi University
Taipei, Taiwan
Email: john.lin0420@ gmail.com

Abstract—The 3D tele-immersion technique has brought a
revolutionary change to human interaction- physically apart users
can interact naturally with each other through body gesture in
a shared 3D virtual environment. The scheme of cloud- or web-
based applications on the other hand facilitates global connections
among players without the need to equip with additional devices.
To realize web-based 3D immersion techniques, we propose Space
Connection that integrates techniques for virtual collaboration and
motion sensing techniques with the aim of pushing motion sensing
a step forward to seamless collaboration among multiple users.
Space Connection provides not only human-computer interaction
but also enables instant human- to-human collaboration with
body gestures beyond physical space boundary. Technically, to
develop gesture-interactive applications, it requires parsing signals
of motion sensing devices, passing network data transformation,
and synchronizing states among multiple users. The challenge for
developing web-based applications comes from that there is no
native library for browser applications to access the application
interfaces of motion sensing devices due to the security sandbox
policy. We further develop a new socket transmission protocol that
provides transparent APIs for bowsers and external devices. We
develop an interactive pingpong game and a rehabilitation system
as two example applications of the presented technique.

I. INTRODUCTION

The news that Apple acquires PrimeSense brings 3D motion
sensing techniques to a hot spot. PrimeSense is best known
for developing gesture control for Microsoft’s Kinect sensor,
and has made strides towards bringing the technology mobile.
As Apple conducted this investment due to the huge market
potential of motion sensing, the market of motion sensors was
estimated to reach $4.8 billion by 2016, driven by motion gam-
ing and consumer electronic mainly, indicating the dramatically
increased demand of the motion sensing software in the near
future.

Kinect leads motion sensing techniques to an even more
prosperous era. Researchers applied Kinect into fields other
than commerce. Chang, Chen, and Huang [10] designed inter-
active games to help motivate people with motor impairments to
participate in rehabilitation. The therapists can normally assist
one client at a time, but with this system, the therapists can
review and rehabilitate more individuals with higher efficiency.
Zafrulla, Brashear, Starner, Hamilton, and Presti [30] tried
to put Kinect into educational usage. They tried to develop
a learning gaming system for deaf children to learn sign
language. Kinect was also put into the usage of mapping

F. Yu is partially funded by the grant MOST-103-2221-E-004-006-MY3.

Pei-Yu Sun
National Chengchi University
Taipei, Taiwan
Email: vipfifisun@gmail.com

Fang Yu
National Chengchi University
Taipei, Taiwan
Email: yuf@nccu.edu.tw

technology [17] in which people held Kinect in their hands
and moved indoors to map the environment.

While there are quite a few literatures on how motion
sensing leads to innovative and intuitive human-computer inter-
actions, comparably less discussions were done on connection
of human to human interactions [4]. The concept of 3D tele-
immersion aroused this direction. We integrate several tech-
niques for virtual collaboration and motion sensing with the
aim of pushing motion sensing a step forward to seamless
collaboration among multiple users. The presented platform
Space Connection facilitates instant human-to-human coopera-
tion with body gestures beyond physical space boundary.

The objective of this work is to provide a virtual collab-
orating environment that makes seamless real-body motional
interaction possible. To this aim, we propose a new socket
transmission protocol that enables motion sensing devices and
browser applications to communicate simultaneously via binary
data formats among multiple users. Since socket transmission
is supported by most of the mainstream rich web application
techniques, the protocol provides a transmission tunnel between
browser applications and the native motion sensing library,
allowing browser applications to invoke native motion sensing
library seamlessly. We further implemented Socket Natural
Interaction (SocketNI) by wrapping up popular native motion
sensing library OpenNI. SocketNI acts as a middle layer that
enables web application development with functionalities of
OpenNI. That is to say SocketNI SDK is compatible with
OpenNI standard interfaces.

There are two aspects of contributions of SocketNI: to
the users and to the developers. (1) To the users: Users can
access to a virtual socio-spatial world with more convenience.
All they need to do is type in the URL and browse to
the motion sensing web application. They no longer need to
download large executable files or purchase extensive hardware.
Moreover, SocketNI provides a ubiquitous collaboration envi-
ronment to the users. They can access applications without the
limitation of space and interact with people elsewhere easily,
changing the way how people social communicate with one
another. (2) To the developers: Nowadays APIs for motion
sensing applications are Microsoft Kinect for Windows SDK
and OpenNI2 + NiTE2 (Prime Sense); however, none of them
support web runtime environment. To convert their applica-
tions into web-based applications, developers have to establish
connection, maintain sessions, synchronize application states,
constitute protocol, and deal with data streaming. We provide
SocketNI to address this concern. We wrapped the codes up

into a software development kit (SDK) that supports various
web runtime environments such as Java applet, Unity3D and
Silverlight. Also, SocketNI SDK has been implemented in
multiple languages such as C#, VB.NET and Java, which are
most popular languages for developing web applications.

II. RELATED WORK

We briefly review previous related work in three folds: Tele-
immersion techniques, motion sensing techniques and browser
plugins.

A. Telepresence and 3D Tele-immersion

Telepresence [7] is the use of technology to establish a
sense of shared presence or shared space among geographi-
cally separated members of a group. Researchers [25] tried to
establish a virtual space and capture motions of involved person
precisely and convert them into avatars to interact with people
from another place. Fuchs, State, and Bazin [16] introduce
a dynamic and realistic 3D telepresence system. They found
that when two depth camera sense the same object, they are
very likely disrupted by one another causing holes in the
outcome; therefore, they built algorithms which enabled hole-
filling and smoothing, data merging between cameras, and 3D
eye position tracking. Beck, Kunert, Kulik, & Froehlich [6]
came up with establishing a depth correction table which can
help calibrated data more precisely. In addition, they further
extend their research to interaction of two or more groups.
They not only provide tracked users their own perspective
correct images but also tested on face-to-face, side-by-side and
decoupled scenarios.

3D Tele-immersion systems introduce a new way of com-
munication between people. Broader audiences enjoy collabo-
rative interaction in a joint immersive environment with other
users from remote places for business and entertainment us-
age. To extend Telepresence to provides 3D Tele-immersion,
there remain many challenges such as real-time 3D video
reconstruction and compression, Quality of Service (QoS) of
synchronization of multiple 3D streams, multi-view displays of
3D contents. Communication of 3D Tele-immersion requires
large computational power, storage and bandwidth. The data
transmitted in 3D Tele-immersion contain visual and vocal data;
in addition, to achieve seamless user experience of coexistence
and collaboration in virtual space, we need to synchronize the
data from multiple sources and resynchronize when the user
views change.

Several previous researches have been proposed with in-
novative frameworks to assist the performance of 3D Tele-
immersion. TEEVE (Tele-immersive Environment for EVEry-
body) [29] presents a flexible and cost-effective end-to-end
cross-layer architecture that incorporates all participating de-
vices for efficient resource utilization and quality of service.
TEEVE also follows end-to-end setup protocol that performs
as a gateway between data transmission of different users and
initiate tele-immersive environment. Graphic morphing [12]
was used to connect between first and second frames. The
technique perform special effect in motion picture that one
frame can change to another frame smoothly. Fechteler et
al. [14] proposed building a database containing pre-processed
data like depth maps, skeleton information, alpha masks, so
that highly realistic animations can be formed by warping and
merging pre-captured database images. Unlike previous work,
we develop a cross-platform socket interface to facilitate Web

based interactive applications through motion sensing devices
like Kinect.

B. Motion sensing devices and applications

Due to Wii’s commercial success, the era of motion sensing
started in November 2006 after Nintendo announced its release
of Wii remote. With infrared camera tracker, vibration motor,
and accelerometer, Wii remote can turn into guns, bats, swords,
steering wheels [24] in games. One of the best-selling games of
Wii, Rayman Raving Rabbids 2, made extensive and innovative
attempts [8] of interactions between players and Wii. In Ray-
man Raving Rabbids 2 players have to shake, swing, hold still,
press the buttons on the Wii Remotes, or put the Wii Remotes
near their ear or mouth to pretend they are calling cellphones
or drinking water. In addition to gaming business, Wii remote
was implemented in other fields like rehabilitation [13][15]
and education [23][5]. Later, gesture sensing technologies, e.g.,
Kinect, facilitate innovative commercial services, e.g., Dynamic
dressing room [9], which allows people to utilize gesture to
select clothes for fitting and screens the results on the display
screen, reduced the time for clothe fitting. Customers can also
easily visualize their look when they shop clothes on-line at
home, cutting chances of buying unfit clothes.

Kinect lifts human computer interactions to another level by
detaching wearable apparatus and introducing a brand new type
of interaction. The equipment has a RGB camera, a depth senor
and a multi-array microphone. It makes use of infrared (IR)
lights to obtain depth data, and can track 48 points of our body
for up to two players [21]. Users interact with their computers
3 dimensionally using gestures and vocal commands; in other
words, users are not bounded by keyboards, mice or controllers
and thus have intuitive experiences with digital contents. As
soon as it is released, Kinect had been assisting optimization
of business process. Kroeckel and Bodendorf [18] tried imple-
menting Kinect into customer tracking and tracing at the point
of sale to optimize and offer innovative services.

In addition to its wide applications, Kinect triggered new
development of motion sensing devices. ASUS Company lo-
cated in Taiwan released Xtion Pro and Xtion Pro Live to
share the slice of the motion sensing industry. Leap Motion, a
portable device with two IR cameras and three infrared LEDs,
which can detect very fine movements of hand gestures, observe
the objects to a distance of 1 meter with higher accuracy [27],
was also produced. Last, Kinect 2.0, a new version of Kinect
that enables advance gesture, facial, and voice recognition, was
developed. It not only tracks skeletons of the users with higher
precision but also scans the entire bodies of users vividly even
in the dark. With the ability to trace people’s heartbeats, muscle
usage, and facial expression for up to six people simultaneously.

C. Browser Plugins Development

Plugins are external binaries that add new capabilities to
a web browser and are loaded when content of the type they
declare is embedded into a page. Google Chrome uses Netscape
Plugin API (NPAPI) [2] as a way to access native OS. NPAPI is
one of common cross-browser plugin frameworks to exchange
data with the browser. It is not only implemented by Chrome,
but also by Firefox and most other web browsers, excluding
Microsoft Internet Explorer, which stopped supporting it in
favor of ActiveX. Although Netscape Plugin API (NPAPI)
is intended to be platform independent, in reality it is not
fully so. It is a weak standard, and every browser implements

it somewhat differently. Therefore, Google developed Pepper
Plugin API (PPAPI) to solve the legacy problem. Pepper Plugin
API (PPAPI) was developed to minimize the changes from
legacy NPAPI, hoping to ease adoption by browser vendors and
plugin developers. Moreover, PPAPI also increases the portabil-
ity and performance issues with NPAPI, particularly increases
the capabilities such as generic 2D and 3D graphics and audio.
Native Client (NaCl) is a platform-independent sandboxing
technology which enables untrusted native code to run in a
web browser safely. It allows real-time web applications that
are compute-intensive and/or interactive (e.g. games, media,
large data analysis, visualizations) to leverage the resources
of a client’s machine and avoid costly network access while
running in a secure environment with restricted access to the
host.Native Client (NaCl)started as a downloadable NPAPI
plugin for multiple browsers, including Firefox, Safari, Opera
and Chrome and was designed to transparently load and run
other NPAPI plugins compiled as nexes and embedded into the
page as a source file of an plugin element. Internet Explorer
uses ActiveX controls [1] that adapts its earlier Component
Object Model (COM) and Object Linking and Embedding
(OLE) technologies for content downloaded from a network
, particularly in the context of World Wide Web (WWW).

We aimed at developing a cross-platform framework for
thin-client, all-web-usable 3D gesture-interactive applications.
To achieve the goal, it requires seamless connection from
motion sensing device to web application. Severe delay would
put stop to the application; therefore, it is important to design
a mechanism that can connect motion sensing devices to
the web with efficiency. We first developed Socket Object
Exchanging Framework (SOX) as a data exchanging framework
to cross language data exchange and remote procedure invoca-
tion. Based on SOX, we developed Socket Natural Interaction
(SocketNI), which is a library that allows web application to
directly access native OpenNI library to communicate with
motion sensing devices.

Finally, there is a trend that 3D sensors will be embedded
into nowadays devices, like smart phones, televisions, and
notebook. Listed below are some of the issues that can indicate
this trend’s happening. (1) Primesensen Inc. developed Capri,
which is a motion sensing chip so small that you can hold
it with your two fingers. (2) HP embed Leap Motion into
notebook, HP ENVY17 Leap Motion, so that users can use
their fingers to control the notebook without using keyboard.
(3) Samsung released smart TV that doesn’t need a controller
to switch channel. Users use their body gestures to interact
with the TV. And (4) Samsung Galaxy S4 has eye tracking
camera embedded. We can foretell that the era of embedded
3D motion sensor is near; people can physically interact with
remote peers without the limitation of space and affordability
with just your smartphone and notebook using the presented
techniques including the cross-platform technique SocketNI.

This work consists of two main impacts: For technical
impacts, we expect that the platform and the public-available
application interface of Space Connection can be leveraged
by managers and programmers to develop new collaboration
services with revolutionary motion sensing applications. For
social impacts, we envision such collaboration through the
new generation of the Internet creates a novel social network
connecting people’s space beyond physical boundary of real
worlds.

Request Request

Web App /
SocketNI Client

‘Web App /
SocketNI Client

Response Response

Space Connection
Central Server

SocketNI Server SocketNI Server

T T
Motion Sensing Motion Sensing
Device Device

Fig. 1. Space Connection Architecture
| Controller / Action | | Controller / Action |
! !
| /O Handler | | 1/0O Handler |
! !
| 1/O Session | | /O Session |
! !
| /O Acceptor |<—’| 1/O Connector |
SOX Server SOX Client
Fig. 2. Socket Object Exchange Framework (SOX)

III. WEB-BASED GESTURE COLLABORATION

Figure 1 shows the architecture of Space Connection. For
each user who has their motion sensing device plugged into
their computer, a local SocketNI server ,which is implemented
base on SOX, will take control of the device and wait for any in-
coming command that send from web application client. Also,
a web application which is implemented with our SocketNI
SDK will communicate with the local SocketNI server so as
to get the data which generated by motion sensing device. To
synchronize the states such as skeleton positions or depth map
among multiple web applications, we adopt a central server
framework among players. A player is selected as the center
to take control of communications. We evaluate the latency in
Section V.

A. Socket Object Exchange Framework (SOX)

SOX’s implementation allows different languages to ex-
change their objects and to invoke remote functions of each
other through socket communication. It provides an interface
that is implementable on different kinds of programming lan-
guages. Besides, SOX used a model-controller-liked foundation
to invoke functions on each side. Current implementation of
SOX can support JAVA and C#, and it can be implemented
on more programming languages such as ActionScript or
JavaScript. Figure 2 shows the components under SOX frame-
work. An I/O Acceptor is used to establish a server listener
which accepts clients’ connection request. /O Connector, in the
other hand, is used to establish the connection with the server.
After a connection is established, I/O Session component will
maintain the session layer information and provide byte-based
I/O function to read or write data to the remote end. I/O Filter
component is the data codec of SOX framework, it is used to

Request Name Length Request Name Number of Content
ne
(4 bytes) (ny bytes) n (4 bytes)
Content 1 Key Content 1 Key Content 1 Class Content 1 Class
Length N?me Name
nj (4 bytes) (n} bytes) | Lengthnz (4 bytes) (n} bytes)
Content 1 Data Content 1 Data
X Length (n, bytes)
ng (4 bytes)
Contenti Key Contenti Content i Class Contenti Class
Length Key Name Name
n, (4 bytes) (n}, bytes) | Length n} (4 bytes) (nl, bytes)
Content i Data Content i Data
) Length (‘ni b)
ny (4 bytes) a bytes
JSON Length n; JSON Data
(4 bytes) (n; bytes)

Fig. 3. Byte Level Data Layout of SOX

encode high-level object into binary or decode low-level binary
data received by I/O Session component into high-level object.

Figure 3 shows the byte level data layout of which is
encoded by I/O Filter. The first 4 bytes are used to describe
an integer n, which is this length of request name, and the
fallowing n, bytes are used to describe the request name string
that encoded into UTF-8 format. The next 4 bytes are an
integer n. used to describe the amount of contents. Contents
in SOX framework are elements that aren’t suitable to be
encoded into JSON format. JSON is a data-interchange format
that is completely language independent, human-readable, and
can be easily parsed by C, C++, C#, Java, Perl, and many
others languages. It is built by key-value pairs using comma
and brackets for segmentation. It changes data into UTF-8
character format and transmit among different programming
language. The reason why some elements in transmitted data
structure aren’t suitable to be directly encoded into JSON is
because JSON format describe object with UTF-8 context and
makes data size much larger than they were. In most of the
situations, serialize object directly into JSON could be feasible
if the transmitted data do not contain a lot of large binary
data; however, when it comes to BLOB (Binary Large Object),
the size expansion could severely cause transmission delay and
affect user experience. For example, a bitmap data contains a
large byte array, if such array is described by UTF-8 string than
the size of data will be over-expansed since an UTF-8 character
takes 1 6 bytes to encode. If we would like to transmit a white
pixel that contains 3 bytes which are (255,255,255) in RGB,
under UTF-8 encoding, the three bytes will become a string
255,255,255” that expanse the size from 3 bytes to 11 bytes.
Although this expansion isn’t obvious when we send simple
object but when it comes to BLOB such as bitmap the data can
grow tremendously. SOX can distinguish which field should be
encoded into raw bytes rather than JSON and then extract it out
from its original data structure and become a so called content.

After the request has been sent to the remote end, I/O
Filter will then decode the request and put the content back
to its original data structure. For each content, we designed the
fallowing data layout: The first 4 bytes of the 7;;, content is an
integer n! means the length of content key, and the fallowing
ni bytes is the content key. A content key is simply a hash
code of the content. This content key is used to identify which

field in the JSON data structure should the content put back
after the whole data is sent to the remote end. An integer n’
that takes 4 bytes is then write into the buffer to describe
the length of content class name and the fallowing n! bytes
is a string that represent the content’s class. When SOX is
implemented in object-oriented language, this class will define
the way how the content be serialized and desterilized. After
the class name is written, SOX then write a 4-byte integer n,
, which represents the length of content byte data, into the
buffer, and the fallowing n!, bytes is the binary data that the
content is serialized to. After all of the contents are written into
buffer, we then write an integer n; of 4 bytes that describe the
length of JSON string, and the fallowing n; bytes is the JSON
string which is encoded into UTF-8 format. The JSON string
here is derived from the serialization result of the transmitted
object, however, the JSON string does not contain any BLOB
since we’ve already extract them out as content, so the space
utilization of this JSON context is quite efficient.

I/0 Handler component acts as an invocation manager that
determine which action and controller needs to be triggered
after an object is received. Also, it controls the behavior when
each life-cycle-related event happens and notifies the blinded
events. Controller components are very critical part in SOX
framework. They manage a set of actions (functions) that
could be triggered from request of remote ends. Under SOX
framework, there are two kinds of controller, one is Disposable
Controller and the other is Resident Controller. Disposable
Controllers are instantiated whenever a request triggers its
action and will be released once the request finished. Resident
Controller, however, is instantiated when a session opened
and it won’t be released until the session closed, so Resident
Controller provides a persistence layer in a session thus can
be used to manage the binding of object and its proxy object
between server and client. For example, if a proxy object
on client call a method, SOX will trigger the method of the
real object on the server side which is bind with the proxy
object, and its return value will be send back to the client
synchronously or asynchronously on developer’s demand. If
the return value send back synchronously, then the code will
look like a normal method call, but in fact the calls has traveled
through the Internet and get its return value back, and all of the
complex communication mechanisms are taken over by SOX.

B. Socket Natural Interaction (SocketNI)

OpenNI is an open source SDK which enable developers
to easily create middleware libraries and applications for 3D
sensors. NiTE is a robust 3D computer vision middleware
program with multiplatform supported. It utilizes algorithms for
the depth, color, IR and audio information received from the
hardware device, which enable application to perform functions
such as hand locating and tracking. Although OpenNI and
NiTE library can be dynamically linked to the executable
applications, it is un-permitted for a normal web application
to access motion sensing device’s data stream by these library
due to security sandbox policy in the browser. Instead of devel-
oping plugins for each kinds of browser, for example, develop
ActiveX plugin for Microsoft Internet Explorer, Native Client
for Google Chrome and etc., we come up with a solution that
is compatible for every browser, mainstream operating system
and rich Internet application platform that support socket com-
munication Socket Natural Interaction (SocketNI). SocketNI
is a web-based implementation of OpenNI 2.0 interface and
NiTE 2.0 middleware. Basically, SocketNI is developed on the

foundation of SOX framework, so it enables web application to
seamlessly invoke the method of OpenNI and NiTE. SocketNI
contains two parts, one is SocketNI server and the other is
SocketNI client. SocketNI server is implemented in JAVA and
has wrapped OpenNI, NiTE and some common motion sensor
drivers with it. So it can serve under multiple platforms such
as Windows, Mac OS, and Linux. SocketNI server act as a
background service and once the device plugged into user’s
computer, SocketNI server will listen for the request from web
application and invoke the corresponding function of OpenNI
or NiTE thus control the device. SocketNI client is a library
(SocketNI SDK) also developed under SOX framework and
can be used to invoke OpenNI and NiTE function on SocketNI
server. Since SocketNI client is a web-based implementation
of OpenNI and NiTE, it provides all the APIs substitution of
OpenNI and NiTE. By using SocketNI SDK, web application
developers can use the APIs of SocketNI as if they are really
using OpenNI and NiTE in their web application with almost
no difference. Currently SocketNI client support JAVA and
C# so it can be applied on rich Internet applications (RIAs)
such as Java applet, Silverlight and Unity web application. The
RIAs we discussed above usually will require a special hand-
shake while a new socket connection is established due to the
existence of sandbox policy. SocketNI server also implements
the hand-shake mechanism for the above RIAs thus to simplify
and fasten the developing progress for development that adopt
SocketNI SDK. In addition, SocketNI inherits cross-device
feature from OpenNI, so with SocketNI, users of different
motion sensing devices can interact in same web application
and complete their works or gaming activities collaboratively.

C. Application state synchronization of Space Connection

After SocketNI equips web applications with ability to
access motion sensor’s data. we show how Space Connection
realizes collaborative interaction among multiple users on the
Internet. In the Space Connection system, we build a server
on the cloud that acts as a state arbiter among multiple users.
To keep every user’s states synchronized, one of the biggest
difficulties that Space Connection has to overcome is the
latency when data is transmitted among multiple users. The
latency not only affects user experience but also cause abnormal
program behavior. Space Connection used a centralized way to
keep program states synchronized among peers. In other words,
every change that could affect the collaboration result should
be controlled under central server’s arbitration before present
on the screen of each peer. Figure 4 shows an example how
Space Connection deals with the synchronization task between
two players’ skeleton position. When client A raises his left
hand, instead of updating its avatar in the web application
immediately, it sends the position changes to the central server
first. After central server got the position changes, it commits
the changes and broadcasts the changes to every peer. Clients’
application can only update the states of program according to
the changes that is approved by the central server.

IV. APPLICATIONS

As mentioned, 3D Tele-immersion has been applied in
different fields like gaming, education, tele-conferencing, re-
habilitation, and choreography. It was widely used in gesture
collaborative activities. Our service platform also has the po-
tential to fulfill the needs. SocketNI provides a quick way for
developers to build motion sensing web applications. They can
easily transform applications existing using our SocketNI SDK.

Client A Central Server Client B

Client A Position Changed

Commit Client A Position Changed | Commijt Client A Position Changed

Client B Position Changed

Commit Client B PositionChanged | Commit Cliens g Position Changed

Fig. 4. Example of Space Connection State Synchronization

]

[

*:

&

A Table tennis game)

-

Fig. 5.

We aimed to develop a framework which enable users to use
3DTI technique on-line, using website browsers like Google
Chrome, Firefox and Internet Explorer. With the development
of new motion sensing technique with thin-client concept, we
can record more detailed information and link people from
different places and background seamlessly and easier. We
direct in two folds our applications with the presented SocketNI
below.

A. Interactive Gaming

Games [28][26] were among the first applications devel-
oped with 3D Tele-immersion. On-line games can have social
bonding and collective physical exercise without the restriction
of space. SocketNI challenges the way people interact in the
past. It not only creates an invisible but conceptually presented
space that is un-reproduce-able outside the 3D environment but
offer an easy access to the users and helps developers to gain
larger crowds of users.

Figure 5 is the picture of our table tennis game that is
developed based on SocketNI SDK. Two players are equipped
with difference devices: one PC with Kinect and one MAC
with Xtion Pro. In the gaming scene, each translucent avatar
stands for one player. They are playing at different places
using different devices. For computers, we used one Mac, one
SONY VAIO notebook, and for motion sensor, one is Microsoft
Kinect, and the other is ASUS Xtion Pro. It can be tell from the
operating system and the equipment we used that our SocketNI
SDK support cross-platform and cross-device situations. The
actual data streaming is fluent despite the fact that this is a 3D
virtual environment. We scanned the skeleton of player and
synchronize the 3D joint coordinate on both sides.

Also, we design two ways to minimize disturbance from
background or other pedestrians.

H]

Fig. 6. Real-time Training Report (rehab motion playback, motion duration,
stretching angles, memorization correctness table)

1) Every user has to pose a gesture of crossing their hands
before he staring so that the program can understands that
he is the exact player.

2) We can turn on and show the actual depth map on the
screen to find out what disturbances (irrelevant people or
other objects) are sensed thus to remove them from the
realistic scene.

B. Interactive Training

SockenNI can also be used to implement real-time in-
teractive training similar to sport training [19], rehabilitation
[20][22][11]. The trainer and trainee can access instant accurate
3D data of their gesture.

It is well-motivated developing rehabilitation applications.
According to World Health Organization, 15 million people
worldwide suffer from stroke every year. Nearly six million
[3] die and another five million are left permanently disabled.
Rehabilitation is an effective way to better up the situation;
however, it is hard for them to travel back and forth from home
to hospital frequently due to disability. In the past, rehabilitation
relied on personal therapy. Patients with low mobility have
to travel far to reach the clinic. Other alternatives include
personalized equipment which usually associated with high
costs.

On-line interactive rehabilitation system enabled them to
exercise with other patients under supervision of doctors. Full
bodies of users are captured and shown in real-time, which
cannot be acquired elsewhere. Doctors can utilize multiple
displays to view patients’ performance from all angles. At the
same time, by allowing patients to interact with each others,
it enhances the motivation for patients to do rehabilitation. We
provide a memory game. There are eight rocks in the screen
and a sequence of number will appear and disappear within
a short time. Patients have to memorize the sequence and
touch the rocks in sequence collaboratively. With this design,
boring stretching rehabilitation and memorization exercise can
be transformed into a cooperating game between multiple
patients and can further stimulate the motivation for them to
take such rehab session.

Figure 6 demonstrates a real-time doctor site analysis report
that is formed after the training game. The result contains
patients’ motion video playback, stretching angle, endurance,
and memorization result. This report provides a more concrete
and precise data of patients. In the future, by accumulating the
data, the database could become big data and can be apply to
rehabilitation related research.

As the final remark, 3D Tele-immersion has created various
innovation services: patients of healthcare rehabilitation can
interact with their physical therapists at home, avoiding burden-
some physical moving and traveling. Athletes can play sports
with external players without space and weather’s limitation.
Dancers can choreograph with other experts instantly, which
help refining dance movements and establishing relationships.
Using the presented techniques, those tasks can be web-based
applications connected with a computer and a motion sensing
device.

V. PERFORMANCE EVALUATION

Motion data are transmitted from local SocketNI server via
SOX and then are passed to the other peers via the Internet.
We design an experiment measuring the latency of SOX in
this section. In each frame, SOX transmits data including
depth map, user map, 3D joint coordinates and orientation
quaternions of users’ skeleton. A depth map is an array that
records the depth of each pixel where the value ranges from
0 to 10000; therefore, each pixel is encoded by two bytes.
The size of a depth map is 320 x 240 pixels with total length
153600 bytes (320 x 240 x 2 = 153600). User map is quite
similar to depth map instead that user map is used to map pixels
to users’ identifiers. Programmers can distinguish the owner of
each pixel using user map. User map has the same size as depth
map does. Besides those two maps, SOX also transmits for each
user the positions and orientations of 15 different joints in 3D
coordinates and quaternions. As more users stand in front of a
single motion sensing device, the length of depth map and the
length user map remain the same, but data of coordinates and
orientation quaternions of joints increase linear to the number
of users. Table I shows how average latency of SOX increases
by adding users.

TABLE 1. SOX TRANSMISSION LATENCY

Users Avg. Delay(ms)
1 15
2 32
3 46

After all the joint coordinates and orientation quaternions
are received by the browser application and are applied to the
corresponding joints of an avatar model, the avatar’s states
are then synchronized in the scene of each peer. Note that
the participated peers are within campus WIFI to access the
Internet in our experiment (might be faster than general cases).
To accomplish state synchronization, the web application keeps
observing every joint coordinate and orientation quaternion to
track changes of those values. Every time when a change of
value happens, the web application sends the new value to the
central server who broadcasts the new value to other peers. A
maximum sending rate in this experiment is restricted to 30
requests per second. We use UDP as the transmission protocol.
The reason to trade reliability with performance is because the
lost packets could soon be recovered by next ones.

Table II shows the average transmission latency of each
joint’s data in millisecond. As the number of peers increase,
latency increases faster than the linear increase of the data size
on average. It takes 24.04 milliseconds to transmit a frame data
from one peer to another with 2 participants; the cost increases
to 105.7 milliseconds t from one to another with 3 participants.
The performance could be improved by adopting peer-to-peer
framework rather than the presented centralized framework.

TABLE II. STATE SYNCHRONIZATION LATENCY

Joints 2 Peers 3 Peers

Left Shoulder 28.5 102.9

Right Shoulder 22.6 87.9

Left Arm 23.7 98.9

Right Arm 22.5 84.9

Left Hand 25.0 93.3

Right Hand 22.0 112.9

Spine 27.5 105.9

Neck 233 91

Head 229 116

Left Hip 24.5 129

Right Hip 23.6 111

Left Leg 24.3 108

Right Leg 233 121.9

Left Foot 24.0 104

Right Foot 229 117.9

Avg. Network Delay 24.04 105.7
Bytes Sent Per Second 9057 16143
Bytes Received Per Second 8237 13149

VI. CONCLUSION

We present an interoperability infrastructure for creating 3D

applications using 3D motion sensor data within Web browsers.
The approach uses a network protocol called SOX to connect
web applications with a 3D motion sensor via an OpenNI 2
style interface. The use of SOX is justified by the need to
send data in binary format to prevent large amounts of data
expansion that occurs when using JSON. A table tennis game
and a rehabilitation game are created as proofs of concept of
the technique.

(1]

(2]
(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

(11]

REFERENCES

Introduction to activex controls. https://msdn.microsoft.com/en-us/
library/aa751972%28v=vs.85%29.aspx.

Native client. http://www.chromium.org/nativeclient.

Stroke statistics | internet stroke center. http://www.strokecenter.org/
patients/about-stroke/stroke- statistics/.

D. S. Alexiadis, P. Kelly, P. Daras, N. E. O’Connor, T. Boubekeur,
and M. B. Moussa. Evaluating a dancer’s performance using kinect-
based skeleton tracking. In Proceedings of the 19th ACM International
Conference on Multimedia, MM ’11, pages 659-662, New York, NY,
USA, 2011. ACM.

H. Andreas, S. Selver, S. Christian, E. Martin, D. Matja, and H. Bo.
Nintendo wii remote controller in higher education: Development and
evaluation of a demonstrator kit for e-teaching. Computing and Infor-
matics, 29(4):601-615, 2010.

S. Beck, A. Kunert, A. Kulik, and B. Froehlich. Immersive Group-to-
Group Telepresence. IEEE Transactions on Visualization and Computer
Graphics, 19(4):616-625, Apr. 2013.

W. Buxton. Telepresence: Integrating Shared Task and Person Spaces.
92.:123-129, 1992.

M. Casamassina. Pre-e3 2007: Hands-on rayman raving
rabbids 2 - IGN. http://www.ign.com/articles/2007/07/09/
pre-e3-2007-hands-on-rayman-raving-rabbids-2, July 2007.

H.-T. Chang, Y.-W. Li, H.-T. Chen, S.-Y. Feng, and T.-T. Chien. A
dynamic fitting room based on microsoft kinect and augmented reality
technologies. In M. Kurosu, editor, Human-Computer Interaction.
Interaction Modalities and Techniques, number 8007 in Lecture Notes
in Computer Science, pages 177-185. Springer Berlin Heidelberg, Jan.
2013.

Y.-J. Chang, S.-F. Chen, and J.-D. Huang. A kinect-based system
for physical rehabilitation: A pilot study for young adults with motor
disabilities. Research in Developmental Disabilities, 32(6):2566-2570,
Nov. 2011.

C.-H. Chen, J. Favre, G. Kurillo, T. Andriacchi, R. Bajcsy, and R. Chel-
lappa. Camera networks for healthcare, teleimmersion, and surveillance.
Computer, 47(5):26-36, May 2014.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

S. Chen and K. Nahrstedt. Activity-based synthesized frame generation
in 3dti video. In 2013 IEEE International Conference on Multimedia
and Expo (ICME), pages 1-6, July 2013.

J. E. Deutsch, M. Borbely, J. Filler, K. Huhn, and P. Guarrera-Bowlby.
Use of a low-cost, commercially available gaming console (wii) for
rehabilitation of an adolescent with cerebral palsy. Physical Therapy,
88(10):1196-1207, Oct. 2008.

P. Fechteler, A. Hilsmann, P. Eisert, S. V. Broeck, C. Stevens, J. Wall,
M. Sanna, D. A. Mauro, F. Kuijk, R. Mekuria, P. Cesar, D. Monaghan,
N. E. O’Connor, P. Daras, D. Alexiadis, and T. Zahariadis. A framework
for realistic 3d tele-immersion. In Proceedings of the 6th International
Conference on Computer Vision / Computer Graphics Collaboration
Techniques and Applications, MIRAGE ’13, pages 12:1-12:8, New York,
NY, USA, 2013. ACM.

A. Fraser, M. Annett, and W. F. Bischof. Lean on wii: Physical rehabil-
itation with virtua reality wii peripherals. 154(IOS Press Ebooks):229 —
234, 2010.

H. Fuchs, A. State, and J.-C. Bazin.
Computer, 47(7):46-52, July 2014.

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.
Kinectfusion: real-time 3d reconstruction and interaction using a moving
depth camera. In In Proc. UIST, pages 559-568, 2011.

J. Kroeckel and F. Bodendorf. Visual customer behavior analysis at
the point of sale. International Journal On Advances in Systems and
Measurements, 5(3 and 4):178-187, Dec. 2012.

G. Kurillo, R. Bajcsy, K. Nahrsted, and O. Kreylos. Immersive 3d
environment for remote collaboration and training of physical activities.
In IEEE Virtual Reality Conference, 2008. VR ’08, pages 269-270, Mar.
2008.

G. Kurillo, T. Koritnik, T. Bajd, and R. Bajcsy. Real-time 3d avatars for
tele-rehabilitation in virtual reality. Studies in Health Technology and
Informatics, 163:290-296, 2011.

T. Leyvand, C. Meekhof, Y.-C. Wei, J. Sun, and B. Guo. Kinect identity:
Technology and experience. Computer, 44(4):94-96, Apr. 2011.

S. Obdrzalek, G. Kurillo, J. Han, T. Abresch, and R. Bajcsy. Real-
time human pose detection and tracking for tele-rehabilitation in virtual
reality. Studies in Health Technology and Informatics, 173:320-324,
2012.

E. Pearson and C. Bailey. Evaluating the potential of the nintendo wii
to support disabled students in education. - version details - trove. 2007.

A. Shirai, E. Geslin, and S. Richir. WiiMedia: Motion analysis methods
and applications using a consumer video game controller. In Proceedings
of the 2007 ACM SIGGRAPH Symposium on Video Games, Sandbox *07,
pages 133-140, New York, NY, USA, 2007. ACM.

W. Steptoe, J. Normand, O. Oyekoya, F. Pece, E. Giannopoulos, F. Tec-
chia, A. Steed, T. Weyrich, J. Kautz, and M. Slater. Acting Rehearsal
in Collaborative Multimodal Mixed Reality Environments. Presence,
21(4):406-422, Nov. 2012.

M. Tamai, W. Wu, K. Nahrstedt, and K. Yasumoto. View control inter-
face for 3d tele-immersive environments. In 2008 IEEE International
Conference on Multimedia and Expo, pages 1101-1104, June 2008.

F. Weichert, D. Bachmann, B. Rudak, and D. Risseler. Analysis of
the accuracy and robustness of the leap motion controller. Sensors,
13(5):6380-6393, 2013.

W. Wu, A. Arefin, Z. Huang, P. Agarwal, S. Shi, R. Rivas, and
K. Nahrstedt. ”i’'m the jedi!” - a case study of user experience in
3d tele-immersive gaming. In 2010 IEEE International Symposium on
Multimedia (ISM), pages 220-227, Dec. 2010.

Z. Yang, K. Nahrstedt, Y. Cui, B. Yu, J. Liang, S.-H. Jung, and
R. Bajscy. TEEVE: the next generation architecture for tele-immersive
environments. In Seventh IEEE International Symposium on Multimedia,
pages 8 pp.—, Dec. 2005.

Immersive 3d Telepresence.

Z. Zafrulla, H. Brashear, T. Starner, H. Hamilton, and P. Presti. American
sign language recognition with the kinect. In Proceedings of the 13th
International Conference on Multimodal Interfaces, ICMI ’11, pages
279-286, New York, NY, USA, 2011. ACM.

