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Abstract
In this paper, we study a class of predator–prey systems of reaction–diffusion 
type. Specifically, we are interested in the dynamical behaviour for the 
solution with the initial distribution where the prey species is at the level of 
the carrying capacity, and the density of the predator species has compact 
support, or exponentially small tails near = ±∞x . Numerical evidence 
suggests that this will lead to the formation of a pair of diverging waves 
propagating outwards from the initial zone. Motivated by this phenomenon, 
we establish the existence of a family of travelling waves with the minimum 
speed. Unlike the previous studies, we do not use the shooting argument to 
show this. Instead, we apply an iteration process based on Berestycki et al 
2005 (Arch. Rational Mech. Anal. 178 57–80) to construct a set of super/
sub-solutions. Since the underlying system does not enjoy the comparison 
principle, such a set of super/sub-solutions is not based on travelling waves, 
and in fact the super/sub-solutions depend on each other. With the aid of the set 
of super/sub-solutions, we can construct the solution of the truncated problem 
on the finite interval, which, via the limiting argument, can in turn generate 
the wave solution. There are several advantages to this approach. First, it can 
remove the technical assumptions on the diffusivities of the species in the 
existing literature. Second, this approach is of PDE type, and hence it can shed 
some light on the spreading phenomenon indicated by numerical simulation. 
In fact, we can compute the spreading speed of the predator species for a class 
of biologically acceptable initial distributions. Third, this approach might 
be applied to the study of waves in non-cooperative systems (i.e. a system 
without a comparison principle).
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1. Introduction

Understanding of biological invasion is a topic of current interest in ecology [37, 38, 41, 42, 47].  
In general, invasion of exotic species takes place via propagation of population waves separat-
ing the region (the front of the waves) where the exotic species is absent from the region (the 
wake of the waves) where the exotic species is present at considerable densities. To achieve a 
deeper understanding of such phenomena, it is believed that the ecology mechanism underly-
ing these waves is the result of the interaction between species and the diffusion movement of 
species [37, 38, 41]. Hence reaction–diffusion models are commonly employed to understand 
these waves.

There is a family of travelling waves for a number of ecology models which are in the 
reaction–diffusion formulations. The existence of such a family of waves in a given model 
gives rise to an important question: for a given type of ecological event (i.e. for a given initial 
condition), which member of this family of waves can be developed? This question has been 
well studied for the reaction–diffusion model which enjoys the comparison principle [8, 53]. 
For instance, the well known Fisher–KPP equation is such an example. The Fisher–KPP equa-
tion was employed by Fisher [14] and Kolmogorov, Petrovskii and Piskunov [26] to model 
population dynamics, and is given by

( )= +u u f ud ,t xx

where the function Rf K: 0,[ ] →  is of class C1, and satisfies f(0)  =  f(K)  =  0, f  >  0 on  
(0, K) and the KPP assumption ( ) ⩽ ( )′f u f u0  for ∈u K0,[ ]. Here K can be viewed as a car-
rying capacity. One of the key properties of the Fisher–KPP equation  is that there exists a 

minimal speed ( )= ′c f2 00  such that, for each ⩾c c0, the Fisher–KPP equation  admits a 

travelling wave with wave speed c which connects the homogeneous steady states K and 0. 
The travelling wave with minimal wave speed c0 has a very interesting feature. Specifically, 
the compactly supported perturbation of the zero state, which can be viewed as the invasion 
of a small amount of exotic species, will evolve into a pair of diverging waves with the speed 
equal to the minimal wave speed c0. This key feature was first established by Kolmogorov  
et al [26], and later characterized by Aronson and Weinberger [1, 2]. More refined information 
about the transition zone of the wave with the minimal speed was given by Uchiyama [50], 
Lau [28], Bramson [5, 6], and references therein. The travelling wave with speed c  >  c0 can 
be generated via the evolution of the exponentially decaying perturbation of the zero state, and 
its speed is determined by the decay rate of the small tails at ±∞ (see [5, 6, 12, 28, 46, 50]).

Although the wave phenomena in the Fisher–KPP equation have been well understood, 
almost all realistic models have more than one species involved. Further, many models do not 
possess the comparison principle, so that the techniques employed in the Fisher–KPP equa-
tion cannot be applied to the study of the waves in these models, in particular the computation 
of the spreading speed of the invasion. Hence, in this paper, we would like to investigate the 
waves in a class of two-component prey–predator models without the comparison principle. 
Note that these prey–predator models were employed by Own and Lewis [42] to study the 
spread of recolonizing lupin plants on Mount St Helens. We will address the following two 
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questions: (i) the nature of waves in these population systems, and (ii) the way in which waves 
can be initiated via the invasion of predators into a prey population.

1.1. The predator–prey model

More precisely, we consider the predator–prey models, described by nonlinear growth of prey, 
general predator responses including Holling types I–III, predator mortality, and diffusion 
of prey and predator. Mathematically, the system under study is described by a nonlinear 
reaction–diffusion system of two equations which reads

δ
γ

= + −
= + −

�u u u g u v
v v g u v mv

,
,

t xx

t xx

( ) ( )
( ) (1.1)

where u and v are the dimensionless population densities of prey and predator, respectively; 
� u( ) is the growth rate of the prey population; g(u)v describes predation and g(u) is the func-
tional response to the predator population; mv stands for predator mortality; γ is the prey 
consumption efficiency; δ is the ratio of the diffusivity of the prey to that of the predator; x is 
the dimensionless distance and t is the dimensionless time. Model (1.1) has been studied for 
a number of different forms of � u( ) [34–36, 38, 40–42]. The prototype of ( )� u  can be logistic 
prey growth or bistable nonlinearity in the case of the Allee effect [29, 41].

Our study of system (1.1) is motivated by the following systems.

1.1.1. Holling type I functional response.

δ α

γ

= + − −

= + −

⎜ ⎟
⎛
⎝

⎞
⎠u u u

u

K
uv

v v uv mv

1 ,

,

t xx

t xx

 (1.2)

where α, K, γ and m are positive constants. Here ( )( ) α= −� u u 1 u

K
 and g(u)  =  u is the Holling 

type I functional response [9, 10].

1.1.2. Holling type II functional response.

δ α

γ

= + − −
+

= +
+

−

⎜ ⎟
⎛
⎝

⎞
⎠u u u

u

K

u

u
v

v v
u

u
v mv

1
1

,

1
,

t xx

t xx

 

(1.3)

where α, K, γ and m are positive constants. Here α= −� u u 1 u

K( )( )  and ( ) =
+

g u u

u1
 is the 

Holling type II functional response [11, 15, 17, 22].

1.1.3. Holling type III functional response.

δ α

γ

= + − −
+

= +
+

−

⎜ ⎟
⎛
⎝

⎞
⎠u u u

u

K

u

u
v

v v
u

u
v mv

1
1

,

1
,

t xx

t xx

2

2

2

2

 

(1.4)

where α, K, γ and m are positive constants. Here ( )( ) α= −� u u 1 u

K
 and ( ) =

+
g u u

u1

2

2  is the 

Holling type III functional response [30].
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1.1.4. Ivlev type functional response.

( )

( )

δ α

γ

= + − − −

= + − −

−

−

⎜ ⎟
⎛
⎝

⎞
⎠u u u

u

K
v

v v v mv

1 1 e ,

1 e ,

t xx
nu

t xx
nu

 
(1.5)

where α, K, γ, m and n are positive constants. Here α= −� u u 1 u

K( )( )  and = − −g u 1 e nu( )  is 

the Ivlev type functional response [3, 7, 24, 25, 27, 31, 33, 44, 49, 51, 52, 54].

1.1.5. SIR model.

( )
δ µ ϑ

ϑ µ ϖ
= + Λ− −
= + − +

u u u uv
v v uv v

,
,

t xx

t xx
 (1.6)

where Λ, μ, ϑ, and ϖ are positive constants. Note that u and v stand for the susceptible species 
and the infective species, respectively. Here ( ) µ= Λ−� u u, ( ) ϑ=g u u [41], and γ = 1 and 

µ ϖ= +m .
For simplicity of mathematical analysis, we write

( ) ( ) ( )     γβ= =� u q u p u m: and : .

Then system (1.1) can be recast into the following system:

δ= + −u u q u p u g u v,t xx ( ) ( ) ( ) (1.7a)

( ( ) )γ β= + −v v g u v.t xx (1.7b)

Here β is a positive constant, and the hypotheses on p, q and g are given below.

Hypotheses

 (H1) ∈ ∞q C 0,1([ )), q 0 0( ) ⩾ , and q  >  0 and ⩾′q 0 on ∞0,( ).
 (H2) ([ ))∈ ∞p C 0,1 , p(K)  =  0 for some positive constant K, and <′p 0 on ∞0,( ).
 (H3)  ∈ ∞g C 0,2([ )), g(0)  =  0, ′g 0 0( ) ⩾ , ( ) β=βg u  for some positive constant <βu K, and 

>′g 0 on ( )∞0, .

 (H4) The function ( ) ( ) ( )
( )

=R u : q u p u

g u
 satisfies

Table 1. The values of ( )γ βq p g, , , ,  for systems (1.2)–(1.6) corresponding to the setting 
of system (1.7).

system q(u) p(u) g(u) γ β

(1.2) αu −
u

K
1 u γ γ

m

(1.3) αu −
u

K
1

+
u

u1 γ γ
m

(1.4) αu −
u

K
1

+
u

u1

2

2
γ γ

m

(1.5) αu −
u

K
1 − µ−1 e n

γ γ
m

(1.6) Λ
µ

−
Λ
⋅ u1 ϑu 1

µ ϖ+
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< < < <β β β βR u R u u u R u R u u u Kfor 0 and for .( ) ⩾ ( )        ( ) ⩽ ( )   

Now we make comments on hypotheses (H1)–(H4). To begin with, we consider the corre-
sponding kinetic system of system (1.7), which is system (1.7) without diffusion and is given 
by the following ordinary differential system:

γ β

= −

= −

u

t
p u q u g u v

v

t
g u v

d

d
,

d

d
.

( ) ( ) ( )

( ( ) )
 

(1.8)

We first consider the case where the predator is absent. Then system (1.8) is reduced to the 
scalar equation

( ) ( )=
u

t
p u q u

d

d
. (1.9)

In view of the assumptions (H1)–(H2), we have that p(K)q(K)  =  0, p(u)q(u)  >  0 for ∈u K0,( ) 
and p(u)q(u)  <  0 for u  >  K. Under this reduced condition, one can verify that K is a stable 
equilibrium point of equation (1.9). Thus, we can conclude that, in the absence of predator 
species, the prey species will converge to the environmental carrying capacity state K. Second, 
we note that assumptions (H1)–(H3) imply that <′p K q K 0( ) ( )  and ( ) β− >g K 0. Using this 
reduced condition, one can readily verify that the equilibrium point (K, 0) is a saddle point 
of system (1.8) with eigenvalues ′p K q K( ) ( ) and ( ( ) )γ β−g K . On the other hand, assumption 
(H3) implies that system (1.8) admits a unique coexistence equilibrium point

β= = =β β β β β β
−E u v u g v R u: , with and .1( )    ( )    ( )

Let βJ E( ) be the linearized matrix of system (1.8) at βE . A straightforward computation and 
(H3)–(H4) yield that ( ( )) ( ) ( ) ⩽= ′β β βJ E R u g utrace 0 and ( ( )) ( ) ( )γ= >′β β β βJ E g u g u vdet 0. 
Hence we can deduce that βE  is a stable point of system (1.8). Together with the fact that (K, 
0) is a saddle point of system (1.8), one might expect that there is a wave solution of system 
(1.7) connecting the equilibria (K, 0) and βE .

Now we turn to the biologically acceptable initial data of system (1.7). Biological invasion 
often starts with a local introduction of exotic species. Hence, for the initial distribution of 
species, the prey is at the level of K, which is the carrying capacity for the prey in the absence 
of predation, and the density of predator species is non-zero only inside a certain bounded 
region. Specifically, by locally introducing a number of predators into the area which is inhab-
ited by prey at the level of K, the initial data of system (1.7) can be formulated as follows:

( ) ( )
( ) ⩽σ ϑ

= =
| |
| | >

⎧
⎨
⎩

u x K v x
x x l

x l
, 0 , , 0

, ,

0, ,
0 0 0

0
 (1.10)

where ϑ ⋅0( ) is a non-negative continuous function on −l l,0 0[ ] with a maximum value of unity 
and ϑ ± =l 00 0( ) ; σ0 is a positive control parameter and measures the maximum concentration 
of the predator introduced; σ ϑ ⋅0 0( ) is the predator density inside the initially invaded patch and 
l0 is the patch diameter for v [35, 36, 43].

Numerical simulations of system (1.7)–(1.10) with zero flux boundary conditions suggest 
that under assumptions (H1)–(H4), the corresponding solution evolves into a pair of diverg-
ing travelling waves propagating outwards from the initial zone | | <x l0{ }. Moreover, further 
numerical evidence indicates that the formation of waves is independent of the initial predator 
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density parameter σ0. This dynamical behaviour is very similar to that of the single equa-
tion with KPP-type nonlinearity [26]. We note that, in the absence of predator, system (1.7) 
is reduced to the single KPP equation. Such a similarity of dynamical behaviour between 
system (1.7) and the KPP equation suggests that there is a family of waves of system (1.7) 
with minimal wave speed, and that, with the additional assumption that the v component of 
the initial data decays exponentially as ±∞x → , the corresponding solution of system (1.7) 
develops into a pair of diverging travelling waves as →∞t  moving at the speed determined by 
the decay rate of the v component of the initial data as →±∞x . Motivated by these observa-
tions, in this paper we would like to analytically study two issues: (i) the existence of a family 
of waves of system (1.7) with minimal wave speed, and (ii) the evolution of system (1.7) with 
the initial data imposed by the following constraint:

σ ϑ
=

= | |

± >λ λ± − | | ± − | |± ±⎪

⎪
⎧
⎨
⎩

u x K v x
x x l

C v x C x l
, 0 , , 0 :

, ,

e , 0 e , ,x x

0 0 0

1 2 0

( ) ( )
( ) ⩽

⩽ ( ) ⩽
 (1.11)

where σ0 and ϑ0 are defined as in (1.10), and λ±, ±C1  and ±C2  are positive constants. We note that 
the difference between initial data (1.11) and initial data (1.10) is that there are exponentially 
decaying tails for the v component of initial data (1.11).

1.2. Main results

In this section, we would like to state the main results.
First, we consider the existence of travelling waves of system (1.7). To do this, we first 

briefly survey the existence of travelling waves of system (1.7). The existence of travelling 
waves of system (1.7) with specific nonlinearity � g,( ) was pioneered by Dunbar [9–11], and 
further developed by numerous authors. Specifically, the travelling wave of system (1.2) with 
δ∈ 0, 1[ ] was studied by Dunbar [9, 10]; that of system (1.3) was established by Dunbar and 
by Huang et al [11, 22]; that of system (1.4) with δ = 0 was investigated by Li and Wu [30]; 
that of system (1.5) with δ∈ 0, 1[ ] was studied by Hsu et al [24]. The existence of waves with 
a somewhat more generalized class of prey–predator interaction was recently demonstrated in 
[23, 24, 32]. The numerical computation of travelling waves of system (1.7) with specific non-
linearity � g,( ) was given by Owen and Lewis [42]. We remark that previous analytical studies 
of travelling waves of system (1.7) make a technical assumption on the diffusion coefficient δ. 
In this paper, we will remove such an assumption on δ.

By a travelling wave solution of system (1.7), we mean a solution of system (1.7) of the form

= = −u x t v x t U z V z z x ct, , , , , ,( ( ) ( )) ( ( ) ( ))

with the boundary conditions ( )( ) ( )−∞ = β βU V u v, ,  and +∞ =U V K, , 0( )( ) ( ). Here the 
wave speed c is a constant to be determined and the wave profile ∈ ×R RU V C C, 2 2( ) ( ) ( ) is a 
pair of non-negative functions. Upon substituting (u, v)(x, t)  =  (U, V )(z) into (1.7), we are led 
to the governing system for (U, V ) as follows:

( ) ( ) ( )″δ + + − =′U cU q U p U g U V 0, (1.12a)

″ γ β+ + − =′V cV g U V 0( ( ) ) (1.12b)

on R, together with the boundary conditions

−∞ = +∞ =β βU V u v U V K, , , , , 0 .( )( ) ( ) ( )( ) ( ) (1.13)
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Here the prime indicates differentiation with respect to z. Then the main result on the existence 
of travelling waves of system (1.7) can be stated in the following theorem.

Theorem 1.1. (existence of travelling waves)

Assume that hypotheses (H1)–(H4) hold. Then the following hold.

 (I)  For each γ β< = −c c g K: 2min [ ( ) ] , there are no non-negative solutions (U, V ) of 

 system (1.12)–(1.13).
 (II)  For each >c cmin, system (1.12)–(1.13) admits a non-negative solution (U, V ) with the 

following properties.
 (i) 0  <  U  <  K and V  >  0 over R.
 (ii) There exists a γ >* 0 such that there hold
 (a)  if ( )γ γ∈ 0, * , then the solution (U, V ) approaches ( )β βu v,  monotonically for 

large  −z;
 (b)  if γ γ> *, then the solution (U, V ) has exponentially damped oscillations about 

β βu v,( ) for large  −z.
 (iii) We have ( ) ( )= λ−OV z e z  as →∞z , where λ is given by

λ λ γ β= = ⋅ − − −c c c g K:
1

2
4 .2( )( ) [ ( ) ] (1.14)

We make three comments on the existence of travelling waves of system (1.7). First, the mini-
mal speed cmin of travelling waves of system (1.7) is independent of the ratio δ of the diffusion 
rate of u to that of v. Second, since we do not make any assumption on the diffusion coefficient 
δ, theorem 1.1 improves the existence results for travelling waves in the previous literature 
[9–11, 22–24, 30, 32]. Third, due to the lack of a uniform bound of the v component of travel-
ling wave for c close to cmin, we are unable to show the existence of critical waves (i.e. waves 
with speed =c cmin). We left this question for our future study.

Next we discuss the asymptotic behaviour of the solution of system (1.7)–(1.11). As we 
mentioned before, numerical evidence indicates that the solution of system (1.7)–(1.11) devel-
ops into a pair of diverging travelling waves as →∞t  (see figure 1). To the best of our knowl-
edge, there is no proof for convergence of the solution of system (1.7) with initial data (1.11)/
(1.10) to an expanding wave whose spread, both to the left and to the right, asymptotically 
takes the form of a travelling wave. Basically, there are two approaches for characterizing the 
expanding wave phenomenon. The first approach is the delicate construction of a super/sub-
solution based on travelling wave solutions [13]. However, this approach cannot be applied 
to system (1.7)–(1.11) because of the lack of a comparison principle for system (1.7) or any 
equivalent tool which allows a sharp comparison of solutions. The second approach is to look 
at the evolution of the leading edge, which was first introduced by Aronson and Weinberger 
[1, 2]. This approach cannot show convergence to an expanding wave in the usual sense. 
Nevertheless, it can compute the spreading speed of invasion waves. This is the approach 
which we use to characterize the expanding wave phenomenon of system (1.7)–(1.11).

To state the convergence result, we need additional notations. First, in view of rela-
tion (1.14), it follows from a straightforward computation that ( )λ c  is defined for 

[ [ ( ) ] )γ β∈ − ∞c g K2 , , and is decreasing in γ β∈ − ∞c g K2 ,[ [ ( ) ] ). Further, we have 

the limits λ γ β= −γ β− + c g Klimc g K2→ ( ) [ ( ) ]( [ ( ) ] )  and λ =+∞ clim 0c ( )→ . Taken together, 

the decay rate λ γ β∈ −c g K0,( ) ( [ ( ) ] ] for each admissible wave speed ⩾ [ ( ) ]γ β−c g K2 . 
Next, one can verify that relation (1.14) between the wave speed c and the decay rate λ is a 
one-to-one correspondence. Thus, in order to specify the dependence of wave profile (U,  V ) 
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and speed c on the decay rate λ λ= c( ) in the statements of theorem 1.2, we denote the wave  
(U, V ) established in theorem 1.1 and the associated wave speed c by λ λU V,( ) and λc , 
respectively.

Now we are ready to state the result that the solution of system (1.7)–(1.11) with 
( [ ( ) ] )λ γ β∈ −± g K0,  develops into a pair of waves propagating with speed λ±c  in the sense 

of Aronson and Weinberger [1, 2]:

Theorem 1.2. (Evolution of travelling waves)

Assume that hypotheses (H1)–(H4) hold. Suppose that (u, v) is the solution of system  
(1.7)–(1.11) with λ γ β∈ −± g K0,( [ ( ) ] ). Then we have the following.

 (i)  There exist non-negative continuous functions ψ
λ
+
+, φλ

+
+ and ς

λ
+
+ with ( )→ ψ =

λ∞
+
+ x Klimx  

and ( ) ( )→ →ς φ= =
λ λ∞
+

∞
+

+ +x xlim lim 0x x  such that the following hold:

 (a)  ψ
λ
+
+ vanishes in ζ−∞ +, 1( ] and is strictly increasing in [ )ζ ∞+,1  for some constant 

ζ >+ 01 , and

⩾ ( ) ⩾ ( ) ( ) [ )ψ − ∀ ∈ × ∞
λ λ
+
+ + RK u x t x c t x t, , , 0, ;

 (b)  ς
λ
+
+ is strictly decreasing in R, φ

λ
+
+ vanishes in ξ−∞ +, 1( ], and is strictly increasing in 

ξ ξ+ +,1 2[ ] and strictly decreasing in ξ ∞+,2[ ) for some constants ξ ξ> >+ + 02 1 , and

ς φ− − ∀ ∈ × ∞
λ λ λ λ
+ +
+ + + + Rx c t v x t x c t x t, , , 0, .( ) ⩾ ( ) ⩾ ( ) ( ) [ )

Figure 1. The solution of system (1.2) as a function of the spatial variable x is plotted 
at t  =  0, t  =  10, t  =  20 and t  =  30. The u component of the initial data ( )u v,0 0  is 1. 
The v component of the initial data ( )u v,0 0  is chosen so that v0 is of the hump shape, 
∼ −v e x

0
0.4417 100( ) for x close to the left end and ∼ − −v e x

0
0.4417 100( ) for x close to the 

right end. The parameter values are δ = 2, α = 1, K  =  1, γ = 1.6 and m  =  1.
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 (ii)  There exist non-negative continuous functions ψλ
−
−, φλ
−
− and ςλ

−
− with ( )→ ψ =λ−∞

−
− x Klimx  

and   ( ) ( )→ →ς φ= =λ λ−∞
−

−∞
−

− −x xlim lim 0x x  such that the following hold:
 (a)  ψλ

−
− vanishes in [ ]ζ ∞−,1  and is strictly decreasing in ζ−∞ −, 1( ] for some constant 

ζ <− 01 , and

ψ + ∀ ∈ × ∞λ λ
−
− − RK u x t x c t x t, , , 0, ;⩾ ( ) ⩾ ( ) ( ) [ )

 (b)  ςλ
−
− is strictly decreasing in R, φλ

−
− vanishes in [ )ξ ∞−,2 , and is strictly decreasing in 

ξ ξ− −,1 2[ ] and strictly increasing in ( ]ξ−∞ −, 1  for some constants ξ ξ< <− − 01 2 , and

( ) ⩾ ( ) ⩾ ( ) ( ) [ )ς φ+ + ∀ ∈ × ∞λ λ λ λ
− −
− − − − Rx c t v x t x c t x t, , , 0, .

We make two remarks. First, recall that ψ =
λ∞
+
+ x Klimx ( )→  and ς =

λ∞
+

∞+ xlim limx x( )→ →   
φ =
λ
+
+ x 0( ) . Hence, roughly speaking, assertion (i) of theorem 1.2 states that if one is in the 

moving coordinate = − λ+z x c t with ⩾x 0, then one will see a transition zone connecting a 
constant steady state (K, 0) and a state sandwiched by ( )ς

λ
+
+K ,  and ( )ψ φ

λ λ
+ +
+ +, , while assertion 

(ii) of theorem 1.2 states that if one is in the moving coordinate = + λ−z x c t with ⩽x 0, then 
one will see a transition zone connecting a constant steady state (K, 0) and a state sandwiched 
by ςλ

−
−K ,( ) and ( )ψ φλ λ

− −
− −, . Taken together, the aforementioned observations suggest that the 

long time behaviour of the solution (u, v) of the initial value problem (1.7)–(1.11) is a pair of 
diverging travelling waves whose speed is determined by the decay rate of the initial data as 

→±∞x  (see figure 1). From this, we may infer that β βu x t v x t u v, , , ,( ( ) ( )) → ( ) as →∞t  for 
any given ∈Rx . Second, we note that theorem 1.2 does not address the long time behaviour 
of the solution (u, v) of initial value problem (1.7)–(1.10). Nevertheless, the conclusion of 
theorem 1.2 suggests that system (1.7) possesses the wave propagation feature of a KPP-type  
equation.

Finally, we outline the method for the proof of the main results. To begin with, we note 
that previous studies on the existence of travelling waves of system (1.7) are based on the 
shooting arguments [9–11, 22–24, 30, 32]. The central point of this approach is the construc-
tion of the invariant set, which is nontrivial and strongly depends on the nonlinearity. It is 
clear that this approach cannot give any information for the evolution of the solution of initial 
value problem (1.7)–(1.11). In this paper, we will use the PDE approach, instead of shoot-
ing arguments, to establish the existence of travelling waves of system (1.7). This approach 
can also shed some light on the convergence result of the solution of system (1.7)–(1.11). 
Specifically, the proofs for theorems 1.1 and 1.2 are both based on a pair of coupled super/
sub-solutions of system (1.7). Note that system (1.7) does not enjoy the comparison princi-
ple. Hence travelling waves of system (1.7) do not qualify as super/sub-solutions (unless they 
coincide), and so we cannot bound solutions of system (1.7) componentwise by translates 
of travelling waves. We note that, due to the lack of a comparison principle for system (1.7), 
the construction of the sub-solution is based on the super-solution. With the aid of a family 
of truncated problems whose solutions can be proven to be sandwiched between this pair of 
coupled super/sub-solutions, one can establish the existence of a family of travelling waves 
with the minimal speed of system (1.7) through the limiting process. Note that, due to the 
unbounded property of the v component of the super-solution, one of the key points for the 
existence of waves is to show that the v component of waves is bounded. We remark that the 
idea of the framework of the proof for the existence of waves is based on [4]. Next, via the 
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comparison principle for a single equation, the solution of system (1.7)–(1.11) can be shown 
to be squeezed between the pair of coupled super/sub-solutions, from which the assertions of 
theorem 1.2 can be proven.

The remaining parts of this paper are organized as follows. In section 2, we first construct 
the coupled pairs of super/sub-solutions, and then derive the solution of the truncated problem 
of system (1.7) on the finite interval [−l, l]. Finally, by passing to the limit →∞l , we obtain a 
solution (U, V ) of system (1.7) on R with the condition ( )( ) ( )∞ =U V K, , 0 , which serves as a 
candidate for travelling waves of system (1.7). Section 3 is then to establish that the candidate 
(U, V ) obtained in section 2 is indeed a travelling wave solution of system (1.7). The two key 
points of the proof are the estimates of the derivative of (U, V ) and the boundedness of the 
V component. The long time behaviour of system (1.7)–(1.11) is investigated in section 4. In 
section 5, we give a short discussion and conclusion. Finally, some auxiliary lemmas are given 
in the appendix.

2. Property of waves and construction of a candidate for travelling waves

2.1. The minimal speed and decay rate of waves

To begin with, we establish the assertion of theorem 1.1 (I) and the decay rate of the v compo-
nent of the waves near infinity.

Lemma 2.1. Suppose that hypotheses (H1)–(H4) hold. Then the following statements are 
valid.

 (i) For <c cmin, there exist no non-negative solutions of system (1.12)–(1.13).
 (ii)  For >c cmin, if (U, V ) is a non-negative solution of system (1.12)–(1.13), then 

( ) ( )= λ−OV z e z  as →∞z , where λ is given by

( )[ ( ) ]λ γ β= ± − −c c g K
1

2
4 .2

Proof. Linearizing (1.12) around (K, 0) leads to the equations

( ) ( ) ( )″δ + + − =′ ′u cu q K p K u g K v 0, (2.1a)

( ( ) )″ γ β+ + − =′v cv g K v 0. (2.1b)

Note that (2.1b) has two eigenvalues, λ− 1 and λ− 2, where

( ) ( )[ ( ) ] [ ( ) ]λ γ β λ γ β= − − − = + − −c c g K c c g K:
1

2
4 , :

1

2
4 .1

2
2

2

Suppose that γ β− −c g K2⩽ [ ( ) ] . Then we have λ < 0i , i  =  1, 2, and so V(z) is unbounded 
as →∞z , which is a contradiction. Therefore, we have γ β>− −c g K2 [ ( ) ] . On the other 
hand, if γ β| | < −c g K2 [ ( ) ]  holds, then λ1 and λ2 form a complex conjugate pair. This would 
imply that V(z) cannot be of the same sign for z near infinity, a contradiction again. Hence we 
have ⩾ [ ( ) ]γ β−c g K2 , which completes the proof of assertion (i). Assertion (ii) follows 
from the above linearized equation and the definitions of λ1 and λ2. The proof of this lemma is 
thus completed. 
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2.2. Super/sub-solutions

In this section, we will construct a set of a super-solution ( )λ λ
+ +U V,  and a sub-solution 

( )λ λ
− −U V, . Note that we will not specify the system to which the set of super/sub-solutions 

λ λ
± ±U V,( ) is linked. This may be due to the following two observations. First, the set of super/

sub-solutions ( )λ λ
± ±U V,  may apply to system (1.7) with a special class of initial data, not with 

every class of initial data. (For more detail, we refer the reader to section 4, where we use  
the set of super/sub-solutions ( )λ λ

± ±U V,  to study the convergence of the solution of system 
(1.7)–(1.11).) Second, the set of super/sub-solutions λ λ

± ±U V,( ) also applies to the inhomoge-
neous linear boundary value problem (see system (2.11) in section 2.3) associated with the 
truncated problem of system (1.7) whose solutions can generate a candidate for travelling 
waves via the limiting argument. Based on these two observations, we do not give the specific 
system to which the set of super/sub-solutions ( )λ λ

± ±U V,  are linked, and hope that it will be 
clear from the context exactly which system we are discussing at the time.

Next, we make one remark on the construction of the set of super/sub-solutions λ λ
± ±U V,( ). 

The idea of such a construction is motivated by [4]. Specifically, we first construct a super-
solution λ

+V  for the V component, which is immediately employed to construct a sub-solution 

λ
−U  for the U component. The sub-solution λ

−U  is in turn used to generate a sub-solution λ
−V  for 

the V component. The super-solution λ
+U  for the U component is always chosen as the con-

stant K. Finally, throughout the remainder of this section, we always assume that hypotheses 

(H1)–(H3) hold and [ ( ) ]γ β> −c g K2 .
Now we will construct super/sub-solutions. For simplicity, we set

γ β= − + −P s s cs g K: .2( ) [ ( ) ]

Since γ β> −c g K2 [ ( ) ] , the equation P(s)  =  0 has two positive roots, λ and λ+ d, where

( )[ ( ) ]     [ ( ) ]λ γ β γ β= − − − = − −c c g K d c g K
1

2
4 and 4 .2 2

In addition, P(s)  <  0 when ( )λ λ∈ +s d, .

Lemma 2.2. For a fixed ∈Rx0 , the function =λ
λ+ − −V z x; : e z x

0
0( ) ( ) satisfies the equation

″ γ β+ + − =′
λ λ λ
+ + +V z x c V z x g K V z x; ; ; 00 0 0( ( )) ( ( )) [ ( ) ] ( ) (2.2)

for all ∈Rz , where the prime denotes differentiation with respect to z.

Proof. Since ( )λ =P 0, it follows that

( ( )) ( ( )) [ ( ) ] ( ) ( ) ( )″ γ β λ+ + − = = ∀ ∈′
λ λ λ λ
+ + + + RV z x c V z x g K V z x P V z x z; ; ; ; 0, .0 0 0 0 

□

Select { }α δ λ< < c0 min / , . Then δα− >c 0 and α λ− < 0. Since α−e 0z →  and α λ−e 0z →( )  
as →∞z , there exists z0  >  0 such that

α δα< − ⋅ ∀α α λ λ− − −K c g K z ze and e / e , ,z z x
0

0    ⩽ ( ) ( ) ⩾( )
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so

δα α− ⋅ ∀α
λ

− +c g K V z x z ze ; , ,z
0 0( ) ⩾ ( ) ( ) ⩾ (2.3)

and

( )= = >αM M x K: e 1.z
0

0 (2.4)

In the following, we retain the notation z0.

Lemma 2.3. The function = −λ
α− −U z x K M; : max 0, e z

0( ) { } satisfies the inequality

″δ + + −′λ λ λ λ λ λ
− − − − − +U z x c U z x q U z x p U z x g U z x V z x; ; ; ; ; ; 00 0 0 0 0 0( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ) ⩾

 (2.5)

for all ≠z z .0

Proof. For z  <  z0, since ( )≡λ
−U z x; 00  in ( )−∞ z, 0  and g(0)  =  0, inequality (2.5) follows. For 

z  >  z0, = −λ
α− −U z x K M; e z

0( ) . Noting that ( ( )) ( ( )) ⩾λ λ
− −q U z x p U z x; ; 00 0 , we can use (2.3) and 

(2.4), and the fact that ( ( )) ⩽ ( )λ
−g U z x g K; 0 , to deduce that

″δ
α δα

+ +
−

′λ λ λ λ
α

λ

λ λ

− − − −

−

+

− +

U z x c U z x q U z x p U z x

M c

g K V z x

g U z x V z x

; ; ; ;

e

;

; ; .

z
0 0 0 0

0

0 0

( ( )) ( ( )) ( ( )) ( ( ))
⩾ ( )
⩾ ( ) ( )
⩾ ( ( )) ( )

Hence (2.5) holds. □

Choose { }η α< < d0 min , . Then η α− < 0 and λ η+ <P 0( ) . For a fixed ∈Rx1 , select

λ η
γ= > −

+
+

′λ λ
⎧
⎨
⎩

⎫
⎬
⎭

L L x x
M

K

g K M K

P
, max e ,

2
e ,x x

1 0
11 1( ) ( )

( )
 (2.6)

where ″= | |K g u Mmax /2u K1 0
2( )⩽ ⩽ . Set λ η= −z L xln /1 1( ) . Then > >z z 01 0  since =

α
z ln M

K0
1 , 

> λL eM

K
x1, and η α< . In the following, we retain the notation z1 and L.

Lemma 2.4. The function ( ) { ( ) }( )= −λ λ
λ η− + − +V z x x V z x L; , : max 0, ; e z

1 0 1  satisfies the in-
equality

″ γ β+ + −′
λ λ λ λ
− − − −V z x x c V z x x g U z x V z x x; , ; , ; ; , 01 0 1 0 0 1 0( ( )) ( ( )) [ ( ( )) ] ( ) ⩾ (2.7)

for all ≠z z1.

Proof. For z  <  z1, inequality (2.7) holds immediately since ( )≡λ
−V z x x; , 01 0  in ( )−∞ z, 1 . For 

z  >  z1, = −λ λ
λ η− + − +V z x x V z x L; , ; e z

1 0 1( ) ( ) ( )  and ( ) = −λ
α− −U z x K M; e z

0 . A simple computa-
tion gives that

λ η= + +′ ′λ λ
λ η− + − +V z x x V z x L; , ; e ,z

1 0 1( ( )) ( ( )) ( ) ( )

″ ″ λ η= − +λ λ
λ η− + − +V z x x V z x L; , ; e .z

1 0 1
2( ( )) ( ( )) ( ) ( )
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From (H3), we can use Taylor’s theorem to deduce that

( ( )) ( ) ( ) ( )= − +′λ
α− −g U z x g K g K M R z; e z

0 1

with

| | α−R z K e .z
1 1

2( ) ⩽ (2.8)

It follows that

β

β

β β

−

= − − + −

= − − − +

′
λ λ

α
λ

λ η

λ
λ η

− −

− + − +

+ − +

g U z x V z x x

g K g K M R z V z x L

g K V z x g K L R z

; ; ,

e ; e

; e ,

z z

z

0 1 0

1 1

1 2

( ( ( )) ) ( )
( ( ) ( ) ( ))( ( ) )
( ( ) ) ( ) ( ( ) ) ( )

( )

( )

where

= − + + −′ ′λ λ α λ α η λ λ η− + − + + − − − +R z g K M g K ML R z LR ze e e e e .x z z z x z
2 1 1

1 1( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

Since z  >  z1  >  0 and = η λ+L e z x1 1, it follows that ⩽ η λ+L e z x1. This, together with (2.8) and the 
fact that ( )>′g K 0 and η α− < 0, gives that

( )
⩾ ( )
⩾ ( ( ) )

( )

( ) ( ) ( )− − −

− +

′

′

λ η

λ η α λ η α λ η α

λ

+

− − −

R z

g K M K K

g K M K

e

e e e e e e

2 e .

z

x z x z x z

x

2

1
2

1
2

1

1 1 1

1

Together with (2.2) and (2.6), and the definition of P, we obtain

′″ γ β

λ η γ

+ + −

− + − +′
λ λ λ λ
λ η λ

− − − −

− +

V z x x c V z x x g U z x V z x x

P L g K M K

; , ; , ; ; ,

e 2 e
0.

z x

1 0 1 0 0 1 0

1
1

( ( )) ( ( )) [ ( ( )) ] ( )
⩾ [ ( ) ( ( ) ) ]
⩾

( )

The proof of this lemma is therefore completed. 

2.3. A truncated problem

In this section, we will use the super/sub solutions ( )⋅λ
+V x; 0 , ( )⋅λ

−U x; 0 , and ( )⋅λ
−V x x; ,1 0  with 

= =x x 00 1  established in section 2.2 to construct the solutions of the truncated problem of 
system (1.12)–(1.13). With the aid of the solution of the truncated problem, we can use the 
limiting process to obtain a solution (U, V ) of system (1.12) satisfying ( )( ) ( )+∞ =U V K, , 0  
which may serve as a good candidate for travelling wave solutions of system (1.7).

For simplicity, we write λ
−U z; 0( ), ( )λ

−V z; 0, 0 , and ( )λ
+V z; 0  as U−(z), V−(z), and V+(z ), 

respectively. Let l  >  z1. We consider the following truncated problem:

( ) ( ) ( )  ( )″δ + + − = −′U cU q U p U g U V l l0 in , , (2.9a)

[ ( ) ]  ( )″ γ β+ + − = −′V cV g U V l l0 in , , (2.9b)
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together with the boundary conditions

− = − =− − − −U V l U V l U V l U V l, , , , , .( )( ) ( )( ) ( )( ) ( )( ) (2.10)

In the remainder of this section, we will apply the Schauder fixed point theorem to show the exis-
tence of solutions of (2.9)–(2.10). For convenience, we set Il:  =  [−l, l] and = ×X C I C I: l l( ) ( ). 
To begin with, we introduce the set

= ∈ | ≡− + − +E U V X U U U K V V V I: , and in ,l{( ) ⩽ ⩽     ⩽ ⩽     }

which is a closed convex set in the Banach space X equipped with the norm 
∥( )∥ ∥ ∥ ∥ ∥( ) ( )= +f f f f, X C I C I1 2 1 2l l . Since U−and V− are non-negative, it follows that ⩾U 0 and 

⩾V 0 for any ( )∈U V E, . Next, we define the mapping →FE E as follows: given ( )∈U V E,0 0 ,

( ) ( )=F U V U V, : , ,0 0

where (U, V ) is the classical solution of the boundary value problem

″δ + + − = −′U cU q U p U g U V l l0 in , ,0 0( ) ( ) ( )  ( ) (2.11a)

[ ( ) ]  ( )″ γ β+ + − = −′V cV g U V V l l0 in , ,0 0 (2.11b)

− = − =− − − −U V l U V l U V l U V l, , , , , .( )( ) ( )( ) ( )( ) ( )( ) (2.11c)

Hence by the definition of F , one can see that any fixed point of F  is a classical solution of 
the problem (2.9)–(2.10). In the remaining part of this section, we will verify that the mapping 
F  satisfies the condition of the Schauder fixed point theorem.

Lemma 2.5. The mapping F  is well defined; that is, for a given ( )∈U V E,0 0 , there exists 
a unique solution (U, V ) to the boundary value problem (2.11). Moreover, − +U U U⩽ ⩽  and 
− +V V V⩽ ⩽  in Il.

Proof. Since > > > >−l z z l01 0 , definition of U− and V− implies that U−(−l)  =  0, 
V−(−l)  =  0, 0  <  U−(l)  <  K, and V−(l)  >  0. Noting that system (2.11) is not a coupled system, 
we can deal with the existence and uniqueness of U and V separately.

First, observing that the equation for V is an inhomogeneous linear equation, the existence 
and uniqueness of V can be easily obtained by [19, theorem 3.1 of chapter 12]. Moreover, 
since ( ) ⩽″ γβ γ+ − = −′V cV V g U V 00 0  on (−l, l) and ( ) ( ) ⩾± = ±−V l V l 0, it follows from 
the maximum principle that V  >  0 over (−l, l).

Now we claim that ⩽ ⩽− +V V V  on Il. Since ⩽ ⩽ ⩽ ≡− +U U U K0 0 , the monotonicity of g 
implies that −g U g U g K0 0⩽ ( ) ⩽ ( ) ⩽ ( ). Together with the fact that − +V V V0 0⩽ ⩽ ⩽ , we obtain 
that

( ) ⩽ ( ) ⩽ ( )− − +g U V g U V g K V ,0 0

so that

″ γ β+ + −′ − −V cV g U V V 0[ ( ) ] ⩽ (2.12)

and

″ γ β+ + −′ +V cV g K V V 0[ ( ) ] ⩾ (2.13)
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for all z in (−l, l). Now we consider the function = − −w V V1 . From (2.11c) and the fact 
V(z1)  >  0 and ( ) =−V z 01 , we know that >w z 01 1( )  and w1(l)  =  0. In addition, (2.7) and (2.12) 
give that ( ) ( ) ( ) ⩽″ γβ+ −′w z cw z w z 01 1 1  for all ( )∈z z l,1 . Then it follows from the maximum 
principle that ⩾w 01  in [z1, l ]. This implies that −V V⩽  in [z1, l ]. Together with the fact that 

⩽≡−V V0  in [−l, z1], we get −V V⩽  in Il. Similarly, we can use (2.13) and the maximum 
principle to deduce that ⩽ +V V  in Il.

To show the existence of U, we first introduce the cut-off function φ defined by

( )
    ⩽
   
    ⩾

φ ξ
ξ

ξ ξ
ξ

= < <

⎧
⎨
⎪

⎩⎪
K

K K
:

0 for 0,
for 0 ,
for ,

and consider the following initial value problem:

″δ + + − =′U cU q U p U g U V 0,0 0( ) ˜ ( ) ˜( ) (2.14a)

− = − − =′−U l U l U l m, ,( ) ( )( ) ( ) (2.14b)

where φ= �p p:˜ , ˜ φ= �g g: , and m is a constant. For each fixed m, noting that the functions 
p̃ and g̃ satisfy the Lipschitz condition and are bounded over R, and the functions ( ( ))⋅q U0  and 

( )⋅V0  are continuous over Il, the initial value problem (2.14) has a unique solution U(z, m) on 
Il. In addition, one can easily deduce from (2.14a) that

δ
= − −′ ′δ δU z m q U z p U z m g U z m V ze ,

1
e , , ,cz cz/ /

0 0( ( )) [ ( ( )) ˜ ( ( )) ˜( ( )) ( )]

where the prime denotes differentiation with respect to z. Integrating the above equation, we 
obtain

∫δ τ τ τ τ τ= − −′ δ τ δ− +

−

−U z m m q U p U m g U m V, e
1

, , e d .c l z

l

z
c z/

0 0
/( ) [ ( ( )) ˜ ( ( )) ˜( ( )) ( )]( ) ( )

 (2.15)

Then an integration of the above equation from  −l to l gives

( ) ( ) [ ( ( )) ˜ ( ( )) ˜( ( )) ( )] ( )∫ ∫
δ

δ
τ τ τ τ τ= − − −δ τ δ−

− −

−U l m
m

c
q U p U m g U m V z, 1 e

1
, , e d d ,cl

l

l

l

z
c z2 /

0 0
/

where we have used U(−l, m)  =  (U−)(−l)  =  0. Note that the boundedness of p̃, g̃, q(U0), 
and V0 implies that the integral of the above equation  is bounded by a constant independ-
ent of m. Hence, U(l, m)  >  U−(l) if m is sufficiently large, while U(l, m)  <  U−(l) if  −m is 
sufficiently large. Since U(z, m) is a continuous function of m, there exists >m* 0 such that 

= −U l m U l, *( ) ( ). Then ( ) ( )=U z U z m: , *  is a solution of (2.14a) with ± = ±−U l U l( ) ( ). 
Moreover, we have U  >  0 over (−l, l). To see this, recalling that ˜( ) =g 0 0, we can rewrite 
g U z˜( ( )) as ˜( ( )) ( ) ( )=g U z H z U z1 , where

( )
[ ˜( ( )) ˜( )]

( )
  ( )

    ( )
=

−
−

≠

=

⎧
⎨
⎪

⎩⎪
H z

g U z g

U z
U z

U z
:

0

0
, if 0,

0, if 0
1
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is a non-negative function since g̃ is non-decreasing. Because ″δ + − =′U cU H z UV1 0( )   
˜( ) ( ) ˜ ( ) ⩽″δ + − = −′U cU g U V q U p U 00 0  on (−l, l) and ( ) ( ) ⩾± = ±−U l U l 0, it follows from 

the maximum principle that U  >  0 over (−l, l).
Now we claim that ⩽ ⩽− +U U U  in Il. To show that −U U⩽  in Il, we consider the function

( )
[ ˜ ( ( )) ˜ ( ( ))] ( ( )) [ ˜( ( )) ˜( ( ))] ( )

( ) ( )
    ( ) ( )

    ( ) ( )
=

− − −
−

≠

=

− − − +

−
−

−

⎧
⎨
⎪

⎩⎪

H z

p U z p U z q U z g U z g U z V z

U z U z
U z U z

U z U z

:

, if ,

0, if ,

2

which is non-positive since ( ( )) ⩾−q U z 0, +V z 0( ) ⩾ , p̃ is decreasing, and g̃ is increasing. No-
ticing that +V V0 ⩽  and −q U q U0( ) ⩾ ( ), we deduce from (2.14a) that

″δ + + − −′ − +U cU q U p U g U V l l0 in , .( ) ˜ ( ) ˜( ) ⩽    ( ) (2.16)

Then (2.5) and (2.16) imply that the function = − −w U U:2  satisfies ( ) ⩽″δ + +′w cw H z w 02 2 2 2  
in (z0, l). In addition, from (2.11c) and the fact that U(z0)  >  0 and =−U z 00( ) , we know that 

>w z 02 0( )  and w2(l)  =  0. Hence the maximum principle asserts that w 02 ⩾  in [z0, l], which im-
plies that ⩽−U U in [z0, l ]. Together with the fact that ≡−U U0 ⩽  in [−l, z0], we obtain ⩽−U U 
in [−l, l]. Now we show that +U U⩽  in Il. Recall that ≡+U K. Since ˜ ( ) ˜ ( )= =+p U p K 0, it 
follows that

′″δ + + = −+ + +U c U q U p U l l0 in , .0( ) ( ) ( ) ˜ ( )  ( )

On the other hand, using the fact that ˜ ⩾g 0 and ⩾V 00 , we deduce that

( ) ˜ ( ) ˜( ) ⩾  ( )″δ + + = −′U cU q U p U g U V l l0 in , .0 0

Since ( ) ⩾ ( ) ( )± ± = ±+ −U l U l U l , we can use a similar argument as the proof for ⩽−U U in 
[z0, l] to obtain that +U U⩽  in Il.

Finally, since ⩽ ⩽ ⩽ ⩽− +U U U K0 , it follows that ˜ ( ) ( )=p U p U  and ˜( ) ( )=g U g U , and 
therefore U is a solution of (2.11a) with ± = ±−U l U l( ) ( )( ). The uniqueness of U follows from 
the maximum principle. Hence the proof of this lemma is completed. □

Lemma 2.6. F  is a continuous mapping.

Proof. For given U V,0 0( ) and U V,0 0( ˜ ˜ ) in E, let

( ) ( )   ( ˜ ˜ ) ( ˜ ˜ )= =F FU V U V U V U V, , and , , .0 0 0 0 (2.17)

We first consider the function ˜= −w U U:1 . It is easy to see that ( ) ( )− = =w l w l 01 1  and

″
δ

+ + =′w
c

w f z w h z ,1 1 1 1 1( ) ( )

where

( ) ( ( )) ( ( )) ( ˜ ( ))
( ) ˜ ( )

( ) ( ( )) ( ˜ ( ))
( ) ˜ ( )δ

=
−
−

−
−
−

⎡
⎣⎢

⎤
⎦⎥

f z q U z
p U z p U z

U z U z
V z

g U z g U z

U z U z

1
1 0 0
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and

δ
= − − + −h z p U z q U z q U z g U z V z V z

1
.1 0 0 0 0( ) [ ( ˜ ( ))( ( ( )) ( ˜ ( ))) ( ˜ ( ))( ( ) ˜ ( ))]

Note that

− | | − + −C f h C U U V V0 and ,C I C I1 1 1 2 0 0 0 0l l⩽ ⩽     ⩽ [∥ ˜ ∥ ∥ ˜ ∥ ]( ) ( )

where δ= +′ ′λC q K p g: 1/ eC K
l

C K1 0, 0,[ ( )∥ ∥ ∥ ∥ ]([ ]) ([ ]) , [ ( )∥ ∥ ( )][ ]δ= +′C p q g K: 1/ 0 C K2 0, . Here we 
have used the fact that = λ+ +V V V0 eC I

l
0 l⩽ ⩽ ⩽ ∥ ∥ ( )  and ⩽ ˜ ⩽ ≡+U U K0 , and hypotheses 

(H1)–(H3). Then lemma A.1 asserts that there exists a positive constant C3, depending only 
on C1, δ, c, and l, such that

− + −w C C U U V V ,C I C I C I1 2 3 0 0 0 0l l l∥ ∥ ⩽ [∥ ˜ ∥ ∥ ˜ ∥ ]( ) ( ) ( )

which, together with the definition of w1, implies that

− − + −U U C C U U V V .C I C I C I2 3 0 0 0 0l l l∥ ˜∥ ⩽ [∥ ˜ ∥ ∥ ˜ ∥ ]( ) ( ) ( ) (2.18)

Next, we consider the function = −w V V2 ˜. One can easily see that w2 satisfies − = =w l w l 02 2( ) ( )   
and

″ γβ+ − =′w cw w h z ,2 2 2 2( )

where

[ ( ˜ ) ˜ ( ) ]γ= −h g U V g U V ,2 0 0 0 0

which can be rewritten as

[ ˜ ( ( ˜ ) ( )) ( )( ˜ )]γ= − + −h V g U g U g U V V .2 0 0 0 0 0 0 (2.19)

Applying the mean-value theorem, we obtain that

( ˜ ) ( ) ⩽ ∥ ∥ ˜([ ])| − | | − |′g U g U g U U .C K0 0 0, 0 0

Together with the fact that ⩽ ˜ ⩽ ∥ ∥ ( )= λ+V V0 eC I
l

0 l  and ⩽ ( ) ⩽ ( )g U g K0 0  we deduce from 
(2.19) that

γ| | − + −′λh g U U g K V Ve .l
C K C I C I2 0, 0 0 0 0l l⩽ [ ∥ ∥ ∥ ˜ ∥ ( )∥ ˜ ∥ ]([ ]) ( ) ( )

Then lemma A.1 asserts that there exists a positive constant C4, depending only on γ, β, 
∥ ∥ ([ ])′g C K0, , g(K), c, K, λ, and l, such that

− + −w C U U V V ,C I C I C I2 4 0 0 0 0l l l∥ ∥ ⩽ (∥ ˜ ∥ ∥ ˜ ∥ )( ) ( ) ( )

which, together with the definition of w2, implies that

∥ ˜∥ ⩽ (∥ ˜ ∥ ∥ ˜ ∥ )( ) ( ) ( )− − + −V V C U U V V .C I C I C I4 0 0 0 0l l l (2.20)
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Finally, we use (2.17), (2.18), and (2.20), and the definition of the norm ∥ ∥⋅ X, to deduce that

−
= −
= − + −

− + −

= −

F FU V U V

U V U V

U U V V

C U U V V

C U V U V

, ,

, ,

, , ,

X

X

C I C I

C I C I

X

0 0 0 0

5 0 0 0 0

5 0 0 0 0

l l

l l

∥ ( ) ( ˜ ˜ )∥
∥( ) ( ˜ ˜ )∥
∥ ˜∥ ∥ ˜∥

⩽ (∥ ˜ ∥ ∥ ˜ ∥ )
∥( ) ( ˜ ˜ )∥

( ) ( )

( ) ( )

 

(2.21)

where = +C C C C5 2 3 4. Thus, for a given >ε 0, we choose σ< < ε C0 /1 5. Then, by (2.21), we 
have

− < εF FU V U V, , ,X0 0 0 0∥ ( ) ( ˜ ˜ )∥

for any ( )U V,0 0 , ∈U V E,0 0( ˜ ˜ )  such that σ− <U V U V, , X0 0 0 0 1∥( ) ( ˜ ˜ )∥ . This shows that F  is a con-
tinuous mapping. Hence the proof of this lemma is completed. 

Lemma 2.7. F  is precompact.

Proof. For a given sequence {( )} ∈NU V,n n n0, 0,  in E, let = FU V U V, ,n n n n0, 0,( ) ( ). Then lem-
ma 2.5 gives that ( )∈U V E,n n . Since ≡− +U U K0 ⩽ ⩽  and ⩽ ⩽ ⩽ λ− +V V0 e l in Il and the  
functions p, q, and g are bounded over [0, K], we can easily see from definition of the set  
E that the sequences

U V U V q U g U g U p U, , , , , , andn n n n n n n n0, 0, 0, 0,{ } { } { } { } { ( )} { ( )} { ( )}   { ( )}

are uniformly bounded in Il. Then, by lemma A.2, it follows that the sequences

{ }   { }′ ′U Vand ,n n

are also uniformly bounded in Il. Therefore, we can use the Arzelà–Ascoli theorem to obtain 
a subsequence U V,n nj j{( )} of {( )}U V,n n  such that

( ) → ( )U V U V, , ,n nj j

uniformly in Il as →∞j , for some ∈U V E,( ) . Hence the set ( )F E  is compact in E, so F  is 
precompact. □

Finally, with the aid of lemmas 2.5–2.7, we can apply the Schauder fixed point theorem to 
conclude that F  has a fixed point, which is a non-negative solution of system (2.9)–(2.10). So 
we have the following existence result for the truncated problem (2.9)–(2.10).

Lemma 2.8. System (2.9)–(2.10) admits a solution (U, V ) on Il. Moreover,

≡− + − +U U U K and V V V0 0⩽ ⩽ ⩽     ⩽ ⩽ ⩽ (2.22)

on Il.

2.4. The construction of a candidate for travelling waves

In this section, we use the solution U V,l l( ) of the truncated problem (2.9)–(2.10) and the limit-
ing argument to obtain a solution (U, V ) of system (1.12) satisfying +∞ =U V K, , 0( )( ) ( ). 
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Hence if we can show that −∞ = β βU V u v, ,( )( ) ( ), then (U, V ) must be a travelling wave of 
system (1.7). Thus this observation would suggest that (U, V ) is a good candidate for travel-
ling wave solutions of system (1.7). The condition that ( )( ) ( )−∞ = β βU V u v, ,  will be verified 
in section 3. Now we have the following lemma.

Lemma 2.9. Suppose that hypotheses (H1)–(H3) hold. If >c cmin, then system (1.12) admits 
a solution (U, V ) on R satisfying 0  <  U  <  K and V  >  0 over R, ( ) ( )= λ−OV z e z  as →∞z ,  
where λ is given by (1.14), and

+∞ = +∞ =′ ′U V K U V, , 0 and , 0, 0 .( )( ) ( )   ( )( ) ( )

Proof. Let { } ∈Nln n  be an increasing sequence in ∞z ,1( ) such that →∞ln  as →∞n  and let 
U V,n n( ), ∈Nn , be a solution of system (2.9)–(2.10) with l  =  ln. For any fixed ∈NN , since the 

function V+ is bounded above in −l l,N N[ ] and the functions p, q and g are bounded over [0, K], 
it follows from (2.22) that the sequences

{ } { } { ( )} { ( )}    { ( )}⩾ ⩾ ⩾ ⩾ ⩾U V q U p U g U, , , andn n N n n N n n N n n N n n N

are uniformly bounded in −l l,N N[ ]. Then we can use lemma A.2 in the appendix to infer that 
the sequences

{ }    { }⩾ ⩾′ ′U Vandn n N n n N

are also uniformly bounded in −l l,N N[ ]. Using (2.9), we can express ″Un  and ″Vn  in terms of Un, 
Vn, ′Un and ′V n. Differentiating (2.9), we can use the resulting equations to express ″′Un  and ″′Vn  
in terms of Un, Vn, ′Un, ′V n, ″Un  and ″Vn . Consequently, the sequences

{ } { } { }    { }⩾ ⩾ ⩾ ⩾″ ″ ″ ″′ ′U V U V, , andn n N n n N n n N n n N

are uniformly bounded in −l l,N N[ ]. With the aid of the Arzelà–Ascoli theorem, we can use the 
diagonal process (see Gilbarg and Trundinger [18]) and the uniform convergence theorem 
(see Rudin [45]) to obtain a subsequence U V,n nj j{( )} of {( )}U V,n n  such that

→ → →″ ″′ ′U U U U U U, , ,n n nj j j

and

″ ″′ ′V V V V V V, , ,n n nj j j→ → →

uniformly in any compact interval of R as →∞n , for some functions U and V in RC2( ). Then 
it is easy to see that (U, V ) is a non-negative solution of system (1.12) and satisfies (2.22) 
over R. From definitions of U− and V+ , we see that ( ) →−U z K and +V z 0( ) →  as →∞z . This, 
together with (2.22), implies that

( )( ) ( )+∞ =U V K, , 0 , (2.23)

and = λ−OV z e z( ) ( ) as →∞z , where λ is given by (1.14).

Furthermore, we claim that 0  <  U  <  K and V  >  0 over R, and

( )( ) ( )+∞ =′ ′U V, 0, 0 . (2.24)
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For contradiction, we assume that ( ˜ ) =V z 01  for some ˜ ∈Rz1 . Then ( ˜ ) =′V z 01 . Therefore the 
uniqueness gives ≡V 0, which contradicts the fact that >−V V 0⩾  on ∞z ,1( ). Hence V  >  0 
over R. To prove U  <  K over R, we also use a contradictory argument and assume that 

=U z K2( ˜ )  for some ∈Rz2̃ . In this case, =′U z 02( ˜ )  and ( ˜ ) ⩽″U z 02 . This contradicts (1.12a) 
with ˜=z z2. Hence U  <  K over R. Suppose ( ˜ ) =U z 03  for some ˜ ∈Rz3 . Then =′U z 03( ˜ ) . Hence 
the uniqueness of solutions implies that ≡U 0, which contradicts the fact that ( )+∞ =U K. 
Hence U  >  0 over R.

To prove (2.24), we use equation (1.12a) to deduce that

( ) ( ) ( ( ( )) ( ( )) ( ( )) ( ))( ) ∫δ
τ τ τ τ τ= − −′ ′δ δ δ

τ− − −U z U s q U p U g U Ve
1

e e d .
c z s c z

s

z c

 

(2.25)

By fixing s and letting →∞z  in equality (2.25), we immediately deduce that

∫δ
τ τ τ τ τ

τ τ τ τ

| | −

−

′
τ

δ δ
τ

τ

∞ ∞

−U z q U p U g U V

c
q U p U g U V

lim sup
1

max lim sup e e d

1
max

z s z

c z

s

z c

s

( ) ⩽ ( ( )) ( ( )) ( ( )) ( )

⩽ ( ( )) ( ( )) ( ( )) ( )

→ ⩾ →

⩾

for ∈Rs . Together with the fact that ( ( )) ( ( )) ( ( )) ( )∞ ∞ − ∞ ∞ =q U p U g U V 0, we can de-
duce that ( )∞ =′U 0. Similarly, using equation (1.12b) and arguing as above, we also obtain 
∞ =′V 0( ) . □

3. Existence of non-critical waves of system (1.7)

In this section, we will establish the assertion of theorem 1.1 (II), which is restated in the fol-
lowing lemma for the convenience of the readers.

Lemma 3.1. Suppose that hypotheses (H1)–(H4) hold. If >c cmin, then system (1.12)–(1.13) 
admits a non-negative solution (U, V ) with the following properties.

 (i) 0  <  U  <  K and V  >  0 over R.
 (ii) There exists a γ >* 0 such that there hold

 (a) if γ γ∈ 0, *( ), then the solution (U, V ) approaches β βu v,( ) monotonically for large  −z;
 (b) if γ γ> *, then the solution (U, V ) has exponentially damped oscillations about ( )β βu v,  

for large  −z.

 (iii) = λ−OV z e z( ) ( ) as →∞z , where λ is given by (1.14).

In the remaining part of this section, we will show lemma 3.1, and therefore we always 
assume that hypotheses (H1)–(H4) hold and >c cmin throughout this section.

As we mentioned in section 2.4, a good candidate for the solution of system (1.12)–(1.13) 
is the one given in lemma 2.9, which will be denoted by (U, V ). In view of lemma 2.9, 
(U, V ) satisfies ( )( ) ( )∞ =U V K, , 0  and assertions (i) and (iii) of lemma 3.1. Further, if 
( )( ) ( )−∞ = β βU V u v, , , then we can follow the eigenvalue analysis in [10, 24] to show that 
assertions (ii) of lemma 3.1 hold for (U, V ), and hence we omit the proof of assertions (ii) of 
lemma 3.1 here. Hence, in order to complete the proof of lemma 3.1, it remains to verify that 
(U, V ) satisfies
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( )( ) ( )−∞ = β βU V u v, , . (3.1)

To show equality (3.1), we set

ˆ ( ) ( )   ˆ( ) ( )= − = −z U z z V zu vand . (3.2)

Hence (3.1) is equivalent to the equality

∞ = β βu vu v, , .( ˆ ˆ)( ) ( ) (3.3)

Throughout the remainder of this section, we will keep the notation u v,( ˆ ˆ). One can verify that 
the governing equation for = u v, ,( ) ( ˆ ˆ)u v  is given by

″δ − = −′c g q p ,( ) ( ) ( )u u u v u u (3.4a)

″ γ β− = −′c g ,[ ( )]v v u v (3.4b)

where the prime denotes the differentiation with respect to z. Further, the definition of u v,( ˆ ˆ) 
and lemma 2.9 gives that ( ˆ ˆ)u v,  is a solution of (3.4) on R satisfying

< < >Ku v0 and 0ˆ    ˆ (3.5)

over R, and

( ˆ ˆ)( ) ( )   ( ˆ ˆ )( ) ( )−∞ = −∞ =′ ′Ku v u v, , 0 and , 0, 0 .

In order to show equality (3.3) (i.e. ( ˆ ˆ )( ) ( )−∞ = β βU V u v, , ), we first rewrite (3.4) as a sys-
tem of first-order ODEs:

=′ ,u w (3.6a)

δ = + −′ c g q p ,( ) ( ) ( )w w u v u u (3.6b)

=′ ,v y (3.6c)

γ β= + −′ c g .[ ( )]y y u v (3.6d)

Next, following the idea of [10], we define the Lyapunov function R RL : 4 →  by

( )
( ) ( )

( ) ( )

u w v y w u w
u

y v y
v

v

u w v y u w v y

u

∫γ δ δβ β
ξ
ξ= − − − + − − − +

= +

β β
ββ

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟L

L L

c
g

c
g

c v cv
v

, , , :
1

d ln

, , , , , , .

u

1 2
 

(3.7)

A simple computation gives that the orbital derivative of L along the solution 
( ) ( ˆ ( ) ˆ ( ) ˆ( ) ˆ( ))χ =z z z z zu w v y: , , , , where ˆ ˆ ( )= ′ zw u:  and = ′ zy v:ˆ ˆ ( ), of system (3.6), is

χ

χ χ

δβ γ

= ∇ ⋅

= − − + − −

′

′
β β β

L

L
z

z

z z

z
g z

g z
v

z

z
g u g z R u R zw

u
u

y
v

u u

d

d

,2
2

2

2

( ( ))

( ( )) ( )

ˆ ( ) ( ˆ ( ))
( ˆ ( ))

ˆ( )
ˆ( )

[ ( ) ( ˆ ( ))][ ( ) ( ˆ ( ))]
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which, together with hypotheses (H3)–(H4), yields

χL
z

z
d

d
0.( ( )) ⩽

Hence

( ( )) ⩽ ( ( )) ⩾χ χ ∀L Lz z0 , 0. (3.8)

The strategy for the remaining part of the proof of equality (3.3) follows [10]. In fact, we 
will construct an open bounded set D such that the solution ( ) ( ˆ ( ) ˆ ( ) ˆ( ) ˆ( ))χ =z z z z zu w v y, , ,  of 
system (3.6) is positively invariant in D for all ⩾z 0, and that the function L is continuous 
and bounded below in D. Then, together with LaSalle’s invariance principle, the assertion 
( ˆ ˆ)( ) ( )∞ = β βu vu v, ,  can be established, which would complete the proof of theorem 1.1.

The two key points for the construction of the open bounded set D are a priori estimates of 
the derivative of u v,( ˆ ˆ) and the boundedness of v̂, which will be given in sections 3.1, 3.3 and 
3.2, respectively. We remark that, unlike the previous studies [9–11, 22–24, 30, 32], we will 
not employ the shooting argument or the phase-space argument to construct the open bounded 
set D. We also note that the arguments for some of the estimates in the remainder of this sec-
tion are motivated by [10, 24].

3.1. Estimates of the derivative of v̂

To construct the open bounded set D, we first derive the estimate for the derivative of u v,( ˆ ˆ). 
Recall that ( ˆ ˆ)u v,  is defined by (3.2).

Lemma 3.2. For each ∈Rz , the following inequalities hold:

′ z
c

zv v
2

,ˆ ( ) ⩽ ˆ( ) (3.9)

ˆ ( ) ⩾ ˆ( )γβ
−′ z

c
zv v , (3.10)

′
∈

z
c

q pu
1

max .
K0,

ˆ ( ) ⩽ ( ) ( )
[ ]

u u
u

 (3.11)

Proof. We first establish inequality (3.9). To do this, we consider the function 
( ) ˆ ( ) ˆ( )ψ = − ⋅′z z c zv v: /21 . Hence, in order to establish (3.9), it suffices to show that 
ψ z 01( ) ⩽  for all ∈Rz . For contradiction, we assume that ( )ψ η > 01 0  for some η ∈R0 . Using 

γ β> = −c c g K2min [ ( ) ]  and the fact that >v 0ˆ  and ˆ ( )∈ Ku 0,  on R, we deduce from (3.4b) 
that

″ψ ψ

γ β

γ β

− = − +

= − +

> − + >

′ ′
c

c
c

g
c

g K
c

v v v

u v v

v v

2 4

4

4
0,

1 1

2

2

2

ˆ ˆ ˆ

[ ( ˆ )]ˆ ˆ

[ ( )]ˆ ˆ

and hence that ( )ψ− ze c z/2
1  is strictly increasing in z. Together with ψ η > 01 0( ) , we obtain 

ψ >z 01( )  for all η>z 0. Hence we deduce that η η−zv v ec z
0

/20ˆ( ) ⩾ ˆ( ) ( )  for all η>z 0. On the other 
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hand, from lemma 2.8 and the definition of V+ , we have ˆ( ) ⩽ λzv e z for ∈Rz . Since λ< c/2, 
we obtain a contradiction. Hence (3.9) holds.

Next, we show (3.10). To this end, we consider the function

( ) ˆ ( ) ˆ( )γβΦ = +′z c z zv v: .

It suffices to show that Φ z 0( ) ⩾  for all ∈Rz . Note that

( ) ˆ( )
ˆ ( )
ˆ( )

γβΦ = + >
′⎛

⎝
⎜

⎞
⎠
⎟z z c

z

z
v

v
v

0

for all sufficiently large  −z since

ˆ ( ) ˆ( )
→

λ= >′
−∞

z zv vlim / 0.
z

For contradiction, we assume that there exists ˆ ∈Rz1  such that Φ =z 01( ˆ )  and Φ′ z 01( ˆ ) ⩽ . Then 
there are two possibilities: either

( ) ⩽ ⩾ ˆΦ ∀z z z0, 1 (3.12)

or

Φ = Φ′z z0 and 02 2( ˆ )     ( ˆ ) ⩾ (3.13)

for some ˆ ⩾ ˆz z2 1. For the first case, (3.12) yields

γβ− ∀′c z z z zv v , .1ˆ ( ) ⩽ ˆ( ) ⩾ ˆ

Together with the fact that >g u v 0( ˆ )ˆ , we deduce from (3.4b) that

″ γ β γ= + − − < ∀′c g g z z zv v u v u v 0, ,1ˆ ˆ [ ( ˆ )]ˆ ⩽ ( ˆ)ˆ( ) ⩾ ˆ

which implies that ˆ ′v  is decreasing in ∞z ,1[ ˆ ). Hence ˆ ( ) ⩽ ˆ ( ˆ ) ˆ( ˆ )= − <′ ′ γβz z zv v v 0
c1 1 , which im-

plies that zv̂( ) is negative for large z. This is a contradiction to the fact that v̂ is positive on R. 
For the second case, (3.13) yields that

ˆ ( ˆ ) ˆ( ˆ )γβ
= −′ z

c
zv v2 2 (3.14)

and

″
γβ

− ′z
c

zv v .2 2ˆ ( ˆ ) ⩾ ˆ ( ˆ ) (3.15)

Then we deduce from (3.4b) that

ˆ ( ˆ ) ˆ ( ˆ ) ˆ( ˆ ) ( ˆ ( ˆ ))ˆ( ˆ )

⩾ ˆ ( ˆ ) ˆ( ˆ ) ˆ( ˆ )

 (  ( )   ( )           ( ˆ )ˆ )

ˆ( ˆ )  (  ( ))

″ γβ γ
γβ

γβ γβ

γβ

= − − +

− + −

>

=

>

′

′

⎛
⎝
⎜

⎞
⎠
⎟

z c z z g z z

c
z z z

g

c
z

v v v u v

v v v

u v

v

0

by 3.14 and 3.15 , and the fact that 0

by 3.14

0,

2 2 2 2 2

2 2 2

2

2

a contradiction again. Hence (3.10) is proven.
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Finally, we establish (3.11). To this end, we first claim that ˆ ( ) ⩽ ( ) ( )[ ] u uu′ ∈z c q pu 1/ max K0,  
at any local maximum point z of ′û . Let η0 be an arbitrary local maximum point of ′û . Then  
we have ˆ ( )″ η =u 00 , which, together with (3.4a), gives that η η η− = −′c gu u v0 0 0ˆ ( ) ( ˆ ( ))ˆ( )   
η η − ∈q p q pu u max K0 0 0,( ˆ ( )) ( ˆ ( )) ⩾ ( ) ( )[ ] u uu , and hence that η′ ∈c q u p uu 1/ maxu K0 0,ˆ ( ) ⩽ ( ) ( )[ ] . Hence the  

assertion of this claim is established. Now we note that ˆ ( ) ( ) ( )[ ]−∞ = <′ ∈c q u p uu 0 1/ maxu K0, .  
Hence, if (3.11) does not hold, then there exists η̂0 such that η >′ ∈c q pu 1/ max K0 0,ˆ ( ˆ ) ( ) ( )[ ] u uu .  
Together with the claim and the continuity of ′û , we have > ⋅ >′ ∈z c q pu 1/ max 0K0,ˆ ( ) ( ) ( )[ ] u uu   
for all ηz 0⩾ ˆ , which contradicts the boundedness of û. Hence (3.11) is shown. The proof of 
this lemma is therefore completed. □

3.2. Boundedness of v̂

In this section, we show that v̂ is bounded over R. Note that ˆ( )→ =−∞ zvlim 0z . For con-
tradiction, we assume that → ˆ( ) = ∞∞ zvlim sup z . Then there are two possibilities: either 

= ∞∞ zvlimz ˆ( )→  or → ˆ( ) ˆ( )→< = ∞∞ ∞z zv vlim inf lim supz z . In this section, we will exclude 
these two possibilities.

3.2.1. The case where = ∞∞ zvlimz→ ˆ( ) . In this section, we will exclude the possibility that  
ˆ( )→ = ∞∞ zvlimz . Specifically, we state it in the following lemma.

Lemma 3.3. The solution ( ˆ ˆ)u v,  cannot satisfy = ∞∞ zvlimz ˆ( )→ .

Proof. For contradiction, we assume that ˆ( )→ = ∞∞ zvlimz . Consider the function 
[ ˆ ˆ ] ˆ ˆγ δΨ = − + −′ ′c cu u v v: . Using (3.4a)–(3.4b), ˆ( )→ = ∞∞ zvlimz , and the boundedness of 

q pu u( ˆ ) ( ˆ ), we find that

( ) [ ˆ ( ˆ ) ( ˆ )] →     →γ βΨ = − ∞ ∞′ z q p zv u u as , (3.16)

which implies that ( )→ Ψ = ∞∞ zlimz . Together with (3.9), we deduce that δ − ∞ ∞′ c zu u asˆ ˆ →     → ,  
a contradiction to the boundedness of û. This completes the proof of this lemma. 

3.2.2. The case where < = ∞∞ ∞z zv vlim inf lim supz z→ ˆ( ) → ˆ( ) . In this section, we will 
exclude the possibility that → ˆ( ) ˆ( )→< = ∞∞ ∞z zv vlim inf lim supz z . This case is more dif-
ficult. For contradiction, we assume that → ˆ( ) ˆ( )→< = ∞∞ ∞z zv vlim inf lim supz z . Then it fol-
lows that ˆ( )zv  oscillates infinitely many times as →∞z . To obtain a contradiction, we need 
several auxiliary lemmas.

Lemma 3.4. ˆ ( )zu  oscillates infinitely many times as →∞z .

Proof. Recall that zv̂( ) oscillates infinitely many times as →∞z . Moreover, for the point z̃1 
where ′ zv̂ ( ) takes its local maximum, with the use of (3.4b), we have >′ zv 01ˆ ( ˜ )  and β>g zu 1( ˆ ( ˜ )) ,  
while for the point z2̃ where ′ zv̂ ( ) takes its local minimum, we have <′ zv 02ˆ ( ˜ )  and β<g zu 2( ˆ ( ˜ )) .  
Since g( )u  is monotonically increasing in u< <K0  and ( ) β=βg u , it follows that ˆ ( ˜ )> βz uu 1  
and ˆ ( ˜ )< βz uu 2 . With this observation, we discover that ˆ ( )zu  also oscillates infinitely many 
times as →∞z , thereby completing the proof of this lemma. □

Lemma 3.5. û has a positive lower bound over R.
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Proof. Recall that −∞ = >Ku 0ˆ ( ) , >zu 0ˆ ( )  for all ∈Rz , and that û oscillates infinitely 
many times as →∞z . Therefore, if the conclusion is false, then there exists a sequence of 
positive numbers ∞zn{ } →  such that û has a local minimum at zn and zu 0nˆ ( ) →  as →∞n .

Using (3.9) and (3.10), we get that

χ
γβ

ψ− − + + =β
β

β

⎛

⎝
⎜

⎞

⎠
⎟L z

c
z

v

c
cv

z

v
zv

v
v

2
ln : .2 3( ( )) ⩾ ˆ( )

ˆ( ) (ˆ( ))

Since ( )ψ + = ∞03  and ( )ψ ∞ =∞3 , the function ψ3 is bounded below in ∞0,( ). Hence the 
above inequality implies that χL z2( ( )) is bounded below for ⩾z 0. In addition, since û attains 
a local minimum at each point z  =  zn, it follows that = =′z zw u 0n nˆ ( ) ˆ ( ) , and so

( ( )) ˆ ( )
( )

→     →
ˆ( )

∫χ γ β
ξ
ξ= − ∞ ∞

β

⎛
⎝
⎜

⎞
⎠
⎟L z c z c

g
nu

1
d as ,n n

u

zu

1
n

where we have used zu 0nˆ ( ) →  as →∞n , and = ρ+g u uO 1( ) ( ) for some ⩾ρ 0. Taken together, 
we conclude that χ ∞L zn( ( )) →  as →∞n . This is a contradiction to the fact that ( ( ))χL z  is 
decreasing in z. Hence this completes the proof of this lemma. □

Lemma 3.6. There exists an βM v1 ⩾  such that, for ˆ( ) ⩾z Mv 1 with ⩾z 0, we have ˆ ( )<′ zu 0. In 
the following, we retain the notation M1.

Proof. First, since − ∞βc cv/2 ln →v v  as ∞→v , there exists a large βM v1 ⩾  such that, for 
⩾v M1, we have

( ( ) ( ))
( )

( ( ))
[ ]

v v u u
u ∫

γδ
γ β

ξ
ξ χ− + > + +β β β

∈ β

⎜ ⎟
⎛
⎝

⎞
⎠ L

c
cv cv v

c
q p c

g2
ln ln max

1
d 2 0 .

K u

K

0,

 
(3.17)

Next, using (3.9) and (3.11), we infer that for all z with zw 0ˆ ( ) ⩾  there holds

( ˆ ˆ ˆ ˆ)( ) ⩾ ( ) ( )
( )[ ]

u u
u ∫

γδ
γ β

ξ
ξ− ⋅ −

∈ β

⎛
⎝
⎜

⎞
⎠
⎟L z

c
q p c

g
u w v y, , , max

1
d ,

K u

K

1
0,

 (3.18)

and for all z with ˆ( ) ⩾zy 0 there holds

− +β β β⎜ ⎟
⎛
⎝

⎞
⎠L z

c
z cv z cv vu w v y v v, , ,

2
ln ln .2( ˆ ˆ ˆ ˆ)( ) ⩾ ˆ( ) ˆ( ) (3.19)

Now, for z with ˆ( ) ⩾ βz vv  and ˆ( )<zy 0, we estimate L u w v y, , ,2( ˆ ˆ ˆ ˆ) as follows:

= − + + −

= − − + − +

− +

β β
β

β
β β β

β β β

⎛
⎝
⎜

⎞
⎠
⎟

L z z c z v
z

z
cv

z

v

v

z
c z cv z cv v

c z cv z cv v

u w v y y v
y
v

v

v
y v v

v v

, , , ln

1 ln ln

ln ln .

2( ˆ ˆ ˆ ˆ)( ) ˆ( ) ˆ( )
ˆ( )
ˆ( )

ˆ( )

ˆ( )
ˆ ( ˆ( ) ˆ( ))

⩾ ( ˆ( ) ˆ( ))

 

(3.20)
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We are now ready to establish the assertion of this lemma. For contradiction, suppose that 
there exists a ˆ ⩾z 01  such that z Mv 1 1ˆ( ˆ ) ⩾  and ˆ ( ˆ ) ˆ ( ˆ ) ⩾= ′z zw u 01 1 . Then with the aid of (3.18)–
(3.20), it follows from the choice of M1 that

( ( ˆ )) ( ˆ ˆ ˆ ˆ)( ˆ ) ( ( ))χ χ= >L L Lz zu w v y, , , 2 0 ,1 1

which contradicts (3.8). The proof of this lemma is thus completed. □

Lemma 3.7. Suppose that z Mv 0 1ˆ( ˆ ) ⩾  and =′ zv 00ˆ ( ˆ )  for some ∈Rz0ˆ . Then ˆ( ˆ )zv 0  cannot be 
a local minimum.

Proof. Suppose not. Then we have ″ zv 00ˆ ( ˆ ) ⩾ , which, together with (3.4b), yields ( ˆ ( ˆ )) ⩽ βg zu 0 .  
On the other hand, since zv̂( ) oscillates for large z, we can find a >z z1 0ˆ ˆ  such that ˆ ( ) ⩾′ zv 0 for 
∈z z z,0 1( ˆ ˆ ) and ˆ( )zv  takes its local maximal value at =z z1̂. Hence we have ˆ ( ˆ ) ⩽″ zv 01 , which, 

together with (3.4b) again, yields ( ˆ ( ˆ )) ⩾ βg zu 1 . In view of the mean-value theorem and the fact 
that ( )ug  is increasing in u< <K0 , there exists a ˆ ( ˆ ˆ )∈z z z,2 0 1  such that ′ zu 02ˆ ( ˆ ) ⩾ . However, 
since ˆ( ˆ )>z Mv 2 1, we have ˆ ( ˆ )<′ zu 02  by lemma 3.6. This is a contradiction, thus completing the 
proof of this lemma. □

Lemma 3.8. There exist positive constants k1 and >M M2 1 such that for ⩾z 0 with ˆ( ) ⩾z Mv 2,  
we have − ′z k zv u1ˆ( ) ⩽ ˆ ( ). In the following, we retain the notations k1 and M2.

Proof. To begin with, we set up some notations. Set {ˆ( ) }= ∈R�u z zuinf : . According to lem-
ma 3.5, we have >�u 0, which, together with the monotonicity of g, yields >�g z g uu 0( ˆ ( )) ⩾ ( )  
for all ∈Rz . Set

γδβ
=

�
k

g u c
:

4
.1

( )

Since

− ∞ ∞β
β

c
cv

v4
ln as ,→     →v v v

there exists a large >M M2 1 such that

ˆ( )
ˆ( ) ⩾

( )
( ( ))∫γ β

ξ
ξ χ− +β

β β

L
c

z cv
z

v
c

g
v

v
4

ln
1

d 2 0 ,
u

K

 (3.21)

for all z with ˆ( ) ⩾z Mv 2. Now we set { ⩾ ˆ( ) ⩾ }=Z z z Mv: 0 : 2 .
Next we estimate χL z1( ( )) for ∈Zz . From lemma 3.6, we have ˆ ( ) ˆ ( )= <′z zw u 0 for ∈Zz . 

Together with the fact that ( ˆ ( )) ⩾ ( )�g z g uu  for ∈Rz , he following inequality holds for ∈Zz ,

∫

∫

χ γδ γ γδβ γ β
ξ
ξ

γδβ
γ β

ξ
ξ

= − + + −

⋅ −

β

β

L

�

z z c z
z

g z
c

g

g u
z c

g

w u
w
u

w

1
d ,

1
d .

u

z

u

K

u

1( ( )) ˆ ( ) ˆ ( )
ˆ ( )
( ˆ ( )) ( )

⩾
( )

ˆ ( )
( )

ˆ( )

 

(3.22)

Now we turn to estimate χL z2( ( )) for ∈Zz . Indeed, since <βv zv/ 1ˆ( )  for ∈Zz , we can use 
(3.9) to deduce that, for ∈Zz , it holds that
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( ( )) ˆ( ) ˆ( )
ˆ( )
ˆ( )

ˆ( )

ˆ( )
ˆ( ) ˆ( ) ˆ( ) ˆ( )

ˆ( )

⩾ ˆ( ) ˆ( )
ˆ( ) (  ( ))

⩾ ˆ( )
( )

( ( )) (  ( ))∫

χ

γ β
ξ
ξ χ

= − + + −

= − − + + + −

+ −

+ +

β β
β

β
β

β

β
β

β

⎛

⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

L

L

z z c z v
z

z
cv

z

v

v

z
z

c
z

c
z

c
z cv

z

v

c
z

c
z cv

z

v

c
z c

g

y v
y
v

v

v
y v v v

v

v v
v

v

ln

1
2 4 4

ln

4 4
ln using 3.9

4

1
d 2 0 using 3.21 .

u

K

2

 

(3.23)

In view of (3.22)–(3.23) and the definition of k1, we have that, for ∈Zz ,

χ χ χ

χ

= +

⋅ + +

L L L

L

z z z
c

z k zv w
4

2 0 .

1 2

1

( ( )) ( ( )) ( ( ))

⩾ (ˆ( ) ˆ ( )) ( ( )) (3.24)

Now we are ready to show the assertion of this lemma. For contradiction, we assume that there 
exists a ∈Zz0ˆ  such that ˆ( ˆ ) ˆ ( ˆ )>− ′z k zv u0 1 0 . Then (3.24) immediately gives ( ( ˆ )) ( ( ))χ χ>L Lz 2 00 ,  
which contradicts (3.8). Hence the proof is completed. □

Now we are in a position to exclude the case where < = ∞∞ ∞z zv vlim inf lim supz z→ ˆ( ) ˆ( )→ . 
Specifically, we state it in the following lemma.

Lemma 3.9. The solution u v,( ˆ ˆ) cannot satisfy the inequality → ˆ( ) →<∞ ∞zvlim inf lim supz z  
zv̂( ) = ∞.

Proof. For contradiction, we assume that → ˆ( ) ˆ( )→< = ∞∞ ∞z zv vlim inf lim supz z . Then, in 
view of lemmas 3.6 and 3.7, we can choose positive numbers ẑ0 and z1̂ such that ˆ( ˆ ) =z Mv 0 2, 
′ zv 0ˆ ( ) ⩾  for [ ˆ ˆ )∈z z z,0 1 , ˆ ( ˆ ) =′ zv 01 , ˆ ( )<′ zu 0 for ∈z z z,0 1[ ˆ ˆ ], and

∫γ β> + | − |c z cM k gv u ud .
K

1 2 1
0

ˆ( ˆ ) ( ˆ ) ˆ (3.25)

Hence [ ˆ ˆ ] { ⩾ ˆ( ) ⩾ }⊂ =Zz z z z Mv, : 0 :0 1 2 .
Integrating (3.4b) from ẑ0 to ẑ1 and rearranging the resulting equation, we have

(ˆ( ˆ ) ) ˆ ( ˆ ) ( ( ˆ ( )) )ˆ( )
ˆ

ˆ

∫ γ ξ β ξ ξ− + = −′c z M z gv v u v d .
z

z

1 2 0
0

1

Recall that ˆ( ˆ )>z Mv 1 2 and >′ zv 00ˆ ( ˆ ) . Together with lemma 3.8, it follows from the above 
equation that

(ˆ( ˆ ) ) ˆ ( ˆ ) ⩽ ( ˆ( )) ˆ( )

⩽ ( ˆ( )) ˆ ( )

( ˆ ) ˆ

⩽ ( ˆ) ˆ

ˆ

ˆ

ˆ

ˆ

ˆ ( ˆ )

ˆ ( ˆ )

∫

∫

∫

∫

γ ξ β ξ ξ

γ ξ β ξ ξ

γ β

γ β

− + | − |

− | − |

= | − |

| − |

′

′

c z M z g

k g

k g

k g

v v u v

u u

u u

u u

d

d

d

d .

z

z

z

z

z

z

K

u

u

1 2 0

1

1

1
0

0

1

0

1

1

0
 

(3.26)
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Since ′ zv 00ˆ ( ˆ ) ⩾ , (3.26) implies that

(ˆ( ˆ ) ) ⩽ ( ( ˆ ) ) ˆ∫γ β− | − |c z M k gv u ud ,
K

1 2 1
0

which contradicts (3.25). Hence the proof of this lemma is completed. □

3.3. Estimate of the derivative of û

In this section, we give the estimate for the derivative of û, which, together with (3.9) and 
(3.10), in turn give the construction of the open bounded set D. To do this, we recall from 
section 3.2 that v̂ is bounded over R, and hence that there exists a positive constant B such 
that <z Bv̂( )  for all ∈Rz . In the following, we retain the notation B. Now the estimate for the 
derivative of û is given in the following lemma.

Lemma 3.10. There exist positive constants Li, i  =  1, 2, such that

− < <′L g z z L g zu u u1 2( ˆ ( )) ˆ ( ) ( ˆ ( )) (3.27)

for all ⩾z 0. In the following, we retain the notation Li, i  =  1, 2.

Proof. (1) We show that ( ˆ ( )) ˆ ( )− < ′L g z zu u1  for all ⩾z 0, if L1 is a sufficiently large constant 
such that ( ˆ ( )) ˆ ( )− < ′L g u u0 01  and ⩾L B c2 /1 .

Let

Φ = +′z z L g zu u: .1 1( ) ˆ ( ) ( ˆ ( ))

It suffices to show that Φ >z 01( )  for all ⩾z 0. Note that Φ >0 01( ) . For contradiction, we as-
sume that there exists >z 01̂  such that ( ˆ )Φ =z 01 1  and Φ′ z 01 1( ˆ ) ⩽ . Then there are two possibili-
ties: either

Φ ∀z z z0,1 1( ) ⩽ ⩾ ˆ (3.28)

or

( ˆ )     ( ˆ ) ⩾Φ = Φ′z z0 and 0,1 2 1 2 (3.29)

for some z z2 1ˆ ⩾ ˆ . For the first case, (3.28) gives

− ∀′c z Bg z z zu u2 , .1ˆ ( ) ⩽ ( ˆ( )) ⩾ ˆ

Together with the fact that ⩽ ˆ ⩽ Bv0  and >q pu u 0( ˆ ) ( ˆ ) , we deduce from (3.4a) that

″δ = + − − < ∀′c g q p Bg z zu u u v u u u 0, ,1ˆ ˆ ( ˆ )ˆ ( ˆ ) ( ˆ ) ⩽ ( ˆ) ⩾ ˆ

which implies that ′û  is decreasing in ∞z ,1[ ˆ ). Hence = − <′ ′z z L g zu u u 01 1 1ˆ ( ) ⩽ ˆ ( ˆ ) ( ˆ ( ˆ ))  for all 
⩾ ˆz z1, which contradicts the boundedness of û. For the second case, (3.29) yields that

= −′ z L g zu u2 1 2ˆ ( ˆ ) ( ˆ ( ˆ )) (3.30)

and

ˆ ( ˆ ) ⩾ ( ˆ( ˆ )) ˆ ( ˆ )″ − ′ ′z L g z zu u u .2 1 2 2 (3.31)
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Using (3.4a), we deduce that

ˆ ( ˆ ) ˆ ( ˆ ) ( ˆ ( ˆ )) ( ˆ ( ˆ )) ( ˆ ( ˆ ))ˆ( ˆ )
⩾ ( ˆ( ˆ )) ˆ ( ˆ ) ( ˆ ( ˆ )) ( ˆ ( ˆ ))

(  ( )   ( )           ( ˆ ) ( ˆ ) ( ˆ )     ˆ ⩽ )
⩾ (ˆ( ˆ )) ( ˆ ( ˆ )) ( ˆ ( ˆ )) (  ( )        )

(         ( ˆ )     ( ˆ ) )

″δ
δ

δ

= − + −
− + −

> > <

+
> > >

′
′ ′

′
′

z c z q z p z g z z

L g z z cL g z g z B
q p g B

L g z g z g z B L

g g

u u u u u v
u u u u

u u u v

u u u
u u

0

by 3.30 and 3.31 , and the fact that 0, 0 and 0

by 3.30 and definition of

0, use the fact that 0 and 0 ,

2 2 2 2 2 2

1 2 2 1 2 2

1
2

2 2 2 1

a contradiction again.

(2) We show that there exists a positive constant L2 such that

< ∀′ z L g z zu u , 0.2ˆ ( ) ( ˆ ( )) ⩾ (3.32)

To this end, we observe

∫ ∫

∫ ∫

γ β
ξ
ξ γ β

ξ
ξ

γ β
ξ
ξ γ β

ξ
ξ

− − ∈

− = ∈

c
g

c
g

u u K

c
g

c
g

u u

1
d

1
d for , ,

1
d

1
d 0 for 0, .

u

u

u

K

s

u

u

u

u

s

s s

s

s

( )
⩾

( )
    [ ]

( ) ( )
⩾     [ ]

 

(3.33)

Since v̂ is bounded, one can easily use (3.9) and (3.10) to deduce that χ ⋅L2( ( )) is bounded 
below on [ )∞0, . This, together with (3.8), implies that ( ( ))χ ⋅L1  is bounded above on [ )∞0, . 
Recall that

( ( )) ˆ ( ) ˆ ( )
ˆ ( )
( ˆ ( )) ( )

ˆ( )

∫χ γ δ δβ β
ξ
ξ= − − − +′

′⎛
⎝
⎜

⎞
⎠
⎟L z z c z

z

g z
c

g
u u

u
u

1
d .

u

zu

1
s

Then, using (3.11) and (3.33), the upper boundedness of ( ( ))χ ⋅L1 , and the fact that < <Ku0 ˆ  
on R, we infer that ˆ ( ) ( ˆ ( ))′ z g zu u/  is bounded above over ⩾z 0. Hence there exists a positive 
constant L2 such that (3.32) holds. The proof of this lemma is thus completed. □

3.4. Construction of the set D and the proof of lemma 3.1

Now we are in a position to construct the open bounded set D of system (3.6). Indeed, set

γβ
= | < < < < − < < − < <

⎧
⎨
⎩

⎫
⎬
⎭D K B L g L g

c
c: , , , 0 , 0 , ,

2
.1 2( ) ( ) ( )u w v y u v u w u v y v

Then (3.5), the boundedness of v̂ (see section 3.2), lemma 3.10, and (3.9)–(3.10) assert that 
the solution ( ) ( ˆ ( ) ˆ ( ) ˆ( ) ˆ( ))χ =z z z z zu w v y, , ,  with ( = ′ ′w y u v, ,ˆ ˆ) ( ˆ ˆ ) of system (3.6) is positively 
invariant in D for all ⩾z 0.

Recall the Lyapunov function L defined by (3.7). In view of (3.8), the orbital derivative 
of L along χ z( ) is non-positive. One can easily see that L is continuous, and, by lemma 3.10, 
(3.9)–(3.10), and the boundedness of û and v̂, that L is bounded below on D. Taken together, 
it follows from LaSalle’s invariance principle that χ β βz u v, 0, , 0( ) → ( ) as →∞z , and so 
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( )( ) ( ˆ ˆ)( ) ( )−∞ = ∞ = β βU V u vu v, , , . This completes the proof of lemma 3.1, and hence the 
proof of theorem 1.1. □

4. Evolution of disturbance

In this section, we will establish the assertion of theorem 1.2. The idea of the proof is to con-
struct wave-like functions propagating with the speed λc .

4.1. Global existence and uniqueness of solutions

First, we establish the global existence and uniqueness of solutions of system (1.7) with the 
initial condition (1.11). For this, we need to obtain an a priori bound for solutions.

Lemma 4.1. Suppose that hypotheses (H1)–(H4) hold. Let (u, v) be the solution of system 
(1.7) on ×R T0,[ ] with bounded initial data ( )u v,0 0  satisfying

⩽ ⩽ ⩾u K v0 , 0.0 0

Then there exist positive constants C0
ˆ  and ω, independent of T, such that

⩽ ( ) ⩽ ⩽ ( ) ⩽ ˆ           [ ]∈ ∈ω Ru x t K and v x t C x t T0 , 0 , e for all and 0, .t
0

Proof. First, following the argument of [39, p. 270], we have that

∈ ∈Ru x t K v x t x t T0 , and , 0 for all and 0, .⩽ ( ) ⩽     ( ) ⩾           [ ]

To deduce the upper bound for v, we use the above inequality for (u, v) and equation (1.7b) to 
obtain that v(x, t) is a sub-solution of the equation

[ ( ) ]γ β= + −v v g K v,t xx (4.1)

for ( ) ( ]∈ ×Rx t T, 0, . On the other hand, it is easy to check that ¯( ) ˆ= ωv x t C, : e t
0  is a super-

solution of (4.1) with ¯( ) ⩾ ( )v x v x, 0 0 , provided that Ĉ0 and ω are sufficiently large constants 
that ∞C v0 0

ˆ ⩾ ∥ ∥  and ⩾ [ ( ) ]ω γ β−g K . Then it follows from the maximum principle that 
( ) ⩽ ¯( )v x t v x t, ,  for ∈ ×Rx t T, 0,( ) ( ]. This completes the proof of this lemma. □

With the help of lemma 4.1, we can apply the standard argument (see [39, p. 271]) and 
use [48, theorem 14.4] and [48, lemma 14.3] to obtain the global existence, uniqueness, and 
regularity of solutions of system (1.7) with the initial condition (1.11).

4.2. Comparison lemmas

In this section, we show that if the v component of initial data (1.11) is squeezed between 
⋅λ

−V x x; ,1 0( ) and ⋅λ
+V x; 0( ) for some x0 and ∈Rx1 , then the solution of system (1.7) with initial 

data (1.11) is squeezed between − −λ λ λ λ
− −U x c t x V x c t x x; , ; ,0 1 0( ( ) ( )) and ( ( ))−λ λ

+K V x c t x, ; 0  
for all t  >  0.

Lemma 4.2. Suppose that hypotheses (H1)–(H4) hold. Let (u, v) be the solution of system 
(1.7) on [ )× ∞R 0,  with bounded initial data ( )u v,0 0  satisfying

( )     ( ) ⩽ ( ) ⩽ ( )= λ λ
− +u x K and V x x x v x V x x; , ;0 1 0 0 0 (4.2)
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for all ∈Rx , and for some ∈Rx x,0 1  and ( [ ( ) ] )λ γ β∈ −g K0, . Then we have

−λ λ
−U x c t x u x t K; , ,0( ) ⩽ ( ) ⩽ (4.3a)

− −λ λ λ λ
− +V x c t x x v x t V x c t x; , , ;1 0 0( ) ⩽ ( ) ⩽ ( ) (4.3b)

for all ∈ × ∞Rx t, 0,( ) [ ).

Proof. To begin with, we show ( ) ⩽ ( )−λ λ
+v x t V x c t x, ; 0  for all ∈ × ∞Rx t, 0,( ) [ ). For this, 

lemma 4.1 implies that ⩽ ( ) ⩽u x t K0 ,  and ( ) ⩾v x t, 0 for all ( ) [ )∈ × ∞Rx t, 0, . In view of 
equation (1.7b), it follows that v(x, t) is a sub-solution of the equation

[ ( ) ]γ β= + −v v g K v.t xx (4.4)

Note that ( )−λ λ
+V x c t x; 0  is a solution of equation (4.4) by lemma 2.2. Now, with the use of the 

fact that ( ) ⩽ ( )⋅ ⋅λ
+v V x;0 0  on R, we can employ the comparison principle to equation (4.4) to 

obtain that ( ) ⩽ ( )−λ λ
+v x t V x c t x, ; 0  for all ∈ × ∞Rx t, 0,( ) [ ).

Next we establish ( ) ⩾ ( )−λ λ
−u x t U x c t x, ; 0  for all ( ) [ )∈ × ∞Rx t, 0, . To do this, we recall 

the definition of z0 given in section 2.2. For each ⩾t 0, we set = +λx c t z:t 0. Then for (x, t) 
with x xt⩽  and ⩾t 0, since ( )− =λ λ

−U x c t x; 00 , it is obvious that ( ) ⩾ ( )−λ λ
−u x t U x c t x, ; 0 . Next 

we consider the region Ω = x t x x t: , : , 0t1 {( ) ⩾ ⩾ }. Using equation (1.7a) and the right-hand-
side inequality of (4.3a), we know that u(x, t) is a super-solution of the equation

δ= + − −λ λ
+u u q u p u g u V x c t x;t xx 0( ) ( ) ( ) ( ) (4.5)

in Ω1. Note that −λ λ
−U x c t x; 0( ) is a sub-solution of equation (4.5) in Ω1 by lemma 2.3. Thus, 

together with the fact that ( ) ⩾ ( )⋅ ⋅λ
−u U x;0 0  on R and −λ λ

−u x t U x c t x, ; 0( ) ⩾ ( ) for (x, t)  = 
(xt, t) and ⩾t 0, we can employ the comparison principle to equation  (4.5) to deduce that 
( ) ⩾ ( )−λ λ

−u x t U x c t x, ; 0  for all ∈Ωx t, 1( ) . Hence we conclude that −λ λ
−u x t U x c t x, ; 0( ) ⩾ ( ) for 

all ( ) [ )∈ × ∞Rx t, 0, .
Finally we prove ( ) ⩾ ( )−λ λ

−v x t V x c t x x, ; ,1 0  for all ( ) [ )∈ × ∞Rx t, 0, . To begin 
with, we recall the definition of z1 given in section  2.2, and set ˜ = +λx c t z:t 1 for each 
⩾t 0. Then, in view of the observation that − =λ λ

−V x c t x x; , 01 0( )  for (x, t) with ⩽ ˜x xt and 
⩾t 0, we have that ( ) ⩾ ( )−λ λ

−v x t V x c t x x, ; ,1 0  for x xt⩽ ˜  and ⩾t 0. Next we consider the region 
Ω = x t x x t: , : , 0t2 {( ) ⩾ ˜ ⩾ }. With the use of the left-hand-side inequality of equation (4.3) and 
equation (1.7b), it follows that v(x, t) is a super-solution of the equation

[ ( ( )) ]γ β= + − −λ λ
−v v g U x c t x v;t xx 0 (4.6)

in Ω2. Note that ( )−λ λ
−V x c t x x; ,1 0  is a sub-solution of equation  (4.6) in Ω2 by lemma 2.4, 

and that ( ) ⩾ ( )⋅ ⋅λ
−v V x x; ,0 1 0  on R and −λ λ

−v x t V x c t x x, ; ,1 0( ) ⩾ ( ) for ( ) ( ˜ )=x t x t, ,t  and ⩾t 0. 
Therefore, the comparison principle yields that ( ) ⩾ ( )−λ λ

−v x t V x c t x x, ; ,1 0  for x xt⩾ ˜  and ⩾t 0.  
Hence we have that ( ) ⩾ ( )−λ λ

−v x t V x c t x x, ; ,1 0  for all ∈ × ∞Rx t, 0,( ) [ ), thereby completing 
the proof of this lemma. □

4.3. The proof of theorem 1.2

With the aid of lemma 4.2, we are ready to establish theorem 1.2. We will only establish asser-
tions (i) of theorem 1.2, since the other assertions can be shown similarly. Now, in view of 
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condition (1.11), sufficiently large numbers x0 and | |x1  with x1  <  0 can be chosen in such a way 
that condition (4.2) in lemma 4.2 with λ λ= +:  holds. Then we can employ lemma 4.2 and the 
definitions of 

λ
−
+U  and 

λ
±
+V  to deduce that

{ } ⩽ ( ) ⩽
{ } ⩽ ( ) ⩽

( )

( ) ( )( ) ( )

−

−

α

λ λ η λ

− −

− − − − + − − − −

λ

λ λ λ

+

+ + + + + +

K M u x t K

L v x t

max 0, e ,

max 0, e e , e ,

x c t

x c t x x c t x c t x1 0
 (4.7)

for all ∈ × ∞Rx t, 0,( ) [ ), where M  =  M(x0), ( )=L L x x,1 0  and η are positive constants defined 
in section 2.2. Set ψ = −

λ
α+ −

+ x K M: max 0, e x( ) { }, φ = −
λ

λ λ η+ − − − +
+

+ +
x L: max 0, e ex x x1( ) { }( ) ( )  

and ς =
λ

λ+ − −
+

+
x : e x x0( ) ( ). Then inequality (4.7) immediately implies assertion (i) of theorem 

1.2, thereby completing the proof of theorem 1.2. □

5. Conclusion and discussion

In this paper, we have established a family of travelling waves with minimum wave speed for 
a class of predator–prey models. We have also shown that, for the initial distribution where the 
prey species is at the level of the carrying capacity K, and the predator species has positive, 
compactly supported perturbation of the zero state with exponentially small tails, the corre-
sponding solution will evolve into a pair of diverging waves whose speeds are determined by 
the tail behaviour of the initial data.

Recently, Holzer and Scheel [20, 21] investigated a class of two-component coupled 
Fisher–KPP equations where one species decouples from the other species. They showed that 
the evolution of positive, compactly supported perturbations of the unstable homogeneous 
steady state can give rise to a pair of diverging waves propagating with different speeds for 
different species. This phenomenon is called anomalous spreading. Their theory suggests that 
anomalous spreading arises due to poles of the pointwise Green’s function of the linearized 
system around the unstable homogeneous steady state. Specifically, the linearized system 
associated with the systems of Holzer and Scheel in the moving coordinate frame ξ = −x st 
with s  >  0 reads

α β= + + +
= + +

ξξ ξ

ξξ ξ

u u su u v
v v sv v

d ,
.

t

t
 (5.1)

On the other hand, the linearization of the unstable homogeneous steady state (K, 0) for sys-
tem (1.7) leads to the following linear system:

( ) ( ) ( )
( ( ) )γ β

= + + −
= + + −

′ξξ ξ

ξξ ξ

u u su q K p K u g K v

v v sv g K v

d ,

.
t

t
 (5.2)

According to assumptions (H1)–(H3), we have

( ) ( ) ( )     ( ( ) )γ β< > − >′q K p K g K g K0, 0, and 0.

Since Holzer and Scheel in [20, 21] made an assumption that the parameters α and β in 
(5.1) are positive, their result cannot be applied to model (1.7). Hence anomalous spreading 
may not occur in system (1.7) under assumptions (H1)–(H3).
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Appendix

In this appendix, we collect some a priori estimates in [16] for solutions of the inhomoge-
neous linear equation

( ) ( ) ( ) ( ) ( )″ + + =′w z Aw z f z w z h z . (A.1)

Lemma A.1. (Lemma 3.2 of [16])

Let A be a positive constant and let f and h be continuous functions on [a, b]. Suppose that 
∈ ∩w C a b C a b, ,2([ ]) (( )) satisfies differential equation (2.17) in (a, b) and w(a)  =  w(b)  =  0. If

⩽ ⩽     ⩽    [ ]− | |C f h C a b0 and on , ,1 2

for some constants C1, C2, then there exists a positive constant C3, depending only on A, C1, 
and the length of the interval [a, b], such that

∥ ∥ ⩽([ ])w C C .C a b, 2 3

Lemma A.2. (Lemma 3.3 of [16])

Let A, f, and h be as in lemma A.1. Suppose that ∈ ∩w C a b C a b, ,2([ ]) (( )) satisfies (2.17) in  
(a, b). If ∥ ∥ ⩽([ ])w CC a b, 0 for some constant C0, then there exists a positive constant C4, depend-
ing only on A, C0, C1, C2, and the length of the interval [a, b], such that

∥ ∥ ⩽([ ])′w C .C a b, 4
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