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Abstract
Rapid progress in information and communication technologies (ICTs) has fueled the
popularity of e-learning. However, an e-learning environment is limited in that online
instructors cannot monitor immediately whether students remain focus during online
autonomous learning. Therefore, this study tries to develop a novel attention aware
system (AAS) capable of recognizing students’ attention levels accurately based on
electroencephalography (EEG) signals, thus having high potential to be applied in pro-
viding timely alert for conveying low-attention level feedback to online instructors in an
e-learning environment. To construct AAS, attention responses of students and their
corresponding EEG signals are gathered based on a continuous performance test (CPT),
ie, an attention assessment test. Next, the AAS is constructed by using training and
testing data by the NeuroSky brainwave detector and the support vector machine (SVM),
a well-known machine learning model. Additionally, based on the discrete wavelet trans-
form (DWT), the collected EEG signals are decomposed into five primary bands (ie, alpha,
beta, gamma, theta, and delta) as well as each primary band contains five statistical
parameters (including approximate entropy, total variation, energy, skewness, and
standard deviation), thus generating 25 potential brainwave features associated with
students’ attention level for constructing the AAS. An attempt based on genetic algo-
rithm (GA) is also made to enhance the prediction performance of the proposed AAS in
terms of identifying students’ attention levels. According to GA, the seven most influ-
ential features are selected from 25 considered features; parameters of the proposed AAS
are optimized as well. Analytical results indicate that the proposed AAS can accurately
recognize individual student’s attention state as either a high or low level, and the
average accuracy rate reaches as high as 89.52%. Moreover, the proposed AAS is inte-
grated with a video lecture tagging system to examine whether the proposed AAS can
accurately detect students’ low-attention periods while learning about electrical safety
in the workplace via a video lecture. Four experiments are designed to assess the predic-
tion performance of the proposed AAS in terms of identifying the periods of video lecture
with high- or low-attention levels during learning processes. Analytical results indicate
that the proposed AAS can accurately identify the low-attention periods of video lecture
generated by students when engaging in a learning activity with video lecture. Mean-
while, the proposed AAS can also accurately identify the low-attention periods of video
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lecture generated by students to some degree even when students engage in a learning
activity by a video lecture with random disturbances. Furthermore, strong negative
correlations are found between the students’ learning performance (ie, posttest score
and progressive score) and the low-attention periods of video lecture identified by the
proposed AAS. Results of this study demonstrate that the proposed AAS is effective,
capable of assisting online instructors in evaluating students’ attention levels to enhance
their online learning performance.

Introduction
In traditional face-to-face instruction, teachers generally observe students’ facial expressions to
determine whether they are sufficiently attentive. However, this method is excessively subjective
and consumes a significant amount of the teacher’s energy (Liu, Chiang & Chu, 2013). In
addition to face-to-face instruction, e-learning allows students to learn anytime and anywhere.
However, students may become easily distracted in e-learning environments, owing to the
absence of teacher’s face-to-face supervision (Liu et al, 2013; Zhang, Zhou, Briggs & Nunamaker,
2006). However, while attention significantly affects learning performance, maintaining a high
degree of attention among students on e-learning activities for an extended period is a challeng-
ing task (Chen & Huang, 2014). Among the several types of attention affecting learning perfor-
mance include sustained, selective, spatial, focused, shifting, and divided attention (Driver, 2001;
Lezak, Howieson & Loring, 2004; Wager, Jonides & Reading, 2004). According to Hedges et al
(2013), different classroom activities may be related to different aspects of attention. Their study
pointed out that sustained attention may be connected to the learning attentiveness of students
to the teacher’s instruction throughout a lesson. Smith, Colunga and Yoshida (2010) noted that
effective learning depends on sustained attention, and sustained attention plays a major role in
aggregating, acquiring and applying knowledge. Moreover, a related study highlighted the impor-
tance of sustained attention in cognitive psychology, owing to its strong correlation with learning
performance (Steinmayr, Ziegler & Träuble, 2010).

Despite the importance of maintaining sustained attention during a learning activity to ensure
successful learning, evaluating whether students maintain their concentration on a learning
activity is extremely difficult, owing to the lack of supervised mechanisms to monitor their
attention states. Several studies have attempted to elevate learning performance in e-learning
environments by developing e-learning systems with an attention aware model to evaluate stu-
dents’ attention states (Chen & Huang, 2014; Hsu, Chen, Su, Huang & Huang, 2012; Liu et al,
2013). Although highly promising for use of electroencephalography (EEG) signals in developing
attention aware systems (AAS), EEG signals are highly prone to noise interference. As a voltage
signal that arises from synchronized neural activity, the human EEG signal is fired by millions of
neurons in the brain. Moreover, human EEG signals contain several frequency bands; several
studies (Belle, Hargraves & Najarian, 2012; Lutsyuk, Éismont & Pavlenko, 2006) have confirmed
that the relative level of activity within each frequency band is associated with attentional
processing. Importantly, the human EEG signals must be enhanced by the amplifier because they
are generally measured by weak electrical signals of the brain. Therefore, developing an engi-
neering approach that can accurately measure learners’ attention levels based on EEG signals still
remain an extremely challenging task. Currently, a thinkGear™ eSense algorithm that can iden-
tify attention levels accurately to some degree based on human EEG signals has been developed by
Neurosky Company (San Jose, CA, USA) (http://www.neurosky.com/). However, this algorithm
was never addressed in any academic literature due to patent protection. Fortunately, recently
developed noninvasive EEG measurement technologies have become increasingly mature and
capable of providing a convenient means of monitoring human brain activity. Thus, this study
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Practitioner Notes
What is already known about this topic

• Despite the importance of maintaining sustained attention during an online learning
activity to ensure successful learning, evaluating whether students maintain their
concentration on an online learning activity is extremely difficult, owing to the lack of
supervised mechanisms to monitor their attention states.

• Two attention measures are commonly used to assess a learner’s degree of attention.
One measure is an attention scale with a set of questions answered by a learner to
determine whether the learner concentrates on learning targets. The other measure
develops attention aware systems (AAS) to identify a learner’s attention level based on
human behaviors or physiological signal measurements. However, with advances in
the assessment of human physiological signals, e-learning research has increasingly
used physiological signals to determine students’ attention levels.

• Several studies have attempted to elevate learning performance in e-learning environ-
ments by developing e-learning systems with an attention aware model to evaluate
students’ attention states. However, electroencephalography (EEG) signals are highly
prone to noise interference. Therefore, developing an engineering approach that can
accurately measure learners’ attention levels based on EEG signals still remain an
extremely challenging task.

What this paper adds

• An e-learning environment is limited in that online instructors cannot monitor imme-
diately whether students remain focused during online autonomous learning. By
using GA-LIBSVM with optimal model selection and feature selection, this study devel-
ops a novel AAS based on human EEG signals to identify high- and low-attention levels
of students in an autonomous e-learning environment.

• Based on human EEG signals, this study confirmed that the seven most relevant
features associated with human attention levels are γ-approximate entropy, γ-total
variation, β-approximate entropy, β-total variation, β-skewness, α-total variation and
θ-energy.

• Analytical results indicate that the proposed AAS can accurately recognize individual
student’s attention state as either a high or low level, and the average accuracy rate
reaches as high as 89.52%. Meanwhile, the proposed AAS can also accurately identify
the low-attention periods of video lecture generated by students to some degree even
when students engage in a learning activity by a video lecture with random
disturbances.

Implications for practice and/or policy
• The conventional means of capturing EEG signals is based on invasive EEG electrodes

with 10–20 channels. This study gathers EEG signals by using a noninvasive EEG
sensor with single-channel dry to develop a novel AAS capable of recognizing stu-
dents’ attention levels accurately and providing timely feedback to online instructors.
The proposed AAS is characterized by its ease of wear and its high potential in prac-
tical applications.

• Significant negative correlations are found between the students’ learning perfor-
mance (ie, posttest score and progressive score) and the low-attention periods of video
lecture identified by the proposed AAS. Therefore, reviewing the periods of video
lecture with a low attention level identified by the proposed AAS is a highly promising
means of supporting remedial learning in an autonomous learning environment.
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tries to develop a novel AAS based on raw human EEG signals sensed by Neurosky’s MindWave
earphone to fill the research gap. Additionally, this study also integrates the proposed AAS with a
video lecture tagging system so that the integrated system has high potential to be applied in
providing timely alert for conveying low-attention level feedback to online instructors in an
e-learning environment.

Literature review
Effects of sustained attention on learning performance in e-learning environments
Attention research has played a major role in psychology for over four decades. James (1983)
defined attention as a psychological process comprised of focus and concentration, which
enhances cognition speed and accuracy. In particular, attention is closely related to learning
performance (Chen & Huang, 2014; Chen & Lin, 2014). Broadbent (1958) indicated that iden-
tification, effective learning and memory are impossible when learning without attention.
Restated, learning is ineffective when a learner neglects learning content, explaining why instruc-
tors should improve learning quality by stressing learner attention and providing effective strat-
egies. Teachers normally observe students’ facial expressions to determine whether they are
concentrating on learning targets during traditional face-to-face instruction. However, this overly
subjective approach expends a significant amount of the teacher’s energy (Liu et al, 2013).
Besides face-to-face instruction, students may use e-learning to perform autonomous learning.
Despite their convenience owing to no location or time constraints, e-learning courses lack the
informal social interaction and face-to-face contact of traditional classroom training. Assessing
students’ attention states in e-learning environments is thus more difficult than doing so during
face-to-face instruction.

Among the different forms of attention, sustained attention is especially related to e-learning
performance (Chen & Huang, 2014). Sustained attention describes a subject’s state of readiness
to detect rare and unpredictable changes in a stimulus over an extended period (Sarter, Givens &
Bruno, 2001). Chen and Huang’s (2014) study confirmed the existence of a correlation between
the reading comprehension and sustained attention for learners who apply the attention-based
self-regulated learning mechanism (ASRLM) for online reading of annotated English texts. Based
on their design of a mobile reading experiment with a two-factor experimental design, Chen and
Lin (2014) evaluated how selected static, dynamic, and mixed text display types (which were
presented in sitting, standing and walking contexts respectively) affect the reading comprehen-
sion, sustained attention and cognitive load of learners. According to their results, reading
comprehension of learners in the high-reading-comprehension group was significantly and posi-
tively correlated with sustained attention. Apparently, the effective sustained attention is the key
point that students focus on learning content and improve their performance in e-learning
environments.

Attention aware technologies
Two attention measures are commonly used to assess a learner’s degree of attention. One
measure is an attention scale with a set of questions answered by a learner to determine whether
the learner concentrates on learning targets (Das, 1986). The other measure develops AAS to
identify a learner’s attention level based on human behaviors (Ba & Odobez, 2009, 2011;
Stiefelhagen, Yang & Waibel, 2002; Toet, 2006) or physiological signal measurements (Belle et al,
2012; Chen & Lin, 2014; Moradi, Buračas & Buxton, 2012). Roda and Thomas (2006) defined
AAS as systems capable of supporting human attentional processes. These systems should
include three major features: identification of learner’s current attentional state, identification
and evaluation of possible alternative attentional states, and creation of focus switch or
maintenance-related strategies. In contrast to an attention scale assessed after learning, AAS
provide insight into students’ attention statuses in real time. According to Rapp (2006), AAS may
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provide benefits of teaching diverse learners, assessing student performance, providing
feedback during curriculum development and adding value to computer-assisted teaching meth-
odologies. Importantly, AAS provides a dynamic approach for online instructors to receive feed-
back on their instructional designs and directs student attention during computer-based
instruction. Restated, students must be guided to focus on certain aspects of lessons in order to
facilitate their comprehension of material because online learners have considerable freedom to
engage in learning activities. The ability of online learning courses to incorporate attention
aware functionalities would greatly facilitate learners in completing their learning tasks. AAS
should thus be viewed as an additional component of the educators’ assessment toolkit (Rapp,
2006).

Many human behaviors, including head pose tracking (Ba & Odobez, 2009, 2011), face tracking
(Stiefelhagen et al, 2002) and eye gaze tracking, are used in developing AAS (Toet, 2006).
However, with advances in the assessment of human physiological signals, e-learning research
has increasingly used physiological signals to determine students’ attention levels (Chen &
Huang, 2014; Hsu et al, 2012). Related efforts in recent years have assessed learners’ emotions by
using human physiological signals, such as heart rate variability (HRV) and EEG (Chen & Sun,
2012; Chen & Wang, 2011) and attention (Chen & Lin, 2014; Rebolledo-Mendez et al, 2009).
Moreover, EEG signals have also been successfully applied in computer-based assessment
(Wolpaw, McFarland, Neat & Forneris, 1991), brain-computer interface (Schalk, McFarland,
Hinterberger, Birbaumer & Wolpaw, 2004; Wolpaw, Birbaumer, McFarland, Pfurtscheller &
Vaughan, 2002), visual-aural attention modeling (Zheng et al, 2008), classification of human
emotion (Murugappan, Nagarajan & Yaacob, 2010) and assessment of learning performance
(Harmony et al, 2001). Of previous studies that developed AAS based on physiological signals,
Hsu et al (2012) developed a reading concentration monitoring system to facilitate reading activ-
ity with e-books in order to allow instructors to more thoroughly understand students’ reading
concentration states. By using three sensors (ie, webcam, heartbeat sensor and blood oxygen
sensor) to capture various physiological signals of students, their study evaluated their reading
concentration. Analytical results indicated that their reading concentration monitoring system
allows instructors to more thoroughly understand the students’ reading concentration states in
an intelligent classroom learning environment. Chen and Huang (2014) also applied the MindSet
earphone developed by NeuroSky that can identify attention levels based on human EEG signals
to develop a web-based reading annotation system with an attention-based self-regulated learn-
ing mechanism to enhance the sustained attention of learners while reading annotated English
texts online, thereby promoting online reading performance. According to their results, sustained
attention and reading comprehension of the experimental group with an attention-based self-
regulated learning mechanism for web-based collaborative reading are better than those of the
control group without an attention-based self-regulated learning mechanism. Moreover, Liu et al
(2013) identified whether students are attentive or inattentive during instruction by using EEG
signals. Based on use of the support vector machine (SVM), their study analyzed features to
identify the optimum combination of features that indicates whether students are attentive. The
proposed method in their study provides a classification accuracy of up to 76.82%. While
attempting to assess the sustained attention of learners and further increase their sustained
attention on learning targets in order to improve learning performance in e-learning environ-
ments, this study thus develops a novel AAS to assess students’ attention levels in real time based
on human EEG signals.

Assessing sustained attention
Several tests have been developed for evaluating human attention based on self-reports by human
subjects, including the Stroop color-word interference test, Talland letter cancellation test, trail
making test, digit symbol substitution test, continuous performance test and Wisconsin card
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sorting test (Mirsky, Anthony, Duncan, Ahearn & Kellam, 1991). Of the methods to evaluate
human attention, the continuous performance test (CPT) (Rosvold, Mirsky, Sarason, Bransome &
Beck, 1956) is widely used to evaluate sustained attention and selective attention. Sustained
attention involves direct and focus cognitive activity on some continuous activity over a certain
period, whereas selective attention focuses on task-relevant cues and ignores background noise or
distraction. By using CPT, several studies have identified children with attention-deficit hyperac-
tivity disorder (ADHD) (Li, Gratton, Yao & Knight, 2010; Sohn et al, 2010). Moreover, by using
CPT, Ghassemi, Moradi, Tehrani-Doost and Abootalebi (2009) defined the level of sustained
attention. Their study also used the morphological features of EEG’s independent components to
serve as input features of the classifier model, ie, linear discriminant analysis (LDA), for identify-
ing the sustained attention level. According to their results, significant correlations exist between
the level of sustained attention identified by CPT and certain features of EEG signals.

Based on the reliability of CPT in evaluating human sustained attention, this study develops an
AAS based on the supervised machine learning model—SVM. Students’ attention responses and
their corresponding EEG signals on a CPT are gathered by the NeuroSky MindWave headset.
These patterns are then assigned as training and testing data. Next, feature selection is performed
using the genetic algorithm (GA) to optimize the considered attention features of EEG signals.
Additionally, the proposed AAS is integrated with a video lecture tagging system to examine the
ability of the proposed AAS to accurately identify the high- and low-attention levels of learners
when they are watching a video lecture for autonomous learning. Importantly, the proposed AAS
can assist online instructors in assessing whether learners maintain their focus on a learning
activity in an online learning environment.

Research methodology
Gathered training and testing data for constructing AAS
Ten invited volunteers’ attention responses and their corresponding EEG signals on the CPT
(Cohen & Servan-Schreiber, 1992) were collected as training and testing data to construct the
AAS. Figure 1 shows an example of the CPT. During CPT, one must maintain the task instruction
of responding only when a specific stimulus (‘A’) is followed by another specific stimulus (‘X’), as
well as holding in mind, each stimulus representation until a decision of whether to respond can
be made. Namely, the test focuses on identifying the ‘AX’ pattern from CPT; the other patterns are
nontarget patterns. Rosvold et al (1956) demonstrated that the CPT as a measure of sustained
attention was highly sensitive to brain damage or dysfunction. Riccio, Reynolds, Lowe and Moore
(2002) argued that CPT performance can be viewed as symptom specific (attentional distur-
bance), but it is not disorder specific (eg, ADHD). To gather the EEG signals correctly, ten healthy
graduate students were reminded to click the right mouse button when the CPT appears with the
target pattern ‘AX’, and to click the left mouse button for the nontarget patterns. CPT generally
lasts for several minutes to assess the maintenance of focused attention (Clark, Kempton, Scarnà,
Grasby & Goodwin, 2005). Several functions are critical to successful performance in CPT, which

Figure 1: An example of the continuous performance test (CPT)
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includes encoding the stimulus (task-relevant information), maintaining task instruction and the
stimuli in working memory, and generating an appropriate response while inhibiting inappropri-
ate responses (Lee & Park, 2006). Restated, any difficulty at each step could result in a CPT error.

Additionally, to consider possible EEG signal variations because of gender differences (Limbu,
Sinha, Sinha & Paudel, 2015), EEG signals were collected from ten healthy graduate students
including five men and five women, who wore MindWave headsets developed by NeuroSky, while
performing CPT, in this study. The MindWave headset, which can measure and output the power
spectra of EEG signals, is a reliable equipment to assess human brainwaves (NeuroSky, 2015). The
MindWave headset consists of a headset and sensor arm. The MindWave headset, which resem-
bles a standard stereoscopic wireless earphone, uses a comfortable noninvasive dry electrode,
with which users merely wear an earphone and place the earphone’s forearm on their foreheads
to measure EEG signals. Sampling rate of the MindWave headset for gathering human EEG signals
is 512 Hz and all sampling data can be saved into a computer by a CSV file format. In this study,
the time series data of EEG signals were obtained when an examinee completed CPT. The time
series data were then divided into separate time slots, based on the clicking time of each CPT trial,
to identify the ‘AX’ pattern. Next, the obtained brainwaves in separate time slots were labeled as
the positive class (ie, high-attention level class) if the examinee responded correctly when iden-
tifying the ‘AX’ pattern in CPT; otherwise, they were labeled as the negative class (ie, low-attention
level class). Totally, 2787 brainwave data were collected, including 1988 brainwave data with a
high-attention level and 799 brainwave data with a low-attention level.

Preprocessing of EEG data and feature selection
After the EEG data were labeled, features associated with high and low attention levels were
extracted from the raw EEG signals by using the discrete wavelet transform (DWT). In this study,
2787 data were obtained, in which approximately 3/4 (2100 data) were randomly selected as
training data; the remaining 1/4 (687 data) were selected as the testing data. Next, based on a
fourth-order DWT, the gathered EEG signals were decomposed to five bands, including α activity,
β activity, γ activity, θ activity and δ activity (Gregory & Pettus, 2005; Sanei & Chambers, 2007).
Additionally, five statistical parameters (ie, approximate entropy, total variation, energy, skewness
and standard deviation) were calculated for each band. Therefore, each EEG’s training or testing
data include 25 features. Figure 2 shows the architecture of DWT for extracting potential EEG
features associated with human attention level. Based on feature selection for the 25 considered
features by GA, this study found that most relevant features associated with attention-level
classification are γ-approximate entropy, γ-total variation, β-approximate entropy, β-total

Figure 2: The architecture of discrete wavelet transform (DWT) for extracting potential electroencephalography
(EEG) features associated with human attention level
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variation, β-skewness, α-total variation and θ-energy. Restated, the highest prediction accuracy
of attention level achieved under the above seven features is considered.

The α activity indicates that the brain is in a state of relaxation, detected either by EEG or MEG;
the β activity originates mainly from the frontal lobe and is associated with normal waking
consciousness and alertness. Also, the γ activity is related to gestalt perception and cognitive
functions such as attention, learning, perception, cognition and memory (Kaiser & Lutzenberger,
2003). Some studies have also suggested that γ activity is related to selective attention (Herrmann
& Mecklinger, 2001; Lee, Williams, Breakspear & Gordon, 2003); the θ activity occurs mainly in
the parietal and temporal regions of the cerebrum. This activity can be observed during drowsy,
meditative or sleeping states. Evidence suggests that EEG oscillations in the θ band are a recall of
working memory representations and are involved in active maintenance (Lee et al, 2003); δ
activity is normally associated with the deepest stages of sleep, lacking oxygen, unconscious or
anesthetized. Moreover, the parameters of energy, skewness and standard deviation are common
statistical characteristic measures. Therefore, this study only briefly explains the less familiar
approximate entropy and the total variance. As a measure used to quantify the creation of
information in a time series (Pincus, 1991), the approximate entropy is a time domain feature
and is also widely considered an important feature in EEG data processing (Chen, Luo, Deng,
Wang & Zeng, 2009; Sabeti, 2009; Yuan, 2011; Yun, 2012). In statistics, an approximate
entropy is a technique used to quantify the amount of regularity and the unpredictability of
fluctuations over time-series data (Pincus, Gladstone & Ehrenkranz, 1991). In mathematics, the
total variance can be used based on specific circumstance to define and explain. It is widely used
in image denoising (Rudin, Osher & Fatemi, 1992) and numerical analysis of differential equa-
tions (Zhao, Shi & Xu, 2010). Total variance in the data refers to the sum of the variances of the
individual components. A larger value of total variance implies a rapid fluctuation of a selected
time interval, and vice versa.

Proposed AAS constructed by GA-LIBSVM
This study developed the AAS based on seven selected EEG features by using a library for support
vector machines (LIBSVM) (http://www.csie.ntu.edu.tw/∼cjlin/libsvm/) (Chang & Lin, 2011),
which is an integrated software for support vector classification. Several kernel functions can map
input feature spaces with nonlinear distribution to higher dimensional spaces, allowing for input
feature spaces to become a linear distribution while using LIBSVM for classification. The radial
basis function (RBF) was selected here as the kernel function for LIBSVM, owing to its appropri-
ateness for most classification problems. Moreover, the two parameters of LIBSVM, including the
penalty parameter C and parameter γ of the kernel function of RBF, must be appropriately
determined in advance. Selecting the optimal parameters of LIBSVM to construct the AAS is
especially important because it enhances the classification performance. Notably, LIBSVM can
automatically determine these two parameters using the grid parameter search approach (Chang
& Lin, 2011). Therefore, based on the grid parameter search approach, this study attempted to
find the near-optimal parameters for the penalty parameter C and the parameter γ of the kernel
function of RBF. Moreover, feature selection was performed for the 25 considered features by
using the GA to identify the key features associated with attention level for training LIBSVM in
order to construct the AAS. This study thus named LIBSVM with GA-based feature selection as
GA-LIBSVM. Figure 3 shows the flowchart of the used GA-LIBSVM algorithm for constructing
the AAS.

Integrating the proposed AAS with a video lecture tagging system
Figure 4 shows the user interface of integrating the proposed AAS with a video lecture tagging
system, which contains a playing panel of a video lecture, a display interface of low-attention
periods labeled by learners and a display interface of low-attention periods identified by the
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proposed AAS. A learner can label any periods of the video lecture with low-attention level by
clicking the “low-attention” button of the user interface of the integrated system after viewing a
video lecture. The integrated system then records the learner’s low-attention periods and displays
them on the upper left screen (Figure 5). After the learner finishes viewing the video lecture, the
integrated system accurately predicts all low-attention periods of the learner based on the EEG
signals by the proposed AAS. Meanwhile, the learner can click the “load” button on the lower left
portion of the screen to display the low-attention periods predicted by the proposed AAS
(Figure 6). Additionally, the integrated system also provides a convenient graphical user interface
that can simultaneously display the low-attention periods respectively labeled by the learner and
predicted by the proposed AAS (Figure 7). The graphical user interface is very convenient for
learners to determine whether the low-attention periods identified by the proposed AAS are
consistent with the low-attention periods labeled by the learner. Additionally, the system of
integrating the proposed AAS with a video lecture tagging system can identify the periods of
video lecture that lead to learners with low-attention level to online instructors based on learners’
EEG signals while performing a learning activity by video lecture. Thus, the proposed AAS has
high potential to be applied in providing timely alert for conveying low-attention level feedback to
online instructors in an e-learning environment.

Experimental design for assessing the prediction performance of the proposed AAS
Based on the integrated system that combines the proposed AAS with a video lecture tagging
system, this study also examined the prediction performance of the proposed AAS for learners
engaging in a learning activity with video lectures. Several learners were invited to learn about
electrical safety in the workplace by the playing the interface of the video lecture in the integrated
system. The integrated system can identify the learners’ high or low attention periods while
learning from the video lecture. Meanwhile, learners can label any period of the video lecture

Figure 3: The flowchart of the employed GA-LIBSVM algorithm for constructing the attention aware system
(AAS). GA, genetic algorithm; SVM, support vector machine
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with low-attention level while learning during the video lecture by clicking the “low-attention”
button on the integrated system. Following completion of the learning process, the periods of
video lecture with low-attention level respectively labeled by the learners and predicted by the
proposed AAS are simultaneously displayed on a display interface to allow learners to review the
identified periods of the video lecture with low-attention level.

By using precision rate, recall rate and F-measure as the evaluation measures of prediction
performance, this study assessed the consistent degree of low-attention periods labeled by learn-
ers and predicted by the proposed AAS. The mathematical formulations of the three evaluation
measures are expressed as follows:

Precision Rate
relevant items identified

identified items
=

( )
( )

#

#
(1)

where #(relevant items identified) denotes the number of low-attention periods identified by the
proposed AAS that are also labeled by the learner, and #(identified items) represents the number
of low-attention periods identified by the proposed AAS.

Recall Rate
relevant items identified

relevant items
=

( )
( )

#

#
(2)

Figure 4: The user interface of integrating the proposed attention aware system (AAS) with a video lecture
tagging system
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where #(relevant items identified) refers to the number of low-attention periods identified by the
proposed AAS that are also labeled by learners, and #(relevant items) is the number of
low-attention periods labeled by learners.

F measure
Precision Rate Recall Rate

Precision Rate Recall Ra
− = × ×

+
2

tte
(3)

where F-measure is a monotonic measure which simultaneously combines the precision and
recall rates.
In addition to assessing the prediction performance of the proposed AAS, this study also designed
four experiments to confirm whether the proposed AAS can indeed identify the periods of video
lecture with a low-attention level generated by the research participants and manually adding
disturbances that may disperse the attention of research participants, whether participants’
agreement degree on the periods of video lecture with a low-attention level identified by the
proposed AAS is high, and whether the low-attention periods of video lecture identified by the
proposed AAS significantly correlate with the posttest scores and progressive scores of the par-
ticipants. The aim is to confirm the effects of the proposed AAS on identifying low-attention level
generated by the research participants from four different perspectives. The four experiments are
detailed as follows:

1 Experiment 1

Four graduate students aged 22–23 from The Department of Industrial Education of National
Taiwan Normal University were invited as research participants to view a 16-minute video

Figure 5: The display interface of low-attention periods labeled by a learner
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lecture on electrical safety in the workplace. Following the learning activity, the periods of
video lecture with a low-attention level labeled by the participants and those predicted by the
proposed AAS were compared and evaluated based on the precision rate, recall rate and
F-measure.

2 Experiment 2

Four graduate students who are the same with the research participants in the experiment 1 were
invited to view a 10-minute video lecture on electrical safety in the workplace in which seven
disturbances were made during the lecture. Each disturbance, including sound and small icons,
was manually added into the 10-minute video lecture to disperse the attention of participants.
The periods of video lecture with disturbances are assumed here to lead to low-attention levels.
Following completion of the learning activity, this study confirmed whether the proposed AAS
can successfully identify the periods of the video lecture with disturbance as the learning periods
with a low-attention level. Experiments 1 and 2 have the same performance evaluation
method.

3 Experiment 3

Four graduate students who are the same with the research participants in experiment 1 were
invited to view a 10-minute video lecture on electrical safety in the workplace. All participants
were then invited to fill in an attention survey questionnaire with a 5-point Likert scale in order
to assess their agreement degree on the periods of video lecture with a low-attention level iden-
tified by the proposed AAS.

Figure 6: The display interface of low-attention periods of a learner identified by the proposed attention aware
system (AAS)
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4 Experiment 4

Eight graduate students, including the same four research participants in experiment 1 and four
additional research participants, were invited to view a 16-minute video lecture on electrical
safety in the workplace. The pretest was conducted before the eight participants engaged in the
learning activity. All participants then participated in the learning activity with the video lecture.
Thereafter, they were guided to review the low-attention periods of video lecture identified by the
proposed AAS. Following completion of the learning process, a posttest was performed. Finally,
based on Pearson product-moment correlation analysis, this study also assessed whether a sig-
nificantly negative correlation exists between the low-attention periods of video lecture identified
by the proposed AAS and the posttest score as well as whether a significantly negative correlation
exists between the low-attention periods of video lecture identified by the proposed AAS and the
progressive score. If the significantly negative correlations exist, then this implies that increasing
the identified low-attention periods of video lecture will lead to the posttest scores and progressive
scores of the learners decreasing as well. That is, the proposed AAS can accurately identify the
low-attention periods of video lecture that the learners generated when they engaged in a learn-
ing activity with a video lecture.

Figure 7: The graphical user interface of the integrated system for simultaneously showing the low-attention
periods labeled by learner and identified by the proposed attention aware system (AAS)
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Analytical results
Assessment of the proposed AAS in terms of prediction accuracy
In this experiment, 2787 EEG data were obtained, in which approximately 3/4 (2100 data) were
randomly selected as training data; the remaining 1/4 (687 data) were selected as the testing
data. Table 1 shows the prediction accuracy of the proposed AAS on the high- and low-attention
levels evaluated by testing data under automatically determined learning parameters, including
the penalty parameter C and parameter γ of the kernel function of RBF. Analytical results indicate
that the prediction accuracy rates on the high- and low-attention levels are 91.60% and 87.44%
under the automatically determined learning parameters by the grid parameter search approach
in LIBSVM (C = 98 and γ = 0.001217) respectively. The overall prediction accuracy of the pro-
posed AAS on the high- and low-attention levels is as high as 89.52%. Those results demonstrate
that the correct ratio of high-attention level is higher than that of low-attention level. This
finding implies that the learner’s high-attention level based on EEG signals is more easily identi-
fied than the low-attention level, possibly owing to more noise interference in the EEG signals with
low-attention level.

Comparison of low-attention periods labeled by the learners and predicted by the proposed AAS
Four graduate students were invited to view a 16-minute video lecture on electrical safety in the
workplace. Following completion of the learning activity, the low-attention periods labeled by the
learners and predicted by the proposed AAS were compared based on the precision rate, recall
rate and F-measure. Table 2 summarizes those results. According to those results, the average
precision rate, recall rate and F-measure are 48.32%, 74.75% and 0.5853 respectively. The
highest precision rate, recall rate and F-measure are 61.36%, 94.78% and 0.7047 respectively.
Those results shown in Table 2 demonstrate that the proposed AAS identify correctly the low-
attention periods of learners to some degree when they engage in a learning activity by a video
lecture. However, labeling low-attention periods based on learners’ memory recall easily gener-
ates errors due to the limits of human memory, thus affecting the matching degree between the
low-attention periods labeled by the learners and predicted by the proposed AAS.

Table 1: The prediction accuracy of the proposed AAS on the high- and low-attention levels

The identified attention level
Number of

correct prediction
Number of

Incorrect prediction
Prediction

accuracy (%)

High-attention level 447 41 91.60
Low-attention level 174 25 87.44
High- and low-attention levels 621 66 89.52

Table 2: Comparison of the low-attention periods of video lecture labeled by
the learners and predicted by the proposed AAS

Learner Precision rate (%) Recall rate (%) F-measure

1 56.09 94.78 0.7047
2 40.00 62.20 0.4869
3 61.36 80.68 0.6971
4 35.84 61.32 0.4524
Average 48.32 74.75 0.5853

AAS, attention aware system.
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Assessing the prediction accuracy of the proposed AAS for identifying low-attention periods caused by
the video lecture with manually adding disturbances
Four graduate students who are the same with the research participants in the experiment 1 were
invited to view a 10-minute video lecture on electrical safety in the workplace, in which seven
disturbances were manually added. The study also assessed whether the proposed AAS can
successfully identify the low-attention periods of the video lecture caused by manually adding
disturbances. Table 3 summarizes those results. According to those results, the average precision
rate, recall rate and F-measure are 39.60%, 62.27% and 0.4780 respectively. The highest preci-
sion rate, recall rate and F-measure are 46.25%, 77.55% and 0.5441 respectively. The average
number of un-recognition units is lower than 2. Above results demonstrate that the proposed
AAS can effectively identify the low-attention periods of video lecture, owing to the manually
adding of disturbances to some degree. However, the evaluation results are based on the hypoth-
esis that the periods of video lecture with manually adding disturbances will lead to learners’
low-attention levels. Although this hypothesis is logical, some exceptions might happen in some
research participants.

Learners’ survey for assessing the prediction accuracy of the proposed AAS on low-attention periods
of a video lecture
Four graduate students who are the same with the research participants in the experiment 1 were
invited to view a 10-mimute video lecture on electrical safety in the workplace. Following com-
pletion of the learning activity, all learners were requested to fill in a questionnaire with a 5-point
Likert scale, ranging from 1 for “strongly disagree” to 5 for “strongly agree,” to examine the
consistency of the low-attention periods of video lecture predicted by the proposed AAS and
recognized by the learners. Table 4 summarizes those results. This table reveals that all survey
scores are less than 4 points. The highest score is 3.36 points and the lowest score is 2.09. The
average survey score is 2.83 points, which is close to neutral, indicating that the learners agreed

Table 3: The prediction results of the proposed AAS on identifying low-attention periods of video lecture causing
by manually adding disturbances

Learner Precision rate (%) Recall rate (%) F-measure
Number of

un-recognition

1 43.86 51.02 0.4717 2
2 35.40 77.55 0.4861 1
3 46.25 66.07 0.5441 1
4 32.90 54.42 0.4103 3
Average 39.60 62.27 0.4780 1.75

AAS, attention aware system.

Table 4: Survey scores of participants for the low-attention periods predicted by the proposed AAS

Learner
Number of low-attention periods identified

by the proposed AAS
Survey score

of participants

1 22 3.36
2 36 3.00
3 23 2.86
4 32 2.09
Average 28 2.83

AAS, attention aware system.
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with the prediction results of low-attention periods by the proposed AAS to some degree. Simi-
larly, assessing the consistency of the low-attention periods of video lecture predicted by the
proposed AAS and recognized by the learners based on learners’ memory recall also easily
generates errors due to the limits of human memory, thus affecting the average survey score of
the questionnaire.

Correlation between the identified low-attention periods with the posttest score and the
progressive score
Eight graduate students, including the same four research participants in the experiments 1 and
four additional research participants, were invited to view a 16-minute video on electrical safety
in the workplace. In addition to viewing the video lecture, all participants were instructed to
review the low-attention periods of the video lecture identified by the proposed AAS after finish-
ing the learning activity. A posttest was performed to assess the participants’ learning perfor-
mance. Table 5 summarizes the descriptive statistics results of the low-attention periods of video
lecture identified by the proposed AAS, pretest, posttest and progressive score. According to those
results, seven participants have progressive scores except for one participant. Moreover, by further
using the Pearson product-moment correlation, this study assessed whether a correlation exists
between the low-attention periods of video lecture identified by the proposed AAS and the posttest
score and whether a correlation exists between the low-attention periods of video lecture identi-
fied by the proposed AAS and the progressive score. Table 6 summarizes those results. Analytical
results indicate that the low-attention periods of video lecture identified by the proposed AAS and
the posttest scores reached a statistically strong negative correlation (r = − .806, p = .016 < .05)
and the low-attention periods of video lecture identified by the proposed AAS and the progressive
scores also reached a statistically strong negative correlation (r = − .768, p = .026 < .05). This
finding implies that the identified low-attention periods of video lecture increase, and the posttest

Table 5: The descriptive statistics results of the low-attention periods of video lecture identified by the proposed
AAS, pretest, posttest and progressive score

Learner
Low-attention periods identified
by the proposed AAS (seconds) Pretest score Posttest score Progressive score

1 87 82.5 90 7.5
2 10 83 97 14
3 34 91.5 95.5 4
4 70 80.5 86.5 6
5 51 81 90 9
6 81 87.5 89.5 2
7 110 92.5 88.5 −4
8 68 87 88.5 1.5

AAS, attention aware system.

Table 6: Correlation among the low-attention periods of video lecture identified by the proposed AAS, the posttest
score and the progressive score

Item
The low-attention periods of video lecture

identified by the proposed AAS
Two-tailed test
of significance

Pretest score .269 .519
Posttest score −.806* .016
Progressive score −.768* .026

*p < .05. AAS, attention aware system.
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scores and progressive scores of the learners decrease as well. Above results demonstrate that the
proposed AAS can accurately identify the low-attention periods of video lecture that the learners
generated when they engaged in a learning activity with a video lecture.

Moreover, regression analysis was performed of the learning performance and the low-attention
periods of a video lecture. Table 7 summarizes those results. This table reveals that the low-
attention periods of video lecture identified by the proposed AAS can accurately forecast the
posttest scores (R2 = .649), and can explain a variance of the posttest scores of up to 64.9%.
Meanwhile, the low-attention periods of video lecture can accurately forecast the progressive
score (R2 = .590), and can explain the progressive score variance of up to 59%.

Discussion
EEG recordings can be broadly divided as invasive EEG and noninvasive EEG recordings (Ball,
Kern, Mutschler, Aertsen & Schulze-Bonhage, 2009; Zumsteg & Wieser, 2000). Invasive EEG
recordings are those recordings that are made with electrodes that have been surgically
implanted on the surface or within the depth of the brain, whereas noninvasive EEG recordings
are those recordings obtained from electrodes attached to the scalp surface (Ball et al, 2009). To
date there is no single noninvasive EEG test that provides definitive information on which surgery
can be based despite continuous improvement and development of promising new noninvasive
techniques (Zumsteg & Wieser, 2000). Invasive EEG recordings are frequently used for diagnostics
in patients suffering from brain diseases with two or more lesions and an unknown seizure origin
where pharmacological treatment is insufficient and the possibility of neurosurgical treatment is
evaluated (Nair, Burgess, McIntyre & Luders, 2008). That is, invasive EEG techniques might be
indispensable because they still play an essential role in patients undergoing presurgical evalua-
tion (Zumsteg & Wieser, 2000). Although invasive EEG recordings facilitate the observation of all
EEG signal changes, its practical implementation is extremely inconvenient (Liu et al, 2013).
Therefore, this study gathers EEG signals by using a noninvasive EEG sensor with single-channel
dry. Compared with invasive EEG recordings gathered by 10–20 electrodes, using a noninvasive
EEG sensor with single-channel for sensing EEG signals lowers the accuracy of EEG signals, but
this scheme is characterized by its ease of wear and its high potential in practical applications.

The EEG signal is frequently used to recognize human attention levels based on the selected
features of α, β, γ, θ and δ waves. According to those results of applying GA for feature selection,
the seven most relevant features associated with human attention levels are γ-approximate
entropy, γ-total variation, β-approximate entropy, β-total variation, β-skewness, α-total variation
and θ-energy. Restated, the highest prediction accuracy of attention level is achieved when

Table 7: The regression analysis results between the learning performance and the low-attention periods of video
lecture identified by the proposed AAS

Model summary ANOVA Unstandardized coefficients

Selected variable R R2 F Sig. β distribution t Sig.

Using the low-attention periods of
video lecture identified by the
proposed AAS to forecast the
posttest score

.806 .649 11.096 .016 −.093 −3.331 .016

Using the low-attention periods of
video lecture identified by the
proposed AAS to forecast the
progressive score

.768 .590 8.62 .026 −.132 −2.936 .026

AAS, attention aware system.
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considering the above seven features. As expected, no brainwave features associated with δ
activity are included in the seven most relevant features on the recognition problem of attention
level. The δ activity should normally not appear when an individual is awake. Importantly,
analytical results indicate that two features of the γ activity (including γ-approximate entropy and
γ-total variation) are strongly correlated with human attention levels. The results are consistent
with several studies (Herrmann & Mecklinger, 2001; Kaiser & Lutzenberger, 2003; Lee et al,
2003), indicating that γ activity is related to selective attention. Moreover, three features of the β
activity (including β-approximate entropy, β-total variation and β-skewness) are also strongly
correlated with human attention levels. This correlation is reasonable because β activity is asso-
ciated with normal waking consciousness, stimulation and alertness. These results are consistent
with those of Egner and Gruzelier (2004), indicating that the variation in the β wave in the EEG
is strongly correlated with attention. Our results further demonstrated that the θ-energy of the θ
activity is correlated with human attention levels. Recent research has suggested that θ oscilla-
tions are generated in frontal brain regions and play a major role in memory maintenance (Lee
et al, 2003). Additionally, α-total variation of the α activity is selected in this study as one of the
seven most relevant features with human attention levels. The α activity normally indicates that
the brain is in a state of relaxation. Exploring why the θ-energy and α-total variation are corre-
lated with human attention levels is a worthwhile task.

Moreover, based on an SVM that produces excellent two-class results as the classifier, Liu et al
(2013) attempted to identify whether students are attentive or inattentive during instruction
based on human EEG signals. In their study, five features extracted from EEG signals were con-
sidered as the key features associated with human attention levels for identifying students’ atten-
tion states. However, their study did not implement a feature selection scheme. Nevertheless, their
study demonstrated that the prediction accuracy of the proposed method reaches 76.82%.
Moreover, while conducting EEG examinations using brain power-related tasks, Li et al (2011)
instructed the subjects to report their attention levels. Based on kNN classifier, their study
designed a system for measuring human’s attention levels immediately. The prediction accuracy
of the proposed system was 57.3%. Fortunately, based on GA-LIBSVM, this study develops the
AAS and performs a feature selection for identifying the most relevant EEG features associated
with human attention levels. According to our results, the overall prediction accuracy of the
proposed AAS on the high- and low-attention levels reaches as high as 89.52%. Obviously, the
proposed AAS in this study achieves the highest prediction accuracy of identifying human atten-
tion levels.

Despite its contributions, this study has certain limitations. First, while this study develops an
AAS as a flexible means of assessing students’ attention levels, MindWave headsets developed by
NeuroSky are used, which is a noninvasive EEG sensor with single-channel dry, to collect EEG
signals associated with students’ attention levels. Students merely need to wear MindWave head-
sets on their foreheads while gathering EEG signals. The limitations of a single-channel dry sensor
may lower the accuracy of collecting EEG signals associated with students’ attention levels.
However, according to a study undertaken by Johnstone, Blackman and Bruggemann (2012), the
EEG signal collected by the MindWave headsets resembles that of the Biopac system, a wet-
electrode equipment widely used in medical and research applications. Moreover, detecting the
EEG signals generated in this area of the brain is a highly effective method as the cerebral cortex
in the forehead controls human emotions, mental states and levels of attentiveness (Liu et al,
2013). Second, because gathering a large number of EEG signals with low- and high-attention
levels as training and testing data for constructing the proposed AAS is rather time consuming,
this study only invited ten volunteers to gather their attention responses and their corresponding
EEG signals on the CPT to construct the AAS. The small sample size may limit efforts to identify
representative EEG signals for constructing the AAS. Finally, this study designed four experiments
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with small sample size to confirm the prediction performance of the proposed AAS on identifying
learners’ attention levels due to the difficulty of recruiting research participants. This may affect
the results of assessing the prediction performance of the proposed AAS in terms of identifying
learners’ attention levels.

Conclusions and future work
By using GA-LIBSVM with optimal model selection and feature selection, this study tries to
develop a novel AAS based on human EEG signals to identify high- and low-attention levels of
students in an autonomous e-learning environment. Analytical results indicate that the predic-
tion accuracy rates of the proposed AAS on high- and low-attention levels are 91.60% and
87.44% respectively. The overall prediction accuracy of the proposed AAS reaches as high as
89.52%. Moreover, according to our results, the key features associated with attention level are
γ-approximate entropy, γ-total variation, β-approximate entropy, β-total variation, β-skewness,
α-total variation and θ-energy. Additionally, most of the seven features correlate well with the
theoretical results. Moreover, the proposed AAS is integrated with a video lecture tagging system
to further evaluate the prediction accuracy of the proposed AAS in terms of identifying low-
attention periods of learners while engaging in a learning activity by watching a video lecture.
According to our results, the proposed AAS can accurately identify the low-attention periods of
video lecture that learners generated to some degree based on the performance measures of
precision rate, recall rate and F-measure. Furthermore, the proposed AAS is robust in terms of
identifying low-attention periods of video lecture with disturbances. A questionnaire survey with
a 5-point Likert scale also confirms that most of the learners agreed with the prediction results of
low-attention periods of video lecture identified by the proposed AAS to some degree. Also,
statistically significant negative correlations and predictability exist between the low-attention
periods of video lecture identified by the proposed AAS and posttest scores and between the
low-attention periods of video lecture identified by the proposed AAS and progressive scores.
Results of this study demonstrate that the proposed AAS can accurately identify the low-
attention periods of video lecture that the learners generate while performing a learning activity
with video lecture.

Several issues warrant further investigation. First, reviewing the periods of video lecture with a
low-attention level identified by the proposed AAS is a highly promising means of supporting
remedial learning in an autonomous learning environment. Therefore, we recommend that
future research designs an instruction experiment to confirm whether reviewing the periods of a
video lecture with a low-attention level improves remedial learning performance. Second, by
using GA-LIBSVM, this study develops a novel AAS that can identify human attention states as a
low- or high-attention level based on EEG signals. Future work should consider developing an
AAS that can identify human attention states as continuous values based on machine learning
models with a forecasting capability of contiguous states, such as support vector regression
(Smola & Lkopf, 2004) or neural networks. Third, the physiological signal adopted in this study
for constructing the proposed AAS is the EEG signal. However, future research should consider
whether combining the EEG signal with human behavior, such as eye gaze tracking (Toet, 2006),
to construct the proposed AAS can achieve a higher prediction accuracy than the current
method. Additionally, future research should extend the participant pool to a larger sample size
and different age groups for the four deigned experiments to confirm the prediction performance
of the proposed AAS in terms of identifying learners’ attention levels.
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